operando thermal analysis - max planck society system mass buoyancy force andrey tarasov, fhi mpg 4...

62
Operando thermal analysis Andrey Tarasov 8.12.2017 Andrey Tarasov, FHI MPG 1

Upload: ngodan

Post on 18-May-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Operando thermal analysis

Andrey Tarasov 8.12.2017

Andrey Tarasov, FHI MPG 1

Page 2: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Definition of TA Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Thermogravimetry Differential Scanning Calorimetry

∆M

t / T

Heat flow

t / T

d

dTCm

d

dQp

∆Q=m∙Cp∙∆T ∆m=M∙∆N

d

dm

Md

dNr

1

Enthalpy of formation/transformation (reaction, phase transition)

Course of the reaction, yield of the reaction

Key parameters:

Andrey Tarasov, FHI MPG 2

Terms and Definitions

A(s)↔ B(g) A(s)↔B(s)

A(s)↔B(g)

Page 3: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Definition of TA Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Differential Scanning Calorimetry

∆M

t / T

Heat flow

t / T

d

dTCm

d

dQp

∆Q=m∙Cp∙∆T ∆m=M∙∆N

d

dm

Md

dNr

1

Andrey Tarasov, FHI MPG 3

operando≈in-situ – „on site“→in heterogeneous catalysis „in reaction mixture under operation conditions“

T, P, μ→ conversion/actitvity, mass – transfer conditions

Terms and Definitions

Thermogravimetry

Page 4: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

SMP - Measurement signal FB - Buoyancy force , f(T) mA - Mass of adsorbed gas, f(T) mSC - Mass of sample container mS - Mass of sample , f(T) VA - Volume of adsorbed gas , f(T) VSC - Volume of sample container VS - Volume of sample, f(T)

ρgas - Density of gas, f(T)

SMP • g = ((mSC + mS + mA) - (VSC + VS + VA) • ρgas) • g

Buoyancy Force System mass Signal

Andrey Tarasov, FHI MPG 4

Thermogravimetry: Basic Principle

Page 5: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Ionisation chamber

ampermeter

mirror

battery

Piezoelectric balance

88Ra, 84Po 1898, Marie Curie “weighted” radioactivity

Is it sensitive enough?

Mr(Ra)=225

Marie and Pierre Curies diary, 1902. Curie Museum

Andrey Tarasov, FHI MPG 5

1 g earth crust≈10-13g Ra

Page 6: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

SMP - Measurement signal FB - Buoyancy force , f(T) mA - Mass of adsorbed gas, f(T) mSC - Mass of sample container mS - Mass of sample , f(T) VA - Volume of adsorbed gas , f(T) VSC - Volume of sample container VS - Volume of sample, f(T)

ρgas - Density of gas, f(T)

SMP • g = ((mSC + mS + mA) - (VSC + VS + VA) • ρgas) • g

Buoyancy Force System mass Signal

Andrey Tarasov, FHI MPG 6

Thermogravimetry: Basic Principle

T

T=const ?

P

P=const

Page 7: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Schematic diagram of the Cahn Electrobalnce

Balance

Commercially available thermobalances employ one of the Cahn-type electromagnetic balance

Andrey Tarasov, FHI MPG 7

Page 8: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Temperature detection

No contact Close proximity With contact

Andrey Tarasov, FHI MPG 8

Page 9: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Sample holders

Andrey Tarasov, FHI MPG 9

Page 10: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Sample holders

Andrey Tarasov, FHI MPG 10

Page 11: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Thermobalance construction geometries

Horizontal, parallel-guided Vertical, free suspended

Vertical, top-loader

Mettler Toledo

Netzsch, Setaram

TA instruments

Rubotherm

Andrey Tarasov, FHI MPG 11

Page 12: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Furnace Convection Currents and Turbulence

Andrey Tarasov, FHI MPG 12

Effect of furnace top opening on apparent mass-change, 5Kpm

Page 13: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

200 400 600 800 1000 1200 1400Temperature /°C

-0.5

0.0

0.5

1.0

TG /mg

[13.1]

[12]

• Reproducible in different gas atmospheres and by different heating rates

5Kpm

Normal baseline

Anomaly baseline

100 Nml/min

15 Nml/min

gas flow decreases during the heating, starting from 600°C

Page 14: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 14

Reassembling the oven Top part of the tube was plugged with solid material The material was analyzed by various techniques

Page 15: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 15

Main crystalline phase is AlF3

XRD

Page 16: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 16

Formula Concentration, %

AlF3 92.4 Bi2O3 0.45

CaO 0.62 Cr2O3 0.54

CuO 1.17 Fe2O3 1.69

K2O 0.55

MoO3 2.95 NiO 0.16

P2O5 0.33 Ru 0.642

SiO2 1.3

SO3 0.45

WO3 0.33

ZnO 2.21

XRF

Elemental analysis

Page 17: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 17

SEM_EDX

Surface microstructure

Page 18: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 18

HV 7kV fig -001a

a

b c

HV 20kV fig -002a

a

SEM_EDX

Page 19: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG, 19

DSC

85 90 95 100 105 110 115 120Time /min

0.05

0.10

0.15

0.20

DSC /(mW/mg)

350

400

450

500

550

Temp. /°C

[14]

[14]

exo

37 38 39 40 41 42 43 44 45 46Time /min

0.60

0.65

0.70

0.75

DSC /(mW/mg)

400

420

440

460

480

Temp. /°C

[14]

[14]

exo

Tonset:450°C

• Reversible melting point (explains dynamic behaviour of the flow)

Ammount of the phase undergoes melting 1.5-3%

Q=-3.3 J/g(sample)

K1-3AlF4-6, CsAlF4 (NOCOLOK ®) Tm=560-570°C

eutectic LiF-NaF-KF (46.5-11.5-42) Tm=454°C AgF Tm=435°C

Zn Tm= 419°C

Page 20: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

200 400 600 800 1000 1200 1400Temperature /°C

-0.5

0.0

0.5

1.0

TG /mg

[13.1]

[12]

Normal baseline

Anomaly baseline

Melting and blocking the opening

Andrey Tarasov, FHI MPG, 20

Page 21: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Nearing the plug flow conditions

Andrey Tarasov, FHI MPG 21

Page 22: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG 22

Nearing the plug flow conditions

Page 23: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case Study: Methanol Synthesis

Cu

ZnO

CO2 + 3H2 CH3OH + H2O

molkJHOHOHCHHCO /533 2322

molkJHOHCOHCO /41222

molkJHOHCHHCO /952 32

250°C, 30bar

Andrey Tarasov, FHI MPG 23

What is the surface composition during the operation?

Page 24: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

High Preasure Thermobalance

Andrey Tarasov, FHI MPG 24

Case Study: Methanol Synthesis

Page 25: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

OH H

Water

OH

HydroxyOO

OC

Carbonate

OO

H

C

Formate (bidentate)

O

CH3

Methoxy

H

C

Formyl

O O

O HC

Formate (monodentate)

OOC

Carboxyl (cis)

H

Case Study: Methanol Synthesis

Reaction intermediates and spectators:

Andrey Tarasov, FHI MPG 25

Page 26: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Gas Density (kg/m3)

CO/CO2/H2/He(6/8/59/27) 0.33

CO/Ar/H2/He(14/4/59/23) 0.34

CO2/He/H2 (12.4/28.8/58.8) 0.35

Density alignment

3 4 5 6 7 8 9 10

96

97

99

100

102

103

105

time / hrs

0.0

5.0x10-11

1.0x10-10

1.5x10-10

CO2

I / AM / %

CO2/COCO

400mg SiO2, 30 bar, 250°C, feed gas flow 120 ml/min

Andrey Tarasov, FHI MPG 26

Case Study: Methanol Synthesis

Page 27: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case Study: Methanol Synthesis

10 15 20 25 30 35 40

98

99

100

101

102

103

104

CO

+1.2%

CO2/H

2

-0.7%

+1.9%

CO2

CO/H2

CO2/H

2

t / h

M

/ %

0

5

10

15

20

25

30

35

40

45

50

Co

nce

ntr

atio

n /

%

10 15 20 25 30 35 40 4597

98

99

100

101

102

M

/ %

85%H2/Ar

85%H2/Ar/1.5%H

2O

-0.8%

t / h

+1.3%

85%H2/Ar

m/z 18

0.5%

0

1x10-11

2x10-11

3x10-11

I /

A

Addition of 1.5% H2O (250°C, 1bar) TG Methanol Synthesis (250°C, 30bar)

Andrey Tarasov, FHI MPG 27

Page 28: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Group/M, gmol-1 Surface stoichiometry

∆M, % (Cu sites)

∆M, % (ZnO sites) Full ∆M,% (Cu/ZnOx sites)

H2O/18 water

1 0.72 0.49 1.21

OH/17 hydroxy

1 0.68 0.46 1.14

OCH3/31 methoxy

1 1.24 0.85 2.09

CHOO/45 formate

2/1 1.8/0.9 1.2/0.6 3/1.5

Andrey Tarasov, FHI MPG 28

Theoretical mass increase of the catalyst under estimation of full covered surface with one type of species

Case Study: Methanol Synthesis

Cu sites – 400 µmol g(cat)-1 ZnOx sites – 273 µmol g(cat)-1

Schumann et al. ACS Catalysis, 2015, 5 Schumann et al. ChemCatChem, 2014, 6

Page 29: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

10 15 20 25 30 35 40

0.00

0.25

0.50

0.75

1.00

1.25

1.50

CO/H2

CO2/H

2

Su

rface

Cove

rageM

L

t / h

water derived species

carbon based species

CO2/H

2

10 15 20 25 30 35 40 45

0.0

0.5

1.0

1.5

2.0

85%H2/Ar

85%H2/Ar

85%H2/Ar/1.5%H

2O

Covera

ge / M

L

t / h

ZnOx

Cu

experimental curve

Case Study: Methanol Synthesis

Andrey Tarasov, FHI MPG 29

TG Methanol Synthesis (250°C, 30bar) Addition of 1.5% H2O (250°C, 1bar)

Page 30: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Target Reaction Dry reforming (DRM): CO2 + CH4 ⇌ 2 CO + 2 H2 ΔH0= 247 kJ/mol

Side reactions (⇨ catalyst deactivation because of coking):

Boudouard reaction: 2 CO ⇌ C + CO2 ΔH0= -171 kJ/mol

Methane pyrolysis: CH4 ⇌ C + 2H2 ΔH0= 75 kJ/mol

Suppression of side reactions:

high reaction temperature (900 °C)

⇨ high temperature stable, long term active, non coking materials required

⇨ ⇨ Ni/MgAl2O4 catalyst

CO2 + CH4 CO + H2

Ni

MgAl2O4-x

Andrey Tarasov, FHI MPG 30

Case Study: Dry Reforming of methane

Page 31: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

CO2 + CH4 ⇌ 2 CO + 2 H2 ΔH0= 247 kJ/mol

• Continuous coke formation • Better performance at higher temperatures

9%wt/h

3%wt/h

2%wt/h

4.2mmol (CH4)/g(cat)/s

3.2mmol (CH4)/g(cat)/s

Activity Weight change

Andrey Tarasov, FHI MPG 31

Case Study: Dry Reforming of methane

Page 32: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

• Continues coking process • Less coking at lower Ni concentrations

Andrey Tarasov, FHI MPG

Tarasov et al., Chem. Ing. Tech., 2014, 86, 1916-1924

32

Activity in DRM

Carbon formation

Case Study: Dry Reforming of methane

Page 33: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Definition of TA Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Thermogravimetry Differential Scanning Calorimetry

∆M

t / T

Heat flow

t / T

d

dTCm

d

dQp

∆Q=m∙Cp∙∆T ∆m=M∙∆N

d

dm

Md

dNr

1

Enthalpy of formation/transformation (reaction, phase transition)

Course of the reaction, yield of the reaction

Key parameters:

Andrey Tarasov, FHI MPG 33

Terms and Definitions

A(s)↔ B(g) A(s)↔B(s)

A(s)↔B(g)

Page 34: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Terms and Definitions

Differential Scanning Calorimetry (DSC) –

experimental methods for measuring thermal effects

(heat evolution and consumption)

- in extended range of temperatures;

- with improved productivity;

- with higher temporal resolution

Andrey Tarasov, FHI MPG 34

Differential – permanently compared to reference

Principle of combined thermocouple Registration the temperature of the object and temperature difference between sample and reference

Page 35: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Terms and Definitions

Differential Scanning Calorimetry (DSC) –

experimental methods for measuring thermal effects

(heat evolution and consumption)

- in extended range of temperatures;

- with improved productivity;

- with higher temporal resolution

Andrey Tarasov, FHI MPG 35

Differential – permanently compared to reference

Scanning – varied (programmed) temperature (permanently and/or stepwise)

Calorimetry – `near calorimetric´ (although reduced) precision (typically, 1-2% of

measured thermal value) – as a rule satisactory for a wide range of applications

Based on different technical principles and schemes but fundamentally same physical background: heat transfer and balance

Page 36: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

TA – (Thermal analysis ) TS vs. t TG – (Thermogravimetric analysis) Δm vs. T

DSC - (Differential Scanning Calorimetry): Voltage to keep ΔT = TS-TR= 0 vs. T

DTA - (Differential Thermal Analysis) ΔT = TS-TR vs. T

DDTA - (Derivative DTA) dΔT/dt vs. T

RDTA (Reverse Differential Thermal Analysis) dt/dT vs. T

Calvet TA

DSC-TG

TG

DTA-TG

Basic Principles and Terminology

Calvet-DSC

Andrey Tarasov, FHI MPG 36

Page 37: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG 37

q = kT + C(dT/dt) – heat removal and stortage

Based on different technical principles and schemes but fundamentally same physical background: heat transfer and balance

Basic Principles and Terminology

Page 38: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Disk shaped, ´Quantitative TA´ Calvet cell

38 Andrey Tarasov, FHI MPG

DSC Heat flux

Methods and Instruments

Page 39: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

1. ‘Quantitative TA’

– multiple sensors

– tight contact between sensors and holders

– rapid heat removal from the sample

Methods and Instruments

C(dT/dt) 0 and

q kT

Andrey Tarasov, FHI MPG 39

Page 40: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

- relatively simple design;

- wide range of T’s;

- compatible with other methods

(e.g. TG)

- calibration is critical and

can vary from sample to sample;

- gas-solid diffusion

1. ‘Quantitative TA’

– multiple sensors

– tight contact between sensors and holders

– rapid heat removal from the sample

Andrey Tarasov, FHI MPG 40

Methods and Instruments

Page 41: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

AuAuPd, one layer 56 thermocouples

DSC sensors

Cu/Constantan

disk sensor on

Si(X) waffer.

CuNi disk sensor

on Ag plate.

Pt-PtRh(10)

diskshaped

thermocouple

Pt-PtRh(10) point

thermocouple

Mettler

Mettler Toledo

NETZSCH

Andrey Tarasov, FHI MPG 41

Methods and Instruments

Page 42: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Type

Composition

Temperature range, K Output voltage (0°C), mV Tmin Tmax

T Cu /constantan 3 670 20

J Fe/constantan 70 870 34

E chromel /constantan - 970 45

K chromel /alumel 220 1270 41

S Pt/PtRh (10) 270 1570 13

P Platinel/AuPd 500 1400 12

C W/WRe(26) - 2670 39

N Nicrosil/Nisil - 1200 39

Constantan - 58% Cu, 42% Ni

Chromel – 89% Ni, 10% Cr, 1%Fe

Alumel – 94% Ni, 2% Al, 1,5% Si, 2,5 % Mn

Nicrosil/Nisil – Ni, Cr, Silicon/Ni, Silicon

CuNi disk sensor

on Ag plate.

Cu/Constantan

disk sensor on

Si(X) waffer.

μ sensor τ sensor

Pt-PtRh(10)

diskshaped

thermocouple

Thermocouples

Platinel – 55% Pd, 31% Pt, 14% Au

Andrey Tarasov, FHI MPG 42

Methods and Instruments

Page 43: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

2. ‘Heat-flux’, or ‘heat-conductive’, or Calvet-type DSC

– heat flux is measured outside of the sample assuming that it is

proportional to the T on different distances from it

Calvet calorimetry (incl. DSC):

- none of the TC’s measures the

temperature of the sample (!!!);

- the DSC signal is formed as T

between two cylindrical surfaces

(inner and outer) on different

distances from the sample

Andrey Tarasov, FHI MPG 43

Basic Principles and Terminology

Page 44: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

2. ‘Heat-flux’, or ‘heat-conductive’, or Calvet-type DSC

– heat flux is measured outside of the sample assuming that it is

proportional to the T on different distances from it

Basic Principles and Terminology

Andrey Tarasov, FHI MPG 44

Page 45: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

3D vs. 2D sensing: more efficient (complete) capturing of heat fluxes

from/to the sample – lower sensitivity to the sample properties !!!

the sample does not play the role of

‘thermal resistance’;

– no tight contact between sample (and reference) holder(s) and the sensor is required;

– 3D heat sensing;

– good gas-solid mass-transfer

conditions;

– high compatibility (e.g. with TGA)

– relatively low temporal resolution

Andrey Tarasov, FHI MPG 45

Page 46: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

heat removal and storage

𝑞 = 𝐾 ∙ ∆𝑇 + 𝐶 ∙𝜕𝑇

𝜕𝑡≈ 𝐾 Δ𝑇 + 𝜏

𝑑Δ𝑇

𝑑𝑡 - Tian equation

q – heat flux at every moment of time K – specific thermal conductivity C – specific thermal capacity τ- K/C characteristic time constant

Concept

Andrey Tarasov, FHI MPG 46

Page 47: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

q = kT + C(dT/dt) kT + C(dT/dt)= k[T + *(dT/dt)]

* = C/k – time constant of fluxmeter

Time constant is depended on design, construction and materials of the calorimetric cell.

Andrey Tarasov, FHI MPG 47

Concept

Page 48: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Andrey Tarasov, FHI MPG 48

k * ( C/k) k * ( C/k)

q @ * q @ *

Concept

q = k[T + *(dT/dt)]

Page 49: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Three ranges of characteristic times of the process should be considered:

Andrey Tarasov, FHI MPG 49

Concept

τӨ<0.1 τ

τӨ>τ

0.1 τ<τӨ < τ

Thermal inertia of the registration system completely shades the kinetics

When the kinetics may rather accurately be determined using Tian equation

When the available methods give kinetics that is somewhat distorted by the thermal inertia of a sample

Page 50: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

50 Andrey Tarasov, FHI MPG

In-situ DSC

Page 51: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

51 Andrey Tarasov, FHI MPG

15cm 2cm 1cm

0.4cm

In-situ DSC setup

Page 52: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

In-situ DSC setup

GC + MS

52 Andrey Tarasov, FHI MPG

𝑞 =𝑑𝑄

𝑑𝑡/

𝑑𝑁

𝑑𝑡

Sinev et al.

Page 53: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

2cm

1cm

Inlet

Outlet

53 Andrey Tarasov, FHI MPG

In-situ DSC setup

Page 54: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

2cm

1cm

In-situ DSC setup

54 Andrey Tarasov, FHI MPG

Without quartz tube

With quartz tube

Page 55: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Transformation of gas phase molecules • Information on reaction kinetics (Ea) • Simulation of different conditions in-situ • Adsorption - desorption enthalpies

Simplified schematic representation

Transformation in solid state • Redox dynamics • Effects of oxygen diffusion into subsurface • Redestribution of bulk and surface oxygen • Oxygen binding energy (oxides) • Thermochemistry of defects formation

active state

∆HadsA

Eeq(A)

Gas state

Product state

∆HadsB

Adsorbed state

∆Hr

∆H#

Activation barrier

Eapp

Eeq(α)

´

Deactivated

reactivated

adaptive state

Phase α

Deficient Phase α

∆Hrelx

Phase β

∆Hr

∆H#

Adapted using: van Santen, R. A., Modern Heterogeneous Catalysis, Wiley, 2017 and Schlögl, R., Introduction to Heterogeneous Catalysis, Lecture, FHI Berlin, 2017

55 Andrey Tarasov, FHI MPG

What can we measure?

Page 56: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

20 40 120 140

-48

-46

-44

-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

-22

Q / J

/s/g

time / min

heat flowexo

I / A

He (*1/15)

C2H

4

Case study: Validation, C2H4 adsorption on Ag catalyst

∆Hads=-94kJ/mol(C2H4)

N(C2H4)=26µmol/g(cat)

5%Ag/SiO2, Max Lamoth

reversible

In-situ DSC 30°C, total flow 30mlm, Ptotal 1,15bar

12 hours SynAir 300°C

∆Hads=-87-33kJ/mol(C2H4)

N(C2H4)=33µmol/g(cat)

Microcalo 40°C, Prange 0-3mbar 3 hours SynAir 300°C

reversible

56 Andrey Tarasov, FHI MPG

Page 57: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case study: Validation, C2H4 adsorption on Ag catalyst

∆Hads=-94kJ/mol(C2H4)

N(C2H4)=26µmol/g(cat)

5%Ag/SiO2, Max Lamoth

reversibile

In-situ DSC 30°C, total flow 30mlm, Ptotal 1.15bar, PC2H40.6mbar

12 hours SynAir 300°C

∆Hads=-87-33kJ/mol(C2H4)

N(C2H4)=33µmol/g(cat)

Microcalo 40°C, Prange 0-3mbar 3 hours SynAir 300°C

reversibile

57 Andrey Tarasov, FHI MPG

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Q /

kJ/

mo

l(C

2H

4)

N (C2H4) / mmol/g

Low energy centers may not be concerned in the flow conditions

25 30 35 40 45

-40

-35

-30

-25

Q / J

/s/g

time / min

heat flowexo

I / A

He (*1/15)

C2H

4

Page 58: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case study: Validation, C2H4 adsorption on Ag catalyst

5%Ag/SiO2, Max Lamoth

In-situ DSC 30°C, total flow 30mlm, Ptotal 1.15bar, PC2H40.6mbar

12 hours SynAir 300°C

Microcalo 40°C, Prange 0-3mbar 3 hours SynAir 300°C

58 Andrey Tarasov, FHI MPG

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Q /

kJ/

mo

l(C

2H

4)

N (C2H4) / mmol/g

Low energy centers may not be concerned in the flow conditions

Desorption and readsorption are occurring simultaneously with diffusion

In UHV systems diffusion takes part in a very limited extent, while readsorption can be avoided using sufficiently high pumping speed

25 30 35 40 45

-40

-35

-30

-25

Q / J

/s/g

time / min

heat flowexo

I / A

He (*1/15)

C2H

4

Page 59: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case study: alkane ODH over VSb/Al2O3

CnH2n+2 + ½ O2 CnH2n + H2O

CnH2n+2 + zO2 nCOX + (n+1) H2O

Catalysts – V-containing bulk and supported oxides

’Classical’ Red-Ox Kinetics over V-containing catalysts –

Mars-van-Krevelen* or oxygen rebound-replenish (ORR) mechanism

[O]S + A [ ]S + AO

[ ]S + O2 … [O]S

Sinev et al.

59 Andrey Tarasov, FHI MPG

Page 60: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

CnH2n+2 + ½ O2 CnH2n + H2O

V(4+) state is optimal for

high selectivity to ethylene

V(5) V(4+) – jump of S @ small variations of E[O];

V(4+) (V3+) – slow decrease of S in a wide range

of E[O] variation

‘Chemical’ factor (i.e. state of surface sites and their interaction with HC’s)

is more important than ‘energy’ one

Case study: alkane ODH over VSb/Al2O3

60 Andrey Tarasov, FHI MPG

Sinev et al.

Page 61: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

Case study: alkane ODH over VSb/Al2O3

Is E[O] (Hf)M2OX-1 – (Hf)M2OX ???

Sb2O5 Sb2O4 + ½ O2 -171 kJ/mole O2

Sb2O4 Sb2O3 + ½ O2 -383 kJ/mole O2

V2O5 V2O4 + ½ O2 -224 kJ/mole O2

V2O4 V2O3 + ½ O2 -442 kJ/mole O2

V2O3 2VO + ½ O2 -710 kJ/mole O2

(Hf)M2OX-1 – (Hf)M2OX E[O]

61 Andrey Tarasov, FHI MPG

Sinev et al.

Page 62: Operando thermal analysis - Max Planck Society System mass Buoyancy Force Andrey Tarasov, FHI MPG 4 Thermogravimetry: Basic Principle Ionisation chamber ampermeter mirror battery Piezoelectric

M2OX M2OX-1

Phase A O-deficient Phase A

– D[O] (endo)

M2OX-1

Phase B

Hrel (exo)

(Hf)M2OX-1 – (Hf)M2OX

(endo)

D[O] – O-binding energy (in ‘phase homogeneity’ range);

(Hf)M2OX, (Hf)M2OX-1 – standard (tabulated) values;

Hrel – enthalpy of relaxation (elimination of vacancies, lattice re-organization,

etc.)

|(Hf)M2OX-1 – (Hf)M2OX| < |E[O] | < |D[O]|

Sinev et al. Experimentally measured value

Experimental approaches

62 Andrey Tarasov, FHI MPG