optimal dispatch

Upload: eyad-a-feilat

Post on 07-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Optimal Dispatch

    1/39

    Economic Dispatch

    1

  • 8/19/2019 Optimal Dispatch

    2/39

    Announcements

    Read Chapter 12, concentrating on sections 

    12.4 and 12.5.Read Chapter 7.

    Homework

     12

     is 6.59,

     6.61,

     12.19,

     12.22,

     

    12.24, 12.26, 12.28, 12.29, 7.1, 7.3, 7.4, 7.5, 

    7.6, 7.9, 7.12, 7.16; due Thursday, 12/3.

    2

  • 8/19/2019 Optimal Dispatch

    3/39

    Economic Dispatch: Formulation

    The goal of  economic dispatch is to 

    determine the generation dispatch that minimizes the instantaneous operating cost, 

    subject to the constraint that total 

    generation = total load + losses

    T1

    1

    Minimize C ( )

    Such that

    m

    i Gi

    i

    m

    Gi D Losses

    i

    C P

    P P P

    Initially we'll 

    ignore generator

    limits and the

    losses3

  • 8/19/2019 Optimal Dispatch

    4/39

    Unconstrained Minimization

    This is a minimization problem with a single equality constraint

    For an unconstrained minimization a 

    necessary (but not sufficient) condition for a 

    minimum is the gradient of  the function 

    must be zero, 

    The gradient generalizes the first derivative 

    for multi‐variable problems:

    1 2

    ( ) ( ) ( )( ) , , ,

    n x x x

    f x f x f xf x  

    ( ) f x 0

    4

  • 8/19/2019 Optimal Dispatch

    5/39

    Minimization with Equality Constraint

    When the minimization is constrained with an equality constraint we can solve the problem 

    using the method of  Lagrange Multipliers

    Key idea is to represent a constrained 

    minimization problem as an unconstrained 

    problem.That is, for the general problem

    minimize ( ) s.t. ( )We define the Lagrangian L( , ) ( ) ( )

    Then a necessary condition for a minimum is theL ( , ) 0 and L ( , ) 0

    x   λ 

    f x g x 0

    x  λ    f x   λ   g x

    x  λ    x  λ  5

  • 8/19/2019 Optimal Dispatch

    6/39

    Economic Dispatch Lagrangian

    G1 1

    G

    For the economic dispatch we have a minimization

    constrained with a single equality constraint

    L( , ) ( ) ( ) (no losses)

    The necessary conditions for a minimum are

    L( , )

    m m

    i Gi D Gi

    i i

    Gi

    C P P P

    dC 

    P

     

     

    P

    P

    1

    ( ) 0 (for 1 to )

    0

    iGi

    Gi

    m

     D Gi

    i

    P i m

    dP

    P P

     

    6

  • 8/19/2019 Optimal Dispatch

    7/39

    Economic Dispatch Example

    1 2

    21 1 1 1

    22 2 2 2

    11

    1

    What is economic dispatch for a two generator

    system 500 MW and 

    ( ) 1000 20 0.01 $/h

    ( ) 400 15 0.03 $/h

    Using the Lagrange multiplier method we know:

    ( ) 20 0.0

     D G G

    G G G

    G G G

    G

    G

    P P P

    C P P P

    C P P P

    dC P

    dP 

    1

    22 2

    2

    1 2

    2 0

    ( ) 15 0.06 0

    500 0

    G

    G G

    G

    G G

    P

    dC P P

    dP

    P P

     

     

    7

  • 8/19/2019 Optimal Dispatch

    8/39

    conom c  spatc   xamp e, cont’d

    1

    2

    1 2

    1

    2

    1

    2

    We therefore need to solve three linear equations

    20 0.02 0

    15 0.06 0

    500 0

    0.02 0 1 20

    0 0.06 1 15

    1 1 0 500312.5 MW

    187.5 MW

    26.2 $/MW

    G

    G

    G G

    G

    G

    G

    G

    P

    P

    P P

    P

    P

    P

    P

     

     

     

     

    h

    8

  • 8/19/2019 Optimal Dispatch

    9/39

    Economic dispatch example, cont’d

    • At the solution, both generators have the same marginal (or incremental) cost, and this 

    common marginal cost is equal to λ.

    • Intuition behind solution:

     – If  marginal costs of  generators were different, 

    then by decreasing production at higher marginal 

    cost generator, and increasing production at 

    lower marginal cost generator we could lower 

    overall costs.

     – Generalizes to any number of  generators.

    • If  demand changes, then change in total costs can be estimated from λ. 9

  • 8/19/2019 Optimal Dispatch

    10/39

    Economic dispatch example, cont’d

    • Another way to solve the equations is to:

     – Rearrange the first two equations to solve for PG1

     

    and PG2

     

    in terms of  λ,

     – Plug into third equation and solve for λ,

     – Use the solved value of  λ

     

    to evaluate PG1

     

    and PG2

     

    .

    • This works even when relationship between 

    generation levels and λ 

    is more complicated: – Equations are more complicated than linear when 

    there are

     maximum

     and

     minimum

     generation

     

    limits or we consider losses. 10

  • 8/19/2019 Optimal Dispatch

    11/39

    Lambda‐Iteration Solution Method• Discussion on previous page leads to “lambda‐

     iteration”

     

    method:

     – this method requires a unique mapping from a value 

    of  lambda (marginal cost) to each generator’s MW 

    output: 

     – for any choice of  lambda (common marginal cost), 

    the generators collectively produce a total MW 

    output, – the method then starts with values of  lambda below 

    and above the optimal value (corresponding to too 

    little and too much total output), and then iteratively brackets the optimal value. •11

    ( ).Gi

    P    

  • 8/19/2019 Optimal Dispatch

    12/39

    Lambda‐Iteration Algorithm

    L H

    1 1

    H L

    M H L

    H M

    1

    L M

    Pick and such that

    ( ) 0 ( ) 0

    While Do

    ( ) / 2

    If ( ) 0 Then

    Else

    End While

    m m L H 

    Gi D Gi D

    i i

    m M 

    Gi D

    i

    P P P P

    P P

     

     

     

     

     

     

    12

  • 8/19/2019 Optimal Dispatch

    13/39

    Lambda‐Iteration: Graphical ViewIn the graph shown below for each value of  lambda 

    there is a unique PGi 

     

    for each generator . This

    relationship is the PGi 

     

    () function.

    13

  • 8/19/2019 Optimal Dispatch

    14/39

    Lambda‐Iteration Example

    1 1 1

    2 2 2

    3 3 3

    1 2 3

    Consider a three generator system with

    ( ) 15 0.02 $/MWh

    ( ) 20 0.01 $/MWh( ) 18 0.025 $/MWh

    and with constraint 1000MWRewriting generation as a function of , (

    G G

    G G

    G G

    G G G

    Gi

     IC P P

     IC P P

     IC P P

    P P P

    P

     

     

     

     

    1 2

    3

    ),

    we have

    15 20( ) ( )

    0.02 0.01

    18( )0.025

    G G

    G

    P P

    P

     

       

      

    14

  • 8/19/2019 Optimal Dispatch

    15/39

    Lambda‐Iteration Example, cont’dm

     

    i=1

    m

    i=1

     

    1

    H

    1

    Pick so ( ) 1000 0 and

    ( ) 1000 0

    Try 20 then (20) 1000

    15 20 18 1000 670 MW0.02 0.01 0.025

    Try 30 then (30) 1000 1230 MW

     L L

    Gi

     H 

    Gi

    m L

    Gi

    i

    m

    Gii

    P

    P

    P

    P

     

     

     

     

     

    15

  • 8/19/2019 Optimal Dispatch

    16/39

    Lambda‐Iteration Example, cont’d

    1

    1

    Pick convergence tolerance 0.05 $/MWh

    Then iterate since 0.05( ) / 2 25

    Then since (25) 1000 280 we set 25

    Since 25 20 0.05

    (25 20) / 2 22.5

    (22.5) 1000 195 we set 2

     H L

     M H L

    m

     H Gi

    i

     M 

    m L

    Gi

    i

    P

    P

     

     

     

     

     

     

    2.516

  • 8/19/2019 Optimal Dispatch

    17/39

    Lambda‐Iteration Example, cont’d

    H

    *

    *

    1

    2

    3

    Continue iterating until 0.05

    The solution value of , , is 23.53 $/MWh

    Once is known we can calculate the

    23.53 15(23.5) 426 MW0.02

    23.53 20(23.5) 353 MW0.01

    23.53 18(23.5)

    0.025

     L

    Gi

    G

    G

    G

    P

    P

    P

    P

     

     

     

    221 MW

    17

  • 8/19/2019 Optimal Dispatch

    18/39

    Thirty Bus ED ExampleCase is economically dispatched (without considering 

    the incremental impact of  the system losses).

    18

  • 8/19/2019 Optimal Dispatch

    19/39

    Generator MW Limits

    Generators have limits on the minimum and 

    maximum amount of  power they can produce

    Typically the minimum limit is not zero. 

    Because of  varying system economics usually 

    many generators in a system are operated at 

    their maximum MW limits:Baseload

     

    generators are at their maximum limits 

    except during

     the

     off 

    ‐peak.

     

    19

  • 8/19/2019 Optimal Dispatch

    20/39

    Lambda‐Iteration with Gen Limits

    ,max

    ,max

    In the lambda-iteration method the limits are taken

    into account when calculating ( ) :

    if calculated production forthen set ( )

    if calculated production for

    Gi

    Gi Gi

    Gi Gi

    P

    P P

    P P

     

     

    ,min

    ,min

     then set ( )

    Gi Gi

    Gi Gi

    P P

    P P 

    20

  • 8/19/2019 Optimal Dispatch

    21/39

    Lambda‐Iteration Gen Limit Example

    1 2

    3

    1 2 31

    In the previous three generator example assumethe same cost characteristics but also with limits

    0 300 MW 100 500 MW

    200 600 MW

    With limits we get:

    (20) 1000 (20) (20) (20) 10

    G G

    G

    m

    Gi G G G

    i

    P P

    P

    P P P P

    1

    00

    250 100 200 1000450 MW (compared to 670MW)

    (30) 1000 300 500 480 1000 280 MWm

    Gi

    i

    P

    21

  • 8/19/2019 Optimal Dispatch

    22/39

    Lambda‐Iteration Limit Example,cont’d

    Again we continue iterating until the convergence

    condition is satisfied.

    With limits the final solution of , is 24.43 $/MWh(compared to 23.53 $/MWh without limits).

    Maximum limits will always caus

     

    1

    2

    3

    e to either increase

    or remain the same.

    Final solution is:

    (24.43) 300 MW (at maximum limit)

    (24.43) 443 MW

    (24.43) 257 MW

    G

    G

    G

    P

    P

    P

     

    22

  • 8/19/2019 Optimal Dispatch

    23/39

    Back of  Envelope Values $/MWhr

     

    = fuelcost 

    * heatrate 

    + variable O&M

    Typical incremental costs can be roughly 

    approximated: –

     

    Typical heatrate

     

    for a coal plant is 10, modern 

    combustion turbine is 10, combined cycle plant is 6 

    to 8, older combustion turbine 15.

     –

     

    Fuel costs ($/MBtu) are quite variable, with current 

    values around

     2 for

     coal,

     3 to

     5 for

     natural

     gas,

     0.5

     

    for nuclear, probably 10 for fuel oil.

     –

     

    Hydro costs tend to be quite low, but are fuel 

    (water) constrained –   Wind and solar costs are zero. 23

  • 8/19/2019 Optimal Dispatch

    24/39

    Inclusion of  Transmission Losses

    The losses on the transmission system are a 

    function of 

     the

     generation

     dispatch.

     

    In general, using generators closer to the 

    load results in lower losses

    This impact on losses should be included 

    when doing the economic dispatch

    Losses can be included by slightly rewriting 

    the Lagrangian

     

    to include losses PL

     

    :

    G1 1

    L( , ) ( ) ( )m m

    i Gi D L G Gi

    i i

    C P P P P P  

    P24

  • 8/19/2019 Optimal Dispatch

    25/39

    Impact of  Transmission Losses

    G1 1

    G

    The inclusion of losses then impacts the necessary

    conditions for an optimal economic dispatch:

    L( , ) ( ) ( ) .

    The necessary conditions for a minimum are now:

    L(

    m m

    i Gi D L G Gi

    i i

    Gi

    C P P P P P

    P

     

    P

    P

    1

    , ) ( ) 1 ( ) 0

    ( ) 0

    i   LGi G

    Gi Gi

    m

     D L G Gi

    i

    dC    PP P

    dP P

    P P P P

     

    25

  • 8/19/2019 Optimal Dispatch

    26/39

    Impact of  Transmission Losses

    th

    Solving for , we get: ( ) 1 ( ) 0

    1( )

    1 ( )

    Define the penalty factor for the generator 

    (don't confuse with Lagrangian L!!!)1

    1 ( )

    i   LGi G

    Gi Gi

    iGi

    Gi LG

    Gi

    i

    i

     LG

    Gi

    dC    PP P

    dP P

    dC P

    dPPP

    P

     L i

     LP

    PP

     

     

       

     

     

    The penalty factor

    at the slack bus is

    always unity!26

  • 8/19/2019 Optimal Dispatch

    27/39

    Impact of  Transmission Losses

    1 1 1 2 2 2

    The condition for optimal dispatch with losses is then

    ( ) ( ) ( )

    1. So, if increasing increases

    1 ( )

    the losses then ( ) 0 1.0

    This makes generator 

    G G m m Gm

    i Gi

     LG

    Gi

     LG i

    Gi

     L IC P L IC P L IC P

     L PP

    P

    P

    PP L

    P

     

      appear to be more expensive

    (i.e., it is penalized). Likewise 1.0 makes a generator 

    appear less expensive.

    i

    i

     L  

    27

  • 8/19/2019 Optimal Dispatch

    28/39

    Calculation of  Penalty Factors

    Unfortunately, the analytic calculation of is

    somewhat involved. The problem is a small change

    in the generation at impacts the flows and hence

    the losses throughout the entire system. However,

    i

    Gi

     L

    P

    using a power flow you can approximate this function

     by making a small change to and then seeing how

    the losses change:1

    ( )

    1

    Gi

     L LG i

     LGi Gi

    Gi

    P

    P PP L

    PP P

    P

    28

  • 8/19/2019 Optimal Dispatch

    29/39

    Two Bus Penalty Factor Example

    2 2

    2 2

    0.37( ) 0.0387 0.037

    10

    0.9627 0.9643

     L LG

    G G

    P P MW  P

    P P MW  

     L L

    29

  • 8/19/2019 Optimal Dispatch

    30/39

    Thirty Bus ED Example

    Now consider losses.Because of  the penalty factors the generator incremental 

    costs are no longer identical.

    30

  • 8/19/2019 Optimal Dispatch

    31/39

    Area Supply Curve

      0 100 200 300 400

    Total Area Generation (MW)

    0.00

    2.50

    5.00

    7.50

    10.00

    The area supply curve shows the cost to produce the

    next MW of  electricity, assuming area is economically

    dispatched

    Supplycurve for

    thirty bus

    system

    31

  • 8/19/2019 Optimal Dispatch

    32/39

    Economic Dispatch  ‐

     

    Summary

     

    Economic dispatch determines the best way to minimize the current generator operating costs.

     

    The lambda‐iteration method is a good approach for solving the economic dispatch problem:

     –

     

    generator limits are easily handled,

     –

     

    penalty factors are used to consider the impact of  losses.

     

    Economic dispatch is not concerned with determining which units to turn on/off  (this is the unit commitment problem).

     

    Basic form of  economic dispatch ignores the transmission system limitations.

    32

  • 8/19/2019 Optimal Dispatch

    33/39

    Security Constrained ED 

    or Optimal Power FlowTransmission constraints often limit ability to 

    use lower cost power.

    Such limits require deviations from what would 

    otherwise be minimum cost dispatch in order to maintain system “security.”

    Need 

    to 

    solve 

    or 

    approximate 

    power 

    flow 

    in 

    order to consider transmission constraints.

    33

  • 8/19/2019 Optimal Dispatch

    34/39

    Security Constrained ED 

    or Optimal Power FlowThe goal of  a security constrained ED or 

    optimal power flow (OPF) is to determine the 

    “best” 

    way to instantaneously operate a 

    power system, considering transmission 

    limits.Usually “best”

     

    = minimizing operating cost, 

    while keeping flows on transmission below limits.

    In three bus case the generation at bus 3 must 

    be limited to avoid overloading the line from 34

  • 8/19/2019 Optimal Dispatch

    35/39

    Security Constrained Dispatch

    Bus 2 Bus 1

    Bus 3Home Area

    Scheduled Transactions

    357 MW 

    179 MVR 

    194 MW 

    448 MW 

     19 MVR 

    232 MVR 

    179 MW 

     89 MVR 

    1.00 PU

    -22 MW   4 MVR 

     22 MW  -4 MVR 

    -142 MW  49 MVR 

    145 MW 

    -37 MVR 124 MW -33 MVR 

    -122 MW 

     41 MVR 

    1.00 PU

    1.00 PU

      0 MW 

     37 MVR 100%

    100%

    100 MW OFF AGC AVR ON

     AGC ON

     AVR ON

     100.0 MW 

    Need to dispatch to keep line 

    from bus 3 to bus 2 from overloading35

  • 8/19/2019 Optimal Dispatch

    36/39

    Multi‐Area Operation

     

    In multi‐area system, “rules”

     

    have been established regarding transactions on tie‐lines: –

     

    In Eastern interconnection, in principle, up to “nominal”

     

    thermal interconnection

     capacity, –

     

    In Western interconnection there are more complicated rules

     

    The actual power that flows through the entire network 

    depends on the impedance of  the transmission lines, and ultimately determine what are acceptable patterns of  dispatch: Can result in need to “curtail”

     

    transactions that otherwise 

    satisfy rules.

     

    Economically uncompensated flow through other areas is known as “parallel path”

     

    or “loop flows.”

     

    Since ERCOT is one area, all of  the flows on AC lines are 

    inside ERCOT and there is no uncompensated flow on AC lines.36

  • 8/19/2019 Optimal Dispatch

    37/39

    Seven Bus Case: One‐line

    Top Area Cost

    Left Area Cost Right Area Cost

    1

    2

    3 4

    5

    6 7

    106 MW 

    168 MW 

    200 MW  201 MW 

    110 MW  40 MVR 

     80 MW  30 MVR 

    130 MW 

     40 MVR 

     40 MW 

     20 MVR 

    1.00 PU

    1.01 PU

    1.04 PU1.04 PU

    1.04 PU

    0.99 PU1.05 PU

     62 MW 

    -61 MW 

     44 MW -42 MW -31 MW 31 MW  

     38 MW 

    -37 MW 

     79 MW -77 MW  

    -32 MW 

    32 MW 

    -14 MW 

    -39 MW 

     40 MW -20 MW 20 MW 

     40 MW 

    -40 MW 

     94 MW 

    200 MW 

      0 MVR 200 MW 

      0 MVR 

     20 MW  -20 MW 

     AGC ON

     AGC ON

     AGC ON

     AGC ON

     AGC ON

      8029 $/MWH

      4715 $/MWH 4189 $/MWH

    Case Hourly Cost

     16933 $/MWH

    System has

    three areas

    Left area

    has one

    bus   Right area has onebus

    Top area

    has fivebuses

    37

    No net

    interchange

    between

     Any areas.

  • 8/19/2019 Optimal Dispatch

    38/39

    Seven Bus Case: Area View 

    System has

    40 MW of 

    “Loop Flow”

    Actualflow

    between

    areas

    Loop flow

     can

     result

     in

     higher

     losses

     Area Losses

     Area Losses Area Losses

    Top

    Left Right

     -40.1 MW 

      0.0 MW 

      0.0 MW 

      0.0 MW 

      40.1 MW 

      40.1 MW 

      7.09 MW 

      0.33 MW 0.65 MW  

    Scheduled

    flow

    38

  • 8/19/2019 Optimal Dispatch

    39/39

    Seven Bus  ‐

     

    Loop Flow?

     Area Losses

     Area Losses Area Losses

    Top

    Left Right

      -4.8 MW 

      0.0 MW 

     100.0 MW 

      0.0 MW 

     104.8 MW 

      4.8 MW 

      9.44 MW 

     -0.00 MW 4.34 MW  

    100 MW Transaction

    between Left and Right

    Transaction has 

    actually decreasedthe loop flow

    Note thatTop’s 

    Losses have

    increasedfrom 

    7.09MW to

    9.44 MW

    39