observador nolineal para sistemas conmutados: aplicación a un

11
Revista Mexicana de Ingeniería Química Revista Mexicana de Ingenier´ ıa Qımica Vol. 14, No. 1 (2015) 137-147 NONLINEAR OBSERVER FOR SWITCHED SYSTEMS: APPLICATION TO A BATCH BIOREACTOR OBSERVADOR NOLINEAL PARA SISTEMAS CONMUTADOS: APLICACI ´ ON A UN BIORREACTOR EN LOTE F.A. Cuevas-Ortiz 1 , M.I. Neria-Gonz´ alez 2 and R. Aguilar-L´ opez 1* 1 Departamento de Biotecnolog´ ıa y Bioingenier´ ıa, Cinvestav. Av. I.P.N. No. 2508, Col. San Pedro Zacatenco, exico, D.F. 07360. 2 Divisi´ on de Ingenier´ ıa Qu´ ımica y Bioqu´ ımica, TESE. Av. Tecnol´ ogico S/N, Col. Valle de An´ ahuac, Ecatepec de Morelos, 55210, Edo.de M´ exico. M´ exico. Received November 9, 2014; Accepted February 15, 2015 Abstract The main objective of this work is to design a new state observer for a switched nonlinear system. The proposed observer contains a standard proportional term and a bounded feedback that improves the performance of the estimation process compared with other methodologies such as extended Luenberger-type observers. A theoretical analysis of the convergence of the proposed observer through an analysis of multiple Lyapunov functions is provided. The estimation strategy is applied to a bioreactor batch, where is performed a process of sulfate-reducing considering a hypothetical change in kinetic regime. The evolution of the reaction kinetics is described in three stages: the first stage is described by the Haldane-Boulton kinetic model; the second transitional stage called an interaction between the Haldane-Boulton and Moser-Boulton kinetic models; and the third stage is represented by the model Moser-Boulton. Sulfide concentration is considered as a measured variable of the bioreactor to implement the proposed observer. Numerical experiment results shown satisfactory performance of the considered methodology. Keywords: nonlinear observer, switched system, adaptive modeling, batch bioreactor. Resumen El objetivo principal del trabajo es dise˜ nar un nuevo observador de estados para un sistema no lineal conmutado. El observador propuesto contiene un t´ ermino proporcional est´ andar y una retroalimentaci ´ on acotada que mejora el desempe ˜ no del proceso de estimaci´ on en comparaci´ on con otras metodolog´ ıas, como los observadores de tipo Luenberger extendidos. Se proporciona un an´ alisis te´ orico sobre la convergencia del observador propuesto a trav´ es de un an´ alisis de funciones ultiples de Lyapunov. La estrategia de estimaci´ on es aplicada a un biorreactor en lote, donde se lleva a cabo un proceso de sulfato-reducci´ on considerando un cambio hipot´ etico de r´ egimen cin´ etico. La evoluci´ on de la cin´ etica de reacci´ on es descrita en tres etapas: la primera etapa es descrita por el modelo cin´ etico de Haldane?Boulton; la segunda etapa llamada de transici´ on se asume una interacci´ on entre el modelo de Haldane-Boulton y el modelo cin´ etico Moser-Boulton; y la tercera etapa es representada por el modelo de Moser-Boulton. La concentraci´ on de sulfuro se considera como una medida de la salida del biorreactor para implementar el observador propuesto. Los resultados de los experimentos num´ ericos muestran un desempe ˜ no satisfactorio de la metodolog´ ıa considerada. Palabras clave: observador no lineal, Sistema cambiante, Modelo adaptable, Biorreactor por lote. 1 Introduction The problem with the complexity of dynamic nonlinear systems appears in a great number of scientific and engineering domains. Some decomposition and simplification techniques were developed in the last years to make a complexity reduction, according to objectives like identification, * Corresponding author. E-mail: : [email protected] Tel. 57473800, ext: 4307 Publicado por la Academia Mexicana de Investigaci´ on y Docencia en Ingenier´ ıa Qu´ ımica A.C. 137

Upload: duongliem

Post on 20-Jan-2017

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Observador nolineal para sistemas conmutados: aplicación a un

Revista Mexicana de Ingeniería Química

CONTENIDO

Volumen 8, número 3, 2009 / Volume 8, number 3, 2009

213 Derivation and application of the Stefan-Maxwell equations

(Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell)

Stephen Whitaker

Biotecnología / Biotechnology

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo

intemperizados en suelos y sedimentos

(Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil

and sediments)

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas

(Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions)

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the

presence of Valfor® zeolite NaA

(Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de

zeolita Valfor® zeolite NaA)

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez

Ingeniería de procesos / Process engineering

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en

esta decisión

(Plant site selection: Critical review and adequation criteria used in this decision)

J.R. Medina, R.L. Romero y G.A. Pérez

Revista Mexicanade Ingenierıa Quımica

1

Academia Mexicana de Investigacion y Docencia en Ingenierıa Quımica, A.C.

Volumen 14, Numero 1, Abril 2015

ISSN 1665-2738

1

Vol. 14, No. 1 (2015) 137-147

NONLINEAR OBSERVER FOR SWITCHED SYSTEMS:APPLICATION TO A BATCH BIOREACTOR

OBSERVADOR NOLINEAL PARA SISTEMAS CONMUTADOS:APLICACION A UN BIORREACTOR EN LOTE

F.A. Cuevas-Ortiz1, M.I. Neria-Gonzalez2 and R. Aguilar-Lopez1∗

1Departamento de Biotecnologıa y Bioingenierıa, Cinvestav. Av. I.P.N. No. 2508, Col. San Pedro Zacatenco,Mexico, D.F. 07360.

2Division de Ingenierıa Quımica y Bioquımica, TESE. Av. Tecnologico S/N, Col. Valle de Anahuac, Ecatepec deMorelos, 55210, Edo.de Mexico. Mexico.

Received November 9, 2014; Accepted February 15, 2015

AbstractThe main objective of this work is to design a new state observer for a switched nonlinear system. The proposed observercontains a standard proportional term and a bounded feedback that improves the performance of the estimation processcompared with other methodologies such as extended Luenberger-type observers. A theoretical analysis of the convergenceof the proposed observer through an analysis of multiple Lyapunov functions is provided. The estimation strategy is appliedto a bioreactor batch, where is performed a process of sulfate-reducing considering a hypothetical change in kinetic regime.The evolution of the reaction kinetics is described in three stages: the first stage is described by the Haldane-Boulton kineticmodel; the second transitional stage called an interaction between the Haldane-Boulton and Moser-Boulton kinetic models;and the third stage is represented by the model Moser-Boulton. Sulfide concentration is considered as a measured variableof the bioreactor to implement the proposed observer. Numerical experiment results shown satisfactory performance of theconsidered methodology.

Keywords: nonlinear observer, switched system, adaptive modeling, batch bioreactor.

ResumenEl objetivo principal del trabajo es disenar un nuevo observador de estados para un sistema no lineal conmutado. Elobservador propuesto contiene un termino proporcional estandar y una retroalimentacion acotada que mejora el desempenodel proceso de estimacion en comparacion con otras metodologıas, como los observadores de tipo Luenberger extendidos.Se proporciona un analisis teorico sobre la convergencia del observador propuesto a traves de un analisis de funcionesmultiples de Lyapunov. La estrategia de estimacion es aplicada a un biorreactor en lote, donde se lleva a cabo un procesode sulfato-reduccion considerando un cambio hipotetico de regimen cinetico. La evolucion de la cinetica de reaccion esdescrita en tres etapas: la primera etapa es descrita por el modelo cinetico de Haldane?Boulton; la segunda etapa llamada detransicion se asume una interaccion entre el modelo de Haldane-Boulton y el modelo cinetico Moser-Boulton; y la terceraetapa es representada por el modelo de Moser-Boulton. La concentracion de sulfuro se considera como una medida de lasalida del biorreactor para implementar el observador propuesto. Los resultados de los experimentos numericos muestranun desempeno satisfactorio de la metodologıa considerada.

Palabras clave: observador no lineal, Sistema cambiante, Modelo adaptable, Biorreactor por lote.

1 Introduction

The problem with the complexity of dynamicnonlinear systems appears in a great number

of scientific and engineering domains. Somedecomposition and simplification techniques weredeveloped in the last years to make a complexityreduction, according to objectives like identification,

∗Corresponding author. E-mail: : [email protected]

Tel. 57473800, ext: 4307

Publicado por la Academia Mexicana de Investigacion y Docencia en Ingenierıa Quımica A.C. 137

Page 2: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

controller design or stability analysis. Simulationson mathematical model of actual bioreactor runssuggest how process variables, such as substrateand product concentrations, change and how nutrientfeeding should be tuned-in to time, concentration, andcomposition to reach a desired response. Insightsgained from modeling can guide us in the adjustmentof a process, reducing the number of characterizationrounds required. Furthermore, comparing actualexperimental results with model predictions helps toimprove the models themselves. It is important tonote that outputs can vary in unpredictable waysif processes are simulated outside boundaries setby the models that describe them, especially ifthe real operating ranges of actual processes areobtained inadequately (Dang et al., 2011). Asthese models are more complex, they can correctlydescribe the interactions between microorganisms,proteins and substrates in a reactor, but samplingon-line key process variables is often the problemand usually there is missing information until thesamples are properly processed and analyzed (Yuanet al, 2008). Thus, the named state observers havebeen a successful way to predict these non-measurableprocess variables. Several observers’ structures havebeen proposed to cover different requirements, alsopresenting different mathematical structures (Alvarezand Simutis, 2004).

Although the state observers may give the missinginformation, the model may still lack in terms ofexplaining when the system has external perturbations,forcing a change in the kinetic behavior of themicroorganism contained in the reactor. When anexternal perturbation (eg. change in temperature,pH, a new electron donor/acceptor, agitation, aeration(Hamilton et al., 2005) is present and the model, whichis usually made-up of standard fixed kinetic models,cannot follow the new kinetic behavior and it willeventually lead to wrong predictions or inadequateprocess control. A non-conventional way to deal withthe above is to use models with switchable structures,which are a part of the hybrid dynamical systems(Brandt et al., 2004; Dang et al., 2011).

Hybrid dynamical systems are those that involveboth continuous and discrete dynamics (Branicky etal., 1998). The switching systems, are a classof hybrid dynamical systems, where the underlyingmodel is a continuous model, with an event triggeringa switch (switching signal) (Liberzon and Morse,1999). Traditionally, most of the research done withthe switching systems, have been with dynamicalsystems that are described purely as either time-

driven continuous variable dynamics or event-drivendiscreet logic dynamics (Branicky, 1998; Tartakovskyet al., 2002; Aguilar-Garnica et al., 2009; Gouzeand Sari, 2010). The switching systems have beenidentified in a wide variety of natural and man-made systems, for example gene regulatory networks,biological processes, embedded systems, processcontrol, communication networks, aircraft and trafficcontrol, and among many other fields (Branicky et al.,1998).

State observers have been designed for a classof switched systems and have been applied to linearswitched systems, as mentioned in several paperspublished in the open literature, in which, observerswere designed for uncertain systems, time-delayand noisy measurements (Alessandri and Coletta,2001). For nonlinear switched systems, severalapproaches considering, proportional, sliding-modes,fragile observers, high gain and so on, wereconsidered in Liu (1997), with application to electricaland mechanical systems being the most frequent,however nonlinear observer’s designs, in particular theapplication related with biological reactors are not aslarge as the others.

From the above, in this work is proposed anonlinear observer to estimate the state variablesof the observable subspace in a sulfate-reducingbioreactor, considering that the sulfide concentrationis the measured variable. Desulfovibrio alaskensis6SR is used as model from sulfate-reducing process(Neria-Gonzalez et al., 2006), which was modeled asa nonlinear switched system with two different kineticregimes due to a hypothetical change in the metabolicpathways.

2 Bioreactor modeling

2.1 Mathematical support

In this work the simplest model of a nonlinear systemwith a discontinuity on the right hand side will beconsidered as follows (Dieci and Lopez, 2009):

x (t) = f (x (t)) =

{f1 (x (t)) ,x ∈ S 1f2 (x (t)) ,x ∈ S 2

x (0) = x0 ∈ Rn

(1)

The state space Rn is split into two subspaces S 1 andS 2, leading to a discontinuity in each dynamic system(Bernardo et al., 2008).

The Filippov convex method is applied to turnthe discontinuous system (1) into a convex differential

138 www.rmiq.org

Page 3: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

inclusion. Letting the derivate of the solution of theswitched system to be contained in a compact subsetof the continuous function set, and therefore allowingthe existence of continuous differentiable solutions.The existence of solutions is guaranteed as a notion ofupper semi-continuity of set-valued functions (Dieciand Lopez, 2009; Machina and Ponosov, 2011).

Considering the above the system (1) becomes aswitched system:

x (t) = F (x (t)) =

f1 (x (t)) , x ∈ S 1co {f1 (x (t)) , f2 (x (t))} ,x ∈ Σf2 (x (t)) , x ∈ S 2

(2)Where co {f1 (x (t)) , f2 (x (t))}, denotes the smallestclosed convex set, as:

co {f1 (x (t)) , f2 (x (t))} (3)=

{fv ∈ R

n : fv = (1−α) f1 (x (t)) +αf2 (x (t)) ,α ∈ [0,1]}

To achieve the solution the system’s state space isdivided into two subspaces or stages (S 1 and S 2) byΣ, an hypersurface, such that Rn = S 1 ∪ Σ ∪ S 2. Thehypersurface is defined by a scalar indicator (or event)functiong: Rn → R, so that the subspaces S 1 and S 2,and the hypersurface Σ, are characterized as:

Σ ={x ∈ Rn|g (x) = 0

}, S 1 =

{x ∈ Rn|g (x) < 0

},

S 2 ={x ∈ Rn|g (x) > 0

}(4)

2.2 Kinetic modeling

The considered hybrid model is applied to ananaerobic bioreactor operating in batch, where asulfate-reducing process takes place, considering asthe state variables sulfate, biomass and sulfide massconcentrations. It is assumed a kinetic regimenchange due to an unknown external perturbation,where the bioreactor dynamics are described by theunstructured kinetic model Haldane-Boulton, sincethe sulfate-reducing bacteria is inhibited by substrateand product in a first stage, then a transition stagein the kinetic regimen is assumed, caused by anunknown perturbation in the system and representedby the interaction between the Haldane-Boulton modeland the Moser-Boulton kinetic models, both modelsconsider inhibition by substrate and product, but theperturbation in the system benefits the bacteria in theway that more sulfate is consumed, thus more biomass

and sulfur is produced and the final stage wherethe unstructured kinetic model Moser-Boulton theonly present, this model, as stated before, considerssubstrate and product inhibition, but this inhibitionminor compared to one with Haldane-Boulton kineticmodel.

The Haldane-Boulton and the Moser-Boultonkinetic models where individually corroborated withexperimental data (Neria-Gonzalez et al., 2011),showing a satisfactory performance in accordancewith linear correlation coefficient criteria. TheHaldane-Boulton model is given by the followingequation:

µHB =

µmSKS + S + S 2K−1

i

[ KP

KP + P

](5)

And the Moser-Boulton model is described by thefollowing equation:

µMB =

[µmS n

KS + S n

] [KP

KP + P

](6)

The corresponding sets of parameters are given inTables 1 and 2.

Finally the switching model is represented asfollows: S

XP

=

µ1X; x ∈ S 1

(1−α)X +α(µ2

)X; x ∈ Σ

µ2X; x ∈ S 2

(7)

Where:

µ1 =

µHBYS/X(

µHB − µd)

µHBYP/X

; µ2 =

µMBYS/X(

µMB − µd)

µMBYP/X

S, X and P represent the sulfate, biomass and sulfideconcentrations respectively, YS/X and YP/X are theyield coefficients, µd is the death kinetic constant,µm is the maximum specific cell growth rate, relatedwith the maximum biomass concentration reached ina batch bioreactor, Ks is named the affinity constant,this parameter is related with the affinity of themicroorganism to the substrate, Ki is the substrateinhibition constant, Kp is the product inhibitionsconstant, n is the order of the biochemical reaction andα is a weighting vector parameter.

www.rmiq.org 139

Page 4: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Table 1. Parameters values

Kinetic model µm(h−1) Ks (mg/L) Ki (mg/L) Kp (mg/L) n

Moser-Boulton 10.55 1.26E+09 - 2.70 2.53Haldane-Boulton 39.84 86070.00 9850.19 7.24 -

Table 2. Experimental Initial conditions and Parameters values

Parameter Value

Initial Biomass concentration (mg/L) 134.73Initial Sulfate concentration (mg/L) 5057.47Initial Sulfur concentration (mg/L) 39.56

Y(S/X) (mg S mg−1 X) 14.13Y(P/X) (mg P mg−1 X) 2.14

µd (h−1) 0.0058

3 Local observability analysis andobserver design

3.1 Local observability

The preceding problem to observer design is toanalyze the observability conditions of the nonlinearsystems under study. For linear systems, classicalobservability index as observability matrix forobservability analysis and the estimator design havebeen extensively studied, and have proven extremelyuseful, especially for on-line monitoring and controlapplications such as observer based control design.

The design of observability conditions fornonlinear systems is a challenging problem (evenfor accurately known systems) that has received aconsiderable amount of attention. A first category oftechniques consists in applying linear algorithms tothe system linearized around the estimated trajectory.

Now, in order to prove the local observability ofa switched model, a linearization of the system understudy must be done to make the corresponding analysis(Ezzine and Haddad, 1998; Vidal et al., 2002). Thesystem (2) can be linearized trough Taylor series, sothe local observability analysis can be applied to thelinearized system given by equation (8).

x (t) ∈ JFF (x (t)) =

JF (f1 (x (t))) ; x ∈ S 1

JF ((1−α) f1 (x (t)) +αf2 (x (t))) ;x ∈ Σ

JF (f2 (x (t))) ; x ∈ S 2(8)

Or the equivalent form:

x (t) ∈ JFF (x (t)) =

JF1x;x ∈ S 1JF2x;x ∈ ΣJF3x;x ∈ S 2

With a linear measured vector:

y ∈Cx (t) =

C1x...

Cpx

Where JF is the corresponding Jacobian matrix of thesystem (3) and p is the number of subsystems.

The observability analysis for switched linear orlinearized dynamic systems is a natural extension ofthe well-known observability analysis for standardlinear systems, which generally is represented by theobservability matrix (Sun and Ge, 1968; Vidal et al.,2002; Babaali and Pappas, 2005). This observabilitymatrix for switched linear and/or linearized systemscan be defined by the following definition:Definition 1. (See Sun and Ge, 1968). A classcontinuous-time switched linear dynamic system ispath-wise observable if and only if their correspondingdynamic subsystems are completely observable.Therefore, the corresponding observability matrix fora class of switched continuous-time linear system isexpressed as shown in Eq. (9).

Similar to standard linear systems, it is requiredthat the observability matrix Q be full rank, i.e. rank[Q] = n, in order to provide full state observability.This results is applied in section 4 to analyze the localobservability properties of the switched bioreactor’smodel.

140 www.rmiq.org

Page 5: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Q =

[C1, · · · ,Cp,C1A1, · · · ,CpA1, · · · ,C1Ap, · · · ,CpAp, · · · ,C1A2

1, · · · ,C1A1Ap, · · · ,

CpA1Ap, · · · ,C1An−11 , · · · ,C1ApAn−2

1 , · · · ,CpApAn−21 , · · · ,CpAn−1

p

]T

(9)

3.2 Observer design

Let us consider the switched bioreactor’s model in ageneralized state space form:

x (t) ∈ F (x,u) =

f1 (x,u) ; x ∈ S 1(1−α) f1 (x,u) +αf2 (x,u) ; x ∈ Σf2 (x,u) ; x ∈ S 2

(10)

y = CxHere x ∈ Rn is the state vector, which takes values inX as a connected manifold of dimension n, u ∈ Rq isthe vector of external control inputs, taking values insome open subset U, finally y ∈ Rm describe the vectorof measured outputs taking values in some open subsetY. The function fi will be considered as a smoothfunction (C∞) of their arguments, and input functionsu(o) to be locally bounded and measurable functionsin a set U.

Then, for the state space model given by (10), itis proposed a state variables observer, in accordancewith Proposition 1, as:Proposition 1. The following dynamic system is astate variable observer of system (10):

˙x =

f1 (x,u) + kpsign ∗ εn

1+εn + kqε; x ∈ S 1(1−α) f1 (x,u) +αf2 (x,u) + kpsign ∗ εn

1+εn + kqε; x ∈ Σf2 (x,u) + kpsign ∗ εn

1+εn + kqε; x ∈ S 2(11)

Where the estimation error is defined as:ε = x − x and x is the vector of estimated state

variables.Sketch of proof of Proposition 1.By considering equations (10) and (11), the

dynamic differential equation of the estimation error(ε = x− ˙x) is given by

ε =

f1 (x,u)− f1 (x,u)−kpsign ∗ εn

1+εn −kqε; x ∈ S 1(1−α) (f1 (x,u)− f1 (x,u))−α (f2 (x,u)− f2 (x,u))−kpsign ∗ εn

1+εn −kqε; x ∈ Σf2 (x,u)− f2 (x,u)−kpsign ∗ εn

1+εn −kqε; x ∈ S 2

(12)

In order to prove stability of the estimation errorfor the system (12), a Multiple Lyapunov Functionsanalysis was applied (Branicky, 1998; Zhang etal., 2013). Thus, for the considered system (12),Lyapunov (Li) functions exist, which have to becontinuous positive-definite with continuous partialderivatives, when valued in zero the function is, at theorigin, (Li(0) = 0) for each considered subsystem ofthe proposed system throughout each period of timein which the subsystem takes place, and the derivateof said functions has to be negative semi-definite(L(x(t)) ≤ 0) for that same periods of time.

Therefore, if there is a set of Lyapunov-typefunctions that matches the number of switchesthat the proposed switched system has, and theproposed Lypunov-type functions cover all the criteriapreviously mentioned, the proposed system is stable inthe Lyapunov sense (Li et al., 2013).

Now, consider the following Lyapunov candidate

function:

L ∈

L1L1,2L2

⇒ εT Pε ∈ ‖ε‖2P ∈

‖ε1‖

2P∥∥∥ε1,2∥∥∥2

P‖ε2‖

2P

,P = PT > 0

(13)

For the study case:

L ∈

L1L1,2L2

⇒ εT Pε+ εT Pε ∈

εT

1 Pε1 + εT1 Pε1

εT1,2Pε1,2 + εT

1,2Pε1,2

εT2 Pε2 + εT

2 Pε2

(14)

www.rmiq.org 141

Page 6: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

For Li for i = 1 and 2

Li =

((fi (x,u)− fi (x,u))−kpsign ∗

εn

1 + εn −kqε

)T

+ εT P((fi (x,u)− fi (x,u))−kpsign ∗

εn

1 + εn −kqε

)(15)

Li =2εT P (fi (x,u)− fi (x,u))

− 2εT P(kpsign ∗

εn

1 + εn + kqε

)(16)

Here Li represents the Lyapunov function for thesubsystem i.

Hypothesis 1. The system (10) is Lipchitz bounded:

∥∥∥εT P (fi (x,u)− fi (x,u))∥∥∥ ≤ Li ‖ε‖

2P (17)

Now, ∥∥∥∥∥∥εT P(kpsign ∗

εn

1 + εn dx + kqε

)∥∥∥∥∥∥≤ ‖ε‖P

∥∥∥∥∥kpsign ∗εn

1 + εn dx + kqε

∥∥∥∥∥ (18)

Considering that the nonlinear feedback term is asigmoid-type function, where sign is the well-knownsign function, the term

∥∥∥sign ∗ εn

1+εn

∥∥∥ ≤ 1 is bounded.Replacing equations (17) and (18) in equation

(16):

Li ≤ 2[(

Li − kq)‖ε‖2p − kp ‖ε‖p

]f or i = 1 and 2 (19)

If (Li − kq) < 0, choosing kq > Li and kp > 0, then(Li − kq

)‖ε‖2p − kp‖ε‖p ≤ 0 Consequently

Li ≤ 0 (20)

Now, for the transition region, L1,2:

L1,2 =((1−α) (f1 (x,u)− f1 (x,u))−α (f2 (x,u)− f2 (x,u))−kpsign ∗ εn

1+εn −kqε)T

Pε+εT P

((1−α) (f1 (x,u)− f1 (x,u))−α (f2 (x,u)− f2 (x,u))−kpsign ∗ εn

1+εn −kqε) (21)

Then,

L1,2 = 2εT P (α(f1(x,u)− f1(x,u))− (1−α)(f2(x,u)− f2(x,u)))− 2εTP(kpsign ∗

εn

1 + εn + kqε

)(22)

Under assumption of Hypothesis 1,

L1,2 ≤ 2[(αL1 − (1−α)L2 −kq

)||ε||2p −kp||ε||p

](23)

If kq > αL1 − (1−α)L2 and kq > 0

Then

L1,2 ≤ 0 (24)

Finally,

L ∈

2[(

L1 −kq)‖ε‖2P −kp‖ε‖p

]6 0, x ∈ S 1

2[(αL1 − (1−α)L2 −kq

)‖ε‖2P −kp‖ε‖p

]6 0, x ∈ Σ

2[(

L2 −kq)‖ε‖2P −kp‖ε‖p

]6 0, x ∈ S 2

(25)With this, it can be concluded that the estimation erroris stable.

4 Numerical results

In order to show the performance of the proposedmethodology, numerical simulations were doneemploying the 23s ode solver library of Matlab?(TheMathWorks INC, 2013) in a personal computer. Theconsidered unstructured kinetic models (Haldane-Boulton and Moser-Boulton) were experimentallycorroborated (data not shown), where satisfactorycorrelation coefficients (r2) were obtained (see Table3). From the models mentioned above, the switchingnonlinear system was developed in accordance withequation (7). The simulations of the system consideredthe initial conditions indicated in Table 2. The stateobserver described by equation (11) was implementedwith the initial conditions indicated also in Table 2.In order to show the performance of the proposedobserved it will be compared to a classical Luenbergerobserver.

The simulations for the model and observers

142 www.rmiq.org

Page 7: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

are shown in Figures 1 to 3, where the sulfideconcentration is considered as the measured output,such that this variable is assumed on-line measuredvia colorimetric analysis. A local observabilityanalysis, as presented in section 3.1 was doneto the switched system’s model, being the sulfideconcentration the measured output (C=[0,0,1]). Theapplication of the equation (9) provides the global rankof the observability matrix of the considered switchedbioreactor model, with rank[Qb] = 7, concluding inaccordance with the Proposition 1, that the switchedsystem is locally partially observable. Although

a local observability analysis for each sub-modelindicates that the system is observable; the ranksof the observability matrix for the Haldane-Boulton(HB), the (Haldane-Boulton)-(Moser-Boulton) (HB-MB) and Moser-Boulton (MB) kinetic models, arerespectively (rank[Q(H − B)] = 3; rank[Q(HB−MB)] =

3; rank[QML] = 3).The estimation performance of the proposed

observer for the sulfate and biomass concentrationreached the neighborhood of zero for the estimationerror (see Figure 4) within few hours, without largeovershoots, but with a rather large settling time.

Manuscrito sometido a la Revista Mexicana de Ingeniería Química19

Figures 501

502

503 Figure 1. 504

Figure 1. Simulation of the sulfide concentration production (continuous line) and the state observers (Luenbergerobserver, dashed line and the proposed observer, dotted line).

www.rmiq.org 143

Page 8: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Manuscrito sometido a la Revista Mexicana de Ingeniería Química20

505 Figure 2. 506

Figure 2. Simulation of the biomass concentration production (continuous line) and the state observers (Luenbergerobserver, dashed line and the proposed observer, dotted line).

Manuscrito sometido a la Revista Mexicana de Ingeniería Química21

507 Figure 3. 508

Figure 3. Simulation of the sulfate concentration consumption (continuous line) and the state observers (Luenbergerobserver, dashed line and the proposed observer, dotted line).

144 www.rmiq.org

Page 9: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Manuscrito sometido a la Revista Mexicana de Ingeniería Química22

509 Figure 4. 510

511

512 Figure 5. 513

Figure 4. Estimation error for Sulfate (right axis), Biomass and Sulfur (left axis) concentrations for the Luenbergerobserver (black symbols) and the proposed observer (white symbols).

Manuscrito sometido a la Revista Mexicana de Ingeniería Química22

509 Figure 4. 510

511

512 Figure 5. 513

Figure 5. Phase portrait of state variables of the bioreactor (continuous line), the Luenberger (dashed line) and theproposed observers (dotted line).

Table 3. Model Parametric Identification

Kinetic Model Correlation Coefficient (r2) Global (r2)Biomass Sulfate Sulfide

Moser-Boulton 0.9888 0.9550 0.9805 0.9783Haldane-Boulton 0.9821 0.9765 0.9857 0.9813

www.rmiq.org 145

Page 10: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Table 4. Initial Conditions

Sulfate Biomass Sulfur(mg/L) (mg/L) (mg/L)

Switched model 5057.47 134.73 39.56Observers 4500 150 70

A phase portrait representation (Figure 5) of thebioreactor’s state variables, when the observers have adifferent initial condition, is presented. The trajectoryof the proposed observer converges faster than theLuenberger’s to the real trajectory. Also the proposedobserver’s trajectory stays close to the real one whenthe transitions occur.

The state observer described in equation (11) wasimplemented with the initial conditions shown onTable 4. Where the following linear observer gains(kp) (also the ones used for the Luenbergers observer)were selected heuristically, as:

kp ∈

kp1kp1,2kp2

Where kp1 = [−15,1,1]; kp1,2 = [50,1,1] and kp2 =

[−100,1,1]. And the observer nonlinear gains (kq)also selected heuristically were:

kq ∈

kq1kq1,2kq2

Where:kq1 = [5000,200,200]; kq1,2 = [5000,−1,1]and kq2 = [1000,−1,1].

Conclusions

In this work a new class of nonlinear observer isproposed and applied to switching bioreactor modelto simulate a kinetic regime change, which is atypical feature in biological systems. The proposedestimation methodology contains a sigmoid-type formof the measured output injection term in order toinfer the biomass and sulfate mass concentrationsfrom sulfide concentration measurements in thebioreactor, this sigmoid-type observer is able to reacha satisfactory estimation performance which is betterthan a standard extended Luenberger-type observer asis shown via numerical simulations. A theoreticalframework is provided employing Lyapunov analysisto demonstrate the stability of the estimation error.

AcknowledgmentsF.A.C.O. wants to thank to CINVESTAV-IPN andCONACyT for the financial support in this work.

ReferencesAguilar-Garnica, E., Dochain, D., Alcaraz-

Gonzalez, V., and Gonzalez-Alvarez, V.(2009). A multivariable control schemein a two-stage anaerobic digestion systemdescribed by partial differential equations.Journal of Process Control 19, 1324-1332.doi:10.1016/j.jprocont.2009.04.003

Alessandri, A., and Coletta, P. (2001). Switchingobservers for continuous-time and discrete-time linear systems. In Proceedings of the2001 American Control Conference. (Cat.No.01CH37148) (Vol. 3, pp. 2516?2521). Ieee.doi:10.1109/ACC.2001.946132

Alvarez, A., and Simutis, R. (2004). Application ofKalman Filter Algorithms in a GMC ControlStrategy for Fed-Batch Cultivation Process.Information Technology and Control 1, 7-12.

Babaali, M., and Pappas, G. J. (2005). Observabilityof Switched Linear Systems in ContinuousTime. Lecture Notes in Computer Science 3414,103-117.

Bernardo, M., Budd, C., Champneys, A. R., andKowalsky, P. (2008). Qualitative theory ofnon-smooth dynamical. In Piecewise-smoothDynamical Systems. Theory and Applications(p. 121).

Brandt, B. W., Kelpin, F. D. L., van Leeuwen, I. M.M.,and Kooijman, S. a L. M. (2004). Modellingmicrobial adaptation to changing availabilityof substrates. Water Research 38, 1003-13.doi:10.1016/j.watres.2003.09.037

Branicky, M. S. (1998). Multiple Lyapunov functionsand other analysis tools for switched and hybridsystems. IEEE Transactions on AutomaticControl 43, 475-482. doi:10.1109/9.664150

Branicky, M. S., Borkar, V. S., and Mitter, S.K. (1998). A unified framework for hybridcontrol?: model and optimal control theory.IEEE Transactions on Automatic Control 43,31-45.

146 www.rmiq.org

Page 11: Observador nolineal para sistemas conmutados: aplicación a un

Cuevas-Ortiz et al./ Revista Mexicana de Ingenierıa Quımica Vol. 14, No. 1 (2015) 137-147

Dang, T., Le Guernic, C., and Maler, O.(2011). Computing reachable states fornonlinear biological models. TheoreticalComputer Science 412, 2095-2107.doi:10.1016/j.tcs.2011.01.014

Dieci, L., and Lopez, L. (2009). Sliding motion infilippov differential systems: theoretical resultsand a computational approach. SIAM Journalon Numerical Analysis 47, 2023-2051.

Ezzine, J., and Haddad, A. H. (1998). Onthe controllability and observability of hybridsystems. American Control Conference 273, 41-46.

Gouze, J., and Sari, T. (2002). A class ofpiecewise linear differential equations arisingin biological models. Dynamical Systems:An International Journal 17, 299-316.doi:10.1080/1468936021000041681.

Hamilton, R., Casasus, A., Rasche, M., Narang,A., Svoronos, S. a, and Koopman, B. (2005).Structured model for denitrifier diauxic growth.Biotechnology and Bioengineering 90, 501-8.doi:10.1002/bit.20462

Liberzon, D., and Morse, A. S. (1999). BasicProblems in Stability and Design of SwitchedSystems. IEEE Control Syst. Mag 19, 59-70.

Liu, Y. (1997). Switching observer design foruncertain nonlinear systems. IEEE Transactionson Automatic Control 42, 621-623.

Machina, A., and Ponosov, A. (2011). Filippovsolutions in the analysis of piecewiselinear models describing gene regulatorynetworks. Nonlinear Analysis: Theory,

Methods and Applications 74, 882-900.doi:10.1016/j.na.2010.09.039

Neria-Gonzalez, M. I., Figueroa-Estrada, J. C.,Cruz-Diaz, M. R., and Aguilar-Lopez, R.(2011). Adaptive smooth oberver design forstate estimation in Desulfovibrio alaskensis6SR cultures. Revista Mexicana de IngenierıaQuımica 10, 137-146.

Neria-Gonzalez, M. I., Tao Wang, E., Ramırez,F., Romero, J. M., and Hernandez-Rodrıguez, C. (2006). Characterization ofbacterial community associated to biofilmsof corroded oil pipelines from the southeastof Mexico. Anaerobe 12, 122-133.doi:10.1016/j.anaerobe.2006.02.001

Sun, Z., and Ge, S. S. (1968). Switched LinearSystems: Control and Design. Springer.

Tartakovsky, B., Morel, E., Steyer, J. P., andGuiot, S. R. (2002). Application of a variablestructure model in observation and control of ananaerobic digestor. Biotechnology Progress 18,898-903. doi:10.1021/bp010142c

The MathWorks INC. (2013). Matlab.

Vidal, R., Chiuso, A., and Soatto, S. (2002).Observability and Identifiability of Jump LinearSystems. In Proc. of the 41st IEEE Conferenceon Decision and Control (pp. 3614-3619).

Yuan, Z., Oehmen, A., Peng, Y., Ma, Y.,and Keller, J. (2008). Sludge populationoptimisation in biological nutrient removalwastewater treatment systems through on-lineprocess control: a re/view. Reviews inEnvironmental Science and Bio/Technology 7,243-254. doi:10.1007/s11157-008-9134-y.

www.rmiq.org 147