overview of the hyperion imaging spectrometer for the nasa ... · overview of the hyperion imaging...

33
Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission J. Pearlman, S. Carman, C. Segal, P. Jarecke, and P. Barry, TRW and W. Browne, NASA GSFC IGARSS 2001 JULY 9, 2001

Upload: others

Post on 23-Mar-2020

10 views

Category:

Documents


1 download

TRANSCRIPT

Overview of the Hyperion Imaging Spectrometer

for the NASA EO-1 Mission

J. Pearlman, S. Carman, C. Segal, P. Jarecke, and P. Barry, TRW

and W. Browne, NASA GSFC

IGARSS 2001JULY 9, 2001

2

Hyperion Imaging Spectrometer

Hyperion is a push-broom imager

• 220 10nm bands covering 400nm - 2500nm

• 6% absolute rad. accuracy• Swath width of 7.5 km• IFOV of 42.4 µradian• GSD of 30 m• 12-bit image data• Orbit is 705km alt (16 day

repeat)

3

EO-1 Sensor Swaths

N

Landsat 7ETM+

EO-1ALI

EO-1Atmospheric

CorrectorEO-1

Hyperion

NADIR Pointing Scene-based PointingHyperion

Swaths

ALI

LS7

PERFORMANCE CHARACTERIZATION

A broad range of traditional and non-traditional techniques were used to characterize Hyperion

5

Desert Sites used for Vicarious CalibrationLake Frome Arizaro/Barreal BlancoRR Valley

6

Out of this World Calibration

Lunar image providesdirect-viewing radiometricmeasurements for calibrationwithout atmospheric effects.

Issues of the lunar model andanalysis techniques are beingaddressed

Hyperion imageof the moon

courtesy of P. Barry & H. Kieffer

7

Special targets for characterization

Searchlights-California

Planets-Venus

Gas Flares-Moomba 90 deg

Yaw

8

Hyperion SNR

550 nm 650 nm 700 nm 1025 nm 1225 nm 1575 nm 2125 nm161 144 147 90 110 89 40

Hyperion Measured SNR

0

50

100

150

200

400 700 1000 1300 1600 1900 2200 2500Wavelength (nm)

SNR

MeasuredVNIR ModelSWIR Model

Radiometric performance model basedon 60o Solar zenith angle, 30% albedo, standard scene

9

Hyperion CharacteristicsCharacteristic Pre-launch Cal On-orbit CalGSD (m) 29.88 30.38Swath (km) 7.5 7.75No. of Spectral Channels 220 200 (L1 data)VNIR SNR (550-700nm) 144-161 140-190SWIR SNR (~1225nm) 110 96SWIR SNR (~2125nm) 40 38VNIR X-trk Spec. Error 2.8nm@655nm 2.2nmSWIR X-trk Spec. Error 0.6nm@1700nm 0.58Spatial Co-Reg: VNIR 18% @ Pix #126 *Spatial Co-Reg: SWIR 21% @ Pix #131 *Abs. Radiometry(1Sigma) <6% 3.40%VNIR MTF @ 630nm 0.22-0.28 0.23-0.27SWIR MTF @ 1650nm 0.25-0.27 0.28VNIR Bandwidth (nm) 10.19-10.21 *SWIR Bandwidth (nm) 10.08-10.09 *

* Consistent with Pre-Launch Calibration or not measured

APPLICATIONS

Evaluating space-basedhyperspectral imaging

11

Hyperion addresses a broad range of issues and world-wide sites

United States

Canada

Australia

Argentina

Minerals

ForestsAgriculture

Grasslands GlaciersDeserts

SaharaAntarctica

12

Mineral MapDetailed Talc-Tremolite Map

Hyperion Maps Mt. Fitton GeologyAutomatic mineral mapping algorithm creates, in 30 seconds, a quick-look mineral map (left & centre). More precise detail is on right. (Courtesy of CSIRO Australia)

Colours to the right indicate the relative abundance of talc/tremolite .

Red shows areas of greatest abundance and blue shows the least.

2.1 2.32.2Wavelength(microns)

Coloursof spectra match the thematic image to left.

Mineral Spectra

13

Landsat and EO-1 Images

P92/R84

CIA Study Area

Landsat 7 SubsetLandsat 7Hyperion

14

Temporal Sequence of Hyperion Images

Day 001 Day 072Day 065Day 033

A

B

C

E

D

SOIL

SOIL

SOY

RICE

CORN

Julian calendar days of 2001

Coleambally Irrigation Area

15

Time Sequence of Corn

D001

D033

D065

D072

(Paddock 33B)

16

Work in ProcessGreen - Corn White - RiceBrown - Soybean Yellow- Sunflower

•Recent data release

•Atmospheric Correction

•Space-ground data comparisons

•Inter-instrument comparisons

•ScienceValidation

17

Ground Data Teams

18

Long Term Directions

00.10.20.30.40.50.60.70.80.9

1

0 500 1000 1500 2000 2500 3000

Wavelength

Ref

lect

ivity

kangaroorabbitcowhide

Backup

20

Hyperion Subassemblies

HyperionElectronics Assembly(HEA)

CryocoolerElectronicsAssembly(CEA) Hyperion Sensor Assembly (HSA)

21

22

Less Than 1 Minute

185 km

36 km 7.7 km

Landsat MultispectralImages(185 km @ 30 m)

705 km Altitude

Multispectral Images (36 km @ 30 m)

Hyperspectral Atmospheric Correction (185 km @ 125 / 250 m)

Grating-based Hyperspectral Images (7.5 km @ 30 m)

Landsat-7 EO-1

EO-1 Orbit• EO-1 Spacecraft launched November 21, 2000 from

Vandenberg Air Force Base• EO-1 orbit is one minute behind Landsat-7

23

Extensive Pre-flight Calibration

24

Lake Frome Calibration Site

25

Hyperion Spectral Calibration –

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 10

-1

100

101

102

103

Identification of Spectral Features

Wavelength (nm)

S CAL E D S PE CT RUM

Hyperion Spectra – red

Atmospheric Reference – black

Diffuse Reflectance of cover – blue

atmospheric absorption lines

26

Spectral Calibration –SWIR

800 1000 1200 1400 1600 1800 2000 2200 2400 260010

-1

10 0

10 1

10 2

10 3

Identifica tion of Spectra l Fea tures

Wavelength (nm)

S C A L E D S P E C T R U M

Hyperion Spectra – redAtmospheric Reference – blackDiffuse Reflectance of cover – blue

Process:1.) Create Pseudo-Hyperion Spectra from reference: Modtran-3 for atmosphere, and Cary 5 & FTS measurements for diffuse reflectance of the cover2.) Correlate Spectral Features: band number units of Hyperion max/min correlated with reference wavelength of max/min3.) Calculate Band to Wavelength map: apply low order polynomial to fit the data over the entire SWIR regime

27

MTF Approach

• Calculate cross-track and in-track MTF using a step response and impulse response example

• Results of on-orbit analysis give good agreement with the pre-launch laboratory measurements

28

Example: Cross-track MTF– Scene is Port Eglin from Dec 24, 2000. Bridge is the Mid-bay bridge .

Bridge width is 13.02 meters.– Bridge angle to the S/C direction is small so every 5th line is used to

develop the high resolution bridge image.– MTF result at Nyquist is between 0.39 to 0.42 while the pre-flight

measurement was 0.42.

-10 -5 0 5 100

50

100

150

200

250

Inte rlaced bridge images and curve -fit from band 30

line 220 line 225 line 230 line 235 line 240 Curve -Fit

Cross-track pixel

10 *

Rad

ianc

e

29

Hyperion Maps Mt. Fitton Geology

Hyperion surface composition map agrees with known geology of Mt. Fitton in South Australia

(1) Published Geologic Survey Map(2) Hyperion three color image (visible) showing regions of interest(3) Hyperion surface composition map using SWIR spectra above

(1) (2) (3)

Hyperion Spectra Reference Spectra

(a) (b)

Hyperion-based apparent reflectance compares with library reference spectra

Courtesy of CSIRO, Australia

30

VNIR/SWIR Repeatability

• Solar Calibration demonstrates good pixel-to-pixel repeatability– VNIR is highly repeatable - <0.05% variation– SWIR is repeatable - <0.75% variation

• Spectral Calibration indicates stability based on comparisons of Pre-launch and On-Orbit measurements

DATA CHARACTERISTICS

32

Final product: level 1 data, metadata file

attached

Hyperion Data Flow

L0 Science data

TRWHyperion processing

Raw or GSFC processed data

TRW functionor product

Level 1 Science data

to GSFC

Ancillary data in engineering units

Science Data: Level 0 or Level 1 (radiometrically corrected) data products with VNIR and SWIR data frames combined. Includes solar, lunar calibrations, earth images, dark and light calibrations

Metadata: Data about the science data. Information to support higher level processing, e.g., pre-flight characterization data

Ancillary Data:Supporting data derived from spacecraft telemetry during image collection

GSFC L0 Proc.

METADATA

33

Hyperion Data - Comments

SWIR

VNIR

Band Center(nm) FWHM(nm)50 854.66 11.2751 864.83 11.2752 875 11.2853 885.17 11.2954 895.34 11.355 905.51 11.3156 915.68 11.3157 925.85 11.3158 936.02 11.3159 946.19 11.3171 852 11.1772 862.09 11.1773 872.18 11.1774 882.27 11.1775 892.35 11.1776 902.44 11.1777 912.53 11.1778 922.62 11.1779 932.72 11.1780 942.81 11.17

V

SLevel 1 data: 438-926nm and 892-2406nmBands 9-57 and 75 - 225;SWIR is West of VNIR and rotated CCW by one pixel