p o s m e c universidade federal do abc aula 1 leis de...

61
MEC202 Termodinâmica Avançada Universidade Federal do ABC P O S M E C Aula 1 Leis de conservação da energia MEC202

Upload: dangbao

Post on 29-Nov-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

MEC202 Termodinâmica Avançada

Universidade Federal do ABC P O S M E C

Aula 1 Leis de conservação da energia

MEC202

MEC202 Termodinâmica Avançada

Problema para discussão

“O estranho caso do refrigerador aberto na sala adiabática”

O que acontece com a

temperatura do ar?

MEC202 Termodinâmica Avançada

Formas de energia

• A energia pode existir em várias formas, tais como térmica, mecânica, cinética, potencial eléctrica, química, magnética e nuclear.

• A soma constitui das energias de um sistema é a energia total do sistema.

• A energia total de um sistema por unidade de massa é expressa por

MEC202 Termodinâmica Avançada

O papel da Termodinâmica

A Termodinâmica não fornece nenhuma informação sobre o valor absoluto da energia total.

A Termodinâmica trata apenas das mudanças da energia total, que é o que importa em problemas de engenharia.

MEC202 Termodinâmica Avançada

Macroscópica X Microscópica

• As formas macroscópicas de energia são aquelas que um sistema possui como um todo em relação a algum sistema de referência externo (exemplo: energia cinética e potencial).

• As formas microscópicas de energia estão relacionadas com a estrutura molecular de um sistema e o grau de atividade molecular, e são independentes de sistemas de referência externos.

MEC202 Termodinâmica Avançada

Energia interna

• A soma de todas as formas microscópicas de energia é chamada de energia interna de um sistema e é denotada por U.

MEC202 Termodinâmica Avançada

História

• O termo “energia” foi cunhado em 1807 por Thomas Young.

• Seu uso em termodinâmica foi proposta em 1852 por Lord Kelvin.

• O termo energia interna e seu símbolo U apareceu pela primeira vez nos trabalhos de Rudolph Clausius e William Rankine, na segunda metade do século XIX, e acabou substituindo os termos alternativos “trabalho interno” e “energia intrínseca” comumente usado na época.

MEC202 Termodinâmica Avançada

Energia cinética

• A energia que um sistema tem como resultado do seu movimento relativo, em certa sistema de referência é chamada de energia cinética.

MEC202 Termodinâmica Avançada

Energia cinética

• Quando todas as partes de um sistema de movem-se com a mesma velocidade, a energia cinética é expressa como

• Para corpos em rotação

2

2

1IKE

2

2

1mvKE 2

2

1vke

MEC202 Termodinâmica Avançada

Energia potencial

• A energia que um sistema tem como resultado da sua elevação em um campo gravitacional é chamada de energia potencial (PE) e é expressa como

mgzPE gzpe

MEC202 Termodinâmica Avançada

Energia total

• Na ausência de outros tipos de energia (elétrica, magnética, etc), a energia total vale

mgzmvUPEKEUE 2

2

1

gzvupekeue 2

2

1

MEC202 Termodinâmica Avançada

Energia em fluxos de matéria

Taxa de massa

Velocidade média

MEC202 Termodinâmica Avançada

Energia interna U

• Soma das formas microscópicas de energia.

• Energia sensível: ligadas a movimentos atômicos e subatômicos.

MEC202 Termodinâmica Avançada

Energia interna U

• Energia latente: decorrente de mudanças de estado.

• Energia química: decorrente de mudanças de ligações entre os átomos.

• Energia nuclear: decorrente de mudanças da estrutura dos núcleos atômicos.

MEC202 Termodinâmica Avançada

Energia interna U

Energia interna U

energia térmica

MEC202 Termodinâmica Avançada

Energia mecânica

A energia mecânica pode ser definida como a forma de energia que pode ser convertida em trabalho mecânico completamente e diretamente por um dispositivo mecânico ideal (por exemplo, uma turbina ideal).

Exemplos: – Uma bomba transfere a energia mecânica para um

fluido, aumentando sua pressão.

– Uma turbina extrai energia mecânica de um fluido, reduzindo sua pressão.

MEC202 Termodinâmica Avançada

Energia mecânica de um fluido

Energia do fluxo

Energia cinética

Energia potencial

MEC202 Termodinâmica Avançada

Taxa de energia mecânica de um fluido

Exemplo: a taxa de energia mecânica de um fluido incompressível (r=constante) vale

MEC202 Termodinâmica Avançada

Energia mecânica de um fluido

• A variação da taxa da energia mecânica de um fluido vale

Portanto: a energia mecânica de um fluido não é alterada ao longo do fluxo

se a pressão, densidade, velocidade e elevação e permanecem constantes.

Na ausência de quaisquer perdas, a variação de energia mecânica representa o trabalho mecânico fornecido ou extraído do fluido.

MEC202 Termodinâmica Avançada

TRANSFERÊNCIA DE ENERGIA POR CALOR

MEC202 Termodinâmica Avançada

Calor e trabalho

• A energia pode atravesar os limites de um sistema fechado de duas formas distintas: calor e trabalho.

• Estas duas formas de energia serão discutidas de modo a formar uma base sólida para o estudo das leis da termodinâmica.

MEC202 Termodinâmica Avançada

Calor

• Calor é definido como a forma de energia que é transferida em virtude da diferença de temperatura.

• Logonão pode haver qualquer transferência de calor entre os dois sistemas que estão à mesma temperatura.

• O calor é energia em transição. Reconhece-se o calor somente quando este atravessa a fronteira de um sistema.

MEC202 Termodinâmica Avançada

Processo adiabático

• Um processo no qual não existe qualquer transferência de calor é chamado um processo adiabático.

• Em grego adiabatos significa o que não pode ser transferido.

• Existem duas formas de um processo ser adiabático: – o sistema está bem isolado de modo que apenas uma

quantidade insignificante de calor pode passar através dos seus limites.

– tanto o sistema e o ambiente são, à mesma temperatura e, portanto, não existe uma diferença de temperatura para a transferência de calor.

MEC202 Termodinâmica Avançada

Calor transferido Q

A quantidade de calor transferido por unidade de massa vale

m

Qq

Considerando-se a taxa de transferência de calor, podemos escrever

E se a taxa for constante

MEC202 Termodinâmica Avançada

TRANSFERÊNCIA DE ENERGIA POR TRABALHO

MEC202 Termodinâmica Avançada

Trabalho

• O trabalho, como o calor, corresponde a uma transferência de energia entre um sistema e seus arredores.

• Se a energia de cruzar o limite de um sistema fechado não é calor, ela deve ser trabalho.

• Trabalho é a transferência de energia associada a uma força que atua por uma certa distância.

MEC202 Termodinâmica Avançada

Trabalho por unidade de massa

• O trabalho realizado por unidade de massa de um sistema é expresso como

• O trabalho realizado por unidade de tempo é chamado de potência.

m

Ww

MEC202 Termodinâmica Avançada

Calor e trabalho: sinais

• Calor e trabalho podem entrar ou sair de um sistema.

• A descrição completa de um trabalho ou de calor requer a especificação de tanto a magnitude como do sentido.

• A convenção de sinais formal para interações de calor e trabalho é o seguinte: – transferência de calor para um sistema e trabalho

feito em um sistema são positivos – transferência de calor de um sistema e trabalho feito

em por sistema são negativos.

MEC202 Termodinâmica Avançada

Calor e trabalho: sinais

MEC202 Termodinâmica Avançada

Calor e trabalho: similaridades

Calor e trabalho são mecanismos de transferência de energia entre um sistema e seus arredores, e há muitas semelhanças entre eles:

1. Ambos são reconhecidos nos limites de um sistema como eles cruzam as fronteiras. Ou seja, tanto calor e trabalho são fenômenos de fronteira.

2. Sistemas possuem energia, mas não calor ou trabalho. 3. Ambos estão associadas a um processo, não um estado.

Ao contrário de propriedades, calor ou de trabalho não tem sentido em um estado.

4. Ambos são funções do meio de transferência (isto é, as suas magnitudes dependem do caminho seguido durante um processo, bem como os estados finais).

MEC202 Termodinâmica Avançada

Trabalho elétrico

• Quando N de carga elétrica coulombs movimentam-se através de uma diferença de potencial V, o trabalho do campo elétrico é dado por

• Em termos de taxa temporal, temos

Potência elétrica

Corrente elétrica

IWe V

MEC202 Termodinâmica Avançada

• Se tanto V como I permanecerem contantes, temos

We=VIDt

Trabalho elétrico

• No caso mais genérico, no qual tanto a corrente como o potencial variam no tempo, temos

MEC202 Termodinâmica Avançada

FORMAS MECÂNICAS DE TRABALHO

MEC202 Termodinâmica Avançada

Trabalho de uma força

F constante

MEC202 Termodinâmica Avançada

Trabalho em um eixo

• Se o torque T aplicado ao eixo é constante, o que significa que a força aplicada F é também constante.

• Para um torque constante dado, o trabalho realizado a n rotações é determinado como se segue: a força F agindo através de um braço de momento r gera um torque que vale

MEC202 Termodinâmica Avançada

Trabalho em um eixo

• Esta força atua através de uma distância s, que está relacionada com o raio r por

• Logo, o trabalho no eixo (shaft) é dado por

MEC202 Termodinâmica Avançada

Trabalho em um eixo

• A potência transmitida através do trabalho do eixo por unidade de tempo é expressa como

TnWsh 2

Número de revoluções por

unidade de tempo

MEC202 Termodinâmica Avançada

Exemplo 1

Determinar a potência transmitida através no eixo de um veículo, quando o torque aplicado é de 200 Nm e o eixo roda a 4000 rotações por minuto (rpm).

MEC202 Termodinâmica Avançada

Exemplo 1: resolução

hp112kW8,93 shW

Note que a potência transmitida por um eixo é proporcional ao torque e à velocidade de rotação.

MEC202 Termodinâmica Avançada

Trabalho de molas

• Quando uma mola sofre uma mudança de sua extensão em função de uma força F, o trabalho realizado sobre a mola vale

)(2

1 2

1

2

2mola xxkW

MEC202 Termodinâmica Avançada

A PRIMEIRA LEI DA TERMODINÂMICA

MEC202 Termodinâmica Avançada

O princípio de conservação da energia

1ª Lei da Termodinâmica

“A energia não pode ser criada nem destruída

durante um processo, só pode mudar de

forma.”

MEC202 Termodinâmica Avançada

Comentário...

As leis físicas governam nossa vida, mesmo que não as conheçamos.

MEC202 Termodinâmica Avançada

A conservação de energia

• Implícita na declaração da primeira lei está a conservação de energia.

• Embora a essência da primeira lei é a existência da energia total, a primeira lei é muitas vezes vista como uma afirmação do princípio de conservação do de energia.

MEC202 Termodinâmica Avançada

Balanço de energia

• O princípio da conservação da energia pode ser expresso como segue:

“A variação líquida (aumento ou diminuição) da

energia total do sistema durante o processo é igual à diferença entre a energia total que entra e a total energia que sai do sistema durante o processo.”

Ein - Eout = DE

MEC202 Termodinâmica Avançada

Balanço de energia

Ein - Eout = DE

MEC202 Termodinâmica Avançada

Balanço de energia

MEC202 Termodinâmica Avançada

Exemplos

MEC202 Termodinâmica Avançada

Balanço de energia

sistemaoutmassainmassaoutinoutinoutin EEEWWQQEE D )()()( ,,

MEC202 Termodinâmica Avançada

Balanço de energia

tdt

dEEtWWtQQ D

DDD

sistemaoutin EEE D

dt

dEEE sistema

outin

MEC202 Termodinâmica Avançada

Exemplo 2

• Um tanque rígido contém um fluido quente, que é arrefecido enquanto ao ser agitado por uma roda de pás. Inicialmente, a energia interna do líquido é de 800 kJ. Durante o processo de arrefecimento, o fluido perde 500 kJ de calor, e a roda de pás faz 100 kJ de trabalho no fluido.

• Determinar a energia final interna do fluido. Negligenciar a energia armazenada sob a roda de pás.

MEC202 Termodinâmica Avançada

Exemplo 2: resolução

Assumimos que:

1. O tanque é estacionário: as variações de energia cinética e potencial são zero: DKE=0, DPE=0.

2. Logo, DE=DU. A energia interna é a única forma de energia do sistema, que pode mudar durante o processo.

3. A energia armazenada na roda de pás é desprezível.

MEC202 Termodinâmica Avançada

Exemplo 2: resolução

sistemaoutin EEE D

12, UUUQW outinsh D

kJ800kJ500kJ100 2 U

kJ4002 U

MEC202 Termodinâmica Avançada

Exemplo 3

• Considere o movimento de uma esfera de aço em uma trajetória hemisférica de raio h representada está a ser analisado.

• Obtenha as relações para a conservação de energia da bola para os casos de movimentos sem atrito e real.

MEC202 Termodinâmica Avançada

Exemplo 3: resolução

• Quando a bola é solta no ponto A, ela acelera sob a influência da gravidade, atinge uma velocidade máxima (e elevação mínima) no ponto B, na parte inferior da trajetória, e move-se para o ponto C, no lado oposto.

• No caso ideal de movimento sem atrito, a bola irá oscilar entre os pontos A e C.

• O balanço de energia é

• A única perda se dá por atrito.

sistemaoutin EEE D

MEC202 Termodinâmica Avançada

Exemplo 3: resolução

• Explicitando as energias envolvidas, teremos

ou

)()( 1122 pekepekewatrito

atritowgzv

gzv

2

2

21

2

1

22

No caso de atrito nulo:

constante2

2

gzv

MEC202 Termodinâmica Avançada

EFICIÊNCIA

MEC202 Termodinâmica Avançada

Eficiência de uma troca energética

• Também chamada de performance

Energia que penetrou no meio 2

Energia que saiu do meio 1 Eficiência =

Meio 1 Meio 2 Energia

transferida

1

2

E

E

D

D

MEC202 Termodinâmica Avançada

Trabalho de bomba ou ventilador

• A transferência de energia mecânica é geralmente realizada por um eixo de rotação, e, assim, o trabalho mecânico é frequentemente referido como o trabalho do eixo.

• Uma bomba ou ventilador recebe energia através de um eixo (geralmente a partir de um motor elétrico), e transfere-a para o fluido, como energia mecânica (menos perdas por atrito).

MEC202 Termodinâmica Avançada

Exemplo: ventilador

72,0

50

2/)12)(50,0(

2

2

,

2

2

,

,

,

D

ineixoineixo

fluidomec

ventmecW

vm

W

E

MEC202 Termodinâmica Avançada

Na próxima aula...

Termodinâmica de substâncias

puras: diagramas de fase.