nx nastran 10 release guide - siemens · pdf filenx nastran 10 release guide. contents ... nx...

586
SIEMENS SIEMENS SIEMENS NX Nastran 10 Release Guide

Upload: lylien

Post on 23-Mar-2018

411 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

SIEMENSSIEMENSSIEMENS

NX Nastran 10 ReleaseGuide

Page 2: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 3: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Contents

Proprietary & Restricted Rights Notice . . . . . . . . . . . . . . . . . . . . . . . . . . 7

NX Nastran 10 summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

NX Nastran 10 summary of changes to default settings and inputs . . . . . . . . . 1-1

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Stress and strain output for laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1Von Mises results in frequency response analysis . . . . . . . . . . . . . . . . . . 2-21Modal and panel contribution results for post-processing . . . . . . . . . . . . . . 2-22

Multibody dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Modal damping options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Rotor dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Complex modal reduction enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 4-1New stiffness and damping terms for CBEAR elements . . . . . . . . . . . . . . . . 4-2Expanded support for CBEAR element properties . . . . . . . . . . . . . . . . . . . 4-2Composite relative displacements and forces for CBEAR elements . . . . . . . . 4-3Coupled solutions in rotor dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16Modeling interconnected coaxial rotors . . . . . . . . . . . . . . . . . . . . . . . . . 4-21Superelement-style reduction in rotor dynamics . . . . . . . . . . . . . . . . . . . . 4-23

Superelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Unused q-set DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Multi-step nonlinear solution 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1Overview of capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3Support for plasticity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25Support for creep analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42Disable plasticity and creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-53Rigid element support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55Generalized plane strain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-60Bolt preload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-64SOL 401 contact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-71Support for crack simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-86Error estimator for mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 6-100

NX Nastran 10 Release Guide 3

Page 4: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Contents

Advanced nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

Potential-based fluid element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1Strain-rate dependent plastic material . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-33D shell element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5PCOMPG entry support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7New element orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14Bolt Preload Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14Alternate Power creep input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15

Element enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

Input and output for Axisymmetric elements . . . . . . . . . . . . . . . . . . . . . . . 8-1CQUADR / CTRIAR normal rotational stiffness . . . . . . . . . . . . . . . . . . . . . 8-3

GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

RDMODES improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

RDMODES improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Optimization enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

New keyword settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1OP2 file default for the ILP-64 executable . . . . . . . . . . . . . . . . . . . . . . . . 12-2

Upward compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

Updated data blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1CASECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1CLAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2CONTACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2DYNAMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2EPT and EPT705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6GEOM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8GEOM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9MPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-11OEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13OES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14OESXRMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-58OQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-63OUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-63

New data blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-64OCONST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-64OERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-69

4 NX Nastran 10 Release Guide

Contents

Page 5: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Contents

OESVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-71OJINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-272OPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-273OSLIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-276

Updated modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-281BCDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-281BDRYINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-281CEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-282DLT2SLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-282DOM9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-283DOM12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-284DPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-285EFFMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-286EMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-286EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-287FOELCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-287FOGLEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-288FOCOEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-288FONOTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-288GKAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-289GP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-289GP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-289LCGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-290MATMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-290NLCOMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-291NLTRD3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-292RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-296ROTSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-296SDR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-301SDRCOMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-301SEPDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-302TA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-302UPGLSTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-302

New modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-303CKROTCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-303CNTMAPTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-304CNTSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-304CNTXTRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-305CONSTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-306CONTOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-307GP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-308MODGMRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-309NLCBRFOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-310OPRESSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-311SDR2CVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-312TEMPATT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-312TOPOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-315

NX Nastran 10 Release Guide 5

Contents

Page 6: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Contents

NX Nastran 10 Problem Report (PR) fixes . . . . . . . . . . . . . . . . . . . . . . 14-1

NX Nastran 10 Problem Report (PR) fixes . . . . . . . . . . . . . . . . . . . . . . . 14-1

6 NX Nastran 10 Release Guide

Contents

Page 7: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Proprietary & Restricted Rights Notice

© 2014 Siemens Product Lifecycle Management Software Inc. All Rights Reserved.

This software and related documentation are proprietary to Siemens ProductLifecycle Management Software Inc. Siemens and the Siemens logo are registeredtrademarks of Siemens AG. NX is a trademark or registered trademark of SiemensProduct Lifecycle Management Software Inc. or its subsidiaries in the United Statesand in other countries.

NASTRAN is a registered trademark of the National Aeronautics and SpaceAdministration. NX Nastran is an enhanced proprietary version developed andmaintained by Siemens Product Lifecycle Management Software Inc.

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran andMSC.Patran are trademarks of MSC.Software Corporation.

All other trademarks are the property of their respective owners.

TAUCS Copyright and License

TAUCS Version 2.0, November 29, 2001. Copyright (c) 2001, 2002, 2003 by SivanToledo, Tel-Aviv University, [email protected]. All Rights Reserved.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies that you agree tothis License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTYEXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that theCopyright, this License, and the Availability of the original version is retained on allcopies. User documentation of any code that uses this code or any derivative codemust cite the Copyright, this License, the Availability note, and "Used by permission."If this code or any derivative code is accessible from within MATLAB, then typing"help taucs" must cite the Copyright, and "type taucs" must also cite this Licenseand the Availability note. Permission to modify the code and to distribute modifiedcode is granted, provided the Copyright, this License, and the Availability note areretained, and a notice that the code was modified is included. This software isprovided to you free of charge.

Availability (TAUCS)

As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped(tgz), with or without binaries for external libraries. The bundled external librariesshould allow you to build the test programs on Linux, Windows, and MacOS Xwithout installing additional software. We recommend that you download the full

NX Nastran 10 Release Guide 7

Page 8: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Proprietary & Restricted Rights Notice

distributions, and then perhaps replace the bundled libraries by higher performanceones (e.g., with a BLAS library that is specifically optimized for your machine). If youwant to conserve bandwidth and you want to install the required libraries yourself,download the lean distributions. The zip and tgz files are identical, except that onLinux, Unix, and MacOS, unpacking the tgz file ensures that the configure script ismarked as executable (unpack with tar zxvpf), otherwise you will have to change itspermissions manually.

8 NX Nastran 10 Release Guide

Proprietary & Restricted Rights Notice

Page 9: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 1: NX Nastran 10 summary of changes

NX Nastran 10 summary of changes to default settings and inputs

Default setting changes

Note

The following table lists changes to default settings that may producedifferences in results between NX Nastran 9 and NX Nastran 10. Defaultsetting changes that produce additional output only are not included in thistable.

Input type Default changeKeywords None

Nastran statement

For CTRAX3, CQUADX4, CTRAX6, CQUADX8,CTRIAX, and CQUADX elements, the default input andoutput changes from being on a per unit radian basis tobeing on a per 2π radian basis. This change does notapply to SOLs 153, 159, 601, and 701.

File managementstatements NoneExecutive controlstatements None

Case control commands NoneParameters None

Bulk entries

For the ROTORD bulk entry, the default for MAXITERchanges from “0” to “10”.

For the SWLDPRM bulk entry, the default for DISPRTchanges from “0” to “2”.

Nastran statement changes

Systemcell

System cellname System cell description Description of change

370 QRMETHSelects the formulation usedby QUADR and TRIARelements.

When SYSTEM(370) = 1,complex stresses and strainsare not computed for QUADRand TRIAR elements that areused to model laminates.

NX Nastran 10 Release Guide 1-1

Page 10: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 1: NX Nastran 10 summary of changes

Systemcell

System cellname System cell description Description of change

579 FREQVM

Determines whether the vonMises stress and strain arecomputed for a deterministicfrequency response analysisin SOL 108 or SOL 111.

New system cell

587 –

In solution sequencesother than SOLs 153, 159,601, and 701, controlswhether axisymmetric inputand output for CTRAX3,CQUADX4, CTRAX6,CQUADX8, CTRIAX, andCQUADX elements is on aper unit radian basis or aper 2π radian basis.

New system cell

589 –Controls the CQUADRand CTRIAR element R6stiffness.

New system cell

File management statement changes

No changes to file management statements.

Executive control statement changes

No changes to executive control statements.

Case control command changes

Case controlcommand

Case control commanddescription Description of change

ADAMSMNFGenerates ADAMS Modal NeutralFile (MNF) during a SOL 103, 111,or 112 run.

Added NONCUP describerwhich controls whetheroff-diagonal terms in themodal viscous dampingmatrix are written to ADAMSMNF files.

ADAPTERR Controls the computation and outputof error estimates. New case control command

CRSTRN Requests creep strain at grid pointsin SOL 401. New case control command

DTEMP Selects a time-assigned temperatureset in SOL 401. New case control command

GCRSTRN Requests creep strain at Gausspoints in SOL 401. New case control command

GPLSTRN Requests plastic strain at Gausspoints in SOL 401. New case control command

1-2 NX Nastran 10 Release Guide

Chapter 1: NX Nastran 10 summary of changes

Page 11: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 summary of changes

Case controlcommand

Case control commanddescription Description of change

JINTEGControls the computation and outputof the j-integral for crack simulationin SOL 401.

New case control command

MBDEXPORTGenerates interface file for third-partymulti-body dynamics and controlsystem software during a SOL 103,111, or 112 run.

Added NONCUP describerwhich controls whetheroff-diagonal terms in themodal viscous damping matrixare written to ADAMS MNFfiles, standard or state-spaceMATLAB files, and standardand state-space OP4 files.

OPRESS Requests solution set pressureoutput in SOL 401. New case control command

PLSTRN Requests plastic strain at grid pointsin SOL 401. New case control command

RIGIDSelects the rigid element processingmethod for RBAR, RBE1, RBE2,RBE3, RROD, and RTRPLTelements.

Added AUTO and STIFFdescribers which select therigid element behavior forRBE2 and RBAR elements inSOL 401.

Parameter changes

Parameter Parameter description Description of change

COLPHEXA Allows collapsed CHEXA elementsfor crack simulation. New parameter

MATNL Globally turns on material nonlinearcapabilities in SOL 401. New parameter

NONCUP

Selects whether coupled oruncoupled modal equations are usedin SOLs 111 and 112 runs, or areexported to interface files for usewith multibody dynamics or controlsystem software.

Capability is now supportedfor modal viscous dampingmatrices exported to standardor state-space MATLAB andOP4 files.

PHIBGNPHIDEL

PHINUM

Defines the range of azimuth angleover which the equations of motionwith time-dependent coupling termsare solved during a rotor dynamicanalysis.

New parameters

NX Nastran 10 Release Guide 1-3

NX Nastran 10 summary of changes

Page 12: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 1: NX Nastran 10 summary of changes

Parameter Parameter description Description of change

POSTSpecifies the set of data blocksthat are written to output files forpost-processing.

Output data blocks thatcontain modal and panelcontribution results can nowwritten to the OP2 file wheneither PARAM,POST,-1 orPARAM,POST,-2 is specified.

Output data blocks thatcontain vonMises results fromSOLs 108 and 111 frequencyresponse analyses can nowwritten to the OP2 file wheneither PARAM,POST,-1 orPARAM,POST,-2 is specified.

POSTOPT

In the context of the NX Multiphysicsenvironment, controls if NX Nastranwrites the requested results aftereach time step in which output wasrequested, or at the end of thesubcase for the time steps in whichoutput was requested.

New parameter

QSETREMControls whether unused q-setDOF are retained with an externalsuperelement.

New parameter

RGBEAMARGBEAMERGLCRIT

RGSPRGK

Used in SOL 401 when the softwareinternally replaces the RBE2 andRBAR elements with either a stiffbeam element or a stiff springelement. This is done to computelarge displacement effects andthermal expansion.

New parameters

ROTCMRF

Specifies the reference rotor speedthat is used to compute the reducedmodal basis in a SOL 107 rotordynamic solve with complex modalreduction.

ROTCMRF is supported, butundocumented in NX Nastran9.

ROTCOUPSpecifies the coupling grid points in aSOL 107, 108, or 109 rotor dynamicanalysis.

New parameter

SWPANGLE

Specifies the angular increment indegrees at which failure indices andstrength ratios are computed andoutput for laminates in SOL 108 and111.

New parameter

1-4 NX Nastran 10 Release Guide

Chapter 1: NX Nastran 10 summary of changes

Page 13: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 summary of changes

Item code changes

Element code Element code description Description of change

95, 96, 97, 98,232, 233

CQUAD4, CQUAD8, CTRIA3,CTRIA6, CQUADR, and CTRIARcomposite shell elements

Added item codes forcomplex stresses and strains.

269, 270 CHEXA and CPENTA compositesolid elements

Added item codes for realand complex stresses andstrains.

280 CBEAR elements Added item codes for realand complex moments.

Degree-of-freedom set changes

No changes to degree-of-freedom sets.

Bulk entry changes

Bulk entry Bulk entry description Description of change

BCTPARM Controls parameters forsurface-to-surface contact algorithm.

Added PTOL, CNTCONV,OPNSTF, OPNTOL,GAPTOL, NOSEP,GUPDATE, GUPTOL,DISCAL, DISTOL, andKSTAB parameters to controlSOL 401 surface-to-surfacecontact algorithm.

BFLUIDDefines a fluid boundary byreferencing BSURFS, BCPROPS, orBEDGE bulk entries for SOL 601,106.

New bulk entry

BOLT Selects the elements to be includedin the bolt preload calculation.

Added the SOL 401 boltpreload capability.

CHEXA Six-sided solid element connection.Added alternate formats tosupport collapsed CHEXAelement definition.

CRAKTP Specifies information related to acrack tip in SOL 401. New bulk entry

DTEMP Defines a time dependenttemperature set in SOL 401. New bulk entry

DTEMPEXDefines a time dependenttemperature set using a .bunfile in SOL 401.

New bulk entry

MATCRP Defines coefficients for Bailey-Nortoncreep model in SOLs 401 and 601. New bulk entry

MATOVR Overrides plasticity and/or creep forselected elements in SOL 401. New bulk entry

NX Nastran 10 Release Guide 1-5

NX Nastran 10 summary of changes

Page 14: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 1: NX Nastran 10 summary of changes

Bulk entry Bulk entry description Description of change

MATS1 Defines stress-dependent materialproperties.

Updated to support plasticityanalysis in SOL 401. AddedTYPE = “PLSTRN” to supportstress versus plastic straintabular data entry.

MATSRSpecifies strain-rate dependentproperties for use with MATS1 entrywith the same MID in SOLs 601 and701.

New bulk entry

NLCNTL Defines solution control parametersfor SOL 401.

Added the CREEP parameterto deselect creep effectsin subcases. Added theCRCERAT, CRCINC,CRICOFF, CRINFAC,CRINTS, CRMFMN,CRMFMX, CRSBCDT,CRTEABS, CRTECO,CRTEREL, CRTSC,CRTSMN, and CRTSMXparameters to controladaptive time stepping increep analysis.

Added the PLASTICparameter to deselectplasticity effects in subcases.

Added the EPSBOLT andITRBOLT parametersto control bolt preloadcalculations.

PBEARDefines stiffness and viscousdamping matrices for bearingconnection.

Added continuation linesthat allow you to defineadditional stiffness andviscous damping terms forCBEAR elements.

Speed anddisplacement-dependent,and speed andforce-dependent CBEARstiffness and viscousdamping are now supportedin SOLs 108, 109, 111,and 112 in addition to thepreviously supported SOL101.

1-6 NX Nastran 10 Release Guide

Chapter 1: NX Nastran 10 summary of changes

Page 15: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 summary of changes

Bulk entry Bulk entry description Description of change

Added continuation lines thatallow you to define compositerelative displacementsand composite relativeforces. The softwarenow uses the compositerelative displacements andcomposite relative forces tolook up stiffness and viscousdamping values whenthe stiffness and viscousdamping are speed anddisplacement-dependent, orspeed and force-dependent,respectively.

PCOMP Defines the properties of an n-plycomposite material laminate.

Added support for stress andstrain output for individuallamina in SOLs 108 and 111to existing remark.

PCOMPGDefines the properties of an n-plycomposite material laminate whichincludes global ply IDs.

Added support for stress andstrain output for individuallamina in SOLs 108 and 111to existing remark.

Added support for PCOMPGin SOL 601.

PCOMPSDefines the properties of an n-plycomposite material laminate forCHEXA and CPENTA solid elements.

Added support for stress andstrain output for individuallamina in SOLs 108 and 111to existing remark.

PGPLSN Defines the properties of generalizedplane strain elements. New bulk entry

PSHL3D Defines the properties of 3D shellelements for SOLs 601 and 701. New bulk entry

ROTORD Defines rotor dynamic solutionoptions.

Removed the limit of ten onMAXITER and changed thedefault for MAXITER from “0”to “10”.

ROTSE Supplemental rotor superelementdefinition. New bulk entry

NX Nastran 10 Release Guide 1-7

NX Nastran 10 summary of changes

Page 16: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 1: NX Nastran 10 summary of changes

Bulk entry Bulk entry description Description of change

SWLDPRM Defines parameters forCWELD/CFAST connectors.

The default for DISPRTwas previously “0” andis now ”2”. As a result,GA/GB displacements arenot output by default. Thedefault change improvesperformance.

TEMPEX Time independent temperature setdefined in a .bun file for SOL 401. New bulk entry

VCEV Defines virtual crack tip extensionvectors in SOL 401. New bulk entry

1-8 NX Nastran 10 Release Guide

Chapter 1: NX Nastran 10 summary of changes

Page 17: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

Stress and strain output for laminatesIn earlier versions of NX Nastran, output of ply-layer stresses and strains issupported in transient response analysis only when the laminates are modeledwith shell elements. Beginning with NX Nastran 10, output of ply-layer stressesand strains is supported in frequency response (SOL 108 and SOL 111), randomresponse (SOL 108 and SOL 111), and transient response (SOL 109 and SOL 112)analyses for laminates modeled with solid elements or shell elements.

Complex stresses and strains are not computed for QUADR and TRIAR elementsthat are used to model laminates when SYSTEM(370)=1.

For frequency response analysis (SOL 108 and SOL 111), failure indices andstrength ratios are now also computed and output. Because frequency responseanalysis results are complex, the software calculates the failure indices and strengthratios at discrete phase angles over a full 360 degree range. The worst case valueis output. By default, the calculation is performed at every one degree increment.However, you can optionally specify that the software use a different angularincrement by specifying the new SWPANGLE parameter.

For additional information regarding the failure indices and strength ratios, see the“Laminates” section of the NX Nastran User’s Guide.

NX Nastran 10 Release Guide 2-1

Page 18: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

PCOMP

Layered Composite Element Property

Defines the properties of an n-ply composite material laminate.

FORMAT:

1 2 3 4 5 6 7 8 9 10PCOMP PID Z0 NSM SB FT TREF GE LAM

MID1 T1 THETA1 SOUT1 MID2 T2 THETA2 SOUT2

MID3 T3 THETA3 SOUT3 -etc.-

EXAMPLE:

PCOMP 181 -0.224 7.45 10000.0 HOFF

171 0.056 0.0 YES 45.0

-45.0 90.0

FIELDS:

Field Contents

PID Property identification number. (0 < Integer < 10000000)

Z0 Distance from the reference plane to the bottom surface. SeeRemark 14. (Real; Default = -0.5 times the element thickness.)

NSM Nonstructural mass per unit area. (Real)

SB Allowable shear stress of the bonding material (allowable interlaminarshear stress). Required if FT is also specified. (Real > 0.0) SeeRemark 12.

2-2 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 19: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

Field Contents

FT Failure theory. The following theories are allowed (Character orblank. If blank, then no failure calculation will be performed):

“HILL” for the Hill theory.

“HOFF” for the Hoffman theory.

“TSAI” for the Tsai-Wu theory.

“STRN” for the Maximum Strain theory.

See the Laminates chapter in the NX Nastran User's Guide for adetailed explanation of each theory.

TREF Reference temperature. See Remark 5. (Real; Default = 0.0)

GE Damping coefficient. See Remark 6 and Remark 16. (Real; Default= 0.0)

LAM Laminate Options. (Character or blank, Default = blank). SeeRemark 17.

“Blank” All plies must be specified and all stiffness terms aredeveloped.

“SYM” Only plies on one side of the laminate centerline arespecified. The plies are numbered starting with 1 for thebottom ply. If the laminate contains an odd number ofplies, then model the center ply as half the thickness ofthe actual center ply.

“MEM” All plies must be specified, but only membrane terms(MID1 on the derived PSHELL entry) are computed.

“BEND” All plies must be specified, but only bending terms (MID2on the derived PSHELL entry) are computed.

“SMEAR” All plies must be specified, stacking sequence is ignored,MID1=MID2 on the derived PSHELL entry and MID3,MID4 and TS/T and 12I/T**3 terms are set to zero.

NX Nastran 10 Release Guide 2-3

Dynamics

Page 20: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

Field Contents

“SMCORE” Face plies on one side of the laminate and the core arespecified to define a laminate that is symmetric about themidplane of the core. The core is specified last. Whencalculating face sheet stiffness, stacking sequence ofthe face sheets is ignored.

MIDi Material ID of the various plies. The plies are identified by seriallynumbering them from 1 at the bottom layer. The MIDs can referto MAT1, MAT2, MAT8, MATSMA (SOL 601 only) or MATVE (SOL601 only) bulk entries. See Remark 2 and SOL 601 Remark 4. (0 <Integer < 99999999 or blank, except MID1 must be specified.)

Ti Thicknesses of the various plies. See Remark 2. (Real or blank,except T1 must be specified.)

THETAi Orientation angle of the longitudinal direction of each ply with thematerial axis of the element. (If the material angle on the elementconnection entry is 0.0, the material axis and side 1-2 of the elementcoincide.) The plies are to be numbered serially starting with 1 at thebottom layer. The bottom layer is defined as the surface with thelargest -Z value in the element coordinate system. (Real; Default =0.0)

SOUTi Controls individual ply stress and strain print or punch output. SeeRemark 7 and Remark 8. (Character: “YES” or “NO”; Default = “NO”)

REMARKS:

1. PID must be unique with respect to all PCOMP, PCOMPG, and PSHELLentries.

2. The default for MIDi+1, ..., MIDn is the last defined MIDi. In the exampleabove, MID(PLY1) is the default for MID(PLY2), MID(PLY3), and MID(PLY4).The same logic applies to Ti.

3. Composite shell elements do not support nonlinear elastic materials definedwith the MATS1 bulk entry.

4. At least one of the four values (MIDi, Ti, THETAi, SOUTi) must be present fora ply to exist. The minimum number of plies is one.

2-4 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 21: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

5. A temperature dependent material defined with the combined MATi andMATTi entries can be referenced for a ply material (MIDi field on the PCOMPentry). For linear solutions, when computing the equivalent PSHELL andMAT2 entries from the PCOMP definition, the software uses TREF defined onthe PCOMP entry to evaluate any temperature dependent material propertiesfor the plies. TREF defaults to 0.0 if undefined. The TEMPERATURE(INIT)case control command is not used in this phase of the solution, althoughit must be defined, otherwise the software will ignore the temperaturedependent material properties and use the properties on the referenced MATientry. After the software creates the equivalent PSHELL and MAT2 entries,if a thermal load was defined with the TEMPERATURE(LOAD) case controlcommand, the software will use the TEMPERATURE(INIT) command tocompute thermal strains as described in the remarks on the TEMPERATUREcase control command.

By default, SOL 106 behaves as described above. Although, if PARAM,COMPMATT, YES is defined, SOL 106 will use the temperatures selected withthe TEMPERATURE(LOAD) command to evaluate temperature dependentmaterial properties for the plies when computing the equivalent PSHELL andMAT2 entries. A unique TEMPERATURE(LOAD) command in each subcasewill result in the recomputing of the equivalent PSHELL and MAT2 entries.As described above for the linear solutions, the TEMPERATURE(INIT) casecontrol command is also required in SOL 106 in order for the software touse the temperature dependent material properties when computing theequivalent PSHELL and MAT2 entries.

6. GE given on the PCOMP entry will be used for the element and the valuessupplied on material entries for individual plies are ignored. You areresponsible for supplying the equivalent damping value on the PCOMP entry.GE is ignored in a transient analysis if PARAM,W4 is not specified. Seethe parameter W4.

7. The parameter NOCOMPS determines if stress and/or strain recovery isat the composite ply layers (default), on the equivalent PSHELL, or both.See the parameter NOCOMPS. The STRESS and/or STRAIN case controlcommands are required for any of these recovery options. When ply resultsare requested, stress and/or strain are computed at the middle of each ply. Toprint the ply stress and/or strain results, the case control command requestmust include the “PRINT” option (default). To punch these results, the casecontrol command request must include the “PUNCH” option. SOUTi=YESshould then be defined on any ply definitions in which you would like print orpunch output. The SOUTi entry is not used in the computing or printing offailure indices. See Remark 9.

8. Stress and strain output for individual plies are available in all superelementstatic and normal modes analysis and requested by the STRESS andSTRAIN case control commands.

9. To compute STRESS failure index, the following must be present:

NX Nastran 10 Release Guide 2-5

Dynamics

Page 22: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= to HILL, HOFF or TSAI) on the PCOMP bulk entry.

d. Stress allowables Xt, Xc, Yt, Yc, and S on all referenced MAT8 bulkentries.

e. Stress allowables ST, SC, and SS on all referenced MAT1 bulk entries.

To compute STRAIN failure index, the following must be present:

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= STRN) on the PCOMP bulk entry.

d. Strain allowables Xt, Xc, Yt, Yc, S, and STRN=1.0 on all referencedMAT8 bulk entries.

By default, failure index output prints in the f06 file even when using the PLOTor PUNCH describers on the STRESS and STRAIN case control commands.The parameter entry PARAM,NOFISR,1 can be used to turn off the printing ofthe failure index output. See the parameter NOFISR.

10. To output strength ratio, the failure index output conditions listed in Remark9 must exist, and the parameter SRCOMPS must equal “YES”. See theparameter SRCOMPS.

11. Stress resultant output can be requested with the FORCE case controlcommand.

12. The failure index of the bonding material is calculated by:FIbonding = ( (τ1z, τ2z)/ allowable bonding stress).The allowable bonding stress is defined on the SB field. The strength ratio forthe bonding material is:SRbonding = (1 / FIbonding).

13. The software automatically creates equivalent PSHELL and MATi entries froma PCOMP definition. You can optionally include a sorted echo request to printthe derived PSHELL and MATi entries in User Information Message 4379,or to the punch file. The parameter NOCOMPS controls if stress and strainare computed for the composite elements, the equivalent homogeneouselement, or both. See the parameter NOCOMPS. The software designatesthe equivalent homogeneous elements with a MID1 or MID2 ID greater thanor equal to 108 on the PSHELL entry. Homogenous stresses are based upona smeared representation of the laminate’s properties and in general will be

2-6 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 23: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

significantly different than the more accurate lamina stresses available fromPCOMP-based elements.

14. If the value specified for Z0 is not equal to -0.5 times the thickness of theelement and PARAM,NOCOMPS,-1 is specified, then the homogeneouselement stresses are incorrect, while lamina stresses and element forcesand strains are correct. For correct homogeneous stresses, use ZOFFS onthe corresponding connection entry.

15. An unsymmetrical layup or the use of Z0 to specify an unsymmetrical layup,is not recommended in buckling analysis or the calculation of differentialstiffness. Also, Z0 should not be used to specify an unsymmetrical layup.

16. To obtain the damping coefficient GE, multiply the critical damping ratioC/Co by 2.0.

17. The SYM option for the LAM option computes the complete stiffnessproperties while specifying half the plies. The MEM, BEND, SMEAR andSMCORE options provide the following special purpose stiffness calculations:MEM option only considers membrane effects, BEND option only considersbending effects, SMEAR ignores stacking sequence and is intended for caseswhere the sequence is not yet known, SMCORE allows simplified modeling ofa sandwich panel with equal face sheets and a central core.

18. Element output for the SMEAR and SMCORE options are produced using thePARAM NOCOMPS -1 methodology that suppresses ply stress/strain resultsand prints results for the equivalent homogeneous element.

19. When the PCOMP or PCOMPG bulk entries are included in a distributedparallel method, the gpart keyword used for selecting the partitioning methodmust be gpart=1.

20. PCOMP is supported in all solutions except SOL 153 or 159 heat transferanalysis, and 701.

21. For elements referencing a PCOMP, stress and strain output for the individuallamina is supported in solutions 101, 103, 105, 106, 108, 109, 111, 112,114, 129, 144, 200, and 601. In other solutions, stress and strain can onlybe recovered for the equivalent laminate. That is, output on the equivalentPSHELL created by the software.

REMARKS RELATED TO SOL 601:

1. Z0, NSM, SB, FT, TREF, GE, LAM and SOUTi are ignored.

2. When the STRESS and/or STRAIN case control commands are defined,results at the composite ply layers are computed. Stress and strain

NX Nastran 10 Release Guide 2-7

Dynamics

Page 24: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

components are computed at the center of each ply. Inter-laminar results,failure indices, and strength ratios are not computed. Stress resultant outputis not supported.

3. Large strain formulation is not available for multi-layered shell elements.

4. Elasto-plastic material model is supported, but not nonlinear elastic materialmodel. That is, a MATS1 entry with TYPE=PLASTIC is supported, but notTYPE=NLELAST.

2-8 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 25: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

PCOMPG

Layered Composite Element Property with global ply IDs

Defines the properties of an n-ply composite material laminate which includesglobal ply IDs.

FORMAT:

1 2 3 4 5 6 7 8 9 10

PCOMPG PID Z0 NSM SB FT TREF GE LAM

GPLYIDi MIDi Ti THETAi SOUTi

EXAMPLE:

PCOMPG 73 –2.E-4 0.0 8.E+7 TSAI

101 1 1.E-4 0. YES

102 1.E-4 0. YES

103 1.E-4 0. YES

104 1.E-4 0. YES

FIELDS:

Field Contents

PID Property identification number. (0 < Integer < 10000000)

Z0 Distance from the reference plane to the bottom surface. SeeRemark 14. (Real; Default = -0.5 times the element thickness.)

NSM Nonstructural mass per unit area. (Real)

SB Allowable shear stress of the bonding material (allowable interlaminarshear stress). Required if FT is also specified. (Real > 0.0) SeeRemark 12.

NX Nastran 10 Release Guide 2-9

Dynamics

Page 26: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

Field Contents

FT Failure theory. The following theories are allowed (Character orblank. If blank, then no failure calculation will be performed):

“HILL” for the Hill theory

“HOFF” for the Hoffman theory

“TSAI” for the Tsai-Wu theory

“STRN” for the Maximum Strain theory

See the Laminates chapter in the NX Nastran User's Guide for adetailed explanation of each theory.

TREF Reference temperature. See Remark 5. (Real; Default = 0.0)

GE Damping coefficient. See Remarks 7 and 16. (Real; Default = 0.0)

LAM Laminate Options. (Character or blank, Default = blank). SeeRemark 17.

“Blank” All plies must be specified and all stiffness terms aredeveloped.

“MEM” All plies must be specified, but only membrane terms(MID1 on the derived PSHELL entry) are computed.

“BEND” All plies must be specified, but only bending terms (MID2on the derived PSHELL entry) are computed.

“SMEAR” All plies must be specified, stacking sequence is ignored,MID1=MID2 on the derived PSHELL entry and MID3,MID4 and TS/T and 12I/T**3 terms are set to zero.

“SMCORE” Face plies on one side of the laminate and the core arespecified to define a laminate that is symmetric about themidplane of the core. The core is specified last. Whencalculating face sheet stiffness, stacking sequence ofthe face sheets is ignored.

GPLYIDi Global ply IDs. See Remark 2. (Integer > 0)

2-10 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 27: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

Field Contents

MIDi Material ID of the various plies. The plies are identified by seriallynumbering them from 1 at the bottom layer. The MIDs must refer toMAT1, MAT2, MAT8, MATSMA (SOL 601 only) or MATVE (SOL 601only) bulk entries. See Remark 4. (0 < Integer < 99999999 or blank,except MID1 must be specified.)

Ti Thicknesses of the various plies. See Remark 4. (Real or blank,except T1 must be specified.)

THETAi Orientation angle of the longitudinal direction of each ply with thematerial axis of the element. (If the material angle on the elementconnection entry is 0.0, the material axis and side 1-2 of the elementcoincide.) The plies are to be numbered serially starting with the firstlisted at the bottom layer. The bottom layer is defined as the surfacewith the largest -Z value in the element coordinate system. (Real;Default = 0.0)

SOUTi Controls individual ply stress and strain print or punch output. SeeRemarks 8 and 9. (Character: “YES” or “NO”; Default = “NO”)

REMARKS:

1. PID must be unique with respect to all PCOMP, PCOMPG, and PSHELLentries.

2. Each global ply identification number GPLYIDi in a single PCOMPG entryshould be unique.

The global ply identification numbers (GPLYIDi) are reused across differentPCOMPG bulk entires in order to post-process relative ply layers withcommon GPLYIDi.

3. Composite shell elements do not support nonlinear elastic materials definedwith the MATS1 bulk entry.

4. The default for MIDi+1, ..., MIDn is the last defined MIDi. In the exampleabove, MID(PLY1) is the default for MID(PLY2), MID(PLY3), and MID(PLY4).The same logic applies to Ti.

5. A temperature dependent material defined with the combined MATi andMATTi entries can be referenced for a ply material (MIDi field on thePCOMPG entry). For linear solutions, when computing the equivalent

NX Nastran 10 Release Guide 2-11

Dynamics

Page 28: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

PSHELL and MAT2 entries from the PCOMPG definition, the software usesTREF defined on the PCOMPG entry to evaluate any temperature dependentmaterial properties for the plies. TREF defaults to 0.0 if undefined. TheTEMPERATURE(INIT) case control command is not used in this phase of thesolution, although it must be defined, otherwise the software will ignore thetemperature dependent material properties and use the properties on thereferenced MATi entry. After the software creates the equivalent PSHELL andMAT2 entries, if a thermal load was defined with the TEMPERATURE(LOAD)case control command, the software will use the TEMPERATURE(INIT)command to compute thermal strains as described in the remarks on theTEMPERATURE case control command.

By default, SOL 106 behaves as described above. Although, if PARAM,COMPMATT, YES is defined, SOL 106 will use the temperatures selected withthe TEMPERATURE(LOAD) command to evaluate temperature dependentmaterial properties for the plies when computing the equivalent PSHELL andMAT2 entries. A unique TEMPERATURE(LOAD) command in each subcasewill result in the recomputing of the equivalent PSHELL and MAT2 entries.As described above for the linear solutions, the TEMPERATURE(INIT) casecontrol command is also required in SOL 106 in order for the software touse the temperature dependent material properties when computing theequivalent PSHELL and MAT2 entries.

6. At least one of the four values (MIDi, Ti, THETAi, SOUTi) must be present fora ply to exist. The minimum number of plies is one.

7. GE given on the PCOMPG entry will be used for the element and thevalues supplied on material entries for individual plies are ignored. You areresponsible for supplying the equivalent damping value on the PCOMPGentry. GE is ignored in a transient analysis if PARAM,W4 is not specified.See the parameter W4.

8. The parameter NOCOMPS determines if stress and/or strain recovery isat the composite ply layers (default), on the equivalent PSHELL, or both.See the parameter NOCOMPS. The STRESS and/or STRAIN case controlcommands are required for any of these recovery options. When ply resultsare requested, stress and/or strain are computed at the middle of each ply. Toprint the ply stress and/or strain results, the case control command requestmust include the “PRINT” option (default). To punch these results, the casecontrol command request must include the “PUNCH” option. SOUTi=YESshould then be defined on any ply definitions in which you would like printor punch output. The SOUTi entry is not used in the computing or printingof failure indices. See Remark 10.

9. Stress and strain output for individual plies are available in all superelementstatic and normal modes analysis and requested by the STRESS andSTRAIN case control commands.

10. To output STRESS failure index, the following must be present:

2-12 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 29: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= to HILL, HOFF or TSAI) on the PCOMPG Bulk Data entry.

d. Stress allowables Xt, Xc, Yt, Yc, and S on all referenced MAT8 BulkData entries.

e. Stress allowables ST, SC, and SS on all referenced MAT1 Bulk Dataentries.

To output STRAIN failure index, the following must be present:

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= STRN) on the PCOMPG Bulk Data entry.

d. Strain allowables Xt, Xc, Yt, Yc, S, and STRN=1.0 on all referencedMAT8 Bulk Data entries.

By default, failure index output prints in the f06 file even when using the PLOTor PUNCH describers on the STRESS and STRAIN case control commands.The parameter entry PARAM,NOFISR,1 can be used to turn off the printing ofthe failure index output. See the parameter NOFISR.

11. To output strength ratio, the failure index output conditions listed in Remark10 must exist, and the parameter SRCOMPS must equal “YES”. See theparameter SRCOMPS.

12. The failure index of the bonding material is calculated by:FIbonding = ( (τ1z, τ2z)/ allowable bonding stress).The allowable bonding stress is defined on the SB field. The strength ratio forthe bonding material is:SRbonding = (1 / FIbonding).

13. The software automatically creates equivalent PSHELL and MATi entriesfrom a PCOMPG definition. You can optionally include a sorted echo requestto print the derived PSHELL and MATi entries in User Information Message4379, or to the punch file. The parameter NOCOMPS controls if stress andstrain are computed for the composite elements, the equivalent homogeneouselement, or both. See the parameter NOCOMPS. The software designatesthe equivalent homogeneous elements with a MID1 or MID2 ID greater thanor equal to 108 on the PSHELL entry. Homogenous stresses are based upona smeared representation of the laminate’s properties and in general will besignificantly different than the more accurate lamina stresses available fromPCOMP-based elements.

NX Nastran 10 Release Guide 2-13

Dynamics

Page 30: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

14. If the value specified for Z0 is not equal to -0.5 times the thickness of theelement and PARAM,NOCOMPS,-1 is specified, then the homogeneouselement stresses are incorrect, while lamina stresses and element forcesand strains are correct. For correct homogeneous stresses, use ZOFFS onthe corresponding connection entry.

15. An unsymmetrical layup or the use of Z0 to specify an unsymmetrical layup,is not recommended in buckling analysis or the calculation of differentialstiffness. Also, Z0 should not be used to specify an unsymmetrical layup.

16. To obtain the damping coefficient GE, multiply the critical damping ratioC/Co by 2.0.

17. The MEM, BEND, SMEAR and SMCORE options provide the followingspecial purpose stiffness calculations: MEM option only considers membraneeffects, BEND option only considers bending effects, SMEAR ignoresstacking sequence and is intended for cases where the sequence is not yetknown, SMCORE allows simplified modeling of a sandwich panel with equalface sheets and a central core.

18. Element output for the SMEAR and SMCORE options are produced using thePARAM NOCOMPS -1 methodology that suppresses ply stress/strain resultsand prints results for the equivalent homogeneous element.

19. When the PCOMP or PCOMPG bulk entries are included in a distributedparallel method (DMP), the gpart keyword used for selecting the partitioningmethod must be gpart=1.

20. PCOMPG is supported in all solutions except SOL 153 or 159 heat transferanalysis, 601 and 701.

21. For elements referencing a PCOMPG, stress and strain output for theindividual lamina is supported in solutions 101, 103, 105, 106, 108, 109, 111,112, 114, 129, 144, and 200. In other solutions, stress and strain can onlybe recovered for the equivalent laminate. That is, output on the equivalentPSHELL created by the software.

REMARKS RELATED TO SOL 601:

1. Z0, NSM, SB, FT, TREF, GE, LAM, and SOUTi are ignored.

2. When the STRESS and/or STRAIN case control commands are defined,results at the composite ply layers are computed. Stress and straincomponents are computed at the center of each ply. Inter-laminar results,failure indices, and strength ratios are not computed. Stress resultant outputis not supported.

2-14 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 31: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

3. Large strain formulation is not available for multi-layered shell elements.

4. Elasto-plastic material model is supported, but not the nonlinear elasticmaterial model. That is, a MATS1 entry with TYPE=PLASTIC is supported,but not TYPE=NLELAST.

NX Nastran 10 Release Guide 2-15

Dynamics

Page 32: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

PCOMPS

Layered Composite Element Property for Solid Elements

Defines the properties of an n-ply composite material laminate for CHEXA andCPENTA solid elements.

FORMAT:

1 2 3 4 5 6 7 8 9 10

PCOMPS PID CORDM PSDIR SB NB TREF GE

GPLYIDi MIDi TRi THETAi FTi ILFTi SOUTi

EXAMPLE:

PCOMPS 20 2 13 10000.

2 1 0.02 90. TSAI NB YES

3 2 0.03 45. HILL SB YES

FIELDS:

Field Contents

PID Property identification number. (0 < Integer < 10000000)

CORDM Identification number of the material coordinate system. Enter “0” orleave blank to use the basic coordinate system. (Integer; Default = 0)

PSDIR Ply and stack directions in the material coordinate system. Enter theX-, Y-, and Z-directions of the material coordinate system as 1, 2,and 3, respectively. (Integer; 12,13,21,23,31,32; Default = 13)

SB Allowable inter-laminar shear stress of the bonding material. SeeRemark 2. (Real > 0.0 or blank)

NB Allowable inter-laminar normal stress of the bonding material. SeeRemark 2. (Real > 0.0 or blank)

2-16 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 33: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

Field Contents

TREF Reference temperature. (Real; Default = 0.0)

GE Damping coefficient. (Real; Default = 0.0)

GPLYIDi Global ply IDs. (Integer > 0)

MIDi Material ID of the various plies. The MIDs must refer to MAT1, MAT9,or MAT11 bulk entries. (Integer > 0 or blank)

TRi Ply thickness. See Remark 3. (Real > 0.0)

THETAi Ply orientation angle. (Real; Default = 0.0)

FTi Ply failure theory. Allowable entries are:

Blank for no failure theory.

“HILL” for the Hill failure theory.

“HOFF” for the Hoffman failure theory.

“TSAI” for the Tsai-Wu failure theory.

“STRN” for the Maximum Strain failure theory.

“STRS” for the Maximum Stress failure theory.

“TS” for the Maximum Transverse Shear Stress failure theory.

See Remark 5. For a detailed explanation of each failure theory, see“Laminates” in the NX Nastran User's Guide. (Character or blank)

ILFTi Inter-laminar failure theory. Allowable entries are:

Blank for no failure index.

“SB” for transverse shear stress failure index.

“NB” for normal stress failure index.

(Character or blank)

NX Nastran 10 Release Guide 2-17

Dynamics

Page 34: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

Field Contents

SOUTi Controls individual ply stress and strain output. See Remark 8.Allowable entries are:

“NO” for do not compute. (Default)

“YES” for compute.

(Character or blank)

REMARKS:

1. The default for MIDi+1, ..., MIDn is the last defined MIDi.

2. If SB and NB are not specified, then inter-laminar failure indices and/orstrength ratios will not be computed.

3. The laminate thickness is adjusted at the corners to coincide with the distancebetween grid points. The thickness of each ply in the laminate is adjustedproportionally.

4. The CHEXA material z-axis (stacking direction) is perpendicular, within atolerance, to two of the quadrilateral faces. Of the possible directions, thesoftware selects the one most aligned with the CORDM direction you selectwith the second number in the PSDIR field. The material x-axis and y-axisare normal to the stacking direction. The material x-axis corresponding toTHETA=0 is a projection of the CORDM direction you select with the firstnumber in the PSDIR field. A positive orientation angle (THETAi) rotates thematerial x-axis positively around the material z-axis.

The CPENTA material z-axis (stacking direction) is perpendicular, within atolerance, to the two triangular faces. Of the three CORDM axis, the axisreferenced by the second number in the PSDIR field determines the positivez-axis orientation. The material x-axis and y-axis are normal to the stackingdirection. The material x-axis corresponding to THETAi=0 is a projectionof the CORDM direction referenced by the first number in the PSDIR field.A positive orientation angle (THETAi) rotates the material x-axis positivelyaround the material z-axis.

The following example demonstrates the resulting CHEXA and CPENTAmaterial coordinate system as a result of PSDIR=3,2 for the CORDM shown.

2-18 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 35: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

5. FTi is failure theory for i-th ply. The material properties used in the failuretheories are specified by a MATFT bulk entry.

6. To compute a ply and/or bonding failure index, the STRESS case controlcommand must be present, SOUTi on the PCOMPS bulk entry must be set to“YES”, and the following must be defined.

For a stress or strain ply failure index:

a. FTi on the PCOMPS bulk entry.

b. The stress or strain allowables on the referenced MATFT bulk entry.

For a stress bonding failure index:

a. ILFTi on the PCOMPS bulk entry.

b. The stress allowables SB or NB on the PCOMPS bulk entry.

By default, failure index output prints in the f06 file even when using the PLOTor PUNCH describers on the STRESS and STRAIN case control commands.The parameter entry PARAM,NOFISR,1 can be used to turn off the printing ofthe failure index output. See the parameter NOFISR.

NX Nastran 10 Release Guide 2-19

Dynamics

Page 36: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

7. Ply stress and strain results are always computed in the ply coordinatesystem.

8. To request that ply stress and/or strain be computed, the STRESS and/orSTRAIN case control command must be defined with the appropriate PRINT,PUNCH, or PLOT output option, and the SOUTi field must equal “YES”. TheSTRESS and STRAIN commands also include the CPLYMID, CPLYBT, andCPLYBMT describers to specify stress or strain recovery at the bottom,middle, or top of the plies. See the remarks on the STRESS and STRAINcase control commands.

9. GPSTRESS or GPSTRAIN output is not supported.

10. Glue or contact definitions defined on composite solid faces which areperpendicular to the stack direction (edge faces) may produce poor stresscontinuity. If the glue/contact definition is between edge faces belonging todifferent PCOMPS definitions, and if the number of plies on each PCOMPSdefinition is small and the same, and the ply thicknesses are similar, thestress continuity should be fairly smooth. This also applies to the resultsrequested with the BCRESULTS and BGRESULTS case control commands.

11. PCOMPS is supported in solutions 101, 103, 105, 108, 109, 111, 112, and401.

2-20 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 37: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

SWPANGLE

Default = 1.0

The angular increment in degrees at which failure indices and strength ratios arecomputed and output for laminates in SOL 108 and 111.

Von Mises results in frequency response analysisBeginning with NX Nastran 10, von Mises stress and strain are computed by defaultfor a deterministic frequency response analysis in SOL 108 or SOL 111 when stressand strain results are requested. The von Mises stress and strain is calculated usingthe Charron method. For information on this method, see Charron, Donato, andFontaine, Exact Calculation of Minimum Margin of Safety for Frequency ResponseAnalysis Stress Results Using Yielding or Failure Theories, MSC 1993 World Users’Conference Proceedings.

Calculation of von Mises stress and strain are limited to the following elements:

Element Name Item Code DescriptionCHEXA 67 Linear formatCHEXA 269 Composite – center onlyCPENTA 68 Linear formatCPENTA 270 Composite – center onlyCPLSTN3 271 Linear format – plane strain – center onlyCPLSTN4 272 Linear format – plane strain – center and cornersCPLSTN6 273 Linear format – plane strain – center and cornersCPLSTN8 274 Linear format – plane strain – center and cornersCPLSTS3 275 Linear format – plane stress – center onlyCPLSTS4 276 Linear format – plane stress – center and cornersCPLSTS6 277 Linear format – plane stress – center and cornersCPLSTS8 278 Linear format – plane stress – center and cornersCPYRAM 255 Linear formatCQUAD4 33 Linear format – center onlyCQUAD4 95 Composite – center onlyCQUAD4 144 Linear format – center and cornersCQUAD8 64 Linear format – center and cornersCQUAD8 96 Composite – center onlyCQUADR 82 Linear format – center and cornersCQUADR 228 Linear format – center only

NX Nastran 10 Release Guide 2-21

Dynamics

Page 38: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

Element Name Item Code DescriptionCQUADR 232 Composite – center only

CQUADX4 243 Linear format – grid and Gauss – center andcorners

CQUADX8 245 Linear format – grid and Gauss – center andcorners

CTETRA 39 Linear format

CTRAX3 242 Linear format – grid and Gauss – center andcorners

CTRAX6 244 Linear format – grid and Gauss – center andcorners

CTRIA3 74 Linear format – center onlyCTRIA3 97 Composite – center onlyCTRIA6 75 Linear format – center and cornersCTRIA6 98 Composite – center onlyCTRIAR 70 Linear format – center and cornersCTRIAR 227 Linear format – center onlyCTRIAR 233 Composite – center only

The von Mises stress and strain and other stresses and strains are written to the newOESVM/OSTRVM output data blocks. The OESVM/OSTRVM output data blocksare written to the .op2 file when PARAM,POST,-1 or PARAM,POST,-2 is specified.

To disable computation of von Mises stress and strain, specify the new FREQVMsystem cell as follows:

NASTRAN SYSTEM(579)=1 or NASTRAN FREQVM=1

If you disable computation of von Mises stress and strain, the other stress and strainresults are written to the OES/OSTR output data blocks.

For additional information, see the updated POST parameter.

Modal and panel contribution results for post-processingModal and panel contribution results are needed for post-processors to supportanalyses like acoustics. Beginning with NX Nastran 10, the output data blocks thatcontain modal and panel contribution results can be written to the .op2 file forPARAM,POST,-1 and PARAM,POST,-2.

To write the OUGMC, OEFMC, OESMC, OSTRMC, and OQGMC modal contributionoutput data blocks to the .op2 file, include a MODCON case control command inyour input file. Depending on the describers you specify, all or some of the modalcontribution output data blocks are written to the .op2 file.

2-22 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 39: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

To write the OUGPC, OUGGC, and OUGRC panel contribution output data blocks tothe .op2 file, include a PANCON case control command in your input file. Dependingon the describers you specify, all or some of the panel contribution output datablocks are written to the .op2 file.

For additional information, see updated POST parameter.

NX Nastran 10 Release Guide 2-23

Dynamics

Page 40: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

POST

Default = 1

PARAM,POST,0, then the following parameters and discussion apply:

The data blocks often used for pre- and postprocessing will be stored in thedatabase and also converted, by the DBC module (see the NX Nastran DMAPProgrammer’s Guide) to a format suitable for processing. These data blocksinclude input data related to geometry, connectivity, element and materialproperties, and static loads; they also include output data requested throughthe Case Control commands OLOAD, SPCF, DISP, VELO, ACCE, THERMAL,ELSTRESS, ELFORCE, FLUX, GPSTRESS, GPFORCE, ESE, GPSDCON,and ELSDCON.

The converted data is written to logical FORTRAN units, which may be assignedto physical files in the File Management Section. The FORTRAN unit numbersare specified by the parameters GEOMU, POSTU, and LOADU. By default, alldata is written to the logical FORTRAN unit indicated by GEOMU. If LOADU > 0,static load data may be diverted to another unit indicated by LOADU. If POSTU >0, then output data requested with the Case Control commands listed above willbe diverted to the logical unit indicated by POSTU. See “Database Concepts” inthe NX Nastran User’s Guide for the procedure for assigning physical files.

By default, if converted data already exists in the files indicated by GEOMU,POSTU, and LOADU, then the DBC module will overwrite the old data. If this isnot desirable, then PARAM,DBCOVWRT,NO must be entered. The parametersMODEL and SOLID may be used to store more than one model and solution inthe graphics database. These parameters are not supported by MSC.Patran.

PARAM,DBCDlAG > 0 requests the printing of various diagnostic messagesfrom the DBC module (see NX Nastran DMAP Programmer’s Guide) during dataconversion. By default, no messages are printed.

PARAM,POST,<0, then the following parameters and discussion apply:

PARAM,POST,-1 outputs the appropriate files for the MSC.Patran NASPATprogram. PARAM,POST,-2 outputs the appropriate files for the NX and I-DEASDataloader program. PARAM,POST,-4 outputs the files indicated below alongwith OPHIG for the MSC_NF interface by LMS International. PARAM,POST,-5outputs the files indicated in the table below along with LAMA and OPHG1 forthe FemTools interface by Dynamic Design Solutions. PARAM, POST=-4 and -5are intended for SOL 103 only.

An OUTPUT2 file for FORTRAN unit 12 in binary format is automatically createdin the same directory and with the same name as the input file and with theextension “.op2”. For example, if the input file is fender.dat, the OUTPUT2 file willbe named fender.op2.

An ASSIGN statement is required in the FMS Section only if neutral file formatis desired as follows:

ASSIGN OP2=‘filename of FORTRAN file’ FORM

2-24 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 41: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

Geometry data blocks are output with PARAM,OGEOM,YES (except withPARAM,PATVER<3.0) and are written to a FORTRAN unit specified byPARAM,OUNIT1 (Default = OUNIT2) for PARAM, POST = -1, -2, and -4.PARAM,OUNIT2K (default = 91) specifies the unit number for KELM and KDICTwith PARAM,POST,-5. PARAM,OUNIT2M (default = 92) specifies the unit numberfor MELM and MDICT with PARAM,POST,-5. See the following table for thespecific geometry data blocks written for different values for POST.

By default, the EPT and MPT data blocks are output to the .op2 file wheneither PARAM,POST,-1 or PARAM,POST,-2 or PARAM,POST,-4 is used.PARAM,OEPT,NO can be used to disable the output of the EPT data block to the.op2 file. PARAM,OMPT,NO can be used to disable the output of the MPT datablock to the .op2 file.

For SOL 601,N or SOL 701, PARAM,POST,-2 must be specified to generateboth geometry and results data blocks in the .op2 file. PARAM,POST,-1 mustbe specified to generate only results data blocks. Otherwise, no .op2 file isgenerated.

See also the PARAM,POSTEXT description for additional data blocks written tothe .op2 file.

POST

-1 -2 -4 -5GeometryData Block Description

YES NO NO NO GEOM1S,GEOM1VU

Grid Point Definitions(Superelement)

NO YES YES NO CSTM CoordinateSystemTransformations

NO YES YES NO GPL Grid Point List

NO YES YES NO GPDT Grid Point Definitions

YES YES YES NO EPT Element Properties

YES YES YES NO MPT Material Properties

YES YES YES NO GEOM2 Element Definitions

YES YES NO NO GEOM3 Load Definitions

YES YES NO NO GEOM4 Constraint Definitions

YES NO NO NO DIT Dynamic Table Input

YES NO NO NO DYNAMICS Dynamic Loads Definition

NO NO YES YES KDICT Element Stiffness Dictionary

NO NO YES YES KELM Element Stiffness Matrices

NO NO YES YES MDICT Element Mass Dictionary

NX Nastran 10 Release Guide 2-25

Dynamics

Page 42: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

POST

-1 -2 -4 -5GeometryData Block Description

NO NO YES YES MELM Element Mass Matrices

NO NO NO NO ECTS Element Connections

YES NO NO NO VIEWTB View Element Table

YES YES NO NO EDOM Design Model Input

YES NO NO NO GEOM2S,GEOM2VU

Same as GEOM2 forsuperelements

YES NO NO NO CSTMS Same as CSTM forsuperelements

YES NO NO NO EPTS Same as EPT forsuperelements

YES NO NO NO MPTS Same as MPT forsuperelements

YES YES NO NO CONTACT Surface contact definition

YES YES NO NO EDT Element deformation table

Note: *With PARAM,PATVER,v3.0 (default)

PARAM,OMACHPR,NO (default) selects the pre-MSC.Nastran Version 69 formatfor AXIC, BGPDT, CSTM, GEOM1, and GPDT, or the pre-MSC.Nastran 2001format for EPT and GEOM4. PARAM,OMACHPR,YES selects the currentNX.Nastran format for AXIC, BGPDT, CSTM, EPT, GEOM1, GEOM4, and GPDT.

For PARAM,POST = -1 and -2, results data blocks are output to a FORTRANunit specified by PARAM,OUNlT2 (Default = 12). This parameter is allowed tovary between superelements. In buckling solution sequences (SOL 105), aunique value of OUNIT2 should be specified for the buckling subcase. See alsothe related parameter OMAXR.

For PARAM,POST = -1 and -2, PARAM,OIBULK,YES can be defined to includethe IBULK datablock. (Default = NO) The IBULK datablock is an unsorted copy ofthe original bulk data including comments. The CASECC datablock immediatelyfollows IBULK in the OP2 file.

By default, under PARAM,PATVER, ≥ 3.0, the displacements are output in theglobal coordinate system. To output in the basic coordinate system, specifyPARAM,OUGCORD,BASIC. Under PARAM,PATVER,<3.0, the opposite is true.

PARAM,POST,-1: Results Data Blocks for MSC.Patran

By default, the following data blocks are output under PARAM,POST,-1. Thefollowing parameters may be used to disable the output of data blocks to

2-26 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 43: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

the OUTPUT2 file. For example, if PARAM,OQG,NO is specified, then theSPCFORCE output is not written to the OUTPUT2 file. PARAM,PATVER selectsthe appropriate version of MSC.Patran (Default = 3.0)

PARAM,PATVER

<3.0 ≥3.0

ParameterName Case Control Data Block

Name Description

YES YES OQG SPCFORCE OQG1 Forces of single-pointconstraint

YES NO OUG DISP OUGV1PAT Displacements in thebasic coordinate system

YES YES OUG DISP OUGV1 Displacements in theglobal coordinate system

YES NO OES STRESS OESOESVM

Element stresses (linearelements only)

YES NO OEF FORCE OEF1 Element forces or heatflux (linear elements only)

YES YES OEE STRAIN OSTR1 Element strains

YES YES OGPS GPSTRESS OGS1 Grid point stresses

YES YES OESE ESE ONRGY1 Element strain energy

YES YES OGPF GPFORCE OGPFB1 Grid point force balancetable

NO YES OEFX FORCE OEF1X Element forces withintermediate (CBAR andCBEAM) station forcesand forces on nonlinearelements

NO YES OESX STRESS OES1X Element stresses withintermediate (CBAR andCBEAM) station stressesand stresses on nonlinearelements

NO YES OPG OLOAD OPG1 Applied static loads

NO YES OCMP STRESS OES1C Ply stresses

NO YES OCMP STRAIN OSTR1C Ply strains

NO YES none DISPSPCFORCEFORCESTRESSSTRAIN

OUPV1OQP1DOEF1DOES1DOSTR1

Scaled Response Spectra

none LAMA Nonlinear Buckling

NX Nastran 10 Release Guide 2-27

Dynamics

Page 44: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

PARAM,PATVER

<3.0 ≥3.0

ParameterName Case Control Data Block

Name Description

NO YES none DISPOLOAD

OCRUGOCRPG

NO YES none NLSTRESS OESNLXR Nonlinear static stresses

NO YES none BOUTPUT OESNLBR Slideline stresses

NO YES none NLLOAD OPNL1 Nonlinear loads

NO YES none STRESS OESNLXD Nonlinear transientstresses

NO YES none none ERRORN p-element error summarytable

YES YES none MODCON OUGMCOEFMCOESMCOSTRMCOQGMC

Modal contributions

YES YES none PANCON OUGPCOUGGCOUGRC

Panel contributions

PARAM,OMACHPR,NO (default) selects the pre-NX Nastran 8.5 format for theMAT10 entry. PARAM,OMACHPR,YES selects the current NX Nastran format forthe MAT10 entry.

PARAM,POST,-2: Results Data Blocks for NX and I-DEAS

By default, the following data blocks are output under PARAM,POST,-2. Bydefault, the displacements are output in the basic coordinate system. To outputin the global coordinate system, specify PARAM,OUGCORD,GLOBAL (SOL601 and 701 displacements are always output in the global coordinate system).The following parameters may be used to disable the output of data blocksto the OUTPUT2 file. For example, if PARAM,OQG,NO is specified, then theSPCFORCE output is not written to the OUTPUT2 file.

PARAMeterName Case Control Results Data

Block Name Description

BCRESULTS OBCOSPDS

Contact Result Output Request

GKRESULTS OGK Gasket element results

SHELLTHK OSHT Shell thickness results

2-28 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 45: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Dynamics

PARAMeterName Case Control Results Data

Block Name Description

RMAXMIN OUGV1MXOEF1MXOES1MX

Displacement, force, and stressextreme values

OLOAD OPG1 Applied loads.

THERMAL TOUGV1 Temperature output

NLSTRESS OESNLXR Nonlinear stress

OGPS GPSTRESS OGS1 Grid point stresses

OGPF GPFORCE OGPFB1 Grid point forces

OQG SPCFORCE OQG1 Forces of single-point constraint

OUG DISPLACEMENT BOUGV1 Displacements in the basic coordinatesystem

BOPHIG Eigenvectors in the basic coordinatesystem

OUGV1 Displacements in the global coordinatesystem

TOUGV1 Grid point temperatures

OES STRESS OESOESVM

Element stresses (linear elementsonly)

OEF FORCE OEF1 Element forces (linear elements only)

FLUX HOEF1 Element heat flux

OEE STRAIN OSTR1 Element strains

OESE ESE ONRGY1 Element strain energy

OCMP STRESS OEFIT Failure indices

STRESS OES1C Ply stresses

STRAIN OSTR1C Ply strains

OUMU ESE LAMA Eigenvalue summary

ONRGY2 Element kinetic energy

OEFX FORCE OEF1X Element forces (nonlinear elementsonly)

OESX STRESS OES1X Element stresses (nonlinear elementsonly)

none none ODELBGPD Shape optimization geometry changes

NX Nastran 10 Release Guide 2-29

Dynamics

Page 46: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 2: Dynamics

PARAMeterName Case Control Results Data

Block Name Description

MODCON OUGMCOEFMCOESMCOSTRMCOQGMC

Modal contributions

PANCON OUGPCOUGGCOUGRC

Panel contributions

PARAM,OMACHPR,NO (default) selects the pre-NX Nastran 8.5 format for theMAT10 entry. PARAM,OMACHPR,YES selects the current NX Nastran format forthe MAT10 entry.

PARAM, POST, -4: Results Data blocks for LMS International/MSC_NF

By default, the following data blocks are output under PARAM,POST,-4. Thefollowing parameters may be used to disable the output of data blocks to theOUTPUT2 file. For example, PARAM,OUG,NO requests that eigenvectors not bewritten to the OUTPUT2 file.

PARAMeter Name Case Control Data Block Name Description

OUG DISPLAC OPHIG Eigenvectors in the globalcoordinate system

PARAM, POST, -5: Results Data blocks for Dynamic DesignSolutions/FemTools

By default, the following data blocks are output under PARAM,POST,-5. Thefollowing parameters may be used to disable the output of data blocks to theOUTPUT2 file. For example, PARAM,OUG,NO requests that eigenvectors not bewritten to the OUTPUT2 file. PARAM,OUNIT2O (default=51) specifies the unitnumber of the OUTPUT2 file.

PARAMeter name Case Control Data Block Name Descriptions

OUG DISPLAC OUGV1 Eigenvectors in the global coordinatesystem

LAMA Eigenvalue summary

2-30 NX Nastran 10 Release Guide

Chapter 2: Dynamics

Page 47: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Modal damping optionsIn versions prior to NX Nastran 10, off-diagonal terms were omitted from the modaldamping matrices that the software writes to some interface files. These interfacefiles include:

• Standard and state-space MATLAB files.

• Standard and state-space OP4 files.

The NONCUP parameter is used to specify whether off-diagonal terms are omittedfrom the modal damping matrices written to ADAMS MNF files.

Note

RecurDyn RFI files and SIMPACK FBI files do not support damping matrices.

For proportionally damped systems, the modal damping matrix is always diagonal.Thus, the modal damping matrices that the software writes to interface files areperfectly representative.

For non-proportionally damped systems, the modal damping matrix is not typicallydiagonal. Thus, the off-diagonal terms are omitted from the modal damping matricesthat the software writes to standard and state-space MATLAB and OP4 files. Thiscan lead to inaccuracies in the analysis results.

Beginning with NX Nastran 10, the software writes the full modal damping matrix tostandard and state-space MATLAB files, standard and state-space OP4 files, andADAMS MNF files by default. To optionally disable this capability and have NXNastran 10 write only the diagonal terms of the modal damping matrix to theseinterface files, do one of the following:

• Include the NONCUP = -2 describer with the ADAMSMNF or MBDEXPORTcase control command specification.

• Include PARAM,NONCUP,-2 in the bulk data section of the input file.

If you specify both the NONCUP describer and the NONCUP parameter, theNONCUP describer specification takes precedence.

For additional information, see the updated ADAMSMNF and MBDEXPORT casecontrol commands, and the updated NONCUP parameter.

NX Nastran 10 Release Guide 3-1

Page 48: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

ADAMSMNF

Generates ADAMS Interface Modal Neutral File

Generates ADAMS Interface Modal Neutral File (MNF) during SOL 103, 111, or112.

FORMAT:

EXAMPLES:

ADAMSMNF FLEXBODY=YES

DESCRIBERS:

Describer Meaning

FLEXBODY Requests the generation of MNF.

NO Standard NX Nastran solution without MNF creation (default).

YES MNF generation requested.

3-2 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 49: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

Describer Meaning

FLEXONLY Determines if standard DMAP solution runs or not after MNFcreation is complete.

YES Only MNF creation occurs (default).

NO MNF file creation occurs along with standard DMAP solution.

OUTGSTRS Determines if grid point stress is written to MNF.

NO Do not write grid point stress to MNF (default).

YES Write grid point stress to MNF.

OUTGSTRN Determines if grid point strain is written to MNF.

NO Do not write grid point strain to MNF (default).

YES Write grid point strain to MNF.

MINVAR Determines how mass invariants are computed.

PARTIAL Mass invariants 5 and 9 are not computed.

CONSTANT Mass invariants 1,2,6 and 7 are computed.

FULL All nine mass invariants are computed.

NONE No mass invariants are computed.

PSETID Selects a set of elements defined in the OUTPUT(PLOT)section (including PLOTEL) or on a sketch file whoseconnectivity is exported to face geometry to be used inADAMS. See Remark 16.

NONE All grids, geometry and associated modal data is written toMNF (default).

setid The connectivity of a specific element set is used to exportface geometry.

ALL The connectivity of all element sets are used to export facegeometry.

NX Nastran 10 Release Guide 3-3

Multibody dynamics

Page 50: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Describer Meaning

sktunit The connectivity of element faces defined on a sketch file isused to export face geometry. Note that the value must be anegative number to distinguish it from a setid value.

ADMOUT Requests that the FLEXBODY run output an NX NastranOP2 file for use in post processing of ADAMS/Flex results.

NO OP2 file will not be generated (default).

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenADMOUT=YES. See Remark 20.

NO No debug output will be written (default).

YES Debug output will be written.

NONCUP Modal damping output control. See Remark 22.

–1 Output the full equivalent modal viscous damping matrix(default).

–2 Output only diagonal values of the equivalent modal viscousdamping matrix.

REMARKS:

1. The creation of the ADAMS MNF, which is applicable in a non-restart SOL103, 111, or 112 analysis only, is initiated by ADAMSMNF FLEXBODY=YES(other describers are optional) along with the inclusion of the bulk data entryDTI,UNITS. The MNF file naming convention is as follows: ‘jid_seid.mnf’,where seid is the integer number of the superelement (0 for residual-onlyrun). The location of these files is the same directory as the jid.f06 file.

2. ADAMSMNF must appear above the subcase level.

3. Since ADAMS is not a unitless code, the Data Table Input bulk entryDTI,UNITS is required for an MBDEXPORT ADAMS FLEXBODY=YES run.The DTI,UNITS entry specifies the system of units of the original NX Nastraninput file, and is then included with the data written to the MNF file. NXNastran does not do a units conversion of the nastran data when writing

3-4 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 51: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

the MNF file. Once identified, the units will apply to all superelements inthe model. The complete format is:

DTI UNITS 1 MASS FORCE LENGTH TIME

All entries are required. Acceptable character strings are listed below.

Mass:

KG - kilogram

LBM – pound-mass (0.45359237 kg)

SLUG – slug (14.5939029372 kg)

GRAM – gram (1E-3 kg)

OZM – ounce-mass (0.02834952 kg)

KLBM – kilo pound-mass (1000 lbm) (453.59237 kg)

MGG – megagram (1E3 kg)

MG – milligram (1E-6 kg)

MCG – microgram (1E-9 kg)

NG – nanogram (1E-12 kg)

UTON – U.S. ton (907.18474 kg)

SLI – slinch (175.1268352 kg)

Force:

N – Newton

LBF – pound-force (4.44822161526 N)

KGF – kilograms-force (9.80665 N)

OZF – ounce-force (0.2780139 N)

DYNE – dyne (1E-5 N)

KN – kilonewton (1E3 N)

KLBF – kilo pound-force (1000 lbf) (4448.22161526 N)

MN – millinewton (1E-3 N)

MCN – micronewton (1E-6 N)

NN – nanonewton (1E-9 N)

Length:

M – meter

KM – kilometer (1E3 m)

NX Nastran 10 Release Guide 3-5

Multibody dynamics

Page 52: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

CM – centimeter (1E-2 m)

MM – millimeter (1E-3 m)

MI – mile (1609.344 m)

FT – foot (0.3048 m)

IN – inch (25.4E-3 m)

MCM – micrometer (1E-6 m)

NM – nanometer (1E-9 m)

A – Angstrom (1E-10 m)

YD – yard (0.9144 m)

ML – mil (25.4E-6 m)

MCI – microinch (25.4E-9 m)

Time:

S – second

H – hour (3600.0 sec)

MIN-minute (60.0 sec)

MS – millisecond (1E-3 sec)

MCS – microsecond (1E-6 sec)

NS – nanosecond (1E-9 sec)

D – day (86.4E3 sec)

4. Since DTI,UNITS determines all units for the MNF, the units defined inWTMASS, which are important for units consistency in NX Nastran, areignored in the output to the MNF. For example, if the model mass is kilograms,force in Newtons, length in meters, and time in seconds, then WTMASSwould equal 1 ensuring that NX Nastran works with the consistent set of kg,N, and m. The units written to the MNF would be: “DTI,UNITS,1,KG,N,M,S”.

5. You can create flexible body attachment points by defining the componentas a superelement or part superelement, in which case the physical external(a-set) grids become the attachment points; or for a residual-only type model,you can use standard NX Nastran ASET Bulk Data entries to define theattachment points.

6. The nine mass variants are:

3-6 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 53: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

sp = [xyz]T are the coordinates of grid point p in the basic coordinate system.

NX Nastran 10 Release Guide 3-7

Multibody dynamics

Page 54: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

φp = partitioned orthogonal modal matrix that corresponds to the translationaldegrees of freedom of grid p.

Ip = inertia tensor p.

φp* = partitioned orthogonal modal matrix that corresponds to the rotationaldegrees of freedom of grid p.

= skew-symmetric matrix formed for each grid translational degree offreedom for each mode.

M=number of modes.

N=number of grids.

7. To accurately capture the mode shapes when supplying SPOINT/QSETcombinations, the number of SPOINTS (ns) should be at least ns = n+(6+p),assuming that residual flexibility is on. In the above equation for ns, thenumber of modes (n) is specified on the EIGR (METHOD=LAN) or EIGRLBulk Data entries; the number of load cases is p. In general, you can’thave too many SPOINTs, as excess ones will simply be truncated with noperformance penalty.

8. For FLEXBODY=YES runs, residual vectors for the component shouldalways be calculated as they result in a more accurate representation of thecomponent shapes at little additional cost.

9. OMIT or OMIT1 Bulk Data entries are not supported.

10. Lumped mass formulation (default) is required. Either leavePARAM,COUPMASS out of the input file or supply PARAM,COUPMASS,-1(default) to ensure lumped mass.

11. P-elements and CBEND elements are not allowed because they always usea coupled mass formulation. Likewise, the MFLUID fluid structure interface isnot allowed because the virtual mass matrix it generates is not diagonal.

12. PARAM,WTMASS,value with a value other than 1.0 may be used with an NXNastran run generating an MNF. It must have consistent units with regard tothe DTI,UNITS Bulk Data entry. Before generating the MNF, NX Nastran willappropriately scale the WTMASS from the physical mass matrix and modeshapes.

3-8 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 55: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

13. There is a distinction between how an ADAMSMNF FLEXBODY=YES runhandles element-specific loads (such as a PLOAD4 entry) versus those thatare grid-specific (such as a FORCE entry), especially when superelementsare used. The superelement sees the total element-specific applied load.For grid-specific loads, the loads attached to an external grid will movedownstream with the grid. That is to say, it is part of the boundary and notpart of the superelement. This distinction applies to a superelement run andnot to a residual-only or parts superelement run.

14. The loads specified in NX Nastran generally fall into two categories:non-follower or fixed direction loads (non-circulatory) and follower loads(circulatory). The follower loads are nonconservative in nature. Examplesof fixed direction loads are the FORCE entry or a PLOAD4 entry when itsdirection is specified via direction cosines. Examples of follower loads arethe FORCE1 entry or the PLOAD4 entry when used to apply a normalpressure. By default in NX Nastran, the follower loads are always active inSOL 103 and will result in follower stiffness being added to the differentialstiffness and elastic stiffness of the structure. In a run with ADAMSMNFFLEXBODY=YES and superelements, if the follower force is associatedwith a grid description (such as a FORCE1) and the grid is external to thesuperelement, the follower load will move downstream with the grid. Thus,the downstream follower contribution to the component’s stiffness will be lost,which could yield poor results. This caution only applies to a superelementrun and not to a residual-only or a part superelement run.

15. OUTGSTRS and OUTGSTRN entries require the use of standard NX NastranSTRESS= or STRAIN= used in conjunction with GPSTRESS= or GPSTRAIN=commands to produce grid point stress or strain. GPSTRESS(PLOT)= orGPSTRAIN(PLOT)= will suppress grid stress or strain print to the NX Nastran.f06 file.

16. To reduce the FE mesh detail for dynamic simulations, PSETID (on theADAMSMNF Case Control command) defined with a SET entry (i.e. setid)is used to define a set of PLOTELs or other elements used to selectgrids to display the components in ADAMS. This option can significantlyreduce the size of the MNF without compromising accuracy in the ADAMSsimulation providing that the mass invariant computation is requested. Withsuperelement analysis, for any of these elements that lie entirely on thesuperelement boundary (all of the elements’ grids attached only to a-set orexterior grids), a SEELT Bulk Data entry must be specified to keep that displayelement with the superelement component. This can also be accomplishedusing PARAM, AUTOSEEL,YES. The SEELT entry is not required with partssuperelements, as boundary elements stay with their component.

If the SET entry points to an existing set from the OUTPUT(PLOT) section,this single set is used explicitly to define elements used to select grids todisplay the component in ADAMS. If PSETID does not find the set ID inOUTPUT(PLOT), it will search sets in the case control for a matching set ID.This matching set ID list then represents a list of OUTPUT(PLOT) defined

NX Nastran 10 Release Guide 3-9

Multibody dynamics

Page 56: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

elements’ sets, the union of which will be used to define a set of PLOTELsor other elements used to select grids to display the component in ADAMS.If the user wishes to select all of the sets in the OUTPUT(PLOT) section,then use PSETID=ALL.

The following element types are not supported for writing to an MNF, norare they supported as a ‘type’ entry in a set definition in OUTPUT(PLOT):CAABSF, CAEROi, CDUMi, CHACAB, CHACBR, CHBDYx, CDAMP3,CDAMP4, CELAS3, CELAS4, CFLUIDi, CMASS3, CMASS4, CRAC2D,CRAC3D, CTWIST, CWEDGE, CWELD, and GENEL.

PSETID can also point to a sketch file using PSETID=-sktunit, where sktunitreferences an ASSIGN statement of the form

ASSIGN SKT=‘sketch_file.dat’,UNIT=sktunit.

The grids defined for the elements’ faces in the sketch file, along with allexternal (i.e. boundary) grids for the superelements, will be the only grids(and their associated data) written to the MNF.

The format of the sketch file, which describes the mesh as a collection offaces, must be as follows:

face_countface_1_node_count face_1_nodeid_1 face_1_nodeid_2 ...face_2_node_count face_2_nodeid_1 face_2_nodeid_2 ...

<etc>

Faces must have a node count of at least two. For example, a meshcomprised of a single brick element might be described as follows:

64 1000 1001 1002 10034 1007 1006 1005 10044 1000 1004 1005 10014 1001 1005 1006 10024 1002 1006 1007 10034 1003 1007 1004 1000

Alternatively, the mesh might be described as a stick figure using a collectionof lines (two node faces), as shown below:

82 101 1022 102 1032 103 1042 104 1052 105 1062 106 1072 107 1082 108 109

17. Typical NX Nastran data entry requirements are described below.

Typical Parameters:

3-10 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 57: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

• PARAM,RESVEC,character_value – controls calculation of residualflexibility (including inertia relief) modes. In SOL 103, residual flexibility ison by default for only component modes (o-set).

• PARAM,GRDPNT, value - mass invariants 1I, 2I, and 7I will be computedusing results of NX Nastran grid point weight generator execution in thebasic coordinate system.

Typical Case Control:

• ADAMSMNF FLEXBODY=YES is required for MNF generation.

• METHOD=n is required before or in the first subcase for modal solutions.

• SUPER=n,SEALL=n is useful with multiple superelement models toselect an individual superelement as a flexible body. Cannot be used witha linear STATSUB(PRELOAD) run.

• OUTPUT(PLOT) is necessary to define elements used to select grids todisplay the component in ADAMS when PSETID=ALL or setid.

SET n=list of elements (including PLOTELs) is used to select grids todisplay the component.

• OUTPUT(POST) is necessary to define volume and surface for gridstress or strain shapes.

SET n=list is a list of elements for surface definition for grid stress orstrain shapes.

Stress and strain data in the MNF is limited to the six components (i.e. 3normal and 3 shear) for a grid point for a given mode.

SURFACE n SET n NORMAL z3 is used to define a surface for writingstress and strain data. Only one FIBER selection is allowed for eachSURFACE, thus the use of the FIBRE ALL keyword on the SURFACEcase control command will write stresses to the MNF at the Z1 fiberlocation only.

Since the FIBRE keyword only applies to stresses, strain data will alwaysbe written to the MNF at the MID location.

Stress and strain data at grid points can only be written to the MNF forsurface and volume type elements (e.g. CQUAD and CHEXA).

VOLUME n SET n is a volume definition.

The default SYSTEM BASIC is required with SURFACE or VOLUME.

• STRESS(PLOT) is necessary for stress shapes.

• STRAIN(PLOT) is necessary for strain shapes.

NX Nastran 10 Release Guide 3-11

Multibody dynamics

Page 58: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

• GPSTRESS(PLOT) is necessary for grid point stress shapes to beincluded in the MNF.

• GPSTRAIN(PLOT) is necessary for grid point strain shapes to beincluded in the MNF.

Typical Bulk Data:

• DTI,UNITS,1,MASS,FORCE,LENGTH,TIME is required for MNFgeneration. For input files containing superelements, this command mustreside in the main bulk data section.

• SPOINT,id_list defines and displays modalamplitude.SESET,SEID,grid_list defines a superelement (see GRID andBEGIN BULK SUPER=). The exterior grids will represent the attachmentpoints along with the q-set.

• SEELT,SEID,element_list reassigns superelement boundary elements toan upstream superelement.

• RELEASE,SEID,C,Gi is an optional entry that removes DOFs from anattachment grid for which no constraint mode is desired. For example,this allows the removal of rotational degrees of freedom from an analysiswhere only translational degrees of freedom are required.

• SEQSET,SEID,spoint_list defines modal amplitudes of a superelement(see SEQSET1).

• SENQSET,SEID,N defines modal amplitudes of a part superelement. Itmust reside in the main Bulk Data Section.

• ASET,IDi,Ci defines attachment points for a residual-only run (seeASET1).

• QSET1,C,IDi defines modal amplitudes for the residual structure or modalamplitudes for a part superelement (see QSET).

• PLOTEL,EID,Gi can be used, along with existing model elements,to define elements used to select grids to display the components inADAMS.

• EIGR,SID,METHOD,… obtains real eigenvalue extraction (see EIGRL).

18. ADAMSMNF and MBDEXPORT case control entries cannot be used in thesame analysis run. In other words, an ADAMS MNF file or a RecurDyn RFIfile can be generated during a particular NX Nastran execution, but not bothfiles at the same time. Attempting to generate both files in the same analysiswill cause an error to be issued and the execution to be terminated.

3-12 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 59: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

19. The ADMOUT=YES option is used when you would like results recovery(using the ADMRECVR case control entry) from an ADAMS/Flex analysis.This option requires the following assignment command:

ASSIGN OUTPUT2='name.out' STATUS=UNKNOWN UNIT=20FORM=UNFORM

inserted into the file management section of the NX Nastran input file. It willcause an OP2 file with a .out extension to be generated, which then can beused as input into an NX Nastran SOL 103 run using the ADMRECVR casecontrol capability to perform results recovery from an ADAMS/Flex analysis.FLEXBODY=YES is required with its use.

The data blocks output are:

MGGEW - physical mass external sort with weight mass removedMAAEW - modal massKAAE - modal stiffnessCMODEXT - component modes.

This capability is limited to no more than one superelement per NX Nastranmodel. Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using ADMRECVR or MBDRECVR.

20. Setting CHECK=YES (which is only available when ADMOUT=YES) is notrecommended for models of realistic size due to the amount of data that willbe written to the f06.

21. The ADAMSMNF data routines use the environment variable TMPDIR fortemporary storage during the processing of mode shape data. As a result,TMPDIR must be defined when using ADAMSMNF. TMPDIR should equateto a directory string for temporary disk storage, preferably one with a largeamount of free space.

22. If any damping is defined in the model, an equivalent modal viscous dampingwill be determined for each mode and written to the MNF. This equivalentmodal viscous damping is defined as:

D = ψT Be ψ

where D is the equivalent modal viscous damping matrix, ψ is the eigenvectormatrix, and Be is the equivalent viscous damping matrix.

The equivalent viscous damping matrix is given by:

where G, W3, and W4 are structural damping-related parameters describedin the “Parameter Descriptions” section of this guide.

NX Nastran 10 Release Guide 3-13

Multibody dynamics

Page 60: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

By default, the full equivalent modal viscous damping matrix is writtento the MNF. To write only the diagonal values of the equivalent modalviscous damping matrix to the MNF, specify NONCUP=–2 or specifyPARAM,NONCUP,-2.

If both the NONCUP describer and the NONCUP parameter are specified,the NONCUP describer specification takes precedence.

23. Preload conditions are not supported.

3-14 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 61: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

MBDEXPORT

Multi-Body Dynamics Export

Generates interface file for third-party multi-body dynamics and control systemsoftware during a solution 103, 111, or 112.

FORMAT:

The general examples, describers, and remarks are an overview for all interfacetypes. Below this are specific examples, describers, and remarks sections foreach interface type.

GENERAL EXAMPLES:

MBDEXPORT ADAMS STANDARD FLEXBODY=YES FLEXONLY=NOMBDEXPORT FLEXBODY=YES MINVAR=FULLMBDEXPORT OP4=22 STANDARD FLEXBODY=YESMBDEXPORT OP4=22 STATESPACE FLEXBODY=YESMBDEXPORT MATLAB STANDARD FLEXBODY=YESMBDEXPORT MATLAB STATESPACE FLEXBODY=YES

NX Nastran 10 Release Guide 3-15

Multibody dynamics

Page 62: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

MBDEXPORT SIMPACK FLEXBODY=YES

GENERAL DESCRIBERS:

Describer Meaning

RECURDYN Generate RecurDyn Flex Input (RFI) file. (default)

ADAMS Generate ADAMS Interface Modal Neutral File (MNF).

SIMPACK Generate SIMPACK Flexible Body Input (FBI) file.

OP4 Generate OP4 file.

MATLAB Generate MATLAB script file.

STANDARD Matrices are based on standard second-order differentialequations of motion. (default)

STATESPACE Matrices are based on first-order differential equations thatrepresent the equations of motion, and are suitable for usewith control system software.

GENERAL REMARKS:

1. Only one choice of RECURDYN, ADAMS, SIMPACK, OP4, or MATLAB isallowed and must immediately follow the MBDEXPORT command.

2. The describers can be truncated to the first 4 characters.

3. STATESPACE is not valid for RECURDYN, ADAMS or SIMPACK.

4. MBDEXPORT must appear above the subcase level.

The information from this point on is specific to each interface type.

3-16 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 63: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

RECURDYN STANDARD DESCRIBERS:

Describer Meaning

FLEXBODY Requests the generation of RFI (required).

NO Standard NX Nastran solution without RFI creation. (default)

YES RFI generation requested.

FLEXONLY Determines if DMAP solution and data recovery runs or notafter RFI creation is complete.

YES Only RFI creation occurs. (default)

NO RFI file creation occurs along with standard DMAP solutionand data recovery.

MINVAR Determines how mass invariants are computed.

PARTIAL Mass invariants 6 and 8 are not computed. (default)

CONSTANT Mass invariants 1,2,3 and 9 are computed.

FULL All nine mass invariants are computed.

NONE No mass invariants are computed.

PSETID Selects a set of elements defined in the OUTPUT(PLOT)(including PLOTEL) whose connectivity is exported into theRFI. See Remark 16.

NONE No specific sets are selected, thus all grids, geometry andassociated modal data are written to RFI. (default)

setid The connectivity of a specific element set is used to exportface geometry.

ALL The connectivity of all element sets are used to export facegeometry.

OUTGSTRS Determines if grid point stress is written to RFI.

NX Nastran 10 Release Guide 3-17

Multibody dynamics

Page 64: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Describer Meaning

NO Do not write grid point stress to RFI. (default)

YES Write grid point stress to RFI.

OUTGSTRN Determines if grid point strain is written to RFI.

NO Do not write grid point strain to RFI. (default)

YES Write grid point strain to RFI.

RECVROP2 Requests that the FLEXBODY run output an NX NastranOP2 file for use in post processing of RecurDyn/Flex results.

NO OP2 file will not be generated. (default)

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenRECVROP2=YES. (See Remark 20)

NO No debug output will be written. (default)

YES Debug output will be written.

RECURDYN STANDARD REMARKS:

1. The creation of the RecurDyn Flex Input file is applicable in a non-restart SOL103, 111, or 112 analysis only. RFI files are named ‘jid_seid.rfi’, where seidis the integer number of the superelement (0 for residual). These files arelocated in the same directory as the jid.f06 file.

2. The creation of the RecurDyn Flex Input file is initiated by MBDEXPORTRECURDYN FLEXBODY=YES (other describers are optional) and theinclusion of the bulk entry DTI,UNITS.

3. Because RecurDyn is not a unitless code, the Data Table Input bulk entryDTI,UNITS is required for an MBDEXPORT RECURDYN FLEXBODY=YESrun. The DTI,UNITS entry specifies the system of units of the original NXNastran input file, and is then included with the data written to the RFI file.NX Nastran does not do a units conversion of the nastran data when writing

3-18 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 65: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

the RFI file. Once identified, the units will apply to all superelements in themodel. The complete format is:

DTI UNITS 1 MASS FORCE LENGTH TIME

All entries are required. Acceptable character strings are listed below.

Mass:

KG - kilogram

LBM – pound-mass (0.45359237 kg)

SLUG – slug (14.5939029372 kg)

GRAM – gram (1E-3 kg)

OZM – ounce-mass (0.02834952 kg)

KLBM – kilo pound-mass (1000 lbm) (453.59237 kg)

MGG – megagram (1E3 kg)

MG – milligram (1E-6 kg)

MCG – microgram (1E-9 kg)

NG – nanogram (1E-12 kg)

UTON – U.S. ton (907.18474 kg)

SLI – slinch (175.1268352 kg)

Force:

N – Newton

LBF – pound-force (4.44822161526 N)

KGF – kilograms-force (9.80665 N)

OZF – ounce-force (0.2780139 N)

DYNE – dyne (1E-5 N)

KN – kilonewton (1E3 N)

KLBF – kilo pound-force (1000 lbf) (4448.22161526 N)

MN – millinewton (1E-3 N)

MCN – micronewton (1E-6 N)

NN – nanonewton (1E-9 N)

CN – centinewton (1E–2 N)

P – poundal (0.138254954 N)

Length:

NX Nastran 10 Release Guide 3-19

Multibody dynamics

Page 66: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

M – meter

KM – kilometer (1E3 m)

CM – centimeter (1E-2 m)

MM – millimeter (1E-3 m)

MI – mile (1609.344 m)

FT – foot (0.3048 m)

IN – inch (25.4E-3 m)

MCM – micrometer (1E-6 m)

NM – nanometer (1E-9 m)

A – Angstrom (1E-10 m)

YD – yard (0.9144 m)

ML – mil (25.4E-6 m)

MCI – microinch (25.4E-9 m)

Time:

S – second

H – hour (3600.0 sec)

MIN-minute (60.0 sec)

MS – millisecond (1E-3 sec)

MCS – microsecond (1E-6 sec)

NS – nanosecond (1E-9 sec)

D – day (86.4E3 sec)

4. Because DTI,UNITS determines all units for the RFI, the units definedin WTMASS, which are important for units consistency in NX Nastran,are ignored in the output to the RFI. For example, if the model mass isin kilograms, force in Newtons, length in meters, and time in seconds,then WTMASS would equal 1 ensuring that NX Nastran works with theconsistent set of kg, N, and m. The units written to the RFI would be:“DTI,UNITS,1,KG,N,M,S”.

5. You can create flexible body attachment points by defining the componentas a superelement or part superelement, in which case the physical external(a-set) grids become the attachment points; or for a residual-only type model,you can use NX Nastran ASET bulk entries to define the attachment points.

6. The eight mass variants are:

3-20 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 67: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

sp = [xyz]T are the coordinates of grid point p in the basic coordinate system.

φp = partitioned orthogonal modal matrix that corresponds to the translationaldegrees of freedom of grid p.

Ip = inertia tensor p.

φp* = partitioned orthogonal modal matrix that corresponds to the rotationaldegrees of freedom of grid p.

= skew-symmetric matrix formed for each grid translational degree offreedom for each mode.

M = number of modes.

NX Nastran 10 Release Guide 3-21

Multibody dynamics

Page 68: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

N = number of grids.

7. To accurately capture the mode shapes when supplying SPOINT/QSETcombinations, the number of SPOINTS (ns) should be at least ns=n+(6+p),assuming that residual flexibility is on. In the above equation for ns, thenumber of modes (n) is specified on the EIGR (METHOD=LAN) or EIGRL bulkentries; the number of load cases is p. In general, you cannot have too manySPOINTs, as excess ones will be truncated with no performance penalty.

8. For FLEXBODY=YES runs, residual vectors for the component shouldalways be calculated as they result in a more accurate representation of thecomponent shapes with little additional computational effort.

9. OMIT or OMIT1 bulk entries are not supported.

10. Lumped mass formulation (default) is required. Either leavePARAM,COUPMASS out of the input file or supply PARAM,COUPMASS,-1(default) to ensure lumped mass.

11. P-elements and CBEND elements are not allowed because they always usea coupled mass formulation. Likewise, the MFLUID fluid structure interface isnot allowed because the virtual mass matrix it generates is not diagonal.

12. PARAM,WTMASS,value with a value other than 1.0 may be used with an NXNastran run generating an RFI. It must have consistent units with regardto the DTI,UNITS bulk entry. Before generating the RFI, NX Nastran willappropriately scale the WTMASS from the physical mass matrix and modeshapes.

13. There is a distinction between how an MBDEXPORT RECURDYNFLEXBODY=YES run handles element-specific loads (such as a PLOAD4entry) versus those that are grid-specific (such as a FORCE entry),especially when superelements are used. The superelement sees the totalelement-specific applied load. For grid-specific loads, the loads attached toan external grid will move downstream with the grid. That is to say, it is part ofthe boundary and not part of the superelement. This distinction applies to asuperelement run and not to a residual-only or parts superelement run.

14. The loads specified in NX Nastran generally fall into two categories:non-follower or fixed direction loads (non-circulatory) and follower loads(circulatory). The follower loads are nonconservative in nature. Examplesof fixed direction loads are the FORCE entry or a PLOAD4 entry when itsdirection is specified via direction cosines. Examples of follower loads are theFORCE1 entry or the PLOAD4 entry when used to apply a normal pressure.By default in NX Nastran, the follower loads are always active in SOL 103and will result in follower stiffness being added to the differential stiffness andelastic stiffness of the structure. In a run with MBDEXPORT RECURDYNFLEXBODY=YES and superelements, if the follower force is associatedwith a grid description (such as a FORCE1) and the grid is external to the

3-22 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 69: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

superelement, the follower load will move downstream with the grid. Thus,the downstream follower contribution to the component’s stiffness will be lost,which could yield poor results. This caution only applies to a superelementrun and not to a residual-only or a part superelement run.

15. OUTGSTRS and OUTGSTRN entries require the use of standard NX NastranSTRESS= or STRAIN= used in conjunction with GPSTRESS= or GPSTRAIN=commands to produce grid point stress or strain. GPSTRESS(PLOT)= orGPSTRAIN(PLOT)= will suppress grid stress or strain print to the NX Nastran.f06 file.

16. To reduce the FE mesh detail for dynamic simulations, PSETID can includethe ID of a SET entry. The SET entry lists PLOTEL or element IDs, whoseconnectivity is exported into the RFI to display the components in RecurDyn.This option can significantly reduce the size of the RFI without compromisingaccuracy in the FunctionBay simulation providing that the mass invariantcomputation is requested. With superelement analysis, for any of theseelements that lie entirely on the superelement boundary (all of the elements’grids are attached only to a-set or exterior grids), a SEELT bulk entry mustbe specified to keep that display element with the superelement component.This can also be accomplished using PARAM, AUTOSEEL,YES. The SEELTentry is not required with parts superelements, as boundary elements staywith their component.

If the SET entry points to an existing set from the OUTPUT(PLOT) section,this single set is used explicitly to define elements that are used to selectgrids to display the component in RecurDyn. If PSETID does not find the setID in OUTPUT(PLOT), it will search sets in the case control for a matchingset ID. This matching set ID then represents a list of OUTPUT(PLOT) definedelements’ sets. The union of which will be used to define a set of PLOTELs orother elements used to select grids to display the component in RecurDyn.If you wish to select all of the sets in the OUTPUT(PLOT) section, then usePSETID=ALL.

The following element types are not supported for writing to an RFI, norare they supported as a ‘type’ entry in a set definition in OUTPUT(PLOT):CAABSF, CAEROi, CDUMi, CHACAB, CHACBR, CHBDYx, CDAMP3,CDAMP4, CELAS3, CELAS4, CFLUIDi, CMASS3, CMASS4, CRAC2D,CRAC3D, CTWIST, CWEDGE, CWELD, and GENEL.

17. Typical NX Nastran data entry requirements are described below.

Typical Parameters:

• PARAM,RESVEC,character_value – controls calculation of residualvector modes.

• PARAM,GRDPNT,value - mass invariants 1I, 2I, and 3I will be computedusing results of NX Nastran grid point weight generator execution in thebasic coordinate system.

NX Nastran 10 Release Guide 3-23

Multibody dynamics

Page 70: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Typical Case Control:

• MBDEXPORT RECURDYN FLEXBODY=YES is required for RFIgeneration.

• METHOD=n is required before or in the first subcase for modal solutions.

• SUPER=n,SEALL=n is useful with multiple superelement models toselect an individual superelement as a flexible body. Cannot be used witha linear STATSUB(PRELOAD) run.

• OUTPUT(PLOT) is necessary to define elements used to select grids todisplay the component in RecurDyn when PSETID=ALL or setid.

SET n=list of elements (including PLOTELs) is used to select grids todisplay the component.

• OUTPUT(POST) is necessary to define volume and surface for gridstress or strain shapes.

SET n=list is a list of elements for surface definition for grid stress orstrain shapes.

Stress and strain data in the RFI is limited to the six components (that is,3 normal and 3 shear) for a grid point for a given mode.

SURFACE n SET n NORMAL z3 is used to define a surface for writingstress and strain data. Only one FIBER selection is allowed for eachSURFACE, thus the use of the FIBER ALL keyword on the SURFACEcase control command will write stresses to the RFI at the Z1 fiberlocation only.

Because the FIBER keyword only applies to stresses, strain data willalways be written to the RFI at the MID location.

Stress and strain data at grid points can only be written to the RFI forsurface and volume type elements (for example, CQUAD and CHEXA).

VOLUME n SET n is a volume definition.

The default SYSTEM BASIC is required with SURFACE or VOLUME.

• STRESS(PLOT) is necessary for stress shapes.

• STRAIN(PLOT) is necessary for strain shapes.

• GPSTRESS(PLOT) is necessary for grid point stress shapes to beincluded in the RFI.

• GPSTRAIN(PLOT) is necessary for grid point strain shapes to beincluded in the RFI.

Typical Bulk Data:

3-24 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 71: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

• DTI,UNITS,1,MASS,FORCE,LENGTH,TIME is required for RFIgeneration. For input files containing superelements, this command mustreside in the main bulk data section.

• SPOINT,id_list defines and displays modal amplitude.

• SESET,SEID,grid_list defines a superelement (see GRID and BEGINBULK SUPER=). The exterior grids will represent the attachment pointsalong with the q-set.

• SEELT,SEID,element_list reassigns superelement boundary elements toan upstream superelement.

• RELEASE,SEID,C,Gi is an optional entry that removes DOFs from anattachment grid for which no constraint mode is desired. For example,this allows the removal of rotational degrees of freedom from an analysiswhere only translational degrees of freedom are required.

• SEQSET,SEID,spoint_list defines modal amplitudes of a superelement(see SEQSET1).

• SENQSET,SEID,N defines modal amplitudes of a part superelement. Itmust reside in the main bulk data section.

• ASET,IDi,Ci defines attachment points for a residual-only run (seeASET1).

• QSET1,C,IDi defines modal amplitudes for the residual structure or modalamplitudes for a part superelement (see QSET).

• PLOTEL,EID,Gi can be used, along with existing model elements,to define elements used to select grids to display the components inRecurDyn.

• EIGR,SID,METHOD,… obtains real eigenvalue extraction (see EIGRL).

18. MBDEXPORT and ADAMSMNF case control entries cannot be used in thesame analysis run. In other words, a RecurDyn RFI file or an ADAMS MNFfile can be generated during a particular NX Nastran execution, but not bothfiles at the same time. Attempting to generate both files in the same analysiswill cause an error to be issued and the execution to be terminated.

19. The RECVROP2=YES option is used when you would like results recovery(using the MBDRECVR case control entry) from an RecurDyn/Flex analysis.This option requires the following assignment command:

ASSIGN OUTPUT2='name.out' STATUS=UNKNOWN UNIT=20FORM=UNFORM

NX Nastran 10 Release Guide 3-25

Multibody dynamics

Page 72: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

be inserted into the file management section of the NX Nastran input file. Itwill cause an OP2 file with a .out extension to be generated, which then canbe used as input into an NX Nastran SOL 103 run using the MBDRECVRcase control capability to perform results recovery from an RecurDyn/Flexanalysis. FLEXBODY=YES is required with its use.

The data blocks output are:

MGGEW - physical mass external sort with weight mass removedMAAEW - modal massKAAE - modal stiffnessCMODEXT - component modes.

This capability is limited to no more than one superelement per NX Nastranmodel. Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using MBDRECVR.

20. Setting CHECK=YES (which is only available when RECVROP2=YES) is notrecommended for models of realistic size due to the amount of data that willbe written to the f06.

21. The MBDEXPORT data routines use the environment variable TMPDIR fortemporary storage during the processing of mode shape data. As a result,TMPDIR must be defined when using MBDEXPORT. TMPDIR should equateto a directory string for temporary disk storage, preferably one with a largeamount of free space.

22. Preload conditions are not supported.

23. To request differential stiffness, include a static subcase that contains thestress-stiffening loads. In another subcase include STATSUB = n where nis the number of the static subcase.

ADAMS STANDARD DESCRIBERS:

Describer Meaning

FLEXBODY Requests the generation of MNF.

NO Standard NX Nastran solution without MNF creation. (default)

YES MNF generation requested.

3-26 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 73: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

Describer Meaning

FLEXONLY Determines if DMAP solution runs or not after MNF creationis complete.

YES Only MNF creation occurs. (default)

NO MNF file creation occurs along with standard DMAP solution.

MINVAR Determines how mass invariants are computed.

PARTIAL Mass invariants 5 and 9 are not computed. (default)

CONSTANT Mass invariants 1,2,6 and 7 are computed.

FULL All nine mass invariants are computed.

NONE No mass invariants are computed.

PSETID Selects a set of elements defined in the OUTPUT(PLOT)section (including PLOTEL) or on a sketch file whoseconnectivity is exported to face geometry to be used inADAMS. See Remark 15.

NONE All grids, geometry and associated modal data is written toMNF. (default)

setid The connectivity of a specific element set is used to exportface geometry.

ALL The connectivity of all element sets are used to export facegeometry.

sktunit The connectivity of element faces defined on a sketch file isused to export face geometry. Note that the value must be anegative number to distinguish it from a setid value.

OUTGSTRS Determines if grid point stress is written to MNF.

NO Do not write grid point stress to MNF. (default)

YES Write grid point stress to MNF.

OUTGSTRN Determines if grid point strain is written to MNF.

NO Do not write grid point strain to MNF. (default)

NX Nastran 10 Release Guide 3-27

Multibody dynamics

Page 74: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Describer Meaning

YES Write grid point strain to MNF.

RECVROP2 Requests that the FLEXBODY run output an NX NastranOP2 file for use in post processing of ADAMS/Flex results.

NO OP2 file will not be generated. (default)

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenRECVROP2=YES. (See Remark 18)

NO No debug output will be written. (default)

YES Debug output will be written.

NONCUP Modal damping output control. See Remark 20.

–1 Output the full equivalent modal viscous damping matrix(default).

–2 Output only diagonal values of the equivalent modal viscousdamping matrix.

ADAMS STANDARD REMARKS:

1. The creation of the Adams MNF, which is applicable in a non-restartSOL 103, 111, or 112 analysis only, is initiated by MBDEXPORT ADAMSFLEXBODY=YES (other describers are optional) and the inclusion of thebulk entry DTI,UNITS. MNF files are named ‘jid_seid.mnf’, where seid is theinteger number of the superelement (0 for residual). The location of thesefiles is the same directory as the jid.f06 file.

2. Because ADAMS is not a unitless code, the Data Table Input bulk entryDTI,UNITS is required for an MBDEXPORT ADAMS FLEXBODY=YES run.The DTI,UNITS entry specifies the system of units of the original NX Nastraninput file, and is then included with the data written to the MNF file. NXNastran does not do a units conversion of the nastran data when writingthe MNF file. Once identified, the units will apply to all superelements inthe model. The complete format is:

DTI UNITS 1 MASS FORCE LENGTH TIME

All entries are required. Acceptable character strings are listed below.

3-28 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 75: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

Mass:

KG - kilogram

LBM – pound-mass (0.45359237 kg)

SLUG – slug (14.5939029372 kg)

GRAM – gram (1E-3 kg)

OZM – ounce-mass (0.02834952 kg)

KLBM – kilo pound-mass (1000 lbm) (453.59237 kg)

MGG – megagram (1E3 kg)

MG – milligram (1E-6 kg)

MCG – microgram (1E-9 kg)

NG – nanogram (1E-12 kg)

UTON – U.S. ton (907.18474 kg)

SLI – slinch (175.1268352 kg)

Force:

N – Newton

LBF – pound-force (4.44822161526 N)

KGF – kilograms-force (9.80665 N)

OZF – ounce-force (0.2780139 N)

DYNE – dyne (1E-5 N)

KN – kilonewton (1E3 N)

KLBF – kilo pound-force (1000 lbf) (4448.22161526 N)

MN – millinewton (1E-3 N)

MCN – micronewton (1E-6 N)

NN – nanonewton (1E-9 N)

Length:

M – meter

KM – kilometer (1E3 m)

CM – centimeter (1E-2 m)

MM – millimeter (1E-3 m)

MI – mile (1609.344 m)

FT – foot (0.3048 m)

NX Nastran 10 Release Guide 3-29

Multibody dynamics

Page 76: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

IN – inch (25.4E-3 m)

MCM – micrometer (1E-6 m)

NM – nanometer (1E-9 m)

A – Angstrom (1E-10 m)

YD – yard (0.9144 m)

ML – mil (25.4E-6 m)

MCI – microinch (25.4E-9 m)

Time:

S – second

H – hour (3600.0 sec)

MIN-minute (60.0 sec)

MS – millisecond (1E-3 sec)

MCS – microsecond (1E-6 sec)

NS – nanosecond (1E-9 sec)

D – day (86.4E3 sec)

3. Because DTI,UNITS determines all units for the MNF, the units definedin WTMASS, which are important for units consistency in NX Nastran,are ignored in the output to the MNF. For example, if the model mass isin kilograms, force in Newtons, length in meters, and time in seconds,then WTMASS would equal 1, ensuring that NX Nastran works with theconsistent set of kg, N, and m. The units written to the MNF would be:“DTI,UNITS,1,KG,N,M,S”.

4. You can create flexible body attachment points by defining the componentas a superelement or part superelement, in which case the physical external(a-set) grids become the attachment points. For a residual-only type model,you can use standard NX Nastran ASET bulk entries to define the attachmentpoints.

5. The nine mass variants are:

3-30 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 77: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

sp = [xyz]T are the coordinates of grid point p in the basic coordinate system.

φp = partitioned orthogonal modal matrix that corresponds to the translationaldegrees of freedom of grid p.

NX Nastran 10 Release Guide 3-31

Multibody dynamics

Page 78: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Ip = inertia tensor p.

φp* = partitioned orthogonal modal matrix that corresponds to the rotationaldegrees of freedom of grid p.

= skew-symmetric matrix formed for each grid translational degree offreedom for each mode.

M = number of modes.

N = number of grids.

6. To accurately capture the mode shapes when supplying SPOINT/QSETcombinations, the number of SPOINTS (ns) should be at least ns=n+(6+p),assuming that residual flexibility is on. In the above equation for ns, thenumber of modes (n) is specified on the EIGR (METHOD=LAN) or EIGRLbulk entries; the number of load cases is p. In general, you cannot have toomany SPOINTs, as excess ones are truncated with no performance penalty.

7. For FLEXBODY=YES runs, residual vectors for the component shouldalways be calculated as they result in a more accurate representation of thecomponent shapes at little additional cost.

8. OMIT or OMIT1 bulk entries are not supported.

9. Lumped mass formulation (default) is required. Either leavePARAM,COUPMASS out of the input file or supply PARAM,COUPMASS,-1(default) to ensure lumped mass.

10. P-elements and CBEND elements are not allowed because they always usea coupled mass formulation. Likewise, the MFLUID fluid structure interface isnot allowed because the virtual mass matrix it generates is not diagonal.

11. PARAM,WTMASS,value with a value other than 1.0 may be used with an NXNastran run generating an MNF. It must have consistent units with regardto the DTI,UNITS bulk entry. Before generating the MNF, NX Nastran willappropriately scale the WTMASS from the physical mass matrix and modeshapes.

12. There is a distinction between how an MBDEXPORT ADAMSFLEXBODY=YES run handles element-specific loads (such as a PLOAD4entry) versus those that are grid-specific (such as a FORCE entry),especially when superelements are used. The superelement sees the totalelement-specific applied load. For grid-specific loads, the loads attached toan external grid will move downstream with the grid. That is to say, it is part ofthe boundary and not part of the superelement. This distinction applies to asuperelement run and not to a residual-only or parts superelement run.

13. The loads specified in NX Nastran generally fall into two categories:non-follower or fixed direction loads (non-circulatory) and follower loads

3-32 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 79: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

(circulatory). The follower loads are nonconservative in nature. Examplesof fixed direction loads are the FORCE entry or a PLOAD4 entry when itsdirection is specified via direction cosines. Examples of follower loads are theFORCE1 entry or the PLOAD4 entry when used to apply a normal pressure.By default in NX Nastran, the follower loads are always active in SOL 103and will result in follower stiffness being added to the differential stiffnessand elastic stiffness of the structure. In a run with MBDEXPORT ADAMSFLEXBODY=YES and superelements, if the follower force is associatedwith a grid description (such as a FORCE1) and the grid is external to thesuperelement, the follower load will move downstream with the grid. Thus,the downstream follower contribution to the component’s stiffness will be lost,which could yield poor results. This caution only applies to a superelementrun and not to a residual-only or a part superelement run.

14. OUTGSTRS and OUTGSTRN entries require the use of standard NX NastranSTRESS= or STRAIN= used in conjunction with GPSTRESS= or GPSTRAIN=commands to produce grid point stress or strain. GPSTRESS(PLOT)= orGPSTRAIN(PLOT)= will suppress grid stress or strain print to the NX Nastran.f06 file.

15. To reduce the FE mesh detail for dynamic simulations, PSETID (on theMBDEXPORT Case Control command) defined with a SET entry (i.e.setid) is used to define a set of PLOTELs or other elements used to selectgrids to display the components in ADAMS. This option can significantlyreduce the size of the MNF without compromising accuracy in the ADAMSsimulation providing that the mass invariant computation is requested. Withsuperelement analysis, for any of these elements that lie entirely on thesuperelement boundary (all of the elements’ grids attached only to a-set orexterior grids), a SEELT bulk entry must be specified to keep that displayelement with the superelement component. This can also be accomplishedusing PARAM, AUTOSEEL,YES. The SEELT entry is not required with partssuperelements, as boundary elements stay with their component.

If the SET entry points to an existing set from the OUTPUT(PLOT) section,this single set is used explicitly to define elements used to select grids todisplay the component in ADAMS. If PSETID does not find the set ID inOUTPUT(PLOT), it will search sets in the case control for a matching set ID.This matching set ID list then represents a list of OUTPUT(PLOT) definedelements’ sets, the union of which will be used to define a set of PLOTELsor other elements used to select grids to display the component in ADAMS.If the user wishes to select all of the sets in the OUTPUT(PLOT) section,then use PSETID=ALL.

The following element types are not supported for writing to an MNF, norare they supported as a ‘type’ entry in a set definition in OUTPUT(PLOT):CAABSF, CAEROi, CDUMi, CHACAB, CHACBR, CHBDYx, CDAMP3,CDAMP4, CELAS3, CELAS4, CFLUIDi, CMASS3, CMASS4, CRAC2D,CRAC3D, CTWIST, CWEDGE, CWELD, and GENEL.

NX Nastran 10 Release Guide 3-33

Multibody dynamics

Page 80: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

PSETID can also point to a sketch file using PSETID= – sktunit, where sktunitreferences an ASSIGN statement of the form:

ASSIGN SKT=‘sketch_file.dat’,UNIT=sktunit.

The grids defined for the elements’ faces in the sketch file, along with allexternal (i.e. boundary) grids for the superelements, will be the only grids(and their associated data) written to the MNF.

The format of the sketch file, which describes the mesh as a collection offaces, must be as follows:

face_countface_1_node_count face_1_nodeid_1 face_1_nodeid_2 ...face_2_node_count face_2_nodeid_1 face_2_nodeid_2 ...

<etc>

Faces must have a node count of at least two. For example, a meshcomprised of a single brick element might be described as follows:

64 1000 1001 1002 10034 1007 1006 1005 10044 1000 1004 1005 10014 1001 1005 1006 10024 1002 1006 1007 10034 1003 1007 1004 1000

Alternatively, the mesh might be described as a stick figure using a collectionof lines (two node faces), as shown below:

82 101 1022 102 1032 103 1042 104 1052 105 1062 106 1072 107 1082 108 109

16. Typical NX Nastran data entry requirements are described below.

Typical Parameters:

• PARAM,RESVEC,character_value – controls calculation of residualvector modes.

• PARAM,GRDPNT, value - mass invariants 1I, 2I, and 7I will be computedusing results of NX Nastran grid point weight generator execution in thebasic coordinate system.

Typical Case Control:

• MBDEXPORT ADAMS FLEXBODY=YES is required for MNF generation.

3-34 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 81: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

• METHOD=n is required before or in the first subcase for modal solutions.

• SUPER=n,SEALL=n is useful with multiple superelement models toselect an individual superelement as a flexible body. Cannot be used witha linear STATSUB(PRELOAD) run.

• OUTPUT(PLOT) is necessary to define elements used to select grids todisplay the component in ADAMS when PSETID=ALL or setid.

SET n=list of elements (including PLOTELs) is used to select grids todisplay the component.

• OUTPUT(POST) is necessary to define volume and surface for gridstress or strain shapes.

SET n=list is a list of elements for surface definition for grid stress orstrain shapes.

Stress and strain data in the MNF is limited to the six components (i.e. 3normal and 3 shear) for a grid point for a given mode.

SURFACE n SET n NORMAL z3 is used to define a surface for writingstress and strain data. Only one FIBER selection is allowed for eachSURFACE, thus the use of the FIBRE ALL keyword on the SURFACEcase control command will write stresses to the MNF at the Z1 fiberlocation only.

Because the FIBRE keyword only applies to stresses, strain data willalways be written to the MNF at the MID location.

Stress and strain data at grid points can only be written to the MNF forsurface and volume type elements (e.g. CQUAD and CHEXA).

VOLUME n SET n is a volume definition.

The default SYSTEM BASIC is required with SURFACE or VOLUME.

• STRESS(PLOT) is necessary for stress shapes.

• STRAIN(PLOT) is necessary for strain shapes.

• GPSTRESS(PLOT) is necessary for grid point stress shapes to beincluded in the MNF.

• GPSTRAIN(PLOT) is necessary for grid point strain shapes to beincluded in the MNF.

Typical Bulk Data:

• DTI,UNITS,1,MASS,FORCE,LENGTH,TIME is required for MNFgeneration. For input files containing superelements, this command mustreside in the main bulk data section.

NX Nastran 10 Release Guide 3-35

Multibody dynamics

Page 82: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

• SPOINT,id_list defines and displays modalamplitude.SESET,SEID,grid_list defines a superelement (see GRID andBEGIN BULK SUPER=). The exterior grids will represent the attachmentpoints along with the q-set.

• SEELT,SEID,element_list reassigns superelement boundary elements toan upstream superelement.

• RELEASE,SEID,C,Gi is an optional entry that removes DOFs from anattachment grid for which no constraint mode is desired. For example,this allows the removal of rotational degrees of freedom from an analysiswhere only translational degrees of freedom are required.

• SEQSET,SEID,spoint_list defines modal amplitudes of a superelement(see SEQSET1).

• SENQSET,SEID,N defines modal amplitudes of a part superelement. Itmust reside in the main bulk data section.

• ASET,IDi,Ci defines attachment points for a residual-only run (seeASET1).

• QSET1,C,IDi defines modal amplitudes for the residual structure or modalamplitudes for a part superelement (see QSET).

• PLOTEL,EID,Gi can be used, along with existing model elements,to define elements used to select grids to display the components inADAMS.

• EIGR,SID,METHOD,… obtains real eigenvalue extraction (see EIGRL).

17. The RECVROP2=YES option is used when you would like results recovery(using the MBDRECVR case control entry) from an ADAMS/Flex analysis.This option requires the following assignment command:

ASSIGN OUTPUT2='name.out' STATUS=UNKNOWN UNIT=20FORM=UNFORM

be inserted into the file management section of the NX Nastran input file. Itwill cause an OP2 file with a .out extension to be generated, which then canbe used as input into an NX Nastran SOL 103 run using the MBDRECVRcase control capability to perform results recovery from an ADAMS/Flexanalysis. FLEXBODY=YES is required with its use.

The data blocks output are:

MGGEW - physical mass external sort with weight mass removedMAAEW - modal massKAAE - modal stiffnessCMODEXT - component modes.

3-36 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 83: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

This capability is limited to no more than one superelement per NX Nastranmodel. Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using MBDRECVR.

18. Setting CHECK=YES (which is only available when RECVROP2=YES) is notrecommended for models of realistic size due to the amount of data thatwill be written to the f06 file.

19. The MBDEXPORT data routines use the environment variable TMPDIR fortemporary storage during the processing of mode shape data. As a result,TMPDIR must be defined when using MBDEXPORT. TMPDIR should equateto a directory string for temporary disk storage, preferably one with a largeamount of free space.

20. If any damping is defined in the model, an equivalent modal viscous dampingwill be determined for each mode and written to the MNF. This equivalentmodal viscous damping is defined as:

D = ψT Be ψ

where D is the equivalent modal viscous damping matrix, ψ is the eigenvectormatrix, and Be is the equivalent viscous damping matrix.

The equivalent viscous damping matrix is given by:

where G, W3, and W4 are structural damping-related parameters describedin the “Parameter Descriptions” section of this guide.

By default, the full equivalent modal viscous damping matrix is writtento the MNF. To write only the diagonal values of the equivalent modalviscous damping matrix to the MNF, specify NONCUP=–2 or specifyPARAM,NONCUP,-2.

If both the NONCUP describer and the NONCUP parameter are specified,the NONCUP describer specification takes precedence.

21. Preload conditions are not supported.

22. To request differential stiffness, include a static subcase that contains thestress-stiffening loads. In another subcase include STATSUB = n where nis the number of the static subcase.

NX Nastran 10 Release Guide 3-37

Multibody dynamics

Page 84: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

SIMPACK STANDARD DESCRIBERS:

Describer Meaning

FLEXBODY Requests the generation and writing of standard matrices(CMS) to an FBI file.

NO NX Nastran solution without standard matrix generation.(default)

YES Standard matrix generation requested.

FLEXONLY Determines if DMAP solution runs or not after standardmatrix generation is complete.

YES Only standard matrix generation occurs. (default)

NO Standard matrix generation occurs along with the DMAPsolution.

PSETID Selects a set of elements defined in the OUTPUT(PLOT)section (including PLOTEL) whose connectivity is exportedto the FBI file. See Remark 13.

NONE All grids, geometry and associated modal data is written tothe FBI file. (default)

setid The connectivity of a specific element set is used to exportgeometry and associated model data.

ALL The connectivity of all element sets are used to exportgeometry and associated model data.

RECVROP2 Requests that the FLEXBODY run output an NX Nastran OP2file for use in post processing of results. See Remark 16.

NO OP2 file will not be generated. (default)

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenRECVROP2=YES. See Remark 17.

NO No debug output will be written. (default)

YES Debug output will be written.

3-38 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 85: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

SIMPACK STANDARD REMARKS:

1. The creation of a SIMPACK Flexible Body Input (FBI) file is applicable ina non-restart SOL 103, 111, and 112 analysis only. FBI files are named‘jid_seid.fbi’, where seid is the integer number of the superelement (0 forresidual). The location of these files is the same directory as the jid.f06 file.

2. The creation of the FBI file is initiated by MBDEXPORT SIMPACKFLEXBODY=YES (other describers are optional) and the inclusion of thebulk entry DTI,UNITS. This is only valid for a Component Mode Synthesis(CMS) analysis. Thus, it is necessary to define the modal coordinates usingthe SPOINT bulk entry, and to define them to be in the q-set using theQSET/QSET1 or SEQSET/SEQSET1 bulk entries as appropriate.

3. The Data Table Input bulk entry DTI,UNITS, which is required for anMBDEXPORT SIMPACK FLEXBODY=YES run, specifies the system of unitsin the original NX Nastran input file. When NX Nastran creates the FBI file,it converts the nastran data from the units defined on the DTI,UNITS entryto SI units. Once identified, the units will apply to all superelements in themodel. The complete format is:

DTI UNITS 1 MASS FORCE LENGTH TIME

All entries are required. Acceptable character strings are listed below.

Mass:

KG - kilogram

LBM – pound-mass (0.45359237 kg)

SLUG – slug (14.5939029372 kg)

GRAM – gram (1E-3 kg)

OZM – ounce-mass (0.02834952 kg)

KLBM – kilo pound-mass (1000 lbm) (453.59237 kg)

MGG – megagram (1E3 kg)

MG – milligram (1E-6 kg)

MCG – microgram (1E-9 kg)

NG – nanogram (1E-12 kg)

UTON – U.S. ton (907.18474 kg)

SLI – slinch (175.1268352 kg)

Force:

N – Newton

NX Nastran 10 Release Guide 3-39

Multibody dynamics

Page 86: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

LBF – pound-force (4.44822161526 N)

KGF – kilograms-force (9.80665 N)

OZF – ounce-force (0.2780139 N)

DYNE – dyne (1E-5 N)

KN – kilonewton (1E3 N)

KLBF – kilo pound-force (1000 lbf) (4448.22161526 N)

MN – millinewton (1E-3 N)

MCN – micronewton (1E-6 N)

NN – nanonewton (1E-9 N)

CN – centinewton (1E-2 N)

P – poundal (0.138254954 N)

Length:

M – meter

KM – kilometer (1E3 m)

CM – centimeter (1E-2 m)

MM – millimeter (1E-3 m)

MI – mile (1609.344 m)

FT – foot (0.3048 m)

IN – inch (25.4E-3 m)

MCM – micrometer (1E-6 m)

NM – nanometer (1E-9 m)

A – Angstrom (1E-10 m)

YD – yard (0.9144 m)

ML – mil (25.4E-6 m)

MCI – microinch (25.4E-9 m)

Time:

S – second

H – hour (3600.0 sec)

MIN-minute (60.0 sec)

MS – millisecond (1E-3 sec)

MCS – microsecond (1E-6 sec)

3-40 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 87: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

NS – nanosecond (1E-9 sec)

D – day (86.4E3 sec)

4. Because DTI,UNITS determines all units for the FBI file, the units definedin WTMASS, which are important for units consistency in NX Nastran,are ignored in the output to the FBI file. For example, if the model massis in kilograms, force in Newtons, length in meters, and time in seconds,then WTMASS would equal 1, ensuring that NX Nastran works with theconsistent set of kg, N, and m. The units written to the FBI file would be:“DTI,UNITS,1,KG,N,M,S”.

5. You can create flexible body attachment points by defining the componentas a superelement or part superelement, in which case the physical external(a-set) grids become the attachment points; or for a residual-only typemodel, you can use NX Nastran ASET bulk entries to define the attachmentpoints. Note that the values corresponding to these attachment points inthe CMS-reduced mass and stiffness matrices written to the FBI file will bedefined in the nodal displacement coordinate systems of these attachmentpoints. The user must account for these coordinate systems when loading orrestraining these attachment points within the SIMPACK run.

6. To accurately capture the mode shapes when supplying SPOINT/QSETcombinations, the number of SPOINTs (ns) should be at least ns=n+(6+p).In the above equation for ns, the number of modes (n) is specified on theEIGR (METHOD=LAN) or EIGRL bulk entries; the number of load cases is p.In general, you cannot have too many SPOINTs. Excess SPOINTs will betruncated with no performance penalty.

7. OMIT and OMIT1 bulk entries are not supported.

8. Lumped mass formulation (default) is required. Either leavePARAM,COUPMASS out of the input file or supply PARAM,COUPMASS,-1(default) to ensure lumped mass formulation.

9. P-elements and CBEND elements are not allowed because they always usea coupled mass formulation. Likewise, the MFLUID fluid structure interface isnot allowed because the virtual mass matrix it generates is not diagonal.

10. PARAM,WTMASS,value with a value other than 1.0 may be used with an NXNastran run generating an FBI file. It must have consistent units with regardto the DTI,UNITS bulk entry. Before generating the FBI file, NX Nastran willappropriately scale the WTMASS from the physical mass matrix and modeshapes.

11. There is a distinction between how an MBDEXPORT SIMPACKFLEXBODY=YES run handles element-specific loads (such as a PLOAD4entry) versus those that are grid-specific (such as a FORCE entry),especially when superelements are used. The superelement sees the totalelement-specific applied load. For grid-specific loads, the loads attached to

NX Nastran 10 Release Guide 3-41

Multibody dynamics

Page 88: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

an external grid will move downstream with the grid. That is to say, it is part ofthe boundary and not part of the superelement. This distinction applies to asuperelement run and not to a residual-only or parts superelement run.

12. The loads specified in NX Nastran generally fall into two categories:non-follower or fixed direction loads (non-circulatory) and follower loads(circulatory). The follower loads are nonconservative in nature. Examplesof fixed direction loads are the FORCE entry or a PLOAD4 entry when itsdirection is specified via direction cosines. Examples of follower loads are theFORCE1 entry or the PLOAD4 entry when used to apply a normal pressure.By default in NX Nastran, the follower loads are always active in SOL 103and will result in follower stiffness being added to the differential stiffnessand elastic stiffness of the structure. In a run with MBDEXPORT SIMPACKFLEXBODY=YES and superelements, if the follower force is associatedwith a grid description (such as a FORCE1) and the grid is external to thesuperelement, the follower load will move downstream with the grid. Thus,the downstream follower contribution to the component’s stiffness will be lost,which could yield poor results. This caution only applies to a superelementrun and not to a residual-only or a part superelement run.

13. To reduce the FE mesh detail for dynamic simulations, PSETID can includethe ID of a SET entry. PSETID is also used to define the grids to be included inthe recovery matrix that is written to the FBI file. The SET entry lists PLOTELor element IDs, whose connectivity is exported into the FBI file to displaythe components in SIMPACK. This option can significantly reduce the sizeof the FBI file without compromising accuracy in the SIMPACK simulation.With superelement analysis, for any of these elements that lie entirely on thesuperelement boundary (all of the elements’ grids are attached only to a-setor exterior grids), a SEELT bulk entry must be specified to keep that displayelement with the superelement component. This can also be accomplishedusing PARAM, AUTOSEEL,YES. The SEELT entry is not required with partssuperelements, as boundary elements stay with their component.

If the SET entry points to an existing set from the OUTPUT(PLOT) section,this single set is used explicitly to define elements that are used to selectgrids to display the component in SIMPACK. If PSETID does not find the setID in OUTPUT(PLOT), it will search sets in the case control for a matchingset ID. This matching set ID then represents a list of OUTPUT(PLOT) definedelements’ sets, the union of which will be used to define a set of PLOTELs orother elements used to select grids to display the component in SIMPACK.If you wish to select all of the sets in the OUTPUT(PLOT) section, then usePSETID=ALL.

The following element types are not supported for writing to an FBI file, norare they supported as a ‘type’ entry in a set definition in OUTPUT(PLOT):CAABSF, CAEROi, CDUMi, CHACAB, CHACBR, CHBDYx, CDAMP3,CDAMP4, CELAS3, CELAS4, CFLUIDi, CMASS3, CMASS4, CPYRAM,CRAC2D, CRAC3D, CTWIST, CWEDGE, CWELD, and GENEL.

14. Typical NX Nastran data entry requirements are described below.

3-42 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 89: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

Typical Case Control:

• MBDEXPORT SIMPACK FLEXBODY=YES is required for FBI filegeneration.

• METHOD=n is required before or in the first subcase for modal solutions.

• SUPER=n,SEALL=n is useful with multiple superelement models toselect an individual superelement as a flexible body. Cannot be used witha linear STATSUB(PRELOAD) run.

Typical Bulk Data:

• DTI,UNITS,1,MASS,FORCE,LENGTH,TIME is required for FBI filegeneration. For input files containing superelements, this command mustreside in the main bulk data section.

• SPOINT,id_list defines and displays modal amplitude.

• SESET,SEID,grid_list defines a superelement (see GRID and BEGINBULK SUPER=). The exterior grids will represent the attachment pointsalong with the q-set.

• SEELT,SEID,element_list reassigns superelement boundary elements toan upstream superelement.

• RELEASE,SEID,C,Gi is an optional entry that removes DOFs from anattachment grid for which no constraint mode is desired. For example,this allows the removal of rotational degrees of freedom from an analysiswhere only translational degrees of freedom are required.

• SEQSET,SEID,spoint_list defines modal amplitudes of a superelement(see SEQSET1).

• SENQSET,SEID,N defines modal amplitudes of a part superelement. Itmust reside in the main bulk data section.

• ASET,IDi,Ci defines attachment points for a residual-only run (seeASET1).

• QSET1,C,IDi defines modal amplitudes for the residual structure or modalamplitudes for a part superelement (see QSET).

• PLOTEL,EID,Gi can be used, along with existing model elements,to define elements used to select grids to display the components inSIMPACK.

• EIGR,SID,METHOD,… obtains real eigenvalue extraction (see EIGRL).

NX Nastran 10 Release Guide 3-43

Multibody dynamics

Page 90: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

15. MBDEXPORT and ADAMSMNF case control entries cannot be used in thesame analysis run. In other words, a SIMPACK FBI file or an ADAMS MNFfile can be generated during a particular NX Nastran execution, but not bothfiles at the same time. Attempting to generate both files in the same analysiswill cause an error to be issued and the execution to be terminated.

16. The RECVROP2=YES option is used when you would like results recovery(using the MBDRECVR case control entry) from a SIMPACK analysis. Thisoption requires the following assignment command:

ASSIGN OUTPUT2='name.out' STATUS=UNKNOWN UNIT=20FORM=UNFORM

be inserted into the file management section of the NX Nastran input file. Itwill cause an OP2 file with a .out extension to be generated, which then canbe used as input into an NX Nastran SOL 103 run using the MBDRECVRcase control capability to perform results recovery from a SIMPACK analysis.FLEXBODY=YES is required with its use.

The data blocks output are:

MGGEW - physical mass external sort with weight mass removedMAAEW - modal massKAAE - modal stiffnessCMODEXT - component modes.

This capability is limited to no more than one superelement per NX Nastranmodel. Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using MBDRECVR.

17. Setting CHECK=YES (which is only available when RECVROP2=YES) is notrecommended for models of realistic size due to the amount of data thatwill be written to the f06 file.

18. The MBDEXPORT data routines use the environment variable TMPDIR fortemporary storage during the processing of mode shape data. As a result,TMPDIR must be defined when using MBDEXPORT. TMPDIR should equateto a directory string for temporary disk storage, preferably one with a largeamount of free space.

19. Preload conditions are not supported.

20. To request differential stiffness, include a static subcase that contains thestress-stiffening loads. In another subcase include STATSUB = n where nis the number of the static subcase.

3-44 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 91: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

OP4 DESCRIBERS:

Describer Meaning

unit The OP4 file is written to the specified logical unit number.(Integer ≠ 0)

If unit > 0, matrices are written to the OP4 file in sparseformat.

If unit < 0, matrices are written to the OP4 file in full matrixformat.

The absolute value of the logical unit number must match theunit number on an ASSIGN statement.

FLEXBODY Requests the generation and writing of standard orstate-space matrices to an OP4 file.

NO NX Nastran solution without standard or state-space matrixgeneration. (default)

YES Standard or state-space matrix generation requested.

FLEXONLY Determines if DMAP solution runs or not after standard orstate-space matrix generation is complete.

YES Only standard or state-space matrix generation occurs.(default)

NO Standard or state-space matrix generation occurs along withthe standard DMAP solution.

RECVROP2 Requests that the FLEXBODY run output an NX NastranOP2 file for use in post-processing of controls results. SeeRemark 7.

NO OP2 file will not be generated. (default)

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenRECVROP2=YES. See Remark 8.

NO No debug output will be written. (default)

NX Nastran 10 Release Guide 3-45

Multibody dynamics

Page 92: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

Describer Meaning

YES Debug output will be written.

NONCUP Modal damping output control. See Remark 10.

–1 Output the full equivalent modal viscous damping matrix(default).

–2 Output only diagonal values of the equivalent modal viscousdamping matrix.

OP4 REMARKS:

1. The generation of standard or state-space matrices and the writing ofthem to an OP4 file via OUTPUT4, which is applicable in a non-restartSOL 103, 111, or 112 analysis only, is initiated by MBDEXPORT OP4=unitSTANDARD FLEXBODY=YES, or MBDEXPORT OP4=unit STATESPACEFLEXBODY=YES (other describers are optional) and the inclusion of theASSIGN file management statement. This ASSIGN statement must be ofthe form:

ASSIGN OUTPUT4=’filename’,UNIT=n,etc.

where ‘n’ matches the absolute value for unit on the MBDEXPORT OP4=unitcase control command.

The number of digits of precision for matrix data is controlled by the DIGITSparameter.

For a model with superelements, only one OP4 file will be generated. ThisOP4 file will be generated for the first superelement (or the residual) thatsatisfies the conditions defined in Remarks 3 and 4. For standard matrices, ifuser-defined set U8 is not defined, the residual will be written to the OP4.

2. The parameters LFREQ/HFREQ or LMODES can be used to control whichmodes are used to derive the standard or state-space matrices.

3. For state-space matrices, user-defined set U7 is used for input DOF.User-defined set U8 is used for output DOF. Refer to the USET/USET1 bulkentries for partitioned superelements and refer to the SEUSET/SEUSET1bulk entries for non-partitioned superelements.

4. For standard matrices, user-defined set U8 is used for output DOF. The modeshape output will be reduced to the DOF defined in DOF set U8. If DOF setU8 is not defined, the mode shape data for all DOF will be written. Refer to

3-46 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 93: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

the USET/USET1 bulk entries for partitioned superelements and refer to theSEUSET/SEUSET1 bulk entries for non-partitioned superelements.

5. For the state-space option, the OP4 file contains the [A], [B], [C], and [E]state-space matrices. They are defined as AMAT, BMAT, CMAT, and EMAT,respectively. The input and output DOF are defined as U7DOF and U8DOF,respectively with the first column being the grid ID and the second columnbeing the direction code (1 through 6).

6. For the standard option, the OP4 file contains the modal mass, equivalentmodal viscous damping, modal stiffness, mode shapes, and modal forcesdefined as MMASS, MDAMP, MSTIF, U8PHIX, and MFORC, respectively.The physical DOF corresponding one-to-one with the rows of U8PHIX aredefined as U8DOF. The first column contains the grid ID and the secondcolumn contains the direction code (1 through 6).

7. The RECVROP2=YES option is used when you would like results recovery(using the MBDRECVR case control entry) from a system analysis. Thisoption requires the following assignment command:

ASSIGN OUTPUT2=’name.out’ STATUS=UNKNOWN UNIT=20FORM=UNFORM

be inserted into the file management section of the NX Nastran input file. Itwill cause an OP2 file with a .out extension to be generated, which can thenbe used as an input into an NX Nastran SOL 103 run using the MBDRECVRcase control command. FLEXBODY=YES is required when specifyingRECVROP2=YES.

The data blocks output are:

MGGEW – physical mass external sort with weight mass removed

MAAEW – modal mass

KAAE – modal stiffness

CMODEXT – component modes

This capability is limited to one superelement per NX Nastran model.Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using MBDRECVR.

8. Setting CHECK=YES (which is only available when RECVROP2=YES) is notrecommended for models of realistic size due to the amount of data thatwill be written to the f06 file.

9. Differential stiffness is only supported for standard second-order systemrepresentation. To request differential stiffness, include a static subcase thatcontains the stress-stiffening loads. In another subcase include STATSUB= n where n is the number of the static subcase.

NX Nastran 10 Release Guide 3-47

Multibody dynamics

Page 94: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

10. By default, the full equivalent modal viscous damping matrix is written tostandard or state-space OP4 files. To write only the diagonal values of theequivalent modal viscous damping matrix to OP4 files, specify NONCUP=–2,or specify PARAM,NONCUP,-2.

If both the NONCUP describer and the NONCUP parameter are specified,the NONCUP describer specification takes precedence.

MATLAB DESCRIBERS:

Describer Meaning

FLEXBODY Requests the generation and writing of standard orstate-space matrices to a MATLAB script file.

NO NX Nastran solution without standard or state-space matrixgeneration. (default)

YES Standard or state-space matrix generation requested.

FLEXONLY Determines if DMAP solution runs or not after standard orstate-space matrix generation is complete.

YES Only standard or state-space matrix generation occurs.(default)

NO Standard or state-space matrix generation occurs along withthe standard DMAP solution.

RECVROP2 Requests that the FLEXBODY run output an NX NastranOP2 file for use in post-processing of controls results. SeeRemark 7.

NO OP2 file will not be generated. (default)

YES OP2 file will be generated.

CHECK Requests debug output be written to the f06 file whenRECVROP2=YES. See Remark 8.

NO No debug output will be written. (default)

YES Debug output will be written.

3-48 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 95: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

Describer Meaning

NONCUP Modal damping output control. See Remark 10.

–1 Output the full equivalent modal viscous damping matrix(default).

–2 Output only diagonal values of the equivalent modal viscousdamping matrix.

MATLAB REMARKS:

1. The generation of standard or state-space matrices and the writing ofthem to a MATLAB script file, which is applicable in a non-restart SOL103, 111, or 112 analysis only, is initiated by MBDEXPORT MATLABSTANDARD FLEXBODY=YES, or MBDEXPORT MATLAB STATESPACEFLEXBODY=YES (other describers are optional). The MATLAB script filesare named jid_seid.m where seid is the integer number of the superelement(0 for residual). The location of the MATLAB script files is the same directoryas the jid.f06 file.

2. The parameters LFREQ/HFREQ or LMODES can be used to control whichmodes are used to derive the standard or state-space matrices.

3. For state-space matrices, user-defined set U7 is used for input DOF.User-defined set U8 is used for output DOF. Refer to the USET/USET1 bulkentries for partitioned superelements and refer to the SEUSET/SEUSET1bulk entries for non-partitioned superelements.

4. For standard matrices, user-defined set U8 is used for output DOF. The modeshape output will be reduced to the DOF defined in DOF set U8. If DOF setU8 is not defined, the mode shape data for all DOF will be written. Refer tothe USET/USET1 bulk entries for partitioned superelements and refer to theSEUSET/SEUSET1 bulk entries for non-partitioned superelements.

5. For the state-space option, the MATLAB script file contains the [A], [B], [C],and [E] state-space matrices. They are defined as AMAT, BMAT, CMAT, andEMAT, respectively. The input and output DOF are defined as U7DOF andU8DOF, respectively with the first column being the grid ID and the secondcolumn being the direction code (1 through 6).

6. For the standard option, the MATLAB script file contains the modal mass,equivalent modal viscous damping, modal stiffness, mode shapes, andmodal forces defined as MMASS, MDAMP, MSTIF, MSHAP, and MFORC,

NX Nastran 10 Release Guide 3-49

Multibody dynamics

Page 96: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 3: Multibody dynamics

respectively. The physical DOF corresponding one-to-one with the rows ofMSHAP are defined as U8DOF. The first column contains the grid ID and thesecond column contains the direction code (1 through 6).

7. The RECVROP2=YES option is used when you would like results recovery(using the MBDRECVR case control entry) from a system analysis. Thisoption requires the following assignment command:

ASSIGN OUTPUT2=’name.out’ STATUS=UNKNOWN UNIT=20FORM=UNFORM

be inserted into the file management section of the NX Nastran input file. Itwill cause an OP2 file with a .out extension to be generated, which can thenbe used as an input into an NX Nastran SOL 103 run using the MBDRECVRcase control command. FLEXBODY=YES is required when specifyingRECVROP2=YES.

The data blocks output are:

MGGEW – physical mass external sort with weight mass removed

MAAEW – modal mass

KAAE – modal stiffness

CMODEXT – component modes

This capability is limited to one superelement per NX Nastran model.Residual-only analyses are supported.

If differential stiffness is included, the static portion of the results will not beincluded in the recovered results when using MBDRECVR.

8. Setting CHECK=YES (which is only available when RECVROP2=YES) is notrecommended for models of realistic size due to the amount of data thatwill be written to the f06 file.

9. To request differential stiffness, include a static subcase that contains thestress-stiffening loads. In another subcase include STATSUB = n where nis the number of the static subcase.

10. By default, the full equivalent modal viscous damping matrix is written tostandard or state-space MATLAB script files. To write only the diagonalvalues of the equivalent modal viscous damping matrix to MATLAB scriptfiles, specify NONCUP=–2 or specify PARAM,NONCUP,-2.

If both the NONCUP describer and the NONCUP parameter are specified,the NONCUP describer specification takes precedence.

3-50 NX Nastran 10 Release Guide

Chapter 3: Multibody dynamics

Page 97: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multibody dynamics

NONCUP

Default = -1

In SOLs 111 and 112, NONCUP selects either a coupled or uncoupled solutionalgorithm in modal frequency and modal transient response analyses. See“Frequency Response and Random Analysis in SubDMAP FREQRS” and“Transient Response in SubDMAPs SEDTRAN and SEMTRAN” in the NXNastran User’s Guide.

NONCUP = -1 requests the coupled algorithm; however, if the dynamic matricesKHH, MHH, and BHH are diagonal, the uncoupled algorithm is used.

NONCUP= -2 requests the uncoupled algorithm regardless of the existence ofoff-diagonal terms in the dynamic matrices.

User Information Message 5222 indicates which algorithm is used in the analysis.

When using the ADAMSMNF or MBDEXPORT case control commands torequest an ADAMS MNF file, a standard or state-space MATLAB file, or astandard or state-space OP4 file, the full equivalent modal viscous dampingmatrix is written to the interface file by default. To write only the diagonal valuesof the equivalent modal viscous damping matrix to the interface file, specifyNONCUP=–2 on the ADAMSMNF or MBDEXPORT case control command, orspecify PARAM,NONCUP,–2 in the bulk data section of the input file.

If both the NONCUP describer and the NONCUP parameter are specified, theNONCUP describer specification takes precedence.

NX Nastran 10 Release Guide 3-51

Multibody dynamics

Page 98: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 99: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

Complex modal reduction enhancementYou can now specify the reference rotor speed that the software uses to computethe reduced modal basis for a SOL 107 rotor dynamic solve with complex modalreduction.

To specify the reference rotor speed, use the new ROTCMRF parameter. The unitsfor the reference rotor speed specified with the ROTCMRF parameter are the sameas those specified in the RUNIT field of the ROTORD bulk entry. If you do not specifya value for the ROTCMRF parameter, the software automatically calculates thereduced modal basis for a reference rotor speed of zero.

Because the solves at other reference rotor speeds are computed from thereduced modal basis, expect the most accurate rotor dynamic analysis results tobe at reference rotor speeds close to the reference rotor speed specified with theROTCMRF parameter.

If rotor superelement reduction is requested with ROTSE bulk entries, unsymmetrica-set reduction is performed at the reference rotor speed specified with theROTCMRF parameter.

For additional information, see the new ROTCMRF parameter.

Note

The ROTCMRF parameter was supported in NX Nastran 9, but was notdocumented.

NX Nastran 10 Release Guide 4-1

Page 100: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

ROTCMRF

Default = 0.0

Specifies the reference rotor speed that is used to compute the reduced modalbasis for a SOL 107 rotor dynamic solve with complex modal reduction. Solutionsat other reference rotor speeds are computed from the reduced modal basis.Expect the most accurate rotor dynamic analysis results at reference rotor speedsclose to the reference rotor speed specified with ROTCMRF.

If rotor superelement reduction is requested with ROTSE bulk entries,unsymmetric a-set reduction is performed at the reference rotor speed specifiedwith ROTCMRF.

The units for the reference rotor speed specified with ROTCMRF are the same asthose specified in the RUNIT field of the ROTORD bulk entry.

New stiffness and damping terms for CBEAR elementsCurrently, you can define the translational stiffness and viscous damping for CBEARelements in the plane normal to the rotor axis. Beginning with NX Nastran 10, youcan also:

• Define the translational stiffness and viscous damping in the axial direction ofthe rotor.

• Define the coupling terms for translational stiffness and viscous dampingbetween the axial direction of the rotor and axes in the plane normal to the axialdirection of the rotor.

• Define the rotational stiffness and viscous damping about axes in the planenormal to the axial direction of the rotor.

• Define the coupling term for rotational stiffness and viscous damping betweenthe axes in the plane normal to the axial direction of the rotor.

To specify the added stiffness and viscous damping terms for a CBEAR element,enter values in the appropriate fields of the new “TYPEZ” and “TYPER” continuationlines for the PBEAR bulk entry.

For additional information, see the updated PBEAR bulk entry.

Expanded support for CBEAR element propertiesWith NX Nastran 9, you could model CBEAR element stiffness and viscousdamping as functions of speed and displacement, or speed and force. However,this capability was available only for a SOL 101 rotor dynamic analysis. Beginning

4-2 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 101: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

with NX Nastran 10, this capability is expanded to include the following solutions forrotor dynamic analyses:

• SOL 108 direct frequency response.

• SOL 109 direct transient response.

• SOL 111 modal frequency response.

• SOL 112 modal transient response.

For additional information, see the updated PBEAR bulk entry.

Composite relative displacements and forces for CBEAR elementsBeginning with NX Nastran 10, you can specify that the software use compositerelative displacements or composite relative forces when it looks up speed anddisplacement-dependent, or speed and force-dependent bearing stiffness andbearing viscous damping.

Composite relative displacements are linear combinations of radial and axial relativedisplacements. The software calculates the composite relative displacements usingthe following equations:

Δ1 = C1 Δr + C1Z Δz + D1OΔ2 = C2 Δr + C2Z Δz + D2OΔ3 = C3 Δr + C3Z Δz + D3O

where:

• Δ1 is the composite radial relative displacement.

• Δ2 is the composite axial relative displacement.

• Δ3 is the composite rotational relative displacement.

• Δr is the radial relative displacement.

• Δz is the axial relative displacement.

• D1O, D2O, and D3O are preload displacements.

The software calculates Δr as follows:

Δr = (Δx2 + Δy2) 1/2 ≥ 0

where Δx is the relative displacement in the x-direction and Δy is the relativedisplacement in the y-direction.

The software calculates Δz as follows:

NX Nastran 10 Release Guide 4-3

Rotor dynamics

Page 102: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

Δz = ΔGB – ΔGA

where ΔGA and ΔGB are the axial displacements of the grids listed on the CBEARbulk entry.

For bearing properties that are speed and displacement-dependent, the softwareuses the composite relative displacements to look up values for bearing stiffnessand bearing viscous damping. The matrix for bearing stiffness or bearing viscousdamping is as follows:

where Tij(Δi, Ω) are stiffness or viscous damping matrix entries as a function ofcomposite relative displacement and angular speed of the rotor, Ω. If the matrixentries represent viscous damping, Δx, Δy, and Δz represent translational velocities,and Δrx and Δry represent angular velocities.

If the calculated relative displacement is less than zero, the software automaticallyresets it to zero when it looks up values for bearing stiffness and bearing viscousdamping.

Composite relative forces are linear combinations of radial and axial relative forces.The software calculates the composite relative forces from the following equations:

F1 = C1 Fr + C1Z Fz + D1OF2 = C2 Fr + C2Z Fz + D2OF3 = C3 Fr + C3Z Fz + D3O

where F1 is the composite radial relative force, F2 is the composite axial relativeforce, F3 is the composite rotational relative force, Fr is the radial relative force,and Fz is the axial relative force. The D1O, D2O, and D3O coefficients representpreload forces.

The software calculates Fr as follows:

Fr = (Fx2 + Fy2) 1/2 ≥ 0

where Fx is the relative force in the x-direction and Fy is the relative force in they-direction.

For bearing properties that are speed and force-dependent, the software uses thecomposite relative forces to look up values for bearing stiffness and bearing viscousdamping. The matrix for bearing stiffness or bearing viscous damping is as follows:

4-4 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 103: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

where Tij(Fi, Ω) are stiffness or viscous damping matrix entries as a function ofcomposite relative force and angular speed of the rotor, Ω. If the matrix entriesrepresent viscous damping, Δx, Δy, and Δz represent translational velocities, andΔrx and Δry represent angular velocities.

If the calculated relative force is less than zero, the software automatically resets it tozero when it looks up values for bearing stiffness and bearing viscous damping.

To use composite relative displacements or composite relative forces, specify anycombination of the new “COM”, “COMZ”, and “COMR” continuation lines for thePBEAR bulk entry.

• Use the “COM” continuation line to define the coefficients C1, C1Z, and D1Ofor the composite relative displacement radial equation or composite relativeforce radial equation.

• Use the “COMZ” continuation line to define the coefficients C2, C2Z, and D2Ofor the composite relative displacement axial equation or composite relativeforce axial equation.

• Use the “COMR” continuation line to define the coefficients C3, C3Z, and D3Ofor the composite relative displacement rotational equation or composite relativeforce rotational equation.

For additional information, see the updated PBEAR bulk entry.

NX Nastran 10 Release Guide 4-5

Rotor dynamics

Page 104: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

PBEAR

Bearing Property Definition

Defines stiffness and viscous damping matrices for bearing connection.Applicable to all rotor dynamics solution types (SOLs 101, 107, 108, 109, 110,111, 112).

FORMAT:

1 2 3 4 5 6 7 8 9 10PBEAR PID TYPE TXX TXY TYX TYY NOMVAL1

CONTINUATION LINE FORMATS:

1 2 3 4 5 6 7 8 9 10

“COM” C1 C1Z D1O

TYPEZ TXZ TYZ TZX TZY TZZ NOMVAL2

“COMZ” C2 C2Z D2O

TYPER TRXRX TRXRY TRYRX TRYRY NOMVAL3

“COMR” C3 C3Z D3O

The ordering of continuation lines is arbitrary.

EXAMPLES:

PBEAR 5 K 1001 1002 25.0 27.5

B 2001 2002 2003 2004

PBEAR 5 KD 1001 1002 25.0 27.5 1.0E-1BD 4001 4002 4002 4001

COM 1.0 0.0 1.0E-3

KDZ 2001 2002 2001 2002 2003 2.0E-1

BDZ 5001 5002 5001 5002 5003

COMZ 0.0 1.0 0.0

KDR 3001 3002 3002 1.0E5 1.0E-2

4-6 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 105: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

BDR 6001 6002 6002 1.0E2

COMR 1.0 0.0 0.0

FIELDS:

Field Contents

PID Property identification number which is referenced by a CBEARentry. (Integer > 0)

TYPE Type of data in the TXX, TXY, TYX, and TYY fields on the sameline. (Character: “K”, “B”, “KD”, “KF”, “BD”, “BF”)

• If TYPE = “K”, specifies constant stiffness or stiffness thatis a function of rotor speed.

• If TYPE = “B”, specifies constant viscous damping or viscousdamping that is a function of rotor speed.

• If TYPE = “KD”, specifies constant stiffness or stiffness thatis a function of rotor speed and relative displacement.

• If TYPE = “KF”, specifies constant stiffness or stiffness that isa function of rotor speed and relative force.

• If TYPE = “BD”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativedisplacement.

• If TYPE = “BF”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativeforce.

If TYPE = “KD”, “KF”, “BD”, “BF”, see Remark 1.

NX Nastran 10 Release Guide 4-7

Rotor dynamics

Page 106: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

Field Contents

TXX,TXY,TYX,TYY

Stiffness or viscous damping matrix entry. See Remark 2. (Realor Integer ≥ 0 or blank; for default behavior, see Remark 3)

If TYPE = “K”, “B”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds.

• If integer entry, identification number of a TABLEDi bulk entrythat defines the stiffness or viscous damping matrix entry asa function of rotor speed. See Remark 4.

If TYPE = “KD”, “KF”, “BD”, “BF”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds and relative displacements orrotor speeds and relative forces.

• If integer entry, identification number of a TABLEST bulkentry that defines the stiffness or viscous damping matrixentry as a function of rotor speed and relative displacementor rotor speed and relative force. The TABLEST bulk entryreferences a series of TABLEDi bulk entries. The TABLEDibulk entries contain tabular data of stiffness or viscousdamping vs. rotor speed at constant values of relativedisplacement or relative force. See Remark 4 and Remark 7.

NOMVAL1 Valid if TYPE = “KD”, “KF”, “BD”, “BF”. Field is ignored if TYPE =“K”, “B”. See Remark 5. (Real ≥ 0.0; Default = 0.0)

• For SOLs 101, 108, 109, 111, and 112, defines the relativedisplacement or relative force that is used to either directlycompute the bearing stiffness or viscous damping, or initiateiteration for the bearing stiffness or viscous damping. SeeRemark 6.

• For SOLs 107, 110, defines the relative displacement orrelative force that is used to directly compute the bearingstiffness or viscous damping.

“COM” COM flag. Indicates that coefficients for composite relativedisplacement radial equation or composite relative force radialequation follow. (Character)

4-8 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 107: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

Field Contents

C1, C1Z,D1O

Coefficients for composite relative displacement radial equationor composite relative force radial equation. See Remark 8 andRemark 9. (Real; Defaults are C1 = 1.0, C1Z = 0.0, D1O = 0.0)

TYPEZ Type of data in the TXZ, TYZ, TZX, TZY, and TZZ fields on thesame line. (Character: “KZ”, “BZ”, “KDZ”, “KFZ”, “BDZ”, “BFZ”)

• If TYPE = “KZ”, specifies constant stiffness or stiffness thatis a function of rotor speed.

• If TYPE = “BZ”, specifies constant viscous damping orviscous damping that is a function of rotor speed.

• If TYPE = “KDZ”, specifies constant stiffness or stiffness thatis a function of rotor speed and relative displacement.

• If TYPE = “KFZ”, specifies constant stiffness or stiffness thatis a function of rotor speed and relative force.

• If TYPE = “BDZ”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativedisplacement.

• If TYPE = “BFZ”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativeforce.

If TYPE = “KDZ”, “KFZ”, “BDZ”, “BFZ”, see Remark 1.

TXZ,TYZ,TZX,TZY, TZZ

Stiffness or viscous damping matrix entry. See Remark 2. (Realor Integer ≥ 0 or blank; for default behavior, see Remark 3)

If TYPE = “KZ”, “BZ”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds.

• If integer entry, identification number of a TABLEDi bulk entrythat defines the stiffness or viscous damping matrix entry asa function of rotor speed. See Remark 4.

If TYPE = “KDZ”, “KFZ”, “BDZ”, “BFZ”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds and relative displacements orrotor speeds and relative forces.

NX Nastran 10 Release Guide 4-9

Rotor dynamics

Page 108: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

Field Contents

• If integer entry, identification number of a TABLEST bulkentry that defines the stiffness or viscous damping matrixentry as a function of rotor speed and relative displacementor rotor speed and relative force. The TABLEST bulk entryreferences a series of TABLEDi bulk entries. The TABLEDibulk entries contain tabular data of stiffness or viscousdamping vs. rotor speed at constant values of relativedisplacement or relative force. See Remark 4 and Remark 7.

NOMVAL2 Valid if TYPE = “KDZ”, “KFZ”, “BDZ”, “BFZ”. Field is ignored ifTYPE = “KZ”, “BZ”. See Remark 5. (Real ≥ 0.0; Default = 0.0)

• For SOLs 101, 108, 109, 111, and 112, defines the relativedisplacement or relative force that is used to either directlycompute the bearing stiffness or viscous damping, or initiateiteration for the bearing stiffness or viscous damping. SeeRemark 6.

• For SOLs 107, 110, defines the relative displacement orrelative force that is used to directly compute the bearingstiffness or viscous damping.

“COMZ” COMZ flag. Indicates that coefficients for composite relativedisplacement axial equation or composite relative force axialequation follow. (Character)

C2, C2Z,D2O

Coefficients for composite relative displacement axial equationor composite relative force axial equation. See Remark 8 andRemark 9. (Real; Defaults are C2 = 0.0, C2Z = 1.0, D2O = 0.0)

TYPER Type of data in the TRXRX, TRXRY, TRYRX, and TRYRY fieldson the same line. (Character: “KR”, “BR”, “KDR”, “KFR”, “BDR”,“BFR”)

• If TYPE = “KR”, specifies constant stiffness or stiffness thatis a function of rotor speed.

• If TYPE = “BR”, specifies constant viscous damping orviscous damping that is a function of rotor speed.

• If TYPE = “KDR”, specifies constant stiffness or stiffness thatis a function of rotor speed and relative displacement.

• If TYPE = “KFR”, specifies constant stiffness or stiffness thatis a function of rotor speed and relative force.

4-10 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 109: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

Field Contents

• If TYPE = “BDR”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativedisplacement.

• If TYPE = “BFR”, specifies constant viscous damping orviscous damping that is a function of rotor speed and relativeforce.

If TYPE = “KDR”, “KFR”, “BDR”, “BFR”, see Remark 1.

TRXRX,TRXRY,TRYRX,TRYRY

Stiffness or viscous damping matrix entry. See Remark 2. (Realor Integer ≥ 0 or blank; for default behavior, see Remark 3)

If TYPE = “KR”, “BR”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds.

• If integer entry, identification number of a TABLEDi bulk entrythat defines the stiffness or viscous damping matrix entry asa function of rotor speed. See Remark 4.

If TYPE = “KDR”, “KFR”, “BDR”, “BFR”:

• If real entry, value of stiffness or viscous damping matrixentry used for all rotor speeds and relative displacements orrotor speeds and relative forces.

• If integer entry, identification number of a TABLEST bulkentry that defines the stiffness or viscous damping matrixentry as a function of rotor speed and relative displacementor rotor speed and relative force. The TABLEST bulk entryreferences a series of TABLEDi bulk entries. The TABLEDibulk entries contain tabular data of stiffness or viscousdamping vs. rotor speed at constant values of relativedisplacement or relative force. See Remark 7.

NX Nastran 10 Release Guide 4-11

Rotor dynamics

Page 110: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

Field Contents

NOMVAL3 Valid if TYPE = “KDR”, “KFR”, “BDR”, “BFR”. Field is ignored ifTYPE = “KR”, “BR”. See Remark 5. (Real ≥ 0.0; Default = 0.0)

• For SOLs 101, 108, 109, 111, and 112, defines the relativedisplacement or relative force that is used to either directlycompute the bearing stiffness or viscous damping, or initiateiteration for the bearing stiffness or viscous damping. SeeRemark 6.

• For SOLs 107, 110, defines the relative displacement orrelative force that is used to directly compute the bearingstiffness or viscous damping.

“COMR” COMR flag. Indicates that coefficients for composite relativedisplacement rotational equation or composite relative forcerotational equation follow. (Character)

C3, C3Z,D3O

Coefficients for composite relative displacement rotationalequation or composite relative force rotational equation. SeeRemark 8 and Remark 9. (Real; Defaults are C3 = 1.0, C3Z =0.0, D3O = 0.0)

REMARKS:

1. Relative displacement is the displacement between the two coincident gridsused to define the CBEAR connection. Relative force is the force carriedthrough the CBEAR connection. The relative force is calculated from therelative displacement.

2. “X”, “Y”, and “Z”, in TXX, TXY, TYX, TYY, TXZ, TYZ, TZX, TZY, and TZZ, referto the X, Y, and Z-axes of the coordinate system referenced in the RCORDifield of the ROTORD bulk entry. “RX” and “RY” in TRXRX, TRXRY, TRYRX,and TRYRY refer to rotation about the X-axis and rotation about the Y-axis ofthe coordinate system referenced in the RCORDi field of the ROTORD bulkentry. In a rotor dynamic analysis, a rotor’s axis of rotation must be alignedwith the Z-axis of the coordinate system referenced in the RCORDi field ofthe ROTORD bulk entry.

3. If any of TXX, TXY, TYX, TYY, TXZ, TYZ, TZX, TZY, TZZ, TRXRX, TRXRY,TRYRX, or TRYRY fields are blank or zero (either integer zero or real zero),the software uses real zero as the value for the corresponding field.

4-12 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 111: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

4. In TABLEDi bulk entries, enter the rotor speed data in the units that arespecified in the RUNIT field of the ROTORD bulk entry.

5. If a NOMVALi is defined in both a stiffness and damping row, the value in thestiffness row is used.

6. When TYPE = “KD”, “KF”, “BD”, “BF”, “KDZ”, “KFZ”, “BDZ”, “BFZ”, “KDR”,“KFR”, “BDR”, or “BFR” for SOL 101, the method used to determine thestiffness and viscous damping for CBEAR elements depends on the valueof MAXITER.

• If MAXITER = 0, the value specified in the NOMVALi field is used todirectly compute the bearing stiffness and viscous damping.

• If MAXITER ≠ 0, the value specified in the NOMVALi field is used toinitiate iteration over relative displacement or relative force. Consecutiveiterations use the relative displacement and relative force from theprevious iteration to update the bearing stiffness and viscous damping.The relative displacement or relative force magnitude on the CBEARelement at each iteration is compared with the value from the previousiteration to evaluate convergence. When iterating over relativedisplacement, convergence is reached when:

|(Disp (old) - Disp (new)) / Disp (old)| < THRSHOLD

When iterating over relative force, convergence is reached when:

|(Force (old) - Force (new)) / Force (old)| < THRSHOLD

Iterating stops when either convergence is met, or the number ofiterations exceeds MAXITER.

MAXITER and THRSHOLD are specified on the ROTORD bulk entry.

7. On a TABLEST bulk entry referenced by a PBEAR bulk entry, the valuesfor relative displacement or relative force that correspond to the TABLEDibulk entries must be consistently defined for all TABLEDi bulk entries. Forexample, a valid entry is as follows:

PBEAR 789 KD 6891 6892 6893 6894$$ TABLEST tables for PBEAR$TABLEST 6891

0.0 7891 0.1 8891 0.3 9891 ENDTTABLEST 6892

0.0 7892 0.1 8892 0.3 9892 ENDTTABLEST 6893

0.0 7893 0.1 8893 0.3 9893 ENDTTABLEST 6894

0.0 7894 0.1 8894 0.3 9894 ENDT

The following entry is invalid:PBEAR 789 KD 6891 6892 6893 6894

NX Nastran 10 Release Guide 4-13

Rotor dynamics

Page 112: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

$$ TABLEST tables for PBEAR$TABLEST 6891

0.0 7891 0.1 8891 0.3 9891 ENDTTABLEST 6892

0.0 7892 0.1 8892 0.4 9892 ENDTTABLEST 6893

0.0 7893 0.1 8893 0.3 9893 ENDTTABLEST 6894

0.0 7894 0.1 8894 0.3 9894 ENDT

The following entry is also invalid:PBEAR 789 KD 6891 6892 6893 6894$$ TABLEST tables for PBEAR$TABLEST 6891

0.0 7891 0.1 8891 0.3 9891 ENDTTABLEST 6892

0.0 7892 0.1 8892 0.3 9892 ENDTTABLEST 6893

0.0 7893 0.1 8893 ENDTTABLEST 6894

0.0 7894 0.1 8894 0.3 9894 ENDT

However, the tabular data entered on the TABLEDi bulk entries that arereferenced by a TABLEST bulk entry do not need to have the same range.

8. Composite relative displacements are linear combinations of radial and axialrelative displacements. The software calculates the composite relativedisplacements from the following equations:

Δ1 = C1 Δr + C1Z Δz + D1OΔ2 = C2 Δr + C2Z Δz + D2OΔ3 = C3 Δr + C3Z Δz + D3O

where Δ1 is the composite radial relative displacement, Δ2 is the compositeaxial relative displacement, Δ3 is the composite rotational relativedisplacement, Δr is the radial relative displacement, and Δz is the axialrelative displacement. The D1O, D2O, and D3O coefficients representpreload displacements.

The software calculates Δr as follows:

Δr = (Δx2 + Δy2) 1/2

where Δx is the relative displacement in the x-direction and Δy is the relativedisplacement in the y-direction.

The software calculates Δz as follows:

Δz = ΔGB – ΔGA

4-14 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 113: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

where ΔGA and ΔGB are the axial displacements of the grids listed on theCBEAR bulk entry.

For bearing properties that are speed and displacement-dependent, thesoftware uses the composite relative displacements to look up values forbearing stiffness and bearing viscous damping. The matrix for bearingstiffness or bearing viscous damping is as follows:

where Tij(Δi, Ω) are stiffness or viscous damping matrix entries as a functionof composite relative displacement and angular speed of the rotor, Ω. Ifthe matrix entries represent viscous damping, Δx, Δy, and Δz representtranslational velocities, and Δrx and Δry represent angular velocities.

If the calculated relative displacement is less than zero, the softwareautomatically resets it to zero when it looks up values for bearing stiffnessand bearing viscous damping.

9. Composite relative forces are linear combinations of radial and axial relativeforces. The software calculates the composite relative forces from thefollowing equations:

F1 = C1 Fr + C1Z Fz + D1OF2 = C2 Fr + C2Z Fz + D2OF3 = C3 Fr + C3Z Fz + D3O

where F1 is the composite radial relative force, F2 is the composite axialrelative force, F3 is the composite rotational relative force, Fr is the radialrelative force, and Fz is the axial relative force. The D1O, D2O, and D3Ocoefficients represent preload forces.

The software calculates Fr as follows:

Fr = (Fx2 + Fy2) 1/2

where Fx is the relative force in the x-direction and Fy is the relative forcein the y-direction.

For bearing properties that are speed and force-dependent, the softwareuses the composite relative forces to look up values for bearing stiffness andbearing viscous damping. The matrix for bearing stiffness or bearing viscousdamping is as follows:

NX Nastran 10 Release Guide 4-15

Rotor dynamics

Page 114: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

where Tij(Fi, Ω) are stiffness or viscous damping matrix entries as a functionof composite relative force and angular speed of the rotor, Ω. If the matrixentries represent viscous damping, Δx, Δy, and Δz represent translationalvelocities, and Δrx and Δry represent angular velocities.

If the calculated relative force is less than zero, the software automaticallyresets it to zero when it looks up values for bearing stiffness and bearingviscous damping.

Coupled solutions in rotor dynamicsIn prior versions of NX Nastran, time-dependent coupling terms between the rotatingand supporting structures are not included in the equation of motion. Becausetime-dependent coupling terms arise for unsymmetric rotors or supports, the rotordynamics capability is applicable to structures that have symmetric rotors andsupports that are analyzed in either the fixed or rotating reference system, as well asthe following two special cases.

• Structures that have unsymmetric rotors and symmetric supports that areanalyzed in the rotating reference system.

• Structures that have symmetric rotors and unsymmetric supports that areanalyzed in the fixed reference system.

With NX Nastran 10, you can optionally include the time-dependent coupling termsin the equation of motion for SOL 107, 108, and 109 rotor dynamic analyses thatare performed in the rotational reference frame. This enables you to perform rotordynamic analysis without any symmetry restriction on the rotors and supports.

To include the coupling terms in the equation of motion for the model, include thenew ROTCOUP parameter in your input file. The ROTCOUP parameter specifiesthe coupling point for each rotor in the model. Coupling points are grid points thatthe software uses to compute the coupling components. Only grid points that arelisted on a ROTORB bulk entry are valid candidates to be coupling points.

• If the model contains a single rotor, specify the coupling point usingPARAM,ROTCOUP,gridid, where gridid is the grid ID of the coupling point.

4-16 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 115: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

• If the model contains multiple rotors, specify the coupling points usingPARAM,ROTCOUP,setid, where setid is the identification number of a SET casecontrol command that lists the grid ID of the coupling point for each rotor.

The software excludes the time-dependent coupling terms from the equation ofmotion and the software behaves as it did in prior versions if you:

• Do not include a ROTCOUP parameter specification in the input file.

• Include a ROTCOUP parameter specification in the input file, but also specifythat the rotor dynamic analysis be performed in the fixed reference system.

When the time-dependent terms are included, the equation of motion is solved atdiscrete azimuth angles. NX Nastran can either solve the equation of motion over arange of azimuth angles at a single rotor speed, or solve the equation of motion ata single azimuth angle over a range of rotor speeds.

• To solve over a range of azimuth angles at a single rotor speed, use the newPHIBGN, PHIDEL, and PHINUM parameters to specify the azimuth angle range,and use the RSTART field of the ROTORD bulk entry to specify the rotor speed.

• To solve over a range of rotor speeds at a single azimuth angle, use thePHIBGN parameter to specify the azimuth angle, omit the PHIDEL andPHINUM parameters, and use the RSTART, RSTEP, and NUMSTEP fields ofthe ROTORD bulk entry to specify the rotor speed range. If you also omit thePHIBGN parameter, the solve is at an azimuth angle of zero because the defaultvalue for the PHIBGN parameter is zero.

If the PHIBGN, PHIDEL, and PHINUM parameters and the RSTART, RSTEP, andNUMSTEP fields of the ROTORD bulk entry are all specified, the solve is over theazimuth angle range specified by the PHIBGN, PHIDEL, and PHINUM parameters,and at the rotor speed specified by the RSTART field of the ROTORD bulk entry.

For additional information, see the new PHIBGN, PHIDEL, PHINUM, and ROTCOUPparameters.

For the mathematical details behind the time-dependent coupling terms in theequation of motion, see the NX Nastran 10 Rotor Dynamics User’s Guide.

NX Nastran 10 Release Guide 4-17

Rotor dynamics

Page 116: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

PHIBGN

Default = 0.0

Beginning azimuth angle (in degrees)

PHIBGN, PHIDEL, and PHINUM define the range of azimuth angle over whichthe equations of motion with time-dependent coupling terms are solved during arotor dynamic analysis.

4-18 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 117: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

PHIDEL

Default = 0.0

Azimuth angle increment (in degrees)

See PHIBGN.

NX Nastran 10 Release Guide 4-19

Rotor dynamics

Page 118: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

PHINUM

Default = 1

Number of azimuth angle increments

See PHIBGN.

4-20 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 119: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

ROTCOUP

No default

Specifies the coupling points for each rotor in a SOL 107, 108, or 109 rotordynamic analysis.

• If the model contains a single rotor, specify the coupling point withPARAM,ROTCOUP,gridid, where gridid is the grid ID of the coupling point.

• If the model contains multiple rotors, specify the coupling points withPARAM,ROTCOUP,setid, where setid is the identification number of a SETcase control command that lists the grid ID of the coupling point for each rotor.

For a grid listed on the ROTCOUP parameter specification or in a referencedSET command to be a valid coupling point, it must also be listed on a ROTORBbulk entry.

Modeling interconnected coaxial rotorsBeginning with NX Nastran 10, you can model interconnected coaxial rotors in arotor dynamic analysis. Interconnected coaxial rotors are concentric rotors whereone rotor is supported by the other. The support between the shafts is typicallyprovided by a bearing.

An example of interconnected coaxial rotors are the high-pressure and low-pressurespools in some gas turbine configurations. The shafts for the two spools areseparated by rolling element bearings. The inner race of the bearings rotate with theinner shaft, and the outer race of the bearings rotate with the outer shaft.

When you have interconnected coaxial rotors, one of the rotors is connected to asupporting structure or ground. The procedure to model this rotor is exactly thesame as the procedure to model:

• An individual rotor that is connected to a supporting structure or ground.

• A non-interconnected coaxial rotor that is connected to a supporting structure orground.

For information on how to model such a rotor, see the NX Nastran 10 RotorDynamics User’s Guide.

For the rotor that is supported by a rotor connected to a supporting structure orground, the procedure is slightly different. If the coaxial rotors are modeled with lineelements, define three coincident grids along the axis of rotation of the supportedcoaxial rotor, at the axial position of each bearing.

At each bearing location, include the grid that is used to define the line elementconnectivity on the ROTORG entry for the supported coaxial rotor. The softwareinterprets this grid as rotating with the supported coaxial rotor. Then include the other

NX Nastran 10 Release Guide 4-21

Rotor dynamics

Page 120: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

two coincident grids on the ROTORB entry for both coaxial rotors. The softwareinterprets these grids as rotating with the coaxial rotor that is connected to either asupporting structure or ground.

Between the coincident grid that is listed on the ROTORG entry for the supportedcoaxial rotor and one of the other coincident grids that are listed on the ROTORBentries, define an RBE2 element. Between the two grids that are listed on theROTORB entries, define the connectivity of the CBEAR element, CBUSH element,or CELASi and CDAMPi elements.

Define a second RBE2 element between the grid that is part of the CBEAR, CBUSH,or CELASi and CDAMPi element connectivity, but not part of the connectivity of theRBE2 element that you already defined, and a forth coincident grid that is listed onthe ROTORG entry for the rotor that is connected to either a supporting structure ofground. This grid may or may not be used in the definition of the bearing supportthat connects the other coaxial shaft to either a supporting structure or ground.

Both RBE2 elements are necessary for the software to correctly partition the model.

If the coaxial rotors are modeled with shell or solid elements, mesh the rotor suchthat at each bearing location the element edges and element faces of the mesh forma cross section through the rotor. Define three coincident grids along the axis ofrotation of the supported coaxial rotor at the axial position of each bearing.

At each bearing location, include one of the coincident grids on the ROTORG entryfor the supported coaxial rotor. The software interprets this grid as rotating with thesupported coaxial rotor. Then include the other two coincident grids on the ROTORBentry for both coaxial rotors. The software interprets these grids as rotating with thecoaxial rotor that is connected to either a supporting structure or ground.

Between the coincident grid that is listed on the ROTORG entry for the supportedcoaxial rotor and one of the other coincident grids that are listed on the ROTORBentries, define an RBE2 element. Between the two grids that are listed on theROTORB entries, define the connectivity of the CBEAR element, CBUSH element,or CELASi and CDAMPi elements.

Define a second RBE2 element between the grid that is part of the CBEAR, CBUSH,or CELASi and CDAMPi element connectivity, but not part of the connectivity of theRBE2 element that you already defined, and another coincident grid that is listed onthe ROTORG entry for the rotor that is connected to either a supporting structure orground. This grid may or may not be used in the definition of the bearing supportthat connects the other coaxial shaft to either a supporting structure or ground.

Once again, both RBE2 elements are necessary for the software to correctlypartition the model.

For the bearing supports between interconnected rotors, the software enters thestiffness and damping of CBUSH, CELASi, and CDAMPi elements twice whenformulating the stiffness and damping matrices. Thus, when you use these elementsto model a bearing support between interconnected rotors, halve the numerical valuefor the stiffness and damping on the property bulk entries that they reference. You

4-22 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 121: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

do not need to do this when you use CBEAR elements to model bearing supportsbetween interconnected rotors.

When you use CBEAR elements to model bearing supports between theinterconnected coaxial rotors, you must included the CBEAR elements on theGROUP entries for both coaxial rotors.

Superelement-style reduction in rotor dynamicsBeginning with NX Nastran 10, you can improve the computational efficiency of aSOL 107 rotor dynamic solve by applying superelement-style reduction to the rotors.

The implementation of superelement-style reduction in rotor dynamic analysisis distinctly different from the implementation of superelements in other typesof analysis. For example, none of the NX Nastran user inputs for modelingsuperelements in other types of analysis is applicable to this new capability.

The procedure to use this new capability is as follows:

• Include a ROTSE bulk entry for each rotor you want to reduce. The presence ofthe ROTSE bulk entry in the input file triggers the superelement-style reductioncapability in rotor dynamics. Match the value in the RSETID field of each ROTSEbulk entry with the corresponding RSETi field for the rotor on the ROTORDbulk entry. For each rotor that you define a ROTSE bulk entry, the software willautomatically assign the grids on the corresponding ROTORG bulk entry to aunique o-set.

• On each ROTSE bulk entry, specify any grids that are listed on the correspondingROTORG bulk entry that need to be removed from the o-set and placed in thea-set. Typically, these are the grids that connect the rotor to the supportingstructure, or are the grids where loads like mass imbalance are applied.

• On each ROTSE bulk entry, specify whether the software should use real orcomplex modal reduction. Generally, you will want to select complex modalreduction.

For additional information, see the new ROTSE bulk entry.

NX Nastran 10 Release Guide 4-23

Rotor dynamics

Page 122: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

ROTSE

Supplemental Rotor Superelement Definition

Defines the modal reduction type and additional a-set grids for a rotorsuperelement.

FORMAT 1: (FORMATS 1 AND 2 CANNOT BE COMBINED ON THE SAME LINE)

1 2 3 4 5 6 7 8 9 10

ROTSE RSETID TYPE EVID

G1 G2 G3 G4 G5 G6 G7 G8

FORMAT 2:

ROTSE RSETID TYPE EVID

G1 “THRU” G2 “BY” INC

CONTINUATION FORMAT 1: (CONTINUATION FORMATS 1 AND 2 CANNOT BE COMBINED ON THE SAME LINE)

G9 G10 G11 G12 –etc.–

CONTINUATION FORMAT 2:

G3 “THRU” G4 “BY” INC

EXAMPLE:

ROTSE 5 CX 1001

101 THRU 190 BY 5

46 23 57 82 9 16

201 THRU 255

4-24 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 123: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Rotor dynamics

93 94 95 97

FIELDS:

Field Contents

RSETID References an RSETi on the ROTORD bulk entry. See Remark1. (Integer>0)

TYPE Modal reduction type. (Character: “RL”, “CX”)

= “RL”, use real modal reduction.

= “CX”, use complex modal reduction.

EVID Eigenvalue extraction data set identification number.(Integer>0)

For TYPE = “RL”, set identification number of an EIGRL bulkentry.

For TYPE = “CX”, set identification number of an EIGC bulkentry.

Gi Grids to remove from the o-set and place in the a-set. SeeRemark 2. (Integer > 0)

THRU Specifies a range of grid ID's. (Optional)

BY Specifies an increment when using THRU option. (Optional)

INC Increment used with THRU option. (Integer > 0; Default=1)

REMARKS:

1. The RSETID field is referred to by the RSETi field on the ROTORD bulkentry. If a model contains multiple rotors, use separate ROTSE bulk entriesfor each rotor.

2. In a rotor dynamic analysis, the a-set consists of any grids that are not listedon any ROTORG bulk entry and any grids that are listed on any ROTSEbulk entry.

NX Nastran 10 Release Guide 4-25

Rotor dynamics

Page 124: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 4: Rotor dynamics

3. If the a-set does not contain at least one unconstrained DOF, the runterminates.

4-26 NX Nastran 10 Release Guide

Chapter 4: Rotor dynamics

Page 125: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 5: Superelements

Unused q-set DOFIn earlier versions of NX Nastran, the software removed all the unused q-set DOFin the definition of an external superelement. As a result, mechanism modes arecalculated, but not retained in models with mechanisms.

Beginning with NX Nastran 10, you can use the QSETREM parameter to controlwhether or not the unused q-set DOF are removed when an external superelementis created with the EXTSEOUT case control command.

• If QSETREM = YES (default), unused q-set DOF are removed from the definitionof the external superelement. Mechanism modes are calculated but not retainedin models with mechanisms.

• If QSETREM = NO, all q-set DOF are retained in the definition of the externalsuperelement. Mechanism modes are calculated and retained in models withmechanisms.

Specifying QSETREM = NO can lead to slow processing times for stresses, strains,and forces, especially if a large number of q-set DOF are defined but are notassociated with calculated modes.

NX Nastran 10 Release Guide 5-1

Page 126: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 5: Superelements

QSETREM

Default = YES

Specifies whether unused q-set DOF are removed when an external superelementis created with the EXTSEOUT case control command.

If QSETREM = YES, unused q-set DOF are removed from the definition of theexternal superelement.

If QSETREM = NO, all q-set DOF are retained in the definition of the externalsuperelement. If the model is a mechanism, specifying QSETREM = NO isnecessary to retain mechanism modes. However, specifying QSETREM = NO canlead to slow processing times for stresses, strains, and forces, especially if a largenumber of q-set DOF are defined, but are not associated with calculated modes.

5-2 NX Nastran 10 Release Guide

Chapter 5: Superelements

Page 127: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

IntroductionThe NX Nastran solution sequence, SOL 401 - NLSTEP, was first introduced in NXNastran 9. It is a multistep, structural solution which supports a combination of linearor nonlinear static subcases and modal subcases.

SOL 401 is the structural solution used by the NX Multiphysics environment withinthe NX Advanced Simulation product. The NX 10 Multiphysics environment nowsupports all combinations of structural-to-thermal and thermal-to-structural couplingwith the NX Thermal solution. SOL 401 is also supported as a stand-alone NXNastran solution.

Enhancement summary

The following is a summary of the SOL 401 enhancements in NX Nastran 10.

• New element types

The axisymmetric, plane stress, plane strain and generalized plane strainelements are now supported.

The RBE2 and RBAR rigid elements are now supported with optional largedisplacement effects and thermal expansion.

The RBE3 rigid element is also supported, but does not support the largedisplacement effects or thermal expansion.

• Contact

Surface-to-surface contact is now supported on the surfaces of 3D solidelements (CTETRA, CHEXA, CPENTA, CPYRAM). Edge-to-edge contact isnow supported on the edges of plane stress/strain and axisymmetric elements.The contact condition can update when large displacement is turned on withPARAM,LGDISP,1.

• Glue

Edge-to-edge glue on the edges of plane stress/strain and axisymmetric elementsis now supported, in addition to the already supported surface-to-surface glue.When large displacements are requested with PARAM,LGDISP,1, the gluestiffness orientation can update as a result of large displacement effects.

• Bolt preload

NX Nastran 10 Release Guide 6-1

Page 128: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Bolt Preload is now supported. The bolt can be modeled with the 3D solidelements CHEXA, CPENTA, CTETRA, or with the 2D plane stress elementsCPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8.

• Plastic and creep materials

Plastic and creep materials can now be assigned to 3D solid elements,axisymmetric elements, plane stress elements, plane strain elements, andgeneralized plane strain elements. You can enable either plasticity or creep, orboth, in all subcases, or in specific subcases.

• Temperature load enhancements

Time-assigned temperature loads are now supported. The ability to switchbetween time-assigned and time-unassigned temperature loads from onesubcase to the next is also supported.

The binary universal file (BUN) is the output format written from an NX Thermalanalysis. The BUN file is now supported to optionally select time-assigned andtime-unassigned temperatures stored in the external file.

• Mechanical load enhancements

Time-unassigned loads can now be selected with the LOAD case controlcommand. Time-assigned and time-unassigned loads can be included in thesame subcase.

Time-assigned and time-unassigned enforced displacement loads that aredefined using the SPCD bulk entry, are also supported.

• Modal subcase enhancements

Previously, the first subcase had to be of type STATIC. Now, a modal subcasecan be the first subcase.

The case control setting SEQDEP=NO is now supported in a modal subcase toturn off all contributions from a previous static subcase.

A modal subcase which is not sequentially dependent (SEQDEP=NO) can usetemperature dependent material properties that are defined using the MATTientries.

• Force output enhancements

MPCFORCE and GPFORCE output requests are now supported. Ingeneral, MPCFORCE output can be requested with large displacements(PARAM,LGDISP,1). Although, it is computed based on the initial, undeformedconfiguration, GPFORCE output accounts for large displacements, except forDOF which are included in MPC equations.

• Crack simulation

6-2 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 129: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

You can now request the output of the j-integral for a given crack geometry. Thej-integral output can be used by a third-party software like Zencrack to performa fracture mechanics analysis. In addition, any face of a CHEXA element cannow be collapsed to an edge. The edge of the collapsed face represents thecrack front.

• Error estimator output

You can now request error estimates for certain types of elements when usingSOL 401. The error estimates are computed and output on an individual elementbasis. Pre-processors like NX can use the error estimates to refine meshes.

Overview of capabilitiesThe following is a summary of all SOL 401 capabilities. The new features for NXNastran 10 are included in the descriptions.

Subcase Analysis Type Glue SupportGeometric Nonlinear Effects Contact SupportSubcase Sequencing Crack SimulationDefining Solution Time Steps Supported OutputBoundary Conditions Nonlinear ParametersMechanical Loads Solver SupportBolt Preload Input SummaryThermal Loads ExampleElement and Material Support

Subcase analysis type

SOL 401 allows any combination of static subcases and modal (real eigenvalue)subcases. The ANALYSIS case control command defines the subcase analysis type.

• Modal subcase: You include ANALYSIS=MODAL in a subcase.

• Static subcase: You include ANALYSIS=STATIC in a subcase.

The ANALYSIS case control command does not have a default in SOL 401. Youmust define it in every subcase, and it cannot be defined above the subcases(globally). The first subcase can be either a static or a modal subcase.

Geometric Nonlinear Effects

The parameter LGDISP turns the nonlinear large displacement capability on or offfor the static subcases. If you define the parameter LGDISP for SOL 401, you must

NX Nastran 10 Release Guide 6-3

Multi-step nonlinear solution 401

Page 130: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

include it in the bulk data portion of your input file. The single PARAM,LGDISPsetting applies to all static subcases.

• PARAM,LGDISP,-1 (default) – Large displacement effects are turned off.Subcases which include ANALYSIS=STATIC are linear static subcases.

• PARAM,LGDISP,1 – Large displacement effects are turned on. Subcases whichinclude ANALYSIS=STATIC are nonlinear static subcases.

PARAM,LGDISP,1 turns on large displacement effects, but small strains areassumed.

Subcase sequencing

You can use the SEQDEP case control command to define a static or modal subcaseas sequentially dependent (SD), or non-sequentially dependent (NSD).

• SEQDEP=YES (default) – the static or modal subcase is an SD subcase.

SOL 401 uses time as the variable to increment temperatures and loads. AnSD static subcase uses the final time from the previous static subcase for itsstart time. The start time is used to compute the solution time steps in a staticsubcase. See Defining Solution Time Steps. An SD subcase also receivesthe final state variables from the previous static subcase. For example, plasticstrains, creep strains, and displacements.

• SEQDEP=NO – the static or modal subcase is an NSD subcase.

An NSD subcase is independent. The start time for a static NSD subcase is0.0. See Defining Solution Time Steps.

An NSD static or modal subcase does not use any data from a previous staticsubcase, regardless of the parameter settings on the NLCNTL bulk entry.

• Time does not apply to modal subcases.

Defining Solution Time Steps

Loads are defined in SOL 401 as a function of time. SOL 401 is a static solution,and time is only used as the mechanism to increment loads. The TSTEP1 bulk entrydefines the time step intervals in which a solution will be generated and output in astatic subcase. You include the TSTEP case control command in the static subcaseto select a specific TSTEP1 definition in the bulk data.

The TSTEP1 entry includes the end times (Tendi), the number of increments (Ninci),and the increment for computing output (Nouti). The start time for a particularsubcase depends if it is sequentially dependent (SD) or not sequentially dependent(NSD).

1 2 3 4 5 6 7 8 9 10TSTEP1 SID Tend1 Ninc1 Nout1

6-4 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 131: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

1 2 3 4 5 6 7 8 9 10

Tend2 Ninc2 Nout2

Tend3 Ninc3 Nout3

-etc-

TSTEP1 Input Example:

TSTEP1 1 10.0 5 2

50.0 4 3

100 2 ALL

In this example, assuming a start time=0.0 for the subcase, the resulting time stepsare as follows. The time steps in which output occurs are highlighted. Output alwaysoccurs at the end time.

The 1st row has an end time of 10.0, 5 increments, and output at every 2nd time step.

Time Step 1 Time Step 2 Time Step 3 Time Step 4 Time Step 5

2.0 4.0 6.0 8.0 10.0

The 2nd row has an end time of 50.0, 4 increments, and output frequency at every3rd time step.

Time Step 1 Time Step 2 Time Step 3 Time Step 420.0 30.0 40.0 50.0

The 3rd row has an end time of 100.0, 2 increments, and output at all time steps.

Time Step 1 Time Step 275.0 100.0

In the same example, assuming a start time=5.0 for the subcase, the resulting timesteps for the first row are as follows.

Time Step 1 Time Step 2 Time Step 3 Time Step 4 Time Step 56.0 7.0 8.0 9.0 10.0

The 2nd and 3rd row are the same:

Time Step 1 Time Step 2 Time Step 3 Time Step 420.0 30.0 40.0 50.0

NX Nastran 10 Release Guide 6-5

Multi-step nonlinear solution 401

Page 132: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Time Step 1 Time Step 275.0 100.0

Additional Information about TSTEP1:

• Output always occurs at Tendi.

• Tendi must be increasing (Tendi < Tendi+1).

• When Tend1=0.0:

o No other times are allowed. This is the only time for the associated subcase.

o Ninci is supported.

o Nouti is ignored.

o Results are output at time = 0.0.

• Nouti controls the frequency of results output. The following table summarizesthe input options.

Nout Output frequencyYES Output occurs at all increments defined on TSTEP1.

END Output occurs at the end time.

ALL

Output occurs at all increments on TSTEP1 and any softwaresubincrements.

Note: When Nouti=ALL in the context of a NX multi-physicssolution, the result output time points will be a combination ofthe structural output steps as well as the coupled time steps.

Integer ≥ 0 Output is computed at every Nout increment specific withTSTEP1.

CPLD Output occurs only at coupling times. This option can onlybe defined by the NX Multiphysics environment.

• The start time (Tstart) for a static subcase is determined as follows:

o If a static subcase definition in the case control includes SEQDEP=NO,that subcase is not sequentially dependent (NSD). The start time for anNSD subcase is 0.0.

o For a sequentially dependent (SD) static subcase (default), the final Tendifrom a previous SD or NSD static subcase is the start time (Tstart) for thecurrent SD subcase. If an SD subcase has no previous SD or NSD staticsubcases, the start time is 0.0 for that SD subcase, and Tend1=0.0 ispermitted. Otherwise, Tend1 > Tstart for all other SD subcases.

6-6 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 133: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• If a creep material is included, the software uses adaptive time stepping bydefault. The adaptive time stepping can result in additional solution time stepswhich are not defined by the TSTEP1 entry. See Support for creep analysis.

Similarily, when running SOL 401 in the context of the NX Multiphysicsenvironment, additional solution time steps beyond what is defined on theTSTEP1 entries are possible.

For both of these cases, the Nout field on the TSTEP1 bulk entry still determinesthe frequency of results output.

Boundary Conditions

• The SPC=n case control command selects either the SPC, SPC1, or SPCADDbulk entry.

The SPC condition can change between subcases.

The SPC entry can optionally be used to define a time-unassigned enforceddisplacement. It cannot be defined as time-assigned. That is, it cannot beselected with the EXCITEID on the TLOAD1 entry. See Mechanical Loads forinformation on the SPCD entry for time-assigned enforced displacement.

The SPCFORCES case control command is supported to request the SPCforce output.

• The MPC=n case control command selects either the MPC or MPCADD bulkentry.

MPCs do not update for large displacements (PARAM,LGDISP,1).

Mechanical Loads

Mechanical loads can be defined in SOL 401 as time-assigned or time-unassigned.SOL 401 is a static solution, and time is only used as the mechanism to incrementloads. Time-assigned and time-unassigned loads can be combined in the samestatic subcase.

• Load selection in Case Control:

o Time-unassigned loads are selected with the LOAD case control command,LOAD=n

where n points to a DAREA, FORCE, FORCE1, FORCE2, GRAV, PLOAD,PLOAD4, RFORCE, RFORCE1, SLOAD, SPCD, or LOADSET entry.

o Time-assigned loads are selected with the DLOAD case control command,DLOAD=n

where n points to a load set defined by a TLOAD1 bulk entry, or a DLOADbulk entry if you want to combine multiple TLOAD1 entries into a singleload set.

NX Nastran 10 Release Guide 6-7

Multi-step nonlinear solution 401

Page 134: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• Time-assigned load definition in Bulk Data:

o TLOAD1 - Defines a time-assigned load.

o TABLEDi (i=1,2,3,4) - Table that defines the load variation with time.

o DLOAD - Combines several TLOAD1 entries.

• Defining the TLOAD1 entry:

o The EXCITEID field on the TLOAD1 entry selects the static load set IDs.

o The supported static load inputs are the DAREA, FORCE, FORCE1,FORCE2, GRAV, PLOAD, PLOAD4, RFORCE, RFORCE1, SLOAD, andSPCD bulk entries.

o The TYPE field on the TLOAD1 entry should be 0 for all load inputs selectedby the EXCITEID field, except for the SPCD entry. The SPCD entry requires1 in the TYPE field.

o A real value is supported in the DELAY field on a TLOAD1 entry to optionallyshift the time steps used to compute the associated loads.

o A temperature load cannot be selected on the EXCITEID field. See ThermalLoads.

o The TID field selects a TABLEDi, which defines a load scaling versus timefunction.

o The figure below demonstrates how the DLOAD, TLOAD1, FORCE (forexample), and TABLEDi bulk entries relate to one another.

o Load Input Example 1:

When there is more than one time-assigned load set, the DLOAD bulk entryis required.

$2345678$2345678$2345678$2345678$2345678$2345678$2345678$2345678$2345678

6-8 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 135: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

$$ DLOAD COMBINES MULTIPLE TLOAD1 (102 AND 105)DLOAD 17 1. 1. 102 1. 105$$ TIME-ASSIGNED FORCE, EXCITEID=125, TYPE=0 (DEFAULT), TIME FUNCTION TID=13TLOAD1 102 125 13$FORCE 125 80 0 1. 3. 0. 0.$$ TIME FUNCTION 13 USED FOR FORCE LOADTABLED2 13 0. ... ++ 0. 0. 1. 100. 2. 0. ENDT$$ TIME-ASSIGNED FORCE EXCITEID=3, TYPE=0 (DEFAULT), TIME FUNCTION TID=12TLOAD1 105 3 1 12$FORCE 3 73 0 2. 8. 0. 0.$$ TIME FUNCTION 12 USED FOR FORCE LOADTABLED2 12 0. ... ++ 0. 0. 2. 1. ENDT

o Load Input Example 2:

When there is only one time-assigned load set, the DLOAD entry is notrequired.

$2345678$2345678$2345678$2345678$2345678$2345678$2345678$2345678$2345678$$ TIME-ASSIGNED FORCE, EXCITEID=125, TYPE=0 (DEFAULT), TIME FUNCTION TID=13TLOAD1 102 125 13$FORCE 125 80 0 1. 3. 0. 0.PLOAD 125 100.0 21 30 18 10PLOAD 125 100.0 10 18 22 25$$ TIME FUNCTION 13 USED FOR LOADTABLED2 13 0. ... ++ 0. 0. 1. 100. 2. 0. ENDT$

• Additional Information about loads:

o Loads in any subcase are total loads as opposed to incremental loads fromthe previous subcase. In other words, the ending load from a previoussubcase does not become the initial loading for the consecutive subcase.

o If no load is applied in a subcase, the total load is zero.

o LOAD=n or DLOAD=n defined at the global level is used in all staticssubcases unless a different LOAD=n or DLOAD=n is defined in a subcase.

o If a time-assigned and time-unassigned enforced displacement condition isdefined with the SPCD entry, a constraint must also be defined with the SPCentry on the same DOF referenced by the SPCD entry.

NX Nastran 10 Release Guide 6-9

Multi-step nonlinear solution 401

Page 136: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

o If multiple enforced displacement conditions are applied to the same DOF,the software uses the following precedence.

■ A time-assigned enforced displacement defined with the SPCD entry,which is referenced by the EXCITEID on the TLOAD1 entry, willoverwrite time-unassigned enforced displacements defined with theSPCD or SPC entries.

■ A time-unassigned enforced displacement defined with the SPCD entry,which is referenced by the LOAD=n case control command, will overwritea time-unassigned enforced displacement defined with the SPC entry.

o The TSTEP1 bulk entry defines the time step intervals in which a solutionwill be generated and output in a static subcase. If your time steps definedby the TSTEP1 entry exceed the time values defined in your TABLEDi entry,by default, the software will extrapolate the data defined in the TABLEDientry. The software will issue a warning if extrapolation occurs. If you do notwant the software to extrapolate the data, you can enter 1 in the EXTRAPfield on the TABLEDi entry.

o In SOL 401, when RFORCE or RFORCE1 entries are referenced by theEXCITEID field on a TLOAD1 entry, the data on the associated TABLEDi,along with the scale factors S and Si on a DLOAD entry (if defined), scalethe angular velocity (ω) and acceleration (α), which are used to compute aninertia force in the equation F = [m] [ω x (ω x r)) + α x r]. Since ω is squaredin the force computation, the resulting scaling is not linearly related to thecomputed force (F). All other solutions scale the computed force (F).

Thermal Loads

A thermal load requires a load temperature (Tload), an initial temperature (Tinit), anda reference temperature (Tref).

Thermal strain is calculated by

ε = αload(Tload – Tref) – αinit(Tinit – Tref)

where,

Tload is the temperature load which induces a thermal strain.

Tinit is the strain free temperature used in the analysis.

Tref is the initial temperature used when computing the temperature dependentcoefficient of thermal expansion, and is defined on the MATi entry. See Computingthe coefficient of thermal expansion.

• If either Tload or Tinit are defined, they both must be defined.

• If the coefficient of thermal expansion is defined as temperature dependent withthe MATTi entries, αload is evaluated at Tload, and αinit is evaluated at Tinit .

6-10 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 137: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

If the coefficient of thermal expansion is not defined as temperature dependent,αload and αinit are assigned the single value defined on the MATi entry.

• Tinit is defined using the TEMP(INIT) case control command, and must be thesame for all subcases. Typically, the TEMP(INIT) command is defined globally,and selects one of the following.

o The TEMP(INIT) can select the TEMP and TEMPD entries in the bulk data.

For example,

...TEMP(INIT) = 100...BEGIN BULK...$ Initial temperatures defined in the bulk dataTEMP,100,5,232.0,6,354.4,...etc...$ TEMPD defines a temperature for grid points not included on a TEMP entryTEMPD,100,450.0...

o The TEMP(INIT) command can select the TEMPEX and TEMPD bulkentries. The new TEMPEX entry references an external BUN file using theunit number defined with an ASSIGN statement. The unit number must beunique to other BUN files, and to other reserved unit numbers. The BUN fileused to define Tinit must only include a single set of temperature data.

If the BUN file defines only temperatures for a portion of the model (subset),the TEMPD entry must be included in the bulk data to define a temperaturefor the grid points not included in the BUN file.

For example,

...ASSIGN BUN=‘temperature0.bun’ UNIT=21...TEMP(INIT) = 100...BEGIN BULK...$ Initial temperatures defined in the BUN fileTEMPEX,100,21$ Temperature for grid points not in the BUN fileTEMPD,100,630.2...

• There are a variety of options to define Tload. These options can be definedglobally and in a subcase. Any subcase definition will override any globaldefinition. For example, if you define a time-unassigned Tload globally using theTEMP(LOAD) command, and you define a time-assigned Tload in a subcaseusing the DTEMP command, the time-assigned Tload is used for that subcase.

NX Nastran 10 Release Guide 6-11

Multi-step nonlinear solution 401

Page 138: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

o You can define a time-unassigned Tload with all temperatures defined in thebulk data. The TEMP(LOAD) case control command selects the TEMPand TEMPD entries in the bulk data.

For example,

...SUBCASE 5

TEMP(LOAD) = 150BEGIN BULK...$ time-unassigned grid point load temperatures for subcase 5TEMP,150,74,232.0,23,354.4,...$ TEMPD defines a temperature for grid points not included on a TEMP entryTEMPD,150,450.0...

o You can define a time-unassigned Tload with temperatures defined in anexternal BUN file. The TEMP(LOAD) case control command selects theTEMPEX bulk entry and optionally the TEMPD entry. The new TEMPEXentry references the external file using the unit number defined with anASSIGN statement. The unit number must be unique to other BUN files, andto other reserved unit numbers. The BUN file selected with the TEMPEXbulk entry must only include a single set of temperature data.

If the BUN file only defines temperatures for a portion of the model (subset),the TEMPD entry must be included in the bulk data to define a temperaturefor the grid points not included in the BUN file.

TEMPEX example:

...ASSIGN BUN=‘temperature1.bun’ UNIT=22$...SUBCASE 10

TEMP(LOAD) = 200BEGIN BULK...$ Time-unassigned load temperatures for subcase 10TEMPEX, 200, 22$ Temperature for grid points not in the BUN fileTEMPD,200,630.2...

o You can define a time-assigned Tload with temperatures defined in the bulkdata or in a BUN file. The new DTEMP case control command selects thenew DTEMP bulk entry, which defines a list of time points versus set IDs.The set IDs are either the IDs of TEMP and TEMPD entries in the bulk data,or the IDs of TEMPEX and TEMPD entries in the bulk data. You cannotcombine TEMP and TEMPEX entries with the same set ID.

Example with TEMP and TEMPD entries in the bulk data:Note: This example assumes the TEMP entries for temperaturesets 500 and 501 define temperatures for all grid points in the model, but

6-12 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 139: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

set 502 defines temperatures for a subset. As a result, a TEMPD isonly required for set 502....SUBCASE 15

DTEMP(LOAD) = 250...BEGIN BULK...$ DTEMP is a list of time points versus set IDsDTEMP,250,,,,,,,,++,.2,500,.4,501,.6,502...$ Load temperatures at t=.2TEMP,500,5,232.0,6,354.4,7,284.2...$ Load temperatures at t=.4TEMP,501,5,234.1,6,356.3,7,287.8...$ Load temperatures at t=.6TEMP,502,5,237.3,6,358.4,7,292.4$ Temperature for grid points not defined with TEMP entry 502.TEMPD,502,630.2...

Example with TEMPEX and TEMPD entries in the bulk data:

Note: This example asssumes the BUN files for temperature sets 501 and 502define temperatures for all grid points in the model, but the BUN file fortemperature set 502 only defines for a subset. As a result, a TEMPDis only required for set 500....ASSIGN BUN=‘temperature1.bun’ UNIT=22ASSIGN BUN=‘temperature2.bun’ UNIT=23ASSIGN BUN=‘temperature3.bun’ UNIT=24...SUBCASE 15

DTEMP(LOAD) = 250...BEGIN BULK...$ DTEMP is a list of time points versus set IDsDTEMP,250,,,,,,,,++,.2,500,.4,501,.6,502...$ Load temperatures at t=.2TEMPEX,500,22$ Temperature for grid points not defined in BUN fileTEMPD,500,345.4...$ Load temperatures at t=.4TEMPEX,501,23...$ Load temperatures at t=.6TEMPEX,502,24...$ If the BUN file for t=.2 and t=.4 includes data for all grid points,$ the TEMPD is not needed

NX Nastran 10 Release Guide 6-13

Multi-step nonlinear solution 401

Page 140: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

o You can define a time-assigned Tload with temperatures defined in a single,external BUN file. The new DTEMP case control command selects thenew DTEMPEX bulk entry, which references the external file using the unitnumber defined in the ASSIGN statement. The unit number must be uniqueto other BUN files, and to other reserved unit numbers. The single BUNfile selected with the DTEMPEX bulk entry must include temperature datafor all grid points, and for multiple time points. The BUN file can includetemperatures for grids which are not in the model, but unlike the TEMPEXexample above, the BUN file selected with the DTEMPEX cannot definetemperatures for only a portion of the model (subset). The TEMPD entrycannot be combined with the DTEMPEX entry.

DTEMPEX example:

...ASSIGN BUN=‘temperature.bun’ UNIT=23$...SUBCASE 20

DTEMP = 300BEGIN BULK...$ Time-assigned load temperatures for subcase 20DTEMPEX, 300, 23...

Additional information:

• The specification of TEMP(MATERIAL) or TEMP(BOTH) are unsupported andwill cause a fatal error if defined.

• The TVAR parameter on the NLCNTL bulk entry controls if time-unassignedtemperature loads selected with the TEMP(LOAD) case control command areramped, or not ramped for each subcase.

o When TVAR=RAMP, the software ramps the load temperatures from thefinal Tload defined for the previous static subcase to the Tload defined for thecurrent subcase. The software determines the load temperature incrementsusing the total number of time increments defined for that subcase. If Tloadis not defined in the previous subcase, the software ramps from Tinit to thecurrent Tload.

o When TVAR=STEP, the load temperatures are not ramped.

The default setting is TVAR=RAMP except when Tend1 = 0.0 is defined onthe TSTEP1 entry in the first static subcase. The setting TVAR=STEP occursin this case.

• For the time-assigned temperature data, the software will interpolate the gridpoint temperatures when times are defined between the time points in the data.Although, if a solution time is outside the data range, the software will use thedata at the closest time point, and a warning will be written to the f06 file.

6-14 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 141: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• You can turn off the thermal strain computation by defining the parameter settingTHRMST=NO (default=YES) on the NLCNTL bulk entry. This is useful fortemperature dependent material evaluation without thermal loading.

• When temperature dependent material properties are defined with the MATTientries for a static subcase, the properties are evaluated at Tload selected witheither the TEMP(LOAD) or DTEMP case control. Both Tload and Tinit must bedefined when temperature dependent properties are defined.

• A modal subcase which is not sequentially dependent (SEQDEP=NO) caninclude temperature dependent material properties defined with the MATTientries. The properties are evaluated at Tload selected with the TEMP(LOAD)case control. The DTEMP case control command is not supported in a modalsubcase. Both Tload and Tinit must be defined when temperature dependentproperties are defined.

• The OTEMP case control command can be included to request solutiontemperature output.

Computing the coefficient of thermal expansionYou use temperature versus strain (length) test data to compute the temperaturedependent coefficient of thermal expansion (α). This data begins with the testspecimen of initial length L at a reference temperature (Tref). The axial strain (Li) isthen measured at consecutive temperatures Ti. To calculate αi:

Element and Material Support

• The 3D solid elements CTETRA, CHEXA, CPENTA and CPYRAM are supportedfor linear, geometric nonlinear, and material nonlinear analysis.

• The axisymmetric elements CQUADX4, CQUADX8, CTRAX3, CTRAX6, theplane strain elements CPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8, and theplane stress elements CPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8 are nowsupported for linear, geometric nonlinear, and material nonlinear analysis.

The grid points on these elements must all lie in either the XZ plane or in the XYplane of the basic coordinate system. The software automatically determinesthe orientation.

When axisymmetric elements are defined on the XZ plane, X is the radialdirection, and Z is the axial direction. The grid points defining these elementsmust have X ≥ 0.

When axisymmetric elements are defined on the XY plane, Y is the radialdirection, and X is the axial direction. The grid points defining these elementsmust have Y ≥ 0.

NX Nastran 10 Release Guide 6-15

Multi-step nonlinear solution 401

Page 142: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• A special, generalized plane strain formulation is available using the CPLSTN3,CPLSTN4, CPLSTN6, and CPLSTN8 elements. See Generalized plane strainanalysis.

• The RBE2 and RBAR rigid elements are now supported with optional largedisplacement effects and thermal expansion. The RBE3 rigid element is alsosupported, but it does not support the large displacement effects or thermalexpansion. See Rigid element support.

• The mass elements CMASSi and CONMi are supported.

• The PSOLID or the PCOMPS bulk entries define the element properties. ThePCOMPS is optionally used to define a layered solid composite property.

The PGPLSN bulk entry defines the special generalized plane strain elementproperties.

• The supported material types include the following.

The MAT1 and MATT1 (temperature dependent) bulk entries define isotropicmaterials.

The MAT3 and MATT3 (temperature dependent) bulk entries define isotropicmaterials.

The MAT9 and MATT9 (temperature dependent) bulk entries define anisotropicmaterials.

The MAT11 and MATT11 (temperature dependent) bulk entries define orthotropicmaterials.

Plastic and creep materials can now optionally be assigned to the 3D solidelements, axisymmetric elements, the plane stress elements, and the planestrain elements. You can enable one or both plasticity/creep in all subcases, orin specific subcases.

See Support for plasticity analysis and Support for creep analysis.

Nonlinear Parameters

The NLCNTL bulk entry defines the parameters for SOL 401 control. The NLCNTL=ncase control command selects the NLCNTL bulk entry, and can be defined in asubcase or globally. You can define the parameters on the NLCNTL bulk entryusing the following format.

1 2 3 4 5 6 7 8 9 10NLCNTL ID Param1 Value1 Param2 Value2 Param3 Value3

Param4 Value4 Param5 Value5 -etc-

For example,NLCNTL 1 EPSU 1E-3 EPSP 1E-3 EPSW 1E-7 +

6-16 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 143: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

+ CONV PW KSTEP 5 MAXITER 25

See the updated NLCNTL entry for the list of supported parameters.

Glue Support

Gluing elements together is a simple and effective method to join meshes which aredissimilar. It correctly transfers displacement and loads resulting in an accuratestrain and stress condition at the interface. The grid points on glued edges andsurfaces do not need to be coincident. Glue creates a weld like connection toprevent relative motion in all directions.

• Surface-to-surface glue

You can define surface-to-surface glue between the faces of the CTETRA,CHEXA, CPENTA and CPYRAM elements. You create solid element faceregions with the BSURFS, BCPROP, or BCPROPS bulk entries, then pair theregions using the source and target fields on the BGSET bulk entry.

• Edge-to-edge glue

You can define edge-to-edge glue between the edges of the axisymmetricelements CTRAX3, CQUADX4, CTRAX6, CQUADX8, the plane stress elementsCPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8, and the plane strain elementsCPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8. You create edge regions with theBEDGE bulk entry, then pair the regions using the source and target fields onthe BGSET bulk entry.

Additional information.

• The inputs to define contact conditions are consistent with other solutions (theBGSET case control and the BGSET, BGPARM, BGADD, BSURFS, BCPROPS,BEDGE bulk entries).

• The BGSET case control command must be above the subcases. As a result,the glue conditions apply to all static and modal subcases.

• The source side element characteristics are used to define the glue stiffness.Therefore it is possible for differences depending on which element faces oredges are selected as the source region.

• The axisymmetric, plane stress, and plane strain elements can be defined ineither the XZ plane or in the XY plane. Edge-to-edge glue is supported in eitherorientation. Glue conditions are computed on the axisymmetric elements on a2π section by default.

• Only GLUETYPE=2 is supported. If you request GLUETYPE=1, the softwarewill continue the solution using GLUETYPE=2. See the BGPARM entry in theQuick Reference Guide for a definition of GLUETYPE.

NX Nastran 10 Release Guide 6-17

Multi-step nonlinear solution 401

Page 144: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• When the PARM,LGDISP,1 setting causes large displacements, the softwareupdates the glue stiffness orientation, although the software computes gluestiffness only once, at the beginning of the solution.

• The BGRESULTS case control command is supported to request the glue forcesand tractions in SORT1 format.

• The generalized plane strain element is not supported by glue or contact regions.

Contact Support

Contact conditions prevent element faces or edges from penetrating, and allowfinite sliding with optional friction effects.

• Surface-to-surface contact

You can define surface-to-surface contact between the faces of the solidelements CTETRA, CHEXA, CPENTA and CPYRAM. You create solid elementface regions with the BSURFS or BCPROPS bulk entries, then pair the regionsusing the source and target fields on the BCTSET bulk entry.

• Edge-to-edge contact

You can define edge-to-edge contact between the edges of the axisymmetricelements CTRAX3, CQUADX4, CTRAX6, CQUADX8, the plane stress elementsCPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8, and the plane strain elementsCPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8. You create edge regions with theBEDGE bulk entry, then pair the regions using the source and target fields onthe BCTSET bulk entry.

Additional information.

• The inputs to define contact conditions are generally consistent with othersolutions (the BCSET case control and the BCTSET, BCTPARM, BCRPARA,BGADD, BSURFS, BCPROPS, BEDGE bulk entries). See the chapter Contactconditions in SOL 401 in the NX Nastran Multi-Step Nonlinear User’s Guide forinformation on defining contact conditions in SOL 401.

• The BCSET case control command must be above the subcases. As a result,the contact definition applies to all static subcases.

A modal subcase which is sequentially dependent (default) uses the finalstiffness from the previous static subcase. When contact is defined, the finalstiffness from the static subcase includes the contact stiffness.

• The contact condition can update when large displacement effects are turned onwith PARAM,LGDISP,1. The active and inactive contact elements are updatedalong with any force adjustments. When sliding occurs, the orientation of thecurrent contact stiffness is updated. If large enough sliding occurs within a userdefined tolerance, contact elements are recreated in the current deformed

6-18 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 145: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

configuration, contact stiffness is recomputed, and contact tractions from theprevious iteration are applied to the newly created contact elements.

• The parameters on the BCTPARM entry are supported, including many newparameters specific to SOL 401 contact. See the updated BCTPARM entry.

• Contact results can be requested with the BCRESULTS case control command.Forces, tractions, separation distance, total and incremental slide distance, andcontact status can be output.

The separation distance is based on the current deformed configuration, andis output for both active and inactive contact elements. The slide distance is arelative displacement in the tangential direction between the source and targetfaces. The total and incremental slide distances are also output when theseparation distance is requested. This total distance is the summation of theincremental sliding which occurred from all previous solution steps from all staticsubcases. The incremental slide distance is the sliding which occurred since thelast output step. Separation distance and slide distance are output for grids onboth the source and the target.

When the contact status is requested with the new STATUS describer on theBCRESULTS command, an integer value indicating the contact status is outputon each grid point included in a contact source or target region. The statusvalues are:

0: No contact exists.

1: A sticking contact condition exists.

2: A sliding contact condition exists.

• For models with 3D solid elements and contact, the element iterative solver isgenerally recommended over the default sparse solver for better performance.The SOL 401 element iterative solver is select by setting the SOLVER parameteron the NLCNTL bulk entry to ELEMITER.

• The generalized plane strain element is not supported by glue or contact regions.

• See SOL 401 contact algorithm.

Supported Output

Case Control DescriptionADAPTERR Requests error estimates.

BCRESULTS Requests contact forces, tractions, separation distance,and the total and incremental slide distances.

BGRESULTS Requests glue forces and tractions.CRSTRN Requests grid point creep strains on elements.DISPLACEMENT Requests displacement output.

NX Nastran 10 Release Guide 6-19

Multi-step nonlinear solution 401

Page 146: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

EKE Requests element kinetic energy output.ELSTRN Requests elastic strain at grid points on elements.ESE Requests the output of the strain energy.FORCE Requests element force output.GCRSTRN Requests Gauss point creep strains on elements.GELSTRN Requests elastic strain at Gauss points.GPFORCE Requests grid point force balance output.GPKE Requests kinetic energy at grid points in a modal subcase.GPLSTRN Requests Gauss point plastic strain output on elements.

GSTRAIN Requests strain at Gauss points.

GSTRESS Requests stress at Gauss points.GTHSTRN Requests thermal strain at Gauss points.JINTEG Requests output of the j-integral for crack analysis.MEFFMASS Requests modal effective mass output in a modal subcase.MPCFORCES Requests multipoint constraint force output.OLOAD Requests the form and type of applied load vector output.OMODES Requests a set of modes for output.

OPRESSRequests that solution pressures be included in the SOL401 output. The solutions pressures are from NX Thermalin the context of a coupled NX multi-physics analysis.

OTEMP Requests solution temperatures output on grid points.PLSTRN Requests grid point plastic strain output on elements.SPCFORCES Requests single-point force of constraint vector output.STRAIN Requests element strain output.STRESS Requests element stress output.THSTRN Requests thermal strain output at grid points on elements.

Solver Support

SOL 401 supports the sparse direct solver (default), the element iterative solver, andthe PARDISO solver (NLTRD3 nonlinear solution module). To select the SOL 401solver type, define a pair of fields on the NLCNTL bulk entry of the form SOLVERSPARSE, SOLVER ELEMITER, or SOLVER PARDISO. The default is SPARSE.

• The sparse direct solver is a robust and reliable option, well-suited to sparsemodels where accuracy is desired.

• The element iterative solver, which is already supported in SOL 101, performsparticularly well with solid element-dominated models. It may be a faster choiceif lower accuracy is acceptable. As in SOL 101, convergence tolerances and

6-20 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 147: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

other options may be set by supplying an SMETHOD card in case control andmatching ITER card in bulk data.

• The PARDISO solver is a hybrid direct-iterative solver, potentially faster withlarger numbers of cores than the sparse solver but with slightly lower accuracy.

Input Summary

You can use the following Parameters with SOL 401.

COLPHEXA OMAXR RGBEAMACOUPMASS OMPT RGBEAMEF56 OPG RGLCRITGRDPNT OUGCORD RGSPRGKLGDISP POST UNITSYSMATNL POSTEXT TINYMAXRATIO POSTOPT WTMASSNOFISR PRGPSTOGEOM PROUT

You can use the following Case Control commands with SOL 401.

ADAPTERR GPFORCE OPRESSANALYSIS GPKE OTEMPBCRESULTS GPLSTRN PARAMBCTSET GROUNDCHECK PLSTRNBEGIN BULK GSTRAIN SEQDEPBGRESULTS GSTRESS SETBGSET GTHSTRN SMETHODBOLTLD INCLUDE SPCCRSTRN JINTEG SPCFORCESDISPLACEMENT LABEL STRAINDLOAD LINE STRESSDTEMP MAXLINES SUBCASEECHO MEFFMASS SUBTITLEEKE METHOD TEMPERATUREELSTRN MPC THSTRNELSUM MPCFORCES TITLEESE NLCNTL TSTEPFORCE NSM WEIGHTCHECKGCRSTRN OLOAD

NX Nastran 10 Release Guide 6-21

Multi-step nonlinear solution 401

Page 148: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

GELSTRN OMODES

You can use the following Bulk Data Entries with SOL 401.

ACCEL CORD3G FORCE1 PSOLIDACCEL1 CPENTA FORCE2 RBARBCRPARA CPLSTN3 GRAV RBE2BCTPARM CPLSTN4 GRDSET RBE3BCTSET CPLSTN6 GRID RFORCEBEDGE CPLSTN8 GROUP RFORCE1BGADD CPLSTS3 INCLUDE SLOADBGPARM CPLSTS4 MAT1 SPCBGSET CPLSTS6 MAT11 SPC1BOLT CPLSTS8 MAT9 SPCADDBOLTFOR CPYRAM MATCID SPCDBOLTLD CQUADX4 MATCRP SPOINTBSURFS CQUADX8 MATFT TABLED1CHEXA CRAKTP MATS1 TABLED2CMASS1 CTETRA MATT1 TABLED3CMASS2 CTRAX3 MATT11 TABLED4CMASS3 CTRAX6 MATT9 TABLEM1CMASS4 DAREA MPC TABLEM2CONM1 DLOAD MPCADD TABLEM3CONM2 DTEMP NLCNTL TABLEM4CORD1C DTEMPEX PARAM TEMPCORD1R ECHOOFF PCOMPS TEMPDCORD1S ECHOON PLOAD TEMPEXCORD2C EIGRL PLOAD4 TLOAD1CORD2R ENDDATA PLOTEL TSTEP1CORD2S FORCE PMASS VCEV

Example

For other examples of complete input files, see n401*.dat ininstall_directory\nxn10\nast\tpl.

INIT MASTER(S)NASTRAN SYSTEM(442)=-1, SYSTEM(319)=1, SYSTEM(554)=1, SYSTEM(556)=1$SOL 401

6-22 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 149: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

TIME 10000CENDTITLE=NX NASTRAN NL STATIC ANALYSIS SETECHO=NONELINE=80000DISPLACEMENT(SORT1,PRINT)=ALLSTRESS=ALLSTRAIN=ALLSPC=1NLCNTL=1$SUBCASE 1ANALYSIS=STATICSDLOAD=1TSTEPNL=1PARAM,TSTATIC,1$SUBCASE 2ANALYSIS=STATICSDLOAD=2TSTEPNL=2PARAM,TSTATIC,1$SUBCASE 3ANALYSIS=STATICSDLOAD=1TSTEPNL=3PARAM,TSTATIC,1$BEGIN BULK$NLCNTL 1 EPSU 1E-3 EPSP 1E-3 EPSW 1E-7 ++ CONV PW KSTEP 5 MAXITER 25$TSTEP1 1 1.0 100 100TSTEP1 2 2.0 100 100TSTEP1 3 3.0 100 100$PARAM,LGDISP,1PARAM,POST,-1PARAM,OGEOM,NOPARAM,GRDPNT,0$CORD2C 1 0 0.0 0.0 0.0 0.0 0.0 1.0++ 1.0 0.0 1.0CORD2S 2 0 0.0 0.0 0.0 0.0 0.0 1.0++ 1.0 0.0 1.0$TLOAD1 101 102 LOAD 2$FORCE 102 21 0 1.0 2.50+6 0.0 0.0FORCE 102 22 0 1.0 2.50+6 0.0 0.0FORCE 102 23 0 1.0 2.50+6 0.0 0.0FORCE 102 24 0 1.0 2.50+6 0.0 0.0$DLOAD 1 1.0 1.0 101DLOAD 2 1.0 1.0 201$TLOAD1 201 202 LOAD 2$

NX Nastran 10 Release Guide 6-23

Multi-step nonlinear solution 401

Page 150: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

FORCE 202 21 0 1.0 1.25+6 0.0 0.0FORCE 202 22 0 1.0 1.25+6 0.0 0.0FORCE 202 23 0 1.0 1.25+6 0.0 0.0FORCE 202 24 0 1.0 1.25+6 0.0 0.0$TABLED2 2 0.0 ++ 0.0 1.0 1.0 1.0 ENDT$SPC1 1 123456 1SPC1 1 123456 2SPC1 1 123456 3SPC1 1 123456 4SPC1 1 2 5SPC1 1 2 6SPC1 1 2 7SPC1 1 2 8SPC1 1 2 9SPC1 1 2 10SPC1 1 2 11SPC1 1 2 12SPC1 1 2 13SPC1 1 2 14SPC1 1 2 15SPC1 1 2 16SPC1 1 2 17SPC1 1 2 18SPC1 1 2 19SPC1 1 2 20SPC1 1 2 21SPC1 1 2 22SPC1 1 2 23SPC1 1 2 24$PSOLID 1 1 0MAT1 1 206840.79553.85 0.307.8334-9 0.0 0.0$GRID 1 0 0.0 50.0 25.0 0GRID 2 0 0.0 50.0 -25.0 0GRID 3 0 0.0 -50.0 -25.0 0GRID 4 0 0.0 -50.0 25.0 0GRID 5 0 200.0 50.0 25.0 0GRID 6 0 200.0 50.0 -25.0 0GRID 7 0 200.0 -50.0 -25.0 0GRID 8 0 200.0 -50.0 25.0 0GRID 9 0 400.0 50.0 25.0 0GRID 10 0 400.0 50.0 -25.0 0GRID 11 0 400.0 -50.0 -25.0 0GRID 12 0 400.0 -50.0 25.0 0GRID 13 0 600.0 50.0 25.0 0GRID 14 0 600.0 50.0 -25.0 0GRID 15 0 600.0 -50.0 -25.0 0GRID 16 0 600.0 -50.0 25.0 0GRID 17 0 800.0 50.0 25.0 0GRID 18 0 800.0 50.0 -25.0 0GRID 19 0 800.0 -50.0 -25.0 0GRID 20 0 800.0 -50.0 25.0 0GRID 21 0 1000.0 50.0 25.0 0GRID 22 0 1000.0 50.0 -25.0 0GRID 23 0 1000.0 -50.0 -25.0 0GRID 24 0 1000.0 -50.0 25.0 0

6-24 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 151: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

$CHEXA 1 1 5 6 7 8 1 2++ 3 4CHEXA 2 1 9 10 11 12 5 6++ 7 8CHEXA 3 1 13 14 15 16 9 10++ 11 12CHEXA 4 1 17 18 19 20 13 14++ 15 16CHEXA 5 1 21 22 23 24 17 18++ 19 20$ENDDATA

Support for plasticity analysisBeginning with NX Nastran 10, you can perform a plasticity analysis in SOL 401.The constitutive model is a standard elastic-plastic model that allows for bilinearand multilinear stress-strain curve representations. For multilinear representations,tabular data is used to define the stress-strain curve. You can specify that the strainvalues in the tabular data are either total strain or plastic strain. You can also definematerial properties as temperature-dependent. At present, the von Mises yieldcriterion is the only yield criterion that is supported.

For bilinear stress-strain representations, you can select either isotropic, kinematic,or combined hardening. For multilinear stress-strain representations, isotropichardening is the only hardening rule available.

You can selectively enable and disable plasticity effects in subcases. Ifplasticity-enabled subcases are sequentially dependent, the plasticity statevariables at the end of one subcase are used as the plasticity state variables at thebeginning of the next subcase. If a plasticity-disabled subcase is placed betweenplasticity-enabled subcases, and the subcases are all sequentially dependent, theplasticity state variables at the end of the preceding plasticity-enabled subcase areused as the plasticity state variables at the beginning of the later plasticity-enabledsubcase.

However, with the exception of special situations, we recommend you avoid placinga sequentially dependent plasticity-disabled subcase after a plasticity-enabledsubcase. Doing so eliminates the possibility that the analysis does not accountfor changes to the plasticity state variables that might result from the loading inthe plasticity-disabled subcase.

Creep analysis is now also supported in SOL 401. You can enable either plasticity orcreep, or both, in all subcases or in specific subcases.

For more information on creep analysis in SOL 401, see Support for creep analysis.

User interface changes

The following changes are made to the NX Nastran 10 user interface to supportplasticity analysis in SOL 401:

NX Nastran 10 Release Guide 6-25

Multi-step nonlinear solution 401

Page 152: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• The MATNL parameter is introduced. With the MATNL parameter, you canglobally switch the plasticity analysis capability on or off.

For more information, see the MATNL parameter.

• The new PLASTIC parameter is available on the NLCNTL bulk entry to optionallyturn off the plasticity capability in a subcase.

For more information, see the NLCNTL bulk entry.

• The MATS1 bulk entry has been enhanced to allow you to define stress versusplastic strain tabular data.

For more information, see the MATS1 bulk entry.

To activate the plasticity analysis capability in SOL 401, do the following:

1. Specify PARAM,MATNL,1.

2. Include an NLCNTL case control command that points to an NLCNTL bulk entry.

3. On an NLCNTL bulk entry, specify any applicable parameters.

If your input file contains subcases, and you want to include the effects of plasticity inspecific subcases, but not others, you have two options.

Option 1: Use a global NLCNTL case control command

1. Specify PARAM,MATNL,1.

2. Above the subcases, include an NLCNTL case control command that points toan NLCNTL bulk entry.

3. Specify any applicable parameters on the NLCNTL bulk entry.

4. In the subcases in which you want to disable the plasticity analysis capability,include an NLCNTL case control command that points to an NLCNTL bulk entry.

5. On the NLCNTL bulk entry, specify PLASTIC in a PARAMi field and NO in thecorresponding VALUEi field.

Option 2: Include NLCNTL case control commands in every subcase

1. Specify PARAM,MATNL,1.

2. Include NLCNTL case control commands in each subcase. Multiple NLCNTLcase control commands can point to a single NLCNTL bulk entry.

3. In subcases that you want to enable the plasticity analysis capability, havethe NLCNTL case control command point to an NLCNTL bulk entry with anyapplicable parameters specified.

6-26 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 153: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

4. In subcases that you want to disable the plasticity analysis capability, havethe NLCNTL case control command point to an NLCNTL bulk entry that hasPLASTIC specified in a PARAMi field and NO specified in the correspondingVALUEi field.

In a SOL 401 plasticity analysis, the property bulk entry referenced by all non-rigidelements must reference a MAT1 bulk entry and a MATS1 bulk entry that havethe same material identification number. If the properties on the MAT1 bulk entryare temperature-dependent, include a MATT1 bulk entry with the same materialidentification number.

On the MATS1 bulk entry, specify TYPE = PLASTIC or PLSTRN to select the straintype in tabular data used to describe a multilinear stress-strain curve. Specify TYPE= PLASTIC if you want to use total strains. Specify TYPE = PLSTRN if you want touse plastic strains. Total and plastic strains are related as follows:

where

To describe a bilinear stress-strain curve, specify either TYPE = PLASTIC orPLSTRN and enter the work hardening slope, H, directly.

For additional information, see the MATS1 bulk entry.

Time step control

Unlike creep analysis in SOL 401, there is no adaptive time stepping for plasticityanalysis. The time steps are defined directly by the solution times. To define solutiontimes for the plasticity analysis, include a TSTEP case control command in yourinput file that points to a TSTEP1 bulk entry. On the TSTEP1 bulk entry, specify thesolution times, and also specify at which solution times you want results to be output.

NX Nastran 10 Release Guide 6-27

Multi-step nonlinear solution 401

Page 154: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

MATNL

Default = –1

Specify PARAM,MATNL,1 to turn on all material nonlinear capabilities in SOL401. Material nonlinear capabilities include plasticity and creep. SpecifyPARAM,MATNL,–1 (default) to turn off all material nonlinear capabilities in SOL401.

6-28 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 155: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

MATS1

Material Stress Dependence

Specifies stress-dependent material properties for use in applications involvingnonlinear materials. This entry is used if a MAT1, MAT2, MAT8, MAT9, or MAT11entry is specified with the same MID in SOLs 106 and 129, or a MAT1, MAT3,MAT9, or MAT11 entry is specified with the same MID in SOL 401.

FORMAT:

1 2 3 4 5 6 7 8 9 10MATS1 MID TID TYPE H YF HR LIMIT1 LIMIT2

EXAMPLE:

MATS1 17 28 PLASTIC 0.0 1 1 2.+4

FIELDS:

Field Contents

MID Identification number of a MAT1, MAT2, MAT3, MAT8, MAT9,or MAT11 entry. (Integer > 0)

TID Identification number of a TABLES1 or TABLEST entry. If H isgiven, then this field must be blank. See Remark 3. (Integer ≥0 or blank)

TYPE Type of material nonlinearity. (Character: “NLELAST” or“PLASTIC” or “PLSTRN”)

“NLELAST” for nonlinear elastic. Not valid for SOL 401. SeeRemarks 1 and 3.

“PLASTIC” for elasto-plastic. Valid for SOLs 106, 129, and 401.See Remarks 2 and 3.

“PLSTRN” for plastic strain. Valid for SOL 401 only. See Remarks2 and 3.

NX Nastran 10 Release Guide 6-29

Multi-step nonlinear solution 401

Page 156: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Field Contents

H Work hardening slope (slope of stress versus plastic strain) inunits of stress. For elastic-perfectly plastic cases, H = 0.0. Formore than a single slope in the plastic range, the stress-straindata must be supplied on a TABLES1 entry referenced by TID,and this field must be blank. See Remark 2. (Real or blank;Default = 0.0 if TID field is blank)

YF Yield function. See Remark 6. (Integer)

1 = von Mises (Default)

2 = Tresca

3 = Mohr-Coulomb

4 = Drucker-Prager

HR Hardening rule. See Remark 7. (Integer)

1 = Isotropic (Default)

2 = Kinematic

3 = Combined isotropic and kinematic hardening

LIMIT1 Initial yield point. See Table 6-1. (Real > 0.0 or blank)

LIMIT2 Internal friction angle, measured in degrees, for theMohr-Coulomb and Drucker-Prager yield criteria. See Table 6-1.(0.0 ≤ Real < 45.0 or blank)

Table 6-1. Yield Functions Versus LIMIT1 and LIMIT2

Yield Function (YF) LIMIT1 LIMIT2

von Mises or Tresca Initial Yield Stress inTension, σy

Not used

Mohr-Coulomb orDrucker-Prager

2 x Cohesion, 2c (in unitsof stress)

Angle of Internal Frictionφ (in degrees)

6-30 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 157: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

REMARKS:

1. If TYPE = “NLELAST”, then MID may reference a MAT1 entry only. Thestress-strain data in the TABLES1 entry is used to determine the stress fora given value of strain. The values H, YF, HR, LIMIT1, and LIMIT2 will notbe used in this case.

Thermo-elastic analysis with temperature-dependent material propertiesis available for isotropic linear and nonlinear elastic materials (TYPE =“NLELAST”) and anisotropic linear elastic materials. Four options for theconstitutive relation exist. These options are listed in Table 6-2 along with therequired bulk entries.

Table 6-2. Constitutive Relations and Required Material PropertyEntries

Constitutive Relation Required Bulk Data Entries

MATi and MATTi where i = 1, 2, 8, 9,or 11 (MATS1 is not required)

MAT1, MATT1, MATS1, and TABLES1

MAT1, MATS1, TABLEST, andTABLES1

MAT1, MATT1, MATS1, TABLEST,and TABLES1

In Table 6-2, {σ} is the stress vector, {ε} is the strain vector, [Ge] is the

elasticity matrix, T is temperature, is the effective elastic modulus, andE is the reference elastic modulus.

2. If TYPE = “PLASTIC” or “PLSTRN”, either the table identification TID orthe work hardening slope H may be specified, but not both. If the TID isomitted, the work hardening slope H must be specified unless the materialis perfectly plastic. The work hardening slope H is related to the tangentialmodulus ET by:

NX Nastran 10 Release Guide 6-31

Multi-step nonlinear solution 401

Page 158: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

where E is the elastic modulus and ET = dσ/dε is the slope of the stress-straincurve in the plastic region. See Figure 6-1.

Figure 6-1. Stress vs. total strain curve when H is specified

3. If TID is specified, the tabular (Xi, Yi) data listed on the TABLES1 bulk entryrepresents a stress-strain curve. The strains are the Xi values and thestresses are the Yi values. The tabular data must conform to the followingrules:

• If TYPE = “NLELAST”, the stress-strain curve can be defined in thefirst and third quadrants to accommodate differences in tension andcompression. If the stress-strain curve is defined only in the firstquadrant, then the first data point must be the origin, (X1, Y1) = (0.0,0.0), and the behavior in compression is assumed to be the mirror imageof the behavior in tension.

• If TYPE = “PLASTIC”, the TID cannot reference a TABLEST entry forSOL 106 or 129. The stress-strain curve must be defined in the firstquadrant as indicated in Figure 6-2. The first data point must be theorigin, (X1, Y1) = (0.0, 0.0). The second data point depends on the yieldfunction as indicated in Table 6-3.

Table 6-3. Second Data Point Versus Yield Function

Yield Function Applicable SOLs Second DataPoint

von Mises SOLs 106, 129, and 401 (X2, Y2) = (ε1, σy)

Tresca SOLs 106 and 129 (X2, Y2) = (ε1, σy)

6-32 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 159: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Table 6-3. Second Data Point Versus Yield Function

Yield Function Applicable SOLs Second DataPoint

Mohr-Coulomb SOLs 106 and 129 (X2, Y2) = (ε1, 2c)

Drucker-Prager SOLs 106 and 129 (X2, Y2) = (ε1, 2c)

The slope of the line joining the first and second data points must equalto the value of E on the MAT1 entry. The work hardening slope, Hk, iscalculated for each successive pair of data points in the plastic regionfrom the following formula:

where εkp is the plastic strain at point k. The plastic strain at point k isrelated to the total strain at point k as follows:

For SOL 106, if the LIMIT1 value is different from the value for the yieldstrength in the TABLES1 data, the LIMIT1 value takes precedence for thepurpose of calculating the strain at yield. However, the work hardeningslopes, Hk, are still calculated from the data points on the TABLES1 entry.

NX Nastran 10 Release Guide 6-33

Multi-step nonlinear solution 401

Page 160: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Figure 6-2. Stress vs. total strain curve when TID is specified and TYPE= “PLASTIC”

• If TYPE = “PLSTRN”, the TID can reference a TABLEST entry andthe stress-plastic strain curve must be defined in the first quadrant asindicated in Figure 6-3. The work hardening slope, Hk, is calculated foreach successive pair of data points from the following formula:

where εkp is the plastic strain at point k. The total strain at point k isrelated to the plastic strain at point k as follows:

6-34 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 161: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Figure 6-3. Stress vs. plastic strain curve when TID is specified andTYPE = “PLSTRN”

4. The software interprets the data on the TABLES1 entries as engineeringstress and strain. See SOLs 601 and 701 Remark 13.

5. If MATS1 is specified, isotropic plasticity theory is used to calculate plasticstrains regardless of elastic property type. For anisotropic elastic propertiesthis may be unrealistic and should be used with caution. For more information,see the NX Nastran Hanbook of Nonlinear Analysis.

6. For SOL 401, the von Mises yield criterion is the only valid yield function.Selecting any other yield function results in a fatal error.

7. For SOL 401:

• When a bilinear stress-strain representation is defined, all three hardeningrules are supported.

• When a multilinear stress-strain representation is defined, only isotropichardening is supported.

REMARKS RELATED TO SOLS 601 AND 701:

1. MID is restricted to the identification number of a MAT1 entry.

2. LIMIT2 is ignored. LIMIT1 is only used if TID is blank and H is specified(i.e. for a bilinear plastic material).

NX Nastran 10 Release Guide 6-35

Multi-step nonlinear solution 401

Page 162: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

3. Only YF = 1 (von Mises yield criterion) is supported.

4. If HR = 3, a mixed hardening factor of 0.5 is used. HR = 3 may only be usedwith a bilinear plastic material (i.e. the TID must be blank).

5. TID can reference a TABLEST entry for TYPE = “PLASTIC” but not for TYPE= “NLELAST”.

6. For SOL 601, MATS1 can be combined with the CREEP entry to model aplastic-creep material. TID must be specified instead of H in this case.

7. TYPE = ”NLELAST” does not support temperature-dependent materialproperties or temperature loading. As a result, Table 6-2 does not apply,and there is no thermal strain.

8. For SOL 701, TYPE = ”NLELAST” can only be used with the rod element.

9. If TYPE = “NLELAST”, the full stress-strain curve (tension and compression)must be specified for the rod element. For other elements, the stress-straincurve is linearly extrapolated using the two starting and end points on thecurve.

10. If the slope of the line joining the origin and second point in TABLES1 (forTYPE = “PLASTIC” and a given TID) is not equal to the value of E in MAT1entry, the strain value at the second point will be adjusted accordingly.

11. If TYPE = “PLASTIC”, all tangent modulii ETi must satisfy the following:

• HR = 1: ETi < E

ETi can be negative when HR=1. Caution: Under certain modeling andloading conditions, a negative ETimay prevent a solution from convergingand cause a failure.

• HR = 2: 0.0001 * E < ETi < E

• HR = 3: 0.0001 * E < ETi < E

12. For beam elements, only the bilinear plastic material (i.e., TYPE=”PLASTIC”with H) is applicable.

13. The stress and strain measures used for input in the TABLES1 entrydepends on the kinematic formulation selected in the model. The stress andstrain measures for both input and output is described in section 3.1 of theAdvanced Nonlinear Theory and Modeling Guide.

6-36 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 163: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

NLCNTL

Strategy Parameters for SOL 401

Defines solution control parameters for SOL 401.

FORMAT:

1 2 3 4 5 6 7 8 9 10NLCNTL ID PARAM1 VALUE1 PARAM2 VALUE2 PARAM3 VALUE3

PARAM4 VALUE4 PARAM5 VALUE5 -etc-

EXAMPLE:

NLCNTL 1 MAXITER 30 CONV UPW MAXDIV 2

SOLVER ELEMITER

FIELDS:

Field Contents

SID Identification number. (Integer > 0)

PARAMi Name of the NLCNTL parameter. Allowable names are given inthe parameter listing below. (Character)

VALUEi Value of the parameter. (Real, Integer, or Character)

NLCNTL PARAMETERS:

Name Description

CONV Specifies the convergence criteria. See Remark 8. (Character =“U”, “P”, “W”, or any combination; Default = “W”)

NX Nastran 10 Release Guide 6-37

Multi-step nonlinear solution 401

Page 164: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Name Description

CREEP Include creep effects. (Character = “YES” or “NO”; Default =“YES”)

CRCERAT For the ratio of maximum creep increment to elastic strain method,the ratio of maximum creep increment to elastic strain that is usedto calculate the next time step. Valid for creep analysis only. (Real≥ 0.0; Default = 0.1)

CRCINC For the maximum creep increment method, the maximum creepincrement that is used to calculate the next time step. Valid forcreep analysis only. (Real ≥ 0.0; Default = 1.0E-4)

CRICOFF Creep strain increment below which the next time step is theproduct of the current time step and CRMFMX. Valid for creepanalysis only. (0.0 < Real < 1.0; Default = 1.0E-6)

CRINFAC Integration factor used to calculate incremental creep strain. Validfor creep analysis only. See Remark 5. (0.0 ≤ Real ≤ 1.0; Default =0.5)

CRINTS Initial time step or constant time step. Valid for creep analysis only.(Real > 0.0; Default = 0.01)

CRMFMN Minimum time step multiplying factor. If the next time stepcalculated by the adaptive time stepping algorithm is smaller thanthe product of the current time step and CRMFMN, the softwarehalves the current time step, recalculates the current creep strainincrement, and reenters the adaptive time stepping algorithm atthe point the creep strain increment is compared to CRICOFF.Valid for creep analysis only. (0 ≤ Real ≤ 1.0; Default = 0.1)

CRMFMX Maximum time step multiplying factor. See the CRICOFFparameter for additional information. Valid for creep analysis only.(Real ≥ 1.0; Default = 5.0)

CRSBCDT Controls whether the first time step in a sequential subcase usesCRINTS or the time step calculated at the end of the previoussubcase. Valid for creep analysis only. (Integer; Default = 1)0: Use the time step calculated at the end of the previous subcase1: Use CRINTS

CRTEABS Maximum absolute truncation error. Valid for creep analysis only.(0.0 ≤ Real < 1.0; Default = 1.0E-4)

6-38 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 165: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Name Description

CRTECO For the error truncation method, use CRTEABS to calculate thenext time step if the creep strain is less than CRTECO, and useCRTEREL to calculate the next time step if the creep strain isgreater than CRTECO. Valid for creep analysis only. (0.0 ≤ Real <1.0; Default = 0.01)

CRTEREL Maximum relative truncation error. Valid for creep analysis only.(0.0 ≤ Real < 1.0; Default = 0.01)

CRTSC Specifies the time stepping method. Valid for creep analysis only.See Remarks 6 and 7. (Integer or blank; Default = 12)0: Use constant time stepping1: Use adaptive time stepping based on the error truncationmethod only2: Use adaptive time stepping based on the ratio of maximumcreep increment to elastic strain method only3: Use adaptive time stepping based on the maximum creepincrement method only12: Use adaptive time stepping based on both the error truncationmethod and the ratio of maximum creep increment to elastic strainmethod13: Use adaptive time stepping based on both the error truncationmethod and the ratio of maximum creep increment method23: Use adaptive time stepping based on both the ratio ofmaximum creep increment to elastic strain method and themaximum creep increment method123: Use adaptive time stepping based on the error truncationmethod, the ratio of maximum creep increment to elastic strainmethod, and the maximum creep increment method

CRTSMN Minimum time step. If the next time step is larger than CRTSMN,the software accepts the next time step. If the next time step issmaller than CRTSMN, the software halves the current time step,recalculates the current creep strain increment, and reenters theadaptive time stepping algorithm at the point the creep strainincrement is compared to CRICOFF. Valid for creep analysis only.(0.0 ≤ Real ≤ CRTSMX; Default = 0.001*CRINTS)

CRTSMX Maximum time step. If CRTSMX is set to 0.0 (default), the softwareaccepts the next time step. If CRTSMX is nonzero and the nexttime step is larger than CRTSMX, the software uses CRTSMX asthe next time step. Otherwise, the next time step is compared toCRTSMN. Valid for creep analysis only. (Real ≥ 0.0; Default = 0.0)

EPSBOLT Bolt preload convergence tolerance. See Remark 9. (Real > 0.0;Default = 1.0E-2)

NX Nastran 10 Release Guide 6-39

Multi-step nonlinear solution 401

Page 166: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Name Description

EPSP Error tolerance on force. (Real > 0.0; Default = 1.0E-2)

EPSU Error tolerance on displacement. (Real > 0.0; Default = 1.0E-2)

EPSW Error tolerance on work. (Real > 0.0; Default = 1.0E-6)

FOLLOWK Include follower stiffness. Follower stiffness is computed from thefollower loads defined with the FORCE1, FORCE2, PLOAD, orPLOAD4 entries. (Character = “YES” or “NO”; Statics default =“NO”; Modal default = “YES”)

ITRBOLT Maximum number of bolt iterations before the bolt preloadcalculation is considered non-converged. See Remark 9. (Integer> 0; Default = 20)

KUPDATE Stiffness update strategy. (Integer; Default = 0)

-1: Initial stiffness approach0: Auto stiffness update1: Full Newton-Raphson> 1: Quasi Newton-Raphson, and KUPDATE is the number ofiterations before a stiffness update

MAXBIS Maximum number of bisections allowed. (0 < Integer < 10; Default= 5)

MAXDIV Number of divergences before solution is assumed to diverge.(Integer > 0; Default = 3)

MAXITER Maximum number of iterations per time step. (Integer > 0; Default= 25)

MAXQN Maximum number of quasi-Newton correction vectors to be saved.(Integer ≥ 0; Default = 10)

MSGLVL Diagnostic level. (Integer = 0 or 1; Default = 0)0: No additional diagnostic output1: Convergence information is output for each iteration

PLASTIC Include plasticity effects. (Character = “YES” or “NO”; Default =“YES”)

SOLVER Specifies the solver. (Character = ”SPARSE”, ”PARDISO”, or”ELEMITER”; Default = “SPARSE”)

SPINK Include spin softening. (Character = “YES” or “NO”; Statics default= “NO”; Modal default = “YES”)

6-40 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 167: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Name Description

STFOPTN Material stiffness matrix option. (Integer ≥ 0; Default = 3)1: The elastic stiffness matrix is used.2: The tangent stiffness matrix is used.3: The elastic stiffness matrix is used to start each subcase, theelastic stiffness matrix is used if a stiffness update is requestedprior to the beginning of a new time step, and the tangent stiffnessmatrix is used at any intermediate stiffness update.

STRESSK Include stress stiffening. (Character = “YES” or “NO”; Staticsdefault = “YES”; Modal default = “YES”)

THRMST Include thermal strain in a static analysis (Character = “YES” or“NO”; Default = “YES”)

TSTEPK Stiffness is updated at the beginning of the time step. Applicableonly if KUPDATE>1. (Character = “YES” or “NO”; Default = “NO”)

TVAR Specifies whether temperature loads are ramped or stepped.(Character = ”RAMP” or ”STEP”; Default = “RAMP”)

REMARKS:

1. The NLCNTL bulk entry must be selected with the NLCNTL = SID casecontrol command.

2. NLCNTL case control commands can be placed inside subcases. Becauseeach NLCNTL case control command can point to a different NLCNTL bulkentry, the NLCNTL parameter settings can vary from subcase to subcase.

3. A fatal error occurs when a PARAMi field is defined and the correspondingVALUEi field is left blank.

4. If an NLCNTL parameter is applicable to a certain type of analysis, but it is notdefined on an NLCNTL bulk entry, the default value for the parameter is used.

5. Incremental creep strain, Δεc, is calculated from the generalized trapezoidalrule as follows:

where Δt is the current time step, έ ct is the creep strain rate at t, έ ct+Δt is thecreep strain rate at t+Δt, and β is the integration factor specified with theCRINFAC parameter.

NX Nastran 10 Release Guide 6-41

Multi-step nonlinear solution 401

Page 168: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

6. Solution times are the times specified by the TENDi and NINCi fields onTSTEP1 bulk entries. At all times during the creep analysis, if the next timestep would result in skipping over a solution time, the software truncates thenext time step so that a solve occurs at the solution time. If a time step istruncated to avoid skipping over a solution time, the truncated time step is notsubject to the any minimum time step requirement.

7. When you select an adaptive time stepping algorithm that is based on multiplemethods, the software calculates a value for the next time step from eachselected method. The software compares the values and uses the smallestas the next time step.

8. The convergence test flags (U = displacement error, P = load equilibriumerror, and W = work error) and the tolerances (EPSU, EPSP, and EPSW)define the convergence criteria. All the requested criteria (combination of U,P, and/or W) are satisfied upon convergence.

9. For a bolt preload iteration, if the difference between the software computedpreload and the user-defined preload is less than EPSBOLT, the boltpreload calculation is considered converged. If the difference is greater thanEPSBOLT, the preload strain is modified accordingly for the next bolt preloaditeration. The iterations continue until either convergence is satisfied, or thenumber of iterations reaches ITRBOLT.

Support for creep analysisYou can now perform creep analysis in SOL 401 using the Bailey-Norton model. Allelements supported in SOL 401, except for the rigid elements, support the creepmaterial defined using the new MATCRP bulk entry. The Bailey-Norton modelrepresents isotropic creep with optional temperature-dependency.

You can selectively enable and disable creep effects in subcases. If creep-enabledsubcases are sequentially dependent, the total accumulated creep strain at theend of one subcase is used as the initial creep strain for the next subcase. If acreep-disabled subcase is placed between creep-enabled subcases, and thesubcases are all sequentially dependent, the total accumulated creep strain at theend of the preceding creep-enabled subcase is used as the initial creep strain forthe later creep-enabled subcase because no incremental creep strain arises increep-disabled subcases.

Plasticity analysis is now also supported in SOL 401. You can enable one or bothplasticity/creep in all subcases, or you can enable one or both in specific subcases.

For more information on plasticity analysis in SOL 401, see Support for plasticityanalysis.

Creep analysis implementation

The Bailey-Norton model relates creep strain to stress and time as follows:

6-42 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 169: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Equation 6-1.

where εec is the effective creep strain, σe is effective stress, t is time, and A, B,and D are user-defined coefficients. Because the model uses effective stress andeffective creep strain, the values for the coefficients are directly relatable to resultsfrom uniaxial testing.

In the Bailey-Norton model, temperature is not accounted for explicitly. To accountfor temperature-dependence, you can define the coefficients as tabular functions oftemperature.

For some very simple cases, you can use Equation 6-1 directly to calculate theeffective creep strain as a function of time. However, for the general case wheretemperature and stress vary, and computer simulation is required, Equation 6-1 isapplied incrementally over a finite number of time steps.

During the creep analysis, the incremental creep strain for each time step iscalculated by numerically integrating the instantaneous creep strain rate. Theformula for creep strain rate is obtained from the following flow rule:

Equation 6-2.

where έijc are the components of the creep strain rate tensor, έec is the effectivecreep strain rate, and Sij are the components of the deviatoric stress tensor.

The effective creep strain rate is obtained by differentiating Equation 6-1 with respectto time.

To evaluate each increment of creep strain, the software performs a numericalintegration based on the generalized trapezoidal rule as follows:

Equation 6-3.

where Δtn = tn – tn-1 is the duration of the subinterval, and β is a user-definednumerical integration parameter. Generally, the default value of 0.5 for β isappropriate.

User interface changes

The following changes are made to the NX Nastran 10 user interface to supportcreep analysis in SOL 401:

NX Nastran 10 Release Guide 6-43

Multi-step nonlinear solution 401

Page 170: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• The MATNL parameter is introduced. With the MATNL parameter, you canglobally switch the creep analysis capability on or off.

For more information, see the MATNL parameter.

• New parameters are available for use with the NLCNTL bulk entry. Theseparameters allow you to turn off the creep capability in subcases, controladaptive time stepping or define a constant time step, and define the integrationfactor in Equation 6-3.

For more information, see the NLCNTL bulk entry.

• The MATCRP bulk entry is introduced. With the MATCRP bulk entry, you defineparameters related to the creep constitutive model.

For more information, see the MATCRP bulk entry.

To activate the creep analysis capability in SOL 401, do the following:

1. Specify PARAM,MATNL,1.

2. Include an NLCNTL case control command that points to an NLCNTL bulk entry.

3. On the NLCNTL bulk entry, specify any applicable parameters.

If your input file contains subcases, and you want to include the effects of creep inspecific subcases, but not others, you have two options.

Option 1: Use a global NLCNTL case control command1. Specify PARAM,MATNL,1.

2. Include an NLCNTL case control command above the subcases that points toan NLCNTL bulk entry.

3. On the NLCNTL bulk entry, specify any applicable parameters.

4. In the subcases that you want to disable the creep analysis capability, include anNLCNTL case control command that points to an NLCNTL bulk entry.

5. On the NLCNTL bulk entry, specify CREEP in a PARAMi field and NO in thecorresponding VALUEi field.

Option 2: Include NLCNTL case control commands in every subcase1. Specify PARAM,MATNL,1.

2. Include NLCNTL case control commands in each subcase. Multiple NLCNTLcase control commands can point to a single NLCNTL bulk entry.

3. In subcases that you want to enable the creep analysis capability, have theNLCNTL case control command point to an NLCNTL bulk entry with anyapplicable parameters specified.

6-44 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 171: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

4. In subcases that you want to disable the creep analysis capability, have theNLCNTL case control command point to an NLCNTL bulk entry that has CREEPspecified in a PARAMi field and NO specified in the corresponding VALUEi field.

To directly define solution times for the creep analysis, include a TSTEP case controlcommand in your input file that points to a TSTEP1 bulk entry. On the TSTEP1bulk entry, you can specify the solution times and specify which solution times youwant results output.

Unfortunately, the solution times you specify on the TSTEP1 bulk entry may resultin time steps that are either too coarse to produce accurate results, or too fine toproduce results efficiently. To assist you in avoiding such problems, the softwareuses adaptive time stepping by default. You can tweak the adaptive time steppingalgorithm or override adaptive time stepping altogether with new parameters for theNLCNTL bulk entry. For more information on adaptive time stepping, see Timestep control.

In a SOL 401 creep analysis, the property bulk entry referenced by all non-rigidelements must reference a MAT1 bulk entry and a MATCRP bulk entry that havethe same material identification number. If the properties on the MAT1 bulk entryare temperature-dependent, include a MATT1 bulk entry with the same materialidentification number.

You use the MATCRP bulk entry to specify:

• The stress threshold below which creep does not occur.

• The hardening rule to apply.

• The coefficients in the Bailey-Norton creep model.

You can specify the coefficients in the Bailey-Norton creep model as either constantor as a function of temperature. To specify a coefficient as temperature-dependent,enter the identification number of a TABLEM1 bulk entry in the corresponding A, B,or D field of the MATCRP bulk entry. On the TABLEM1 bulk entry, enter tabular datathat describes how the coefficient varies with temperature. At present, a MATCRPbulk entry cannot reference a TABLEM2, TABLEM3, or TABLEM4 bulk entry.

Time step control

During a SOL 401 creep analysis, the solution times depend on:

• How you specify the TSTEP1 bulk entry.

• How you specify the time stepping parameters.

The time steps that result from the TSTEP1 bulk entry specification may be toocoarse to produce accurate results, or too fine to produce results efficiently. Bydefault, the software uses an adaptive time stepping algorithm to avoid suchproblems.

NX Nastran 10 Release Guide 6-45

Multi-step nonlinear solution 401

Page 172: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

You can tweak the adaptive time stepping algorithm or override adaptive timestepping altogether and use a constant time step with new parameters for theNLCNTL bulk entry. The new parameters are:

CRCERAT Ratio of maximum creep increment to elastic strain that isused to adaptively specify the next time step.

CRCINC Maximum creep increment that is used to adaptively specifythe next time step.

CRICOFF Creep strain increment below which the next time step isthe product of the current time step and the maximum timestep multiplying factor.

CRINFAC Numerical integration parameter.

See Equation 6-3.

CRINTS Initial time step for adaptive time stepping, or the constanttime step if adaptive time stepping is overridden.

CRMFMN Minimum time step multiplying factor.

CRMFMX Maximum time step multiplying factor.

CRSBCDT Controls whether the first time step in a sequential subcaseuses the initial time step or the time step calculated at theend of the previous subcase.

CRTEABS Maximum absolute truncation error that is used toadaptively specify the next time step.

CRTECO Creep strain increment below which CRTEABS is used,and above which CRTEREL is used.

CRTEREL Maximum relative truncation error that is used to adaptivelyspecify the next time step.

CRTSC Specifies the time stepping method.

CRTSMN Minimum time step.

CRTSMX Maximum time step.

The CRTSC parameter controls the overall time stepping behavior. Use the CRTSCparameter to:

• Select the adaptive time stepping algorithm that the software uses to calculatethe next time step.

• Override adaptive time stepping altogether and have the software use the valueof the CRINTS parameter as a constant time step.

The adaptive time stepping algorithm options include the following:

• The next time step is based on the maximum creep strain increment criterion.You specify the maximum creep strain increment with the CRCINC parameter.

6-46 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 173: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• The next time step is based on the ratio of maximum creep increment to elasticstrain criterion. You specify the ratio of maximum creep increment to elasticstrain with the CRCERAT parameter.

• The next time step is based on the maximum truncation error criterion. For thisoption, you have three sub-options.

o Use the maximum absolute truncation error. You specify the maximumabsolute truncation error with the CRTEABS parameter.

o Use the maximum relative truncation error. You specify the maximumrelative truncation error with the CRTEREL parameter.

o Use the maximum absolute truncation error if the creep strain is less thanthe value specified by the CRTECO parameter, and use the maximumrelative truncation error if the creep strain is greater than the value specifiedby the CRTECO parameter.

• The next time step is the shortest time step calculated by any combination of themaximum creep strain increment, ratio of maximum creep increment to elasticstrain, and maximum truncation error criteria.

For additional information on the maximum creep strain increment, ratio of maximumcreep increment to elastic strain, and maximum truncation error criteria, seeMaximum creep strain increment criterion, Ratio of maximum creep increment toelastic strain criterion, and Maximum truncation error criterion.

When the creep simulation begins, the value of the CRINTS parameter is alwaysused as the first time step. If adaptive time stepping is overridden, the value of theCRINTS parameter is used as a constant time step throughout the simulation.

If adaptive time stepping is not overridden, after each time step the softwarecompares the calculated creep strain increment to the value of the CRICOFFparameter. If the creep strain increment is greater than the value of the CRICOFFparameter, the software uses the adaptive time stepping algorithm to calculate thenext time step. If the creep strain increment is less than the value of the CRICOFFparameter, the software uses the product of the current time step and the value ofthe CRMFMX parameter as the next time step.

If the software uses the adaptive time stepping algorithm to calculate the next timestep, the next time step is compared to the product of the current time step and thevalue for the CRMFMN parameter. If the next time step is smaller than the product ofthe current time step and the value for the CRMFMN parameter, the software halvesthe current time step, recalculates the current creep strain increment, and reentersthe algorithm at the point at which the creep strain increment is compared to thevalue of the CRICOFF parameter. If the next time step is larger than the productof the current time step and the value of the CRMFMN parameter, the softwarekeeps the next time step.

The next time step is then compared against the values of the CRTSMX andCRTSMN parameters. First, the software checks to see if the value of the CRTSMX

NX Nastran 10 Release Guide 6-47

Multi-step nonlinear solution 401

Page 174: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

parameter is 0.0. If so, the software accepts the value for the next time step anduses it to compute the next creep strain increment. If the value of the CRTSMXparameter is not set to 0.0, the next time step is compared to the value of theCRTSMX parameter. If the next time step is larger than the value of the CRTSMXparameter, the software uses the value of the CRTSMX parameter as the next timestep and uses it to compute the next creep strain increment. If the next time step issmaller than the value of the CRTSMX parameter, the next time step is compared tothe value of the CRTSMN parameter. If the next time step is smaller than the valuefor the CRTSMN parameter, the software halves the current time step, recalculatesthe current creep strain increment, and reenters the algorithm at the point the creepstrain increment is compared to the CRICOFF parameter. If the next time step islarger than the value of the CRTSMN parameter, the software accepts the value forthe next time step and uses it to compute the next creep strain increment.

The adaptive time stepping algorithm is summarized by the following flowchart. Inthe flowchart, the notation for the value of a parameter is Vparameter name.

6-48 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 175: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Figure 6-4. Flowchart of adaptive time stepping algorithm

Regardless of whether you are using adaptive time stepping or a constant time step,the solution times you specify with the TENDi and NINCi fields on TSTEP1 bulkentries are always honored. At all times during the creep simulation, if the next time

NX Nastran 10 Release Guide 6-49

Multi-step nonlinear solution 401

Page 176: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

step would result in skipping over a solution time defined in a TSTEP1 bulk entry, thesoftware truncates the next time step so that a solve occurs at that solution time.

As a best practice, consider using the TSTEP1 bulk entry to specify only the atwhich times you want the results output, and let the adaptive time stepping algorithmdetermine all the other solution times.

For additional information on the new creep-related parameters, see the NLCNTLbulk entry.

Maximum creep strain increment criterion

With the maximum creep strain increment criterion, NX Nastran calculates the nexttime step by scaling the current time step as follows:

Equation 6-4.

where CRCINC is the value of the CRCINC parameter and Δεec is the currenteffective creep strain increment.

Ratio of maximum creep increment to elastic strain criterion

With the ratio of maximum creep increment to elastic strain criterion, NX Nastrancalculates the next time step by scaling the current time as follows:

Equation 6-5.

where CRCERAT is the value of the CRCERAT parameter, Δεec is the currenteffective creep strain increment, and εeE is the current total effective elastic strain.

Maximum truncation error criterion

With the maximum truncation error criterion, NX Nastran also calculates the nexttime step by scaling the current time step. The value of the CRTECO parameterdetermines whether the maximum absolute truncation error or the maximum relativetruncation error is used to adaptively specify the next time step.

6-50 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 177: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• If the creep strain increment is less than the value of the CRTECO parameter,the maximum absolute truncation error is used. The maximum absolutetruncation error is specified using the CRTEABS parameter.

• If the creep strain increment is greater than the value of the CRTECO parameter,the maximum relative truncation error is used. The maximum relative truncationerror is specified using the CRTEREL parameter.

NX Nastran 10 Release Guide 6-51

Multi-step nonlinear solution 401

Page 178: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

MATCRP

Creep Material Definition

Defines coefficients for creep constitutive model in SOLs 401 and 601.

FORMAT:

1 2 3 4 5 6 7 8 9 10MATCRP MID “301” THRESH HARD

A B D

EXAMPLE:

MATCRP 20 301 STRAIN 104 1050.5 3.2 0.8

FIELDS:

Field Contents

MID Identification number of a MAT1, MAT3, MAT9, or MAT11 bulkentry. See Remark 1. (Integer > 0)

THRESH Factor that when multiplied by the elastic modulus yields thestress threshold below which creep does not occur. (0.0 < Real <1.0E-3; Default = 1.0E-5)

HARD Hardening rule. (Character)

“STRAIN” for strain hardening (Default)

“TIME” for time hardening

A,B,D Coefficients for creep constitutive model. See Remarks 2 and3. (Real or Integer > 0)

If real entry, value of coefficient used at all temperatures.

If integer entry, identification number of TABLEM1 bulk entry thatdefines the coefficient as a function of temperature.

6-52 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 179: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

REMARKS:

1. A MAT1, MAT3, MAT9, or MAT11 bulk entry that is referenced by a MATCRPbulk entry can in turn reference a corresponding MATT1, MATT3, MATT9,or MATT11 bulk entry.

2. The A, B, and D coefficients are used to define the Bailey-Norton creepmodel as follows:

where εc is the effective creep strain, σ is effective stress, and t is time.

3. A fatal error occurs if any of the A, B, or D fields are left blank.

REMARKS RELATED TO SOL 601:

1. THRESH and HARD are ignored.

2. The MID field of the MATCRP bulk entry must reference a MAT1 bulk entry.

3. For a specific solution temperature, the software interpolates the coefficientssuch that the creep strain varies linearly with respect to the temperaturepoints.

Disable plasticity and creepThe MATNL parameter allows you to switch all creep and/or plasticity effects on/offfor all related elements.

When the MATNL parameter is set to 1, PARAM,MATNL,1 is defined to turn creepand/or plasticity effects on, the new MATOVR bulk entry allows you to optionallydisable the creep and plasticity effects off for the elements selected GROUP entry.

• Use TYPE = ELEM to reference a GROUP bulk entry that includes a list ofelements. The MATOVR specification applies to the listed elements.

• Use TYPE = PROP to reference a GROUP bulk entry that includes a list ofproperties. The MATOVR specification applies to all elements that reference theproperties listed in the GROUP bulk entry.

For more information, see the MATOVR bulk entry.

NX Nastran 10 Release Guide 6-53

Multi-step nonlinear solution 401

Page 180: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

MATOVR

Disable Nonlinear Effects in Elements

Used to globally turn off creep and/or plasticity effects in groups of elements.Applicable to SOL 401 only.

FORMAT:

1 2 3 4 5 6 7 8 9 10

MATOVR GRPID PL CR

EXAMPLE:

MATOVR 110 NO

FIELDS:

Field Contents

GRPID Group identification number. See Remark 1. (Integer > 0)

PL If nonlinear analysis is enabled, include plasticity effects. SeeRemark 2. (Character = “YES” or “NO”; Default = “YES”)

CR If nonlinear analysis is enabled, include creep effects. SeeRemark 2. (Character = “YES” or “NO”; Default = “YES”)

REMARKS:

1. The GROUP bulk entry referenced in the GRPID field must have TYPE =“ELEM” or “PROP”. If TYPE = “ELEM”, all the elements listed in the groupare selected. If TYPE = “PROP”, all the elements that reference the physicalproperties listed in the group are selected.

6-54 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 181: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

2. If the MATNL parameter specification does not enable nonlinear analysis,specifying PL or CR = “YES” does not switch on plasticity or creep effects inthe group of elements.

3. Multiple MATOVR bulk entries are permissible so long as the GRPID fieldsare unique.

Rigid element supportThe RBE2 and RBAR rigid elements are now supported in SOL 401 with optionallarge displacement effects and thermal expansion. The RBE3 rigid element isalso supported, but it does not support the large displacement effects or thermalexpansion.

The RIGID case control command includes the new AUTO and STIFF options toselect the RBE2 and RBAR rigid element behavior. When RIGID=AUTO, whichis the default for SOL 401, the behavior depends if large displacement effectsare turned off with PARAM,LGDISP,-1 (default), or on with PARAM,LGDISP,1.The RIGID case control command must be defined globally, and it applies to allsubcases. The input combinations are as follows.

• If you input RIGID=AUTO and PARAM,LGDISP,-1, the software automaticallyapplies the RIGID=LINEAR option. RBE2 and RBAR elements do not includelarge displacement effects or thermal expansion.

• If you input RIGID=AUTO and PARAM,LGDISP,1, the software automaticallyapplies the RIGID=STIFF option. RBE2 and RBAR elements include largedisplacement effects and thermal expansion.

• If you input RIGID=STIFF and PARAM,LGDISP,-1, the large displacementeffects are not included, in general. RBE2 and RBAR elements include thermalexpansion.

• If you input RIGID=STIFF and PARAM,LGDISP,1, the RBE2 and RBAR elementbehavior is the same as RIGID=AUTO and PARAM,LGDISP,1. RBE2 and RBARelements include large displacement effects and thermal expansion.

• When RIGID=LINEAR, the RBE2 and RBAR elements do not include largedisplacement effects or thermal expansion. This behavior is independent ofthe PARAM,LGDISP setting.

To compute large displacement effects and thermal expansion, the softwareinternally replaces the RBE2 and RBAR elements with either a stiff beam element, ora stiff spring element. A coincident grid tolerance is used to determine if a beam or aspring is used. For the RBAR element, if the distance between the connecting gridsis less than the tolerance, the stiff spring formulation is used. For the RBE2 element,if the distance between the grid defined in the GN field on the RBE2 entry, and anyof the grids defined in the GM fields on the RBE2 entry, is less than the tolerance,

NX Nastran 10 Release Guide 6-55

Multi-step nonlinear solution 401

Page 182: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

the stiff spring formulation is used. You can optionally define the coincident gridtolerance explicitly with the parameter RGLCRIT. By default, it is automaticallycomputed by the software as follows:

Coincident Grid Tolerance = 1E-6 * LMODEL (units=length)

where LMODEL is the largest dimension of the model determined by the software.

You can optionally define the beam stiffness and area explicitly using the parametersRGBEAME and RGBEAMA, respectively. By default, they are automaticallycomputed by:

Beam Stiffness = 1e+2 * EMAX (units=force/length^2)

Beam Area = (LMODEL * 1e-2)^2 (units=length^2)

where EMAX is the largest Young’s modulus in the model. If no material is specifiedin the model, EMAX is set to 1.0E12.

You can optionally define the spring stiffness explicitly using the parameterRGSPRGK. By default, it is automatically computed by:

Spring Stiffness = EMAX * LMODEL (units = force/length)

Additional information:

• MPCFORCE and GPFORCE output are supported with all of the rigid elements.Since the software internally replaces an RBAR or RBE2 element with astiff beam or spring element when RIGID=STIFF, these elements are nolonger represented as MPC equations. As a result, MPCFORCE output is notapplicable to these elements. GPFORCE and FORCE output is applicable.

• GPFORCE output will correctly account for large displacements, except for DOFwhich are included in MPC equations.

• In general, MPCFORCE output can be requested with large displacements(PARAM,LGDISP,1). Although, it is computed based on the initial, undeformedconfiguration, MPCFORCE output may not be accurate in regions where largedisplacements occur.

• The TEMP(LOAD) and TEMP(INIT) value used on RBAR elements is anaverage calculated from the grid point values. On RBE2 elements, an averageTEMP(LOAD) and TEMP(INIT) is calculated for each leg of the element usingthe values on the independent/dependent grid pairs such that each leg can havea different thermal strain if the temperatures vary at the grids.

The rigid element thermal strains are calculated by:

εthermal = α(AVGTEMP(LOAD) – AVGTEMP(INIT))

If TEMP(LOAD) or TEMP(INIT) are not defined, they are assumed to be zero.

See the updated RIGID case control command.

6-56 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 183: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

RIGID

Rigid Element Method

For SOLs 101 through 112, selects the rigid element processing method forRBAR, RBE1, RBE2, RBE3, RROD and RTRPLT elements.

For SOL 401, selects the rigid element processing method for RBAR and RBE2elements.

FORMAT FOR SOLS 101 THROUGH 112:

FORMAT FOR SOL 401:

EXAMPLE:

RIGID=LAGRAN

DESCRIBERS FOR SOLS 101 THROUGH 112:

Describer Meaning

LINEAR Selects the linear elimination method.

LAGRAN Selects the Lagrange multiplier method.

NX Nastran 10 Release Guide 6-57

Multi-step nonlinear solution 401

Page 184: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

DESCRIBERS FOR SOL 401:

Describer Meaning

AUTO The software automatically determines the RBE2 and RBARelement behaviour based on the PARAM,LGDISP setting.

STIFF RBE2 and RBAR elements include thermal expansion. Largedisplacement effects are determined by the PARAM,LGDISPsetting.

LINEAR RBE2 and RBAR elements do not include large displacementeffects or thermal expansion.

REMARKS:

1. The RIGID command must be above the SUBCASE level.

2. The RIGID command is supported in SOLs 101 through 112, and 401. Forall other solution sequences, the RIGID command is ignored and RIGID =LINEAR is used.

3. For SOLs 101 through 112:

• The LAGRAN method allows for the thermal expansion of the rigidelements.

• If the RIGID command is not specified, RIGID = LINEAR is used.

• LINEAR processing will not compute the thermal loads. Also, in SOLs 103through 112, LAGRAN method must be used to compute the differentialstiffness due to the thermal expansion of the rigid elements.

• The TEMP(LOAD) and TEMP(INIT) value used on RBAR, RROD, andRTRPLT elements is an average calculated from the grid point values.On RBE1, RBE2 and RBE3 elements, an average TEMP(LOAD) andTEMP(INIT) is calculated for each leg of the element using the values onthe independent/dependent grid pairs such that each leg can have adifferent thermal strain if the temperatures vary at the grids.

The rigid element thermal strains are calculated from

εthermal = α(AVGTEMP(LOAD) – AVGTEMP(INIT))

If TEMP(LOAD) or TEMP(INIT) are not defined, they are assumed tobe zero.

6-58 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 185: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• When using RIGID = LAGRAN, K6ROT must be defined as non-zero.

• For additional information, see “Rigid Element Processing Options” in theElement Library Reference.

4. In SOL 401, the RIGID command and the LGDISP parameter settingsdetermine the RBE2 and RBAR element behavior.

• When RIGID=AUTO and PARAM,LGDISP,-1, the software automaticallyapplies the RIGID=LINEAR option. RBE2 and RBAR elements do notinclude large displacement effects or thermal expansion.

• When RIGID=AUTO and PARAM,LGDISP,1, the software automaticallyapplies the RIGID=STIFF option. RBE2 and RBAR elements includelarge displacement effects and thermal expansion.

• When RIGID=STIFF and PARAM,LGDISP,-1, the large displacementeffects are not included, in general. RBE2 and RBAR elements includethermal expansion.

• When RIGID=STIFF and PARAM,LGDISP,1, the RBE2 and RBARelement behavior is the same as RIGID=AUTO and PARAM,LGDISP,1.RBE2 and RBAR elements include large displacement effects andthermal expansion.

• When RIGID=LINEAR, the RBE2 and RBAR elements do not includelarge displacement effects or thermal expansion. This behavior isindependent of the PARAM,LGDISP setting.

• The TEMP(LOAD) and TEMP(INIT) value used on RBAR elements isan average calculated from the grid point values. On RBE2 elements,an average TEMP(LOAD) and TEMP(INIT) is calculated for each leg ofthe element using the values on the independent/dependent grid pairssuch that each leg can have a different thermal strain if the temperaturesvary at the grids.

The rigid element thermal strains are calculated from

εthermal = α(AVGTEMP(LOAD) – AVGTEMP(INIT))

If TEMP(LOAD) or TEMP(INIT) are not defined, they are assumed tobe zero.

• MPCFORCE and GPFORCE output are supported with all of the rigidelements. Since the software internally replaces an RBAR or RBE2 witha stiff beam or spring element when RIGID=STIFF, these elements areno longer represented as MPC equations. As a result, MPCFORCEoutput is not applicable to these elements. GPFORCE and FORCEoutput is applicable.

NX Nastran 10 Release Guide 6-59

Multi-step nonlinear solution 401

Page 186: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

• For additional information, see Rigid Element Processing in the MultistepNonlinear User’s Guide.

Generalized plane strain analysisBeginning with NX Nastran 10, a special plane strain formulation called generalizedplane strain is added as an optional extension to the standard plane strainformulation. Both formulations use the CPLSTN3, CPLSTN4, CPLSTN6, andCPLSTN8 plane strain element types. To invoke the generalized plane strain option,the plane strain elements need to reference a PGPLSN property bulk entry. ThePGPLSN bulk entry is new for NX Nastran 10. The generalized plane strain option issupported only in SOL 401, and is applicable only to small strain, small deflectionstructural analyses. These structural analyses include linear static, creep, andplasticity analyses, and combination creep and plasticity analysis.

Analysis with the generalized plane strain formulation is highly specialized andtypically used to evaluate the behavior of gas turbine compressor and turbine blades.For such an analysis, you mesh the cross section of the blade with CPLSTN3,CPLSTN4, CPLSTN6, or CPLSTN8 elements. All of the elements in the meshshould reference a single PGPLSN property bulk entry.

With the PGPLSN bulk entry, you can specify the following data:

• The material bulk entry that is referenced by the PGPLSN bulk entry. MAT1 andMAT3 material bulk entries can be referenced.

• The control grid point. The control grid point is the location where out-of-planeloads or enforced displacements are applied to the set of elements that referencethe PGPLSN bulk entry.

• The element thickness in the undeformed state.

• Optional user-defined additive normal stiffness and rotational stiffness values.

For the generalized plane strain analysis, NX Nastran calculates the standardin-plane plane strain stiffness, but also calculates three net out-of-plane stiffnessvalues relative to the displacement coordinate system of the control grid point.Consequently, how you specify the displacement coordinate system for the controlgrid point is very important. You should specify the displacement coordinate systemof the control grid point such that one axis is normal to the cross section and theother two axes are parallel to the principal axes of the cross section. By doing so,the three net out-of-plane stiffness values that NX Nastran calculates representthe normal stiffness of the cross section, and the two bending stiffness values forsymmetrical bending of the cross section.

Because the CPLSTN3, CPLSTN4, CPLSTN6, and CPLSTN8 plane strain elementscan be defined only in the XY- or XZ-planes of the basic coordinate system, thedirection normal to the cross section is always in the Z- or Y-direction respectively,of the basic coordinate system. NX Nastran checks that one of the axes of the

6-60 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 187: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

displacement coordinate system of the control grid point coincides with the correctnormal direction and issues an error if this does not happen.

NX Nastran does not check the other two coordinate directions of the displacementcoordinate system for the control grid point. It is your responsibility to ensure thatthese directions are parallel to the principal axes of the cross section.

If you specify additive stiffness, the normal stiffness is added to the normal stiffnessthat NX Nastran calculates for the cross section. The additive rotational stiffnessvalues are added to the bending stiffness values as follows:

• If the model lies in the XY-plane of the basic coordinate system, the KR1 valueon the PGPLSN bulk entry is added to the bending stiffness about the X-axis ofthe displacement coordinate system of the control grid point. The KR2 value onthe PGPLSN bulk entry is added to the bending stiffness about the Y-axis of thedisplacement coordinate system of the control grid point.

• If the model lies in the XZ-plane of the basic coordinate system, the KR1 valueon the PGPLSN bulk entry is added to the bending stiffness about the X-axis ofthe displacement coordinate system of the control grid point. The KR2 value onthe PGPLSN bulk entry is added to the bending stiffness about the Z-axis of thedisplacement coordinate system of the control grid point.

You can apply loads to the control grid point and to the generalized plane strainelement mesh. At the control grid point, you can account for the centrifugal force thatis attributable to the portion of the blade from the cross section you are modeling tothe blade tip. To allow you to define a mechanically equivalent loading at the controlgrid point, you can specify not only a force that acts normal to the cross section,but also the bending moments that act on the cross section about axes parallel tothe principal axes of the cross section.

To the generalized plane strain mesh, apply surface tractions, body forces, andin-plane enforced displacements that you want to include in the analysis. Forexample, you can apply aerodynamic forces to the grid points that lie on theperiphery of the mesh.

From the net out-of-plane stiffness values and the loads that are applied to thecontrol grid point, NX Nastran calculates the thickness change over the crosssection. Similar to planes remaining plane in pure bending of beams, NX Nastranenforces that the surface defined by the thickness change is planar. From thethickness change over the cross section, NX Nastran calculates the out-of-planestrain of the elements at the grid locations. During the solution of the finite elementmodel, NX Nastran uses the out-of-plane strain and any surface tractions, bodyforces, and in-plane enforced displacements that you specified.

If you apply an enforced displacement and enforced rotations at the control gridpoint, the thickness change of the cross section is directly specified. From thethickness change, NX Nastran calculates the out-of-plane strain directly and thesolution of the finite element model is as before.

Note that the generalized plane strain element is not supported by glue or contactregions.

NX Nastran 10 Release Guide 6-61

Multi-step nonlinear solution 401

Page 188: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

The following constitutive models are available with generalized plane strainelements:

• To model plasticity of an isotropic material, use the MAT1 and MATS1 bulkentries in combination.

• To model plasticity of an isotropic material with temperature-dependentproperties, use some combination of the MAT1, MATS1, MATT1, TABLEST, andTABLES1 bulk entries.

• To model plasticity of an orthotropic material, use the MAT3 and MATS1 bulkentries in combination. The elastic portion of the response is orthotropic, and theplastic portion of the response is isotropic.

• To model plasticity of an orthotropic material with temperature-dependentproperties, use some combination of the MAT3, MATS1, MATT3, TABLEST, andTABLES1 bulk entries. The elastic portion of the response is orthotropic, and theplastic portion of the response is isotropic.

• To model creep of an isotropic material, use the MAT1 and MATCRP bulk entriesin combination.

• To model creep of an isotropic material with temperature-dependent properties,use the MAT1, MATT1, and MATCRP bulk entries in combination.

• To model creep of an orthotropic material, use the MAT3 and MATCRP bulkentries in combination.

• To model creep of an orthotropic material with temperature-dependentproperties, use the MAT3, MATT3, MATCRP, and TABLEM1 bulk entries incombination. The elastic portion of the response is orthotropic, and the creepportion of the response is isotropic.

For additional information, see the new PGPLSN bulk entry

6-62 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 189: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

PGPLSN

Generalized Plane Strain Element Property for SOL 401

Defines the properties of generalized plane strain elements for SOL 401.

FORMAT:

1 2 3 4 5 6 7 8 9 10

PGPLSN PID MID CGID T

KN KR1 KR2

EXAMPLE:

PGPLSN 100 1 85 10.0

FIELDS:

Field Contents

PID Property identification number. See Remarks 1 and 2. (Integer > 0)

MID Identification number of a MAT1 or MAT3 entry. (Integer > 0)

CGID Identification number of control grid point. (Integer > 0)

T Undeformed element thickness. (Real > 0.0)

KN Optional user-specified additive normal stiffness relative to the planararea defined by the mesh of generalized plane strain elements.(Real ≥ 0.0)

KR1 Optional user-specified additive rotational stiffness about the 1-axisof the displacement coordinate system for the control grid point .See Remark 3.(Real ≥ 0.0)

KR2 Optional user-specified additive rotational stiffness about the 2-axisof the displacement coordinate system for the control grid point . SeeRemark 3. (Real ≥ 0.0)

NX Nastran 10 Release Guide 6-63

Multi-step nonlinear solution 401

Page 190: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

REMARKS:

1. All PGPLSN property bulk entries must have unique identification numberswith respect to all other property bulk entries.

2. PGPLSN bulk entries can only be referenced by CPLSTN3, CPLSTN4,CPLSTN6, and CPLSTN8 element bulk entries for SOL 401. When theseelements reference a PGPLSN bulk entry, their generalized plane strainformulation is used.

3. Any planar area contains a pair of principal axes. The values for the optionaluser-specified additive rotational stiffness should be defined about axes thatpass through the control point and are parallel to the principal axes of theplanar area defined by the mesh of generalized plane strain elements. To dothis, specify a displacement coordinate system for the control grid point anddefine the 1- and 2-axes of the displacement coordinate system as parallel tothe principal axes of the planar area.

4. The generalized plane strain element is not supported in a glue or contactregion.

Bolt preloadBeginning with NX Nastran 10, bolt preload is supported in SOL 401. Bolt preloadcan be combined with geometric nonlinear and plasticity conditions.

The bolt preload capability allows you to model bolts with either 3D solid elementsor 2D plane stress elements. The 3D solid elements you can use are the CHEXA,CPENTA, and CTETRA elements. The 2D plane stress elements you can use arethe CPLSTS3, CPLSTS4, CPLSTS6, and CPLSTS8 elements. A common scenariofor using 2D plane stress elements to model bolts is in an axisymmetric analysis.

The procedure to model bolts with preload in SOL 401 is similar to other solutionsequences.

• You use the BOLT bulk entry to select the elements that represent the bolt.

• You use the BOLTFOR bulk entry to define the bolt preload force.

• You use the BOLTLD bulk entry to optionally combine and scale bolt preloadforces.

• You use the BOLTLD case control command in your bolt preload subcase toinvoke the capability. The BOLTLD command references a BOLTLD bulk entryor a BOLTFOR bulk entry. Bolt preload can be invoked only in a single subcase.

Bolts in SOL 401 are defined with the ETYPE = 3 format on the BOLT bulk entry.This format requires that you list all of the elements that are used to model the bolt

6-64 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 191: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

shaft on the BOLT entry. The grid point you enter in the GP field on the BOLT entryindicates to the software where to calculate the cross sectional area of the bolt. Forthis calculation, NX Nastran uses the direction that you define with the CSID andIDIR fields on the BOLT entry as the bolt axis. To avoid any cross sectional effectsat the bolt ends, it is best to select a grid point in the GP field closer to the middleof the bolt length.

NX Nastran uses the cross sectional area and the bolt preload force to estimate theinitial bolt stress and strain. To account for compliance in the structure that is beingbolted together, the software iterates on the bolt strain until convergence is satified.

You can adjust the bolt preload convergence tolerance with the EPSBOLT parameter(default=1.0E-3), which is defined on the NLCNTL bulk entry. For each bolt preloaditeration, the software computes the difference between the current bolt preload andthe user-defined preload. If the difference is less than the value of the EPSBOLTparameter, the bolt preload calculation is considered converged. If the difference isgreater than EPSBOLT, the preload strain is recomputed for the next bolt preloaditeration. The iterations continue until either convergence is satisfied, or the numberof iterations reaches the value of the ITRBOLT parameter (default=20). TheITRBOLT parameter is also defined on the NLCNTL bulk entry.

You must define TEND1 = 0.0 on the TSTEP1 bulk entry selected for the bolt preloadsubcase. You can optionally specify the number of increments on the TSTEP1 entryeven though the duration of the time steps is zero. If you do not specify the numberof increments, the software applies the preload force in a single increment.

The bolt preload subcase includes the bolt preload force and can optionally include atemperature load. No other loads are supported in the bolt preload subcase. Theconsecutive sequentially dependent subcases can then include service loads. Theresulting bolt strain is included in the consecutive sequentially dependent subcasesuntil a non-sequentially dependent static subcase occurs.

If your input file includes globally-defined loads, you must include DLOAD = 0 inthe bolt preload subcase. Doing so instructs the software to ignore the globalloads during the bolt preload solve. Otherwise, a fatal error is issued and the runterminates.

Often, the bolt preload subcase is the first subcase, although this is not required. Inaddition, a bolt preload subcase which is not the first can be defined as sequentiallydependent. For example, you can define an initial static subcase in order to resolvean interference condition using contact. Then a sequentially dependent bolt preloadsubcase can follow. The final stiffness from the initial subcase, which includes thecontact stiffness, along with the contact forces, all are used in the bolt preloadsubcase. Note that loads defined in the initial subcase cannot be included in thebolt preload subcase. Also note that the TSTEP1 in the initial subcase must alsohave TEND1 = 0.0.

If the bolt preload subcase is the first, you do not need to specify SEQDEP = NOsince the first subcase is always non-sequentially dependent.

The convergence information related to bolt preload is listed in the .f06 file. Forexample,

NX Nastran 10 Release Guide 6-65

Multi-step nonlinear solution 401

Page 192: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

...PRELOAD BOLT CALCULATIONS FOR BOLT ID 1-------------------------------------ITERATION = 3USER PRELOAD = 200000000.000000INTERNAL FORCE = 199999616.790662PERCENTAGE DIFFERENCE = 1.916046692281961E-004BOLT PRELOAD CONVERGENCE ATTAINED---------------------------------...

The software issues a fatal error message if the bolt preload iterative solution failsto converge.

See the BOLT bulk entry.

6-66 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 193: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

BOLT

Bolt definition

Selects the elements to be included in the bolt preload calculation.

FORMAT FOR ETYPE = 1:

1 2 3 4 5 6 7 8 9 10

BOLT BID ETYPE EID1 EID2 EID3 EID4 EID5 EID6

EID7 “THRU” EID8 “BY” INC

-etc-

FORMAT FOR ETYPE = 2:

1 2 3 4 5 6 7 8 9 10

BOLT BID ETYPE CSID IDIR G1 G2 G3 G4

G5 “THRU” G6 “BY” INC

-etc-

FORMAT FOR ETYPE = 3:

1 2 3 4 5 6 7 8 9 10

BOLT BID ETYPE CSID IDIR GP

EID1 EID2 EID3 EID4 EID5 EID6 EID7 EID8

EID9 “THRU” EID10 “BY” INC

-etc-

EXAMPLES:

ETYPE = 1 for SOLs 101, 103, 105, 107 through 112

BOLT 4 1 11

NX Nastran 10 Release Guide 6-67

Multi-step nonlinear solution 401

Page 194: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

ETYPE = 1 for SOL 601

BOLT 4 1 11 8 2 1 20 14

15 16 28 30 33

ETYPE = 2

BOLT 8 2 4 3 12 23 55 128

133 THRU 165

ETYPE = 3

BOLT 9 3 1 3 148

56 24 43 21 73 52 62 41

106 THRU 202

FIELDS:

Field Contents

BID Bolt identification number. (Integer > 0)

ETYPE Element type. (Integer; No default)

= 1 to model bolts with CBAR and CBEAM elements in SOLs 101,103, 105, 107 through 112, and 601.

= 2 to model bolts with CHEXA, CPENTA and CTETRA elementsin SOLs 101, 103, 105, 107 through 112.

= 3 to model bolts with CHEXA, CPENTA, CTETRA, CPLSTS3,CPLSTS4, CPLSTS6, and CPLSTS8 elements in SOL 401, orCHEXA, CPENTA, CPYRAM, and CTETRA elements in SOL 601.

“BY” Specifies an increment when using THRU option. (Character)

INC Increment used with THRU option. (Integer; Default = 1)

INC > 0 can be defined, for example ...106,THRU,126,BY,INC,2

INC < 0 can be defined, for example ...126,THRU,106,BY,INC,-2

6-68 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 195: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

FIELDS FOR ETYPE = 1:

Field Contents

EIDi Selects element identification numbers to include in the boltpreload calculation. See Remark 2 and SOL 601 Remark 1.(Integer > 0, or using “THRU”; EID7 < EID8 for THRU option;No default)

FIELDS FOR ETYPE = 2:

Field Contents

CSID Identification number of the coordinate system used to define thebolt axis. For the basic coordinate system, CSID = 0. (Integer ≥0; Default = 0)

IDIR Direction of bolt axis relative to CSID. (Integer; No default)

= 1 for the X direction

= 2 for the Y direction

= 3 for the Z direction

Gi Identification numbers of grid points that form a cross sectionthrough the bolt. See Remarks 3 and 4. (Integer ≥ 0; No default)

FIELDS FOR ETYPE = 3:

Field Contents

EIDi Selects element identification numbers to include in the boltpreload calculation. All elements representing the bolt must beincluded in EIDi, and have the same PID. (Integer > 0, or using“THRU”; EID7 < EID8 for THRU option; No default)

CSID Identification number of the coordinate system used to define thebolt axis. For the basic coordinate system, CSID = 0. (Integer ≥0; Default = 0)

NX Nastran 10 Release Guide 6-69

Multi-step nonlinear solution 401

Page 196: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Field Contents

IDIR Direction of bolt axis relative to CSID. (Integer; No default for SOL401; Default = 0 for SOL 601)= 0 for automatic determination of the bolt axis in SOL 601.IDIR = 0 is not applicable to SOL 401. See SOL 601 Remark 2.

= 1 for the X direction

= 2 for the Y direction

= 3 for the Z direction

GP For SOL 401, the identification number of the grid point where thebolt cross sectional area is calculated. See Remarks 3 and 5.(Integer > 0; No default)

For SOL 601, the identification number of the grid point wherethe bolt is split. See Remark 3 and SOL 601 Remarks 3 and 4.(Integer ≥ 0 or blank)

REMARKS:

1. Each BOLT entry defines a single physical bolt which can be composed ofmultiple elements.

2. If multiple CBAR and CBEAM elements are used to model a bolt in SOL 101,103, 105, 107 through 112, only one of the elements must be listed on theBOLT entry. Enter the element ID in the EID1 field.

3. Any grid point listed in the Gi or GP fields must be included in the connectivityof elements that are used to model the bolt.

4. Gi must select enough GRID entries to define a cross section through thebolt. The selected Gi can only be included on a single BOLT entry. Thegrids can be listed in any order on the BOLT entry. For parabolic elements,mid-nodes must also be listed. Gi on the BOLT entry. Any Gi listed on a BOLTentry cannot be used in the connectivity of a solid composite element or beincluded in an SPC.

The software splits the bolt mesh by duplicating each Gi on the BOLT entry.The identification numbers for the duplicated grid points start at the highestuser-defined grid ID in the model plus one and continue sequentially higher.

A pressure load cannot be applied to any face of an element if the connectivityof the element includes a Gi listed on a BOLT entry.

6-70 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 197: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

5. As a best practice, select GP such that it is near the middle of the crosssection of the bolt.

6. In SOL 105, both the bolt preload and service load are scaled to determinethe buckling load.

7. In SOL 401, composite solid elements (PCOMPS property card) are notsupported for preloaded bolts.

REMARKS RELATED TO SOL 601:

1. All CBAR and CBEAM elements used to model the bolt must be included inEIDi list and they all must have the same PID.

2. When IDIR = 0 or blank (default), the direction of the bolt axis is automaticallydetermined by the software to coincide with minimum principal moment ofinertia of the bolt. CSID is ignored when IDIR = 0 or blank.

3. The software splits the bolt mesh at the grid point entered in the GP field.

4. GP = 0 or blank is allowed only if IDIR = 0 or blank. In this case, the locationof the bolt plane is automatically determined by the program.

SOL 401 contact algorithmThe example below represents solid element faces included in a source and atarget region.

S1, S2, S3, S4,...Sj are the grid points defining one solid element face which isincluded in the source region.

T1, T2, T3, T4,...Tj are the grid points defining one solid element face which isinclude in the target region.

NX Nastran 10 Release Guide 6-71

Multi-step nonlinear solution 401

Page 198: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Figure 6-5. Contact Source and Target Example

Global equations including contact:

Equation 6-6.

where

Kc= Contact stiffness assembled for all active contact elements.

Fc= Contact forces resulting from normal and tangential components of the tractions.

Equation 6-7.

where

Ns = number of grid points on an element source face

Nt = number of grid points on an element target face

= normal traction for contact element i

= tangential traction for contact element i

6-72 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 199: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

= source shape functions evaluated at the contact points Sj.

= target shape functions evaluated at contact points Tj,

= normal and tangential base vectors evaluated at the source locations Sj.

The normal traction λni is evaluated for iteration i as

where

εn = normal penalty stiffness

gni = gap at contact element =

where ui = grid point displacements at iteration i.

To compute the tangential traction, we need the slip increment over the current step.

where

= relative tangential displacement at iteration i of (n+1)th time step.

= relative tangential displacement from the last converged time step.

The relative tangential displacement for iteration i is computed as

The tangential traction is computed as:

where μ is the Coulomb friction coefficient,

NX Nastran 10 Release Guide 6-73

Multi-step nonlinear solution 401

Page 200: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

and εt = tangential penalty stiffness.

If Φ ≤ 0; the contact element is sticking.

If Φ > 0; the contact element is slipping.

If sticking:

If slipping:

The equivalent grid point forces resulting from an active contact element are thencomputed from equation 6-7.

1. The stiffness matrix contribution of an active sticking contact element is:

2. The stiffness matrix contribution of an active slipping contact element is:

For slipping contact elements, the second stiffness term is unsymmetric. If thenormal traction is assumed to be fixed during the Newton-Raphson iterations,the second term vanishes, and a symmetric stiffness matrix is retained.

Flow chart of contact algorithm

Steps 1 through 4 occur for each time step (n+1).

1. Loop over contact augmentations (k=1 to MAXS). MAXS is defined on theBCTPARM bulk entry.

a. Initialize λnk and λtk

b. Compute k and kc

6-74 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 201: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

2. Do Newton-Raphson iterations (i=1 to MAXITER). MAXITER is defined on theNLCNTL bulk entry.

a. Compute internal forces (Fint)

b. Compute contact tractions and forces (Fc)

Assuming that the normal traction is fixed during Newton-Raphson iterations,λnk is used as opposed to Tnk resulting in symmetrization.

If (sticking)

else; (slipping)

Compute contact forces Fc using Tnk and Ttk.

c. Compute Residual R = P – Fc – Fint

d. Solve

e. Scale back if large incremented penetrations are detected.

f. Check for the solution convergence on the residual. The solutionconvergence criteria is defined by the CONV parameter on the NLCNTL bulkentry.(i) If the solution convergence criteria is satisfied; augment tractions by step3.(ii) If the solution convergence criteria is not satisfied; do more iterations, goto 2a, update stiffness if NEWK=TRUE, and go to step 1b.

3.

Check for maximum penetration convergence and/or force convergence. Thecontact convergence tolerances are defined by the PTOL and CTOL parameterson the BCTPARM bulk entry. The penetration convergence is satisfied if themaximum penetration (Pmax) is smaller than the penetration tolerance (PTOL).The force convergence is satisfied if the contact force ratio (FRAT) is smallerthan the contact force tolerance (CTOL), where

FRAT = (λ k – λ k-1) * (λ k – λ k-1) / (λ k * λ k).

NX Nastran 10 Release Guide 6-75

Multi-step nonlinear solution 401

Page 202: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

The CNTCONV parameter on the BCTPARM bulk entry detemines whichtolerance (PTOL, CTOL) is used to satisfied contact convergence.

• If CNTCONV=0 (default), contact convergence is satisfied if either thepenetration tolerance (PTOL) or the contact force tolerance (CTOL) aresatisfied:

If (Pmax < PTOL) or (FRAT < CTOL), go to step 4.

• If CNTCONV=1, contact convergence is satisfied if the penetration tolerance(PTOL) is satisfied:

If (Pmax < PTOL), go to step 4.

• If CNTCONV=2, contact convergence is satisfied if the contact forcetolerance (CTOL) is satisfied:

If (FRAT < CTOL), go to step 4.

• If CNTCONV=3, contact convergence is satisfied if both the penetrationtolerance (PTOL) and the contact force tolerance (CTOL) are satisfied:

If (Pmax<PTOL) and (FRAT<CTOL), go to step 4.

• Else, go to step 1b.

4. End.

6-76 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 203: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

BCTPARM

Surface-to-Surface Contact Parameters (SOLs 101, 103, 111, 112, and 401)

Control parameters for the surface-to-surface contact algorithm.

FORMAT:

1 2 3 4 5 6 7 8 9 10

BCTPARM CSID Param1 Value1 Param2 Value2 Param3 Value3

Param4 Value4 Param5 Value5 -etc-

EXAMPLE:

BCTPARM 1 PENN 10.0 PENT 0.5 CTOL 0.001

SHLTHK 1

FIELDS:

Field Contents

CSID Contact set ID. Parameters defined in this command apply tocontact set CSID defined by a BCTSET entry. (Integer > 0)

PARAMi Name of the BCTPARM parameter. Allowable names are givenin the parameter listing below. (Character)

VALUEi Value of the parameter. See Table 6-4 for the parameter listing.(Real or Integer)

Table 6-4. Primary parameters supported by SOLs 101, 103, 111, and 112:

Name Description

CTOL Contact force convergence tolerance. (Default=0.01)

MAXF Maximum number of iterations for a force loop. (Default=10)

MAXS Maximum number of iterations for a status loop. (Default=20)

NX Nastran 10 Release Guide 6-77

Multi-step nonlinear solution 401

Page 204: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Table 6-4. Primary parameters supported by SOLs 101, 103, 111, and 112:

Name Description

NCHG Allowable number of contact changes for convergence.(Default=0.02). See Remark 3.

INIPENE* Use when the goal is for a pair of contact regions to be initiallytouching without interference, but due to the faceted nature offinite elements around curved geometry, some of the elementedges or faces may have a slight gap or penetration. SeeRemarks 7 and 8.

0 or 1 - Contact is evaluated exactly as geometry is modeled. Nocorrections will occur for gaps or penetrations (Default).

2 - Penetrations will be reset to a new initial condition in whichthere is no interference.

3 - Gaps and penetrations are both reset to a new initial conditionin which there is no interference.

SHLTHK* Shell thickness offset flag.

0 - Includes half shell thickness as surface offset. (Default)

1 - Does not include thickness offset.

ZOFFSET Determines if the shell element z-offset is included in the contactsolution.

0 - Includes the shell z-offset when determining the contactsurfaces (Default).

1 - Does not include the shell z-offset when determining thecontact surfaces.

Table 6-5. Primary parameters supported by SOL 401:

Name Description

CTOL Contact augmentation traction convergence. The augmentationloop convergence criteria can be based on traction convergence.The contact force ratio FRAT is determined as:

FRAT = (λ k – λ k-1) * (λ k – λ k-1) / (λ k * λ k)

6-78 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 205: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Table 6-5. Primary parameters supported by SOL 401:

Name Description

where k is the augmentation loop id. If FRAT < CTOL, the contactaugmentation loop is considered converged. (Default = 0.05)

PTOL* Contact penetration tolerance. If the contact penetrationsexceed the penetration tolerance, an extra augmentation loopis performed. If the penetrations are below this tolerance, theaugmentation loop is considered converged. In addition, ifthe global solution convergence criteria is satisfied, then thetime step is considered converged. PTOL only applies whenCNTCONV=0, 1, or 3. If CNTCONV=2, PTOL is ignored and thecontact convergence criteria is only based on CTOL. (Default =1.0E-2 *characteristic length)

CNTCONV Contact convergence criteria.

0 – The contact convergence criteria is based on the first of PTOLor CTOL. (Default)

1 – The contact convergence criteria is based on PTOL.

2 – The convergence criteria is based on CTOL.

3 – The convergence criteria is based on both CTOL and PTOL.

MAXS Maximum number of augmentation (outer) loops. If theaugmentation loop has not converged in MAXS number ofiterations, the solution will proceed to the next step if the globalconvergence criteria has been met. (Default = 20)

INIPENE* Use when the goal is for a pair of contact regions to be touchingwithout interference, but due to the faceted nature of finiteelements around curved geometry, some of the element edges orfaces may have a slight gap or penetration. See Remark 8.

0 or 1 - Contact is evaluated exactly as the geometry is modeled.No corrections will occur for gaps or penetrations (Default).

2 - Penetrations will be reset to a new initial condition in whichthere is no interference.

3 - Gaps and penetrations are both reset to a new initial conditionin which there is no interference.

INIPENE is applied when contact elements are initially created,and if they are recreated as a result of large displacement effectswhen PARAM,LGDISP,1 is defined.

NX Nastran 10 Release Guide 6-79

Multi-step nonlinear solution 401

Page 206: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Table 6-5. Primary parameters supported by SOL 401:

Name Description

OPNSTF* Open contact stiffness scale factor. The open contact stiffnessis computed by OPNSTF * closed stiffness. (OPNSTF default= 1.0E-6)

OPNTOL* Open gap tolerance scale factor. The open contact stiffness(OPNSTF * closed stiffness) is applied to the contact elements thathave a gap value less than or equal to OPNTOL * characteristiclength, but greater or equal than GAPTOL * characteristic length.The contact element stiffness is 0.0 if the gap is greater thanOPNTOL * characteristic length. (OPNTOL default = 1.0)

GAPTOL* Closed gap tolerance scale factor. The closed contact stiffnessis applied to the contact elements that have a gap less thanGAPTOL * characteristic length. (Default = 1.0E-6)

NOSEP* No separation contact option.

NOSEP=0 (default): When contact stiffness is recomputed ina consecutive nonlinear iteration, contact elements which areinactive as a result of normal tractions=0.0 and no penetration,and which have a gap greater than GAPTOL * characteristiclength will remain inactive in the consecutive iteration.

NOSEP=1: The open contact stiffness (OPNSTF * closedstiffness) is applied to the inactive contact elements that have agap value less than or equal to OPNTOL * characteristic length,but greater or equal than GAPTOL * characteristic length.. Thecontact elements with a gap greater than OPNTOL * characteristiclength remain inactive. While sliding is permitted with this option,the magnitude of the sliding can be controlled by the tangentialpenalty factor. To define frictionless sliding, set the coefficient offriction=0.0 or tangential penalty factor (PENT)=0.0. (Default=0)

GUPDATE Geometry update flag

0 – Contact geometry updates will not be done during the analysis.

1 – Geometry update will be done for large deflection analysiswhenever the relative tangential sliding between source andtarget regions in a pair exceeds the tolerance set by the GUPTOLparameter (Default for geometric nonlinear analysis).

6-80 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 207: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Table 6-5. Primary parameters supported by SOL 401:

Name Description

GUPTOL* Geometry update tolerance. If the relative sliding distancebetween the source and target regions exceeds this tolerance, ageometry update will be initiated with large displacement. (Default= 0.1 * characteristic length)

DISCAL Displacement scaling option

0 – No scaling will be done.

1 – Scaling will be done if required during every iteration. A checkwill be performed after every displacement increment to see if theincremental displacements would cause penetration between thesource and target regions. If the penetrations exceed DISTOL,the entire incremental displacements will be scaled back to limitthe penetrations in the model. (Default)

DISTOL Tolerance for displacement scaling feature. (Default = 0.5*characteristic length)

KSTAB Stiffness stabilization for contact.

0 – Stiffness stabilization is off. (Default)

1 – The stiffness matrix is stabilized when it is singular due toinactive contact constraints. The stabilization adds a factor (1.0)to the diagonal terms of the stiffness matrix. KSTAB=1 is onlysupported with the sparse solver, and will disable any opencontact stiffness specified through the OPNSTF parameter.

Table 6-6. Secondary parameters supported by SOLs 101, 103, 111, and112:

The following parameters are available for special cases.

Name Description

PENN* Penalty factor for normal direction. PENN and PENT areautomatically calculated by default. See Remark 2. When PENTis defined but PENN is undefined, PENN = 10 * PENT.

PENT* Penalty factor for transverse direction. PENN and PENT areautomatically calculated by default. See Remark 2. When PENNis defined but PENT is undefined, PENT = PENN / 10.

NX Nastran 10 Release Guide 6-81

Multi-step nonlinear solution 401

Page 208: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Table 6-6. Secondary parameters supported by SOLs 101, 103, 111, and112:

The following parameters are available for special cases.

Name Description

PENTYP* Changes how contact element stiffness is calculated (Default=1).See Remark 2.

1- PENN and PENT are entered as units of 1/Length.

2 - PENN and PENT are entered as units of Force/(Length xArea).

AUTOSCAL*Scales the automatically calculated penalty factors PENN andPENT either up or down. AUTOSCAL can be used to scale thestiffness of specific contact pairs if convergence issues occur(0<Real; Default=1.0). See Remark 2.

RESET Flag to indicate if the contact status for a specific subcase is tostart from the final status of the previous subcase

0 - Starts from previous subcase. (Default)

1 - Starts from initial state.

REFINE Requests that the software refine the mesh on the source regionduring the solution to be more consistent with the target sidemesh.

0 - Refinement does not occur.

2 - Refinement occurs (default).

INTORD Determines the number of contact evaluation points for a singleelement edge or face on the source region. The number ofcontact evaluation points is dependent on the value of INTORD,and on the type of element face. See the table in Remark 4 forspecific values.

1 – The reduced number of contact evaluation points is used.

2 – Use an increased number of contact evaluation points(default).

3 – Use a high number of contact evaluation points.

6-82 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 209: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Table 6-6. Secondary parameters supported by SOLs 101, 103, 111, and112:

The following parameters are available for special cases.

Name Description

CSTRAT Prevents all of the contact elements from becoming inactive. SeeRemark 5.

0 - All contact elements can become inactive (Default).

1 - The software will reduce the likelihood of all of the contactelements becoming inactive.

PREVIEW Requests the export of a bulk data representation of the elementedges and faces where contact elements are created. SeeRemark 6.

0 - The bulk data export does not occur (Default).

1 - The bulk data export occurs.

Table 6-7. Secondary parameters supported by SOL 401:

The following parameters are available for special cases.

Name Description

PENN* Penalty factor for normal direction. PENN and PENT areautomatically calculated by default. See Remark 2. When PENTis defined but PENN is undefined, PENN = 10 * PENT.

PENT* Penalty factor for transverse direction. PENN and PENT areautomatically calculated by default. See Remark 2. When PENNis defined but PENT is undefined, PENT = PENN / 10.

PENTYP* Changes how contact element stiffness is calculated (Default=1).See Remark 2.

1- PENN and PENT are entered as units of 1/Length.

2 - PENN and PENT are entered as units of Force/(Length xArea).

NX Nastran 10 Release Guide 6-83

Multi-step nonlinear solution 401

Page 210: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Table 6-7. Secondary parameters supported by SOL 401:

The following parameters are available for special cases.

Name Description

AUTOSCAL*Scales the automatically calculated penalty factors PENN andPENT either up or down. AUTOSCAL can be used to scale thestiffness of specific contact pairs if convergence issues occur(0<Real; Default=1.0). See Remark 2.

REFINE Requests that the software refine the mesh on the source regionduring the solution to be more consistent with the target sidemesh.

0 - Refinement does not occur.

2 - Refinement occurs (default).

INTORD Determines the number of contact evaluation points for a singleelement edge or face on the source region. The number ofcontact evaluation points is dependent on the value of INTORD,and on the type of element face. See the table in Remark 4 forspecific values.

1 – The reduced number of contact evaluation points is used.

2 – Use an increased number of contact evaluation points(default).

3 – Use a high number of contact evaluation points.

* Can be defined on local BCTPARM entries. The BCTPARM bulk entriesassociated to individual BCTSET bulk entries, which are then combined witha BCTADD bulk entry, define local parameters. A local parameter definitionoverrides a global definition.

See “Contact Control Parameters – BCTPARM” in the NX Nastran User’s Guidefor more information on the BCTPARM options.

REMARKS:

1. In SOLs 101, 103, 111, and 112, all of the parameters are supported forsurface-to-surface contact definitions. For edge-to-edge contact definitions,the parameters CTOL, MAXF, MAXS, NCHG, INIPENE, PENN, PENT,PENTYP, RESET, CSTRAT, PREVIEW, and AUTOSCAL are supported.

6-84 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 211: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

2. The penalty factors PENN and PENT are automatically calculated by default.The automatic calculation is turned off if either PENN or PENT are defined.

When PENTYP=1 (default) is defined, PENN and PENT have units of1/(Length), and the contact element stiffness is calculated by K = e*E*dAwhere e represents PENN or PENT, E is the modulus value, and dA is area.A physical interpretation is that it is equivalent to the axial stiffness of a rodwith area dA, modulus E, and length 1/e.

When PENTYP=2 is defined, PENN and PENT become a spring rate perarea Force/(Length x Area), and the contact element stiffness is calculatedas K=e*dA. The spring rate input is a more explicit way of entering contactstiffness since it is not dependent on the modulus value.

The penalty factors influence the rate of convergence, and to a lesser extent,the accuracy of the contact solution. The automatic penalty factor calculationworks well for most instances, but manual adjustments may be necessary,particularly if a contact problem fails to converge. See “Tips for Setting PENNand PENT” in the NX Nastran User's Guide for tips on adjusting penaltyfactors.

3. In SOLs 101, 103, 111, and 112, if NCHG is a real number and is < 1.0, thesoftware treats it as a fraction of the number of active contact elementsin each outer loop of the contact algorithm. The number of active contactelements is evaluated at each outer loop iteration.

If NCHG is an integer ≥ 1, the value defines the allowable number of contactchanges.

If NCHG = 0, no contact status changes can exist.

Consider defining a lower NCHG value than the default when a large numberof pairs are defined in a “stack up” type of configuration where the cumulativeeffect of a small contact element status change within some of the pairs willimpact the contact element status of the other pairs.

4. A higher number of contact evaluation points can be used to increase theaccuracy of a contact solution. Inaccuracies sometimes appear in the formof nonuniform contact pressure and stress results. There may be a penaltyassociated with using more evaluation points since the time for a contactproblem to converge may be longer. The table below shows how the numberof contact evaluation points is dependent on the element type, and how it canbe adjusted using the INTORD option. The “Face Type” column applies toshell elements, and to the solid element with the associated face type.

Number of Contact Evaluation PointsFace Type INTORD=1 INTORD=2 INTORD=3Linear Triangle 1 3 7Parabolic Triangle 3 7 12Linear Quad 1 4 9

NX Nastran 10 Release Guide 6-85

Multi-step nonlinear solution 401

Page 212: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Parabolic Quad 4 9 16

5. In SOLs 101, 103, 111, and 112, under certain conditions, all of the contactelements could become inactive which may lead to singularities. Settingthe parameter CSTRAT=1 will reduce the likelihood of all contact elementsbecoming inactive.

6. In SOLs 101, 103, 111, and 112, setting the PREVIEW parameter to “1”requests a bulk data representation of the element edges and faces wherecontact elements are created. The software will write a bulk data filecontaining dummy shell element entries for face locations, and dummyPLOTEL entries for edge locations. Dummy GRID, property and materialentries are also written. You can import the file into a preprocessor to displayboth source and target contact locations. The preview file has the namingconvention

<input_file_name>_cnt_preview_<subcaseid>_<contactsetid>.dat

7. In SOLs 101, 103, 111, and 112, the following applies to the initial contactcondition* when INIPENE= 2 or 3:

* The initial contact condition is the contact status before the solution iterateson the contact condition. This is the contact status before the solution hasapplied loads.

• If shell element contact regions exist and SHLTHK=0 (default) on theBCTPARM entry, the shell element thickness is applied before thesoftware evaluates any gaps or penetrations as a result of the INIPENEsetting. For example, when INIPENE=2, penetrations are reset to anew initial condition in which there is no interference. This includesthe penetrations as a result of the shell thickness. When INIPENE=3,since penetrations and gaps are reset to a new initial condition, the shellthickness is not considered by the contact condition.

• If shell element contact regions exist, and a shell element offset is definedwith the ZOFF field on the element entry, and ZOFFSET=0 (default) onthe BCTPARM entry, the shell element offset is added after the softwareremoves any gaps or penetrations as a result of the INIPENE setting.

8. If a region offset is defined with the OFFSET parameter on the BCRPARAentry, the region offset is added after the software removes any gaps orpenetrations as a result of the INIPENE setting.

Support for crack simulationBeginning with NX Nastran 10, you can compute and output the j-integral for a givencrack geometry. This capability is supported only for SOL 401. The j-integral output

6-86 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 213: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

can be used by third-party software like Zencrack to perform a fracture mechanicsanalysis.

A number of enhancements to the NX Nastran user interface have been made tosupport the j-integral calculation capability. These enhancements include:

• The creation of the JINTEG case control command. You can use the JINTEGcase control command to control the computation and output of the j-integral.With the JINTEG case control command, you can direct the j-integral output toeither .op2 or .f06 files.

For additional information, see the JINTEG case control command.

• The creation of the CRAKTP bulk entry. You can use the CRAKTP bulk entry tospecify information related to the crack tip.

For additional information, see the CRAKTP bulk entry.

• The creation of the VCEV bulk entry. You can use the VCEV bulk entry to definevirtual crack tip extension vectors.

For additional information, see the VCEV bulk entry.

• The modification of the CHEXA bulk entry to allow for collapsed CHEXA elementdefinition. Note that the collapsed CHEXA element is not supported in a glueor contact region.

• The creation of the COLPHEXA parameter. You can allow collapsed CHEXAelements to bypass input file checks with the new COLPHEXA parameter. To doso, specify PARAM,COLPHEXA,YES in the bulk section of the input file.

Collapsed CHEXA elements

Any face of a CHEXA element can now be collapsed to an edge. The edge of thecollapsed face represents the crack front.

Figure 6-6 shows the connectivity for a standard CHEXA element.

NX Nastran 10 Release Guide 6-87

Multi-step nonlinear solution 401

Page 214: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Figure 6-6. Standard CHEXA Element

Figure 6-7 shows the CHEXA element of Figure 6-6 with theG2–G14–G6–G18–G7–G15–G3–G10 face collapsed so that theG2–G14–G6 edge and the G3–G15–G7 edge become the crack front. Alternately,the G2–G14–G6–G18–G7–G15–G3–G10 face could be collapsed so that theG2–G10–G3 edge and the G6–G18–G7 edge would become the crack front.

Figure 6-7. Collapsed CHEXA Element

Two options are available for specifying a CHEXA element with a collapsed face:

6-88 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 215: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• In Format 1, 15 unique grid IDs are specified in the 20 grid ID fields of the CHEXAbulk entry. Format 1 is typically used for elastic material models. With Format 1,mid-side grids can move to the quarter-span locations closest to the crack front.

For the collapsed CHEXA element shown in Figure 6-7, the Format 1specification is as follows.

1 2 3 4 5 6 7 8 9 10CHEXA EID PID G1 G2 G2 G4 G5 G6

G6 G8 G9 G2 G11 G12 G13 G14

G14 G16 G17 G6 G19 G20

The same grid ID is entered in the G2, G3, and G10 fields, another grid ID isentered in both the G14 and G15 fields, and another grid ID is entered in theG6, G7, and G18 fields.

• In Format 2, 20 unique grid IDs are specified in the 20 grid ID fields ofthe CHEXA bulk entry. However, eight of the grid IDs do not have uniquecoordinates. Format 2 is typically used for elasto-plastic material models. WithFormat 2, mid-side grids remain at the mid-span locations.

For the collapsed CHEXA element shown in Figure 6-7, the Format 2specification is as follows.

1 2 3 4 5 6 7 8 9 10CHEXA EID PID G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12 G13 G14

G15 G16 G17 G18 G19 G20

The grids entered in the G2, G3, and G10 fields would share the samecoordinates, the grids entered in the G14 and G15 fields would share the samecoordinates, and the grids entered in the G6, G7, and G18 fields would sharethe same coordinates. Unlike Format 1 where grids in the CHEXA elementconnectivity are merged, Format 2 does not merge coincident grids in the CHEXAelement connectivity. Thus, these grids can move independently of one another.

NX Nastran 10 Release Guide 6-89

Multi-step nonlinear solution 401

Page 216: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

CHEXA

Six-Sided Solid Element Connection

Defines the connections of the six-sided solid element with eight to twenty gridpoints.

FORMAT:

1 2 3 4 5 6 7 8 9 10CHEXA EID PID G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12 G13 G14

G15 G16 G17 G18 G19 G20

EXAMPLE:

CHEXA 71 4 3 4 5 6 7 8

9 10 0 0 30 31 53 54

55 56 57 58 59 60

FIELDS:

Field Contents Type Default

EID Element identification number. Integer > 0 Required

PID Property identification number of aPSOLID, PLSOLID, or PCOMPS entry.

Integer > 0 Required

Gi Grid point identification numbers ofconnection points.

Integer ≥ 0or blank

Required

6-90 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 217: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

Figure 6-8. CHEXA Element Connection

REMARKS:

1. Element identification numbers should be unique with respect to all otherelement identification numbers.

2. Grid points G1 through G4 must be given in consecutive order about onequadrilateral face. G5 through G8 must be on the opposite face with G5opposite G1, G6 opposite G2, etc.

3. The edge points G9 to G20 are optional. Any or all of them may be deleted.If the ID of any edge connection point is left blank or set to zero (as for G9and G10 in the input example), the equations of the element are adjustedto give correct results for the reduced number of connections. Corner gridpoints cannot be deleted. The element is an isoparametric element (withshear correction) in all cases.

4. Components of stress are output in the material coordinate system. SeeRemark **Unsatisfied xref number** on the PSOLID bulk entry for hyperelasticand nonlinear exceptions. See Remark 7 on the PCOMPS bulk entry forcomposite laminate exception.

5. The second continuation is optional.

6. Except when used as a hyperelastic element or as a composite laminatesolid element, the element coordinate system for the CHEXA element is

NX Nastran 10 Release Guide 6-91

Multi-step nonlinear solution 401

Page 218: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

defined in terms of the three vectors R, S, and T, which join the centroids ofopposite faces.

R vector joins the centroids of faces G4-G1-G5-G8 and G3-G2-G6-G7.

S vector joins the centroids of faces G1-G2-G6-G5 and G4-G3-G7-G8.

T vector joins the centroids of faces G1-G2-G3-G4 and G5-G6-G7-G8.

The origin of the coordinate system is located at the intersection of thesevectors. The X, Y, and Z axes of the element coordinate system are chosenas close as possible to the R, S, and T vectors and point in the same generaldirection. (Mathematically speaking, the coordinate system is computed insuch a way that if the R, S, and T vectors are described in the elementcoordinate system, a 3 x 3 positive-definite symmetric matrix would beproduced.)

Figure 6-9. CHEXA Element R, S, and T Vectors

7. It is recommended that the edge points be located within the middle thirdof the edge.

8. For hyperelastic elements, the plot codes are specified under the CHEXAFDelement name in “Item Codes”.

9. If a CHEXA element is referenced by a PSET or PVAL entry, then a p-versionformulation is used and the element can have curved edges.

• If a curved edge of a p-element is shared by an h-element without midsidenodes, the geometry of the edge is ignored and set straight.

6-92 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 219: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• Elements with midside nodes cannot be p-elements and edges withmidside nodes cannot be shared by p-elements.

10. By default, all twelve edges of the element are considered straight unless:

• For p-elements there is an FEEDGE or FEFACE entry that contains thetwo grids of any edge of this element. In this case, the geometry of theedge is used in the element.

• For h-elements, any of G9 through G20 are specified.

11. Collapsed CHEXA elements are supported for use in crack simulations usingSOL 401 and a third-party software. To allow for collapsed CHEXA elements,specify PARAM,COLPHEXA,YES. Note that the collapsed CHEXA element isnot supported in a glue or contact region.

Any face of a CHEXA element can be collapsed to an edge. The edge of thecollapsed face represents the crack front.

For example, Figure 6-10 shows the CHEXA element of Figure 6-8 with theG2–G14–G6–G18–G7–G15–G3–G10 face collapsed so that the G2–G14–G6edge and the G3–G15–G7 edge become the crack front. Alternately, theG2–G14–G6–G18–G7–G15–G3–G10 face could be collapsed so that theG2–G10–G3 edge and the G6–G18–G7 edge would become the crack front.

Figure 6-10. Collapsed CHEXA Element

Two options are available for specifying a CHEXA element with a collapsedface:

• In Format 1, 15 unique grid IDs are specified in the 20 grid ID fields ofthe CHEXA bulk entry. Format 1 is typically used for elastic material

NX Nastran 10 Release Guide 6-93

Multi-step nonlinear solution 401

Page 220: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

models. With Format 1, mid-side grids can move to the quarter-spanlocations closest to the crack front.

For the collapsed CHEXA element shown in Figure 6-10, the Format 1specification is as follows:

1 2 3 4 5 6 7 8 9 10CHEXA EID PID G1 G2 G2 G4 G5 G6

G6 G8 G9 G2 G11 G12 G13 G14

G14 G16 G17 G6 G19 G20

where the same grid ID is entered in the G2, G3, and G10 fields, anothergrid ID is entered in both the G14 and G15 fields, and another grid ID isentered in the G6, G7, and G18 fields.

• In Format 2, 20 unique grid IDs are specified in the 20 grid ID fields ofthe CHEXA bulk entry. However, eight of the grid IDs do not have uniquecoordinates. Format 2 is typically used for elasto-plastic material models.With Format 2, mid-side grids remain at the mid-span locations.

For the collapsed CHEXA element shown in Figure 6-10, the Format 2specification is as follows:

1 2 3 4 5 6 7 8 9 10CHEXA EID PID G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12 G13 G14

G15 G16 G17 G18 G19 G20

where the grids entered in the G2, G3, and G10 fields would share thesame coordinates, the grids entered in the G14 and G15 fields wouldshare the same coordinates, and the grids entered in the G6, G7, andG18 fields would share the same coordinates. Unlike Format 1 wheregrids in the CHEXA element connectivity are merged, Format 2 does notmerge coincident grids in the CHEXA element connectivity. Thus, thesegrids can move independently of one another.

REMARKS RELATED TO SOLS 601 AND 701:

1. For SOL 601, only elements with 8 or 20 grid points are allowed, i.e., either alledge points G9 to G20 are specified or no edge points are specified. For SOL701, only elements with 8 grid points are allowed.

2. For SOL 601, 20-node CHEXA elements may be converted to 27-nodeCHEXA elements (6 additional nodes on the centroid of the six faces and 1

6-94 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 221: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

additional node at the centroid of the element) by specifying ELCV=1 in theNXSTRAT entry. 27-node CHEXA elements are especially effective in theanalysis of incompressible media and inelastic materials, e.g., rubber-likematerials, elasto-plastic materials, and materials with Poisson’s ratio close to0.5.

NX Nastran 10 Release Guide 6-95

Multi-step nonlinear solution 401

Page 222: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

COLPHEXA

Default=NO

Specify YES to allow collapsed CHEXA elements for crack propagation analysis.If PARAM,COLPHEXA,YES is not specified, collapsed CHEXA elements aredisallowed by the input file checks.

6-96 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 223: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

CRAKTP

Crack Tip Specification

Specifies information related to a crack tip.

FORMAT:

1 2 3 4 5 6 7 8 9 10CRAKTP SID NR

G1 VCEV1 G3 VCEV2 G3 VCEV3 G4 VCEV4

G5 VCEV5 etc.

EXAMPLE:

CRAKTP 1 3

11 1 12 2 13 3 16 4

17 9 52 8 57 9

FIELDS:

Field Contents

SID Crack tip identification number. (Integer > 0)

NR Number of rings to compute j-integral. (Integer > 0)

Gi Grid point identification number for the crack tip. (Integer > 0)

VCEVi Virtual crack extension vector identification number. (Integer > 0)

NX Nastran 10 Release Guide 6-97

Multi-step nonlinear solution 401

Page 224: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

JINTEG

J-Integral computation and output for SOL 401.

Controls the computation and output of the j-integral.

FORMAT:

EXAMPLES:

JINTEG=ALLJINTEG(PLOT)=ALL

DESCRIBERS:

Describer Meaning

PRINT Compute and write output to the print (.f06) file. (Default)

PLOT Compute output only.

ALL Compute j-integral.

NONE Do not compute j-integral.

REMARKS:

1. Only supported in a static subcases for SOL 401.

6-98 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 225: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

VCEV

Vitual Crack Extension Vector

Defines virtual crack tip extension vectors.

FORMAT:

1 2 3 4 5 6 7 8 9 10VCEV SID CID

N11 N12 N13

N21 N22 N23

N31 N32 N33

N41 N42 N43

N51 N52 N53

N61 N62 N63

N71 N72 N73

EXAMPLE:

CRAKTP 1 5

1.0 0.0 0.0

0.707 0.707 0.0

0.5 0.866 0.0

0.0 1.0 0.0

–0.5 0.866 0.0

–0.707 0.707 0.0

–1.0 0.0 0.0

FIELDS:

Field Contents

SID Virtual crack extension vector identification number. (Integer > 0)

NX Nastran 10 Release Guide 6-99

Multi-step nonlinear solution 401

Page 226: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

Field Contents

CID Coordinate system identification number. (Integer ≥ 0; Default= 0)

Ni1, Ni2,Ni3

Components of the i-th virtual crack extension vector in the CIDcoordinate system. (Real)

REMARKS:

1. Up to seven virtual crack extension vectors can be defined.

2. Vectors do not need to be normalized when they are entered on a VCEV bulkentry. The software will normalize them when computing the j-integral.

Error estimator for mesh refinementBeginning with NX Nastran 10, you can request stress norm, stress error norm,strain energy norm, and strain energy error norm output when using SOL 401. Theoutput is computed and stored on an individual element basis. The NX 10 AdvancedSimulation product uses the output for adaptive meshing.

The output is supported for the following element types.

Solid elements CHEXA, CPENTA, CPYRAM, CTETRA (excludes CHEXA andCPENTA elements referencing PCOMPS bulk entries)

Axisymmetricelements CQUADX4, CQUADX8, CTRAX3, CTRAX6Plane strainelements

CPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8 (includeselements referencing PGPLSN bulk entries)

Plane stresselements CPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8

• The stress norm is calculated as follows:

• The stress error norm is calculated as follows:

6-100 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 227: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

• The strain energy norm is calculated as follows:

• The strain energy error norm is calculated as follows:

where

Ω is the element volume,

σunaveraged is the unaveraged stress vector,

σaveraged is an averaged stress vector computed at a grid point using the stressvectors from elements connected to the grid point,

D matrix is the constitutive relation.

When computing σaveraged, stress values are not averaged across different elementfamilies, material properties, material coordinate systems, orientation angles in 2Dsolid elements, and thicknesses in plane stress elements.

You use the STRESS, STNERGY and STEP describers on the new ADAPTERRcase control command to request the output.

• The ADAPTERR case control command must be defined above the subcases(globally).

• The STRESS describer requests the stress norm and the stress error norm.

• The STNERGY describer requests the strain energy norm and strain energyerror norm.

• You can specify both the STRESS and STNERGY describers to request stressnorm, stress error normal, strain energy norm, and strain energy error normoutput.

• The software always outputs the maximum value on each element for eachoutput type requested, by comparing the values from all solution steps. Inaddition, if you specify the STEP describer, the software will output what yourequested at the output increment steps defined with the TSTEP1 entries.

For additional information, see the ADAPTERR case control command.

NX Nastran 10 Release Guide 6-101

Multi-step nonlinear solution 401

Page 228: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

ADAPTERR

Error estimator output request for SOL 401.

Controls the computation and output of error estimates.

FORMAT:

EXAMPLES:

ADAPTERR(STRESS)=ALLADAPTERR(STRESS,STNERGY,PUNCH)=ALLADAPTERR(STEP)=ALL

DESCRIBERS:

Describer Meaning

STRESS Request the stress norm and the stress error norm. SeeRemarks 3 and 4.

STNERGY Request the strain energy norm and strain energy error norm.See Remarks 3 and 4. (Default)

STEP Request the output at the output increment steps defined withthe TSTEP1 entries. See Remark 5.

PRINT Compute and write output to the print (.f06) file. (Default)

PLOT Compute output only.

ALL Compute error estimates.

NONE Do not compute error estimates.

6-102 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 229: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Multi-step nonlinear solution 401

REMARKS:

1. The ADAPTERR case control command is only supported in SOL 401. Itmust be defined above the subcases (globally).

2. The calculation of error estimates is supported for the following element types:

Solid elementsCHEXA, CPENTA, CPYRAM, CTETRA (excludesCHEXA and CPENTA elements referencing PCOMPSbulk entries)

Axisymmetricelements CQUADX4, CQUADX8, CTRAX3, CTRAX6Plane strainelements

CPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8 (includeselements referencing PGPLSN bulk entries)

Plane stresselements CPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8

3. The stress norm is calculated from:

The stress error norm is calculated from:

The strain energy norm is calculated from:

The strain energy error norm is calculated from:

where

Ω is the element volume,

σunaveraged is the unaveraged stress vector,

σaveraged is an averaged stress vector computed at a grid point using thestress vectors from elements connected to the grid point,

D matrix is the constitutive relation.

NX Nastran 10 Release Guide 6-103

Multi-step nonlinear solution 401

Page 230: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 6: Multi-step nonlinear solution 401

When computing σaveraged, stress values are not averaged across differentelement families, material properties, material coordinate systems, orientationangles in 2D solid elements, and thicknesses in plane stress elements.

4. You can specify both the STRESS and STNERGY describers to requeststress norm, stress error normal, strain energy norm and strain energy errornorm output.

5. The software always outputs the maximum value on each element, for eachoutput type requested, by comparing the values from all solution steps. Inaddition, if you specify the STEP describer, the software will output whatyou have requested at the output increment steps defined with the TSTEP1entries.

6-104 NX Nastran 10 Release Guide

Chapter 6: Multi-step nonlinear solution 401

Page 231: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

Potential-based fluid elementA potential-based fluid element is available for SOL 601,106. The new elementcan be used in a static analysis where the pressure distribution in the fluid, andthe displacement and stress distribution in the structure, is of interest. It has thefollowing assumptions:

• Inviscid, irrotational medium with no heat transfer.

• Compressible or almost incompressible medium.

• Relatively small displacements of the fluid boundary.

The element material is defined using the existing MAT10 entry. It is supported bythe 3D solid elements CHEXA, CTETRA, CPENTA, CPYRAM, the axisymmetricelements CQUADX4,CQUADX8, CTRAX3, CTRAX6, and the plane strain elementsCPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8. The axisymmetric and plane strainfluid elements must be defined on the XZ plane.

A fluid boundary is specified by referencing the BSURFS, BCPROPS, or BEDGEentries on the new BFLUID entry. The four types of fluid boundaries are fluid-fluid,fluid-structure, free surface, and rigid-wall. When the fluid elements are coupledwith structural elements, the structural motions cause fluid pressure, and the fluidpressure causes additional forces to act on the structure.

See “Potential-based fluid elements” in the Advanced Nonlinear Theory andModeling Guide.

NX Nastran 10 Release Guide 7-1

Page 232: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

BFLUID

Fluid Boundary Definition (SOL 601,106 only)

Defines a fluid boundary by referencing BSURFS, BCPROPS or BEDGE entries.

FORMAT:

1 2 3 4 5 6 7 8 9 10BFLUID BID TYPE ID1 ID2 ID3 ID4 ID5 ID6

ID7 ID8 -etc-

EXAMPLE:

BFLUID 23 FLUID 52 21 28 4 23 19

5 30 32 33

FIELDS:

Field Contents

BID Identification number of the fluid boundary. (Integer > 0)

TYPE Type of fluid boundary. See remarks 2 to 6. (Character: “FLUID”,“STRUC”, “FREE”, “RIGID”)

IDn Boundary identification numbers defined in a BSURFS,BCPROPS or BEDGE entry. (Integer > 0)

REMARKS:

1. BID must be unique with respect to all other BFLUID entries.

2. TYPE=”FLUID” defines a fluid to fluid interface, TYPE=”STRUC” defines afluid to structure interface, TYPE=”FREE” defines a free surface interface,and TYPE=”RIGID” defines a rigid wall.

7-2 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 233: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

3. Fluid-structure and fluid-fluid interfaces must have separate but compatiblemeshes.

4. For TYPE=”FLUID”, both fluid boundary regions must be included in thedefinition.

5. For TYPE=”STRUC”, only the fluid boundary region need to be included inthe definition. Note that the program can automatically detect fluid-structureboundaries. Hence, the specification of fluid-structure boundaries is optional.

6. A fluid boundary without any interface are treated as a rigid wall. Hence, thespecification of a rigid wall boundary is optional.

Strain-rate dependent plastic materialA strain-rate dependent plastic material is available in SOLs 601 and 701 to increasethe yield stress with an increase in strain rate. The rate-dependent model applies tothe isotropic plasticity models with isotropic hardening (bilinear or multilinear).

The new MATSR entry defines the strain-rate dependency, and has the same MIDas the MATS1 entry. The MATSR entry is supported with the solid elements CHEXA,CTETRA, CPENTA, CPYRAM, the axisymmetric elements CQUADX4,CQUADX8,CTRAX3, CTRAX6, the plane stress elements CPLSTS3, CPLSTS4, CPLSTS6,CPLSTS8, the plane strain elements CPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8,the shell elements CQUAD4, CQUAD8, CTRIA3, CTRIA6, CQUADR, CTRIAR,and the rod elements CROD, CONROD.

See "Rate-dependent plasticity" in the Advanced Nonlinear Theory and ModelingGuide.

NX Nastran 10 Release Guide 7-3

Advanced nonlinear

Page 234: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

MATSR

Material Strain Rate Dependence (SOLs 601 and 701 only)

Specifies strain-rate dependent properties for use with MATS1 entry with thesame MID.

FORMAT:

1 2 3 4 5 6 7 8 9 10MATSR MID BVALUE TSRATE TID

EXAMPLES:

MATSR 15 0.361 0.05

MATSR 15 2

FIELDS:

Field Contents

MID Identification number of a MATS1. (Integer > 0)

BVALUE Strain-rate hardening parameter. Must be specified if TID is blankor zero. (Real or blank)

TSRATE Transition strain rate. Must be specified if TID is blank or zero.(Real > 0.0 or blank)

TID Identification number of a TABLEST entry. (Integer ≥ 0 or blank)

REMARKS:

1. BVALUE and TSRATE may be specified or be determined from thestress-strain curves at two or more strain rate in the TABLEST entryreferenced by TID.

7-4 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 235: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

2. If TID is specified and TABLEST referenced by TID contains stress-straincurves at two or more strain rates, then the program calculates BVALUE andTSRATE which overwrites any BVALUE and TSRATE specified.

3D shell elementA 2D shell element does not account for a change in thickness, and it assumes zerostress through the thickness. A 3D solid element does account for a change inthickness, but it locks when modeled as a thin shell.

A 3D shell element is now available for SOLs 601 and 701. In a large strain analysis,the 3D shell element accounts for the change in thickness, and the shift of the shellmid-surface from the halfway position.

The new 3D shell element is defined in 2D using the existing CQUAD4 or CTRIA3entries, along with the new PSHL3D entry to define the element properties. Theelastic (MAT1), plastic-cyclic (MATPLCY), and hyperelastic (MATHP, MATHE)materials are supported. Temperature dependent material properties defined withthe MATTi entries are not supported.

See "3D-shell element" in the Advanced Nonlinear Theory and Modeling Guide.

NX Nastran 10 Release Guide 7-5

Advanced nonlinear

Page 236: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

PSHL3D

3D-Shell Element Property (SOLs 601 and 701 only)

Defines the properties of 3D-shell elements.

FORMAT:

1 2 3 4 5 6 7 8 9 10PSHL3D PID MID T

EXAMPLE:

PSHL3D 2 5 0.05

FIELDS:

Field Contents

PID Property identification number referenced by a CQUAD4 orCTRIA3 entry. (Integer > 0)

MID Identification number of a MAT1, MATPLCY, MATHP or MATHEentry. (Integer > 0)

T Default shell thickness. If T is blank, then the thickness mustbe specified for Ti on the CQUAD4 and CTRIA3 entries. (Real> 0.0 or blank)

REMARKS:

1. The 3D-shell element can only be used with the 3-node (CTRIA3) or 4-node(CQUAD4) element.

2. By default, the mixed displacement pressure (u/p) formulation is not used forthe elastic material but is used for the plastic-cyclic, Ogden, Mooney-Rivlin,

7-6 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 237: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

Arruda-Boyce and Sussman-Bathe materials. The u/p formulation cannotbe used for the hyperfoam material.

PCOMPG entry supportShell composites defined with the PCOMP entry are supported in SOL 601. Nowshell composities defined with the PCOMPG entry, which has global ply IDs, are alsosupported. The PCOMPG entry allows a global ply-numbering scheme across allcomposite definitions.

The inputs on the PCOMPG entry are the same as those on the PCOMP entry,except that each ply on the PCOMPG entry is assigned a global ID. The resultsoutput for a particular global ply ID will then apply to all composites in which youhad included that ID.

See "Composite shell elements" in the Advanced Nonlinear Theory and ModelingGuide.

NX Nastran 10 Release Guide 7-7

Advanced nonlinear

Page 238: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

PCOMPG

Layered Composite Element Property with global ply IDs

Defines the properties of an n-ply composite material laminate which includesglobal ply IDs.

FORMAT:

1 2 3 4 5 6 7 8 9 10

PCOMPG PID Z0 NSM SB FT TREF GE LAM

GPLYIDi MIDi Ti THETAi SOUTi

EXAMPLE:

PCOMPG 73 –2.E-4 0.0 8.E+7 TSAI

101 1 1.E-4 0. YES

102 1.E-4 0. YES

103 1.E-4 0. YES

104 1.E-4 0. YES

FIELDS:

Field Contents

PID Property identification number. (0 < Integer < 10000000)

Z0 Distance from the reference plane to the bottom surface. SeeRemark 14. (Real; Default = -0.5 times the element thickness.)

NSM Nonstructural mass per unit area. (Real)

SB Allowable shear stress of the bonding material (allowable interlaminarshear stress). Required if FT is also specified. (Real > 0.0) SeeRemark 12.

7-8 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 239: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

Field Contents

FT Failure theory. The following theories are allowed (Character orblank. If blank, then no failure calculation will be performed):

“HILL” for the Hill theory

“HOFF” for the Hoffman theory

“TSAI” for the Tsai-Wu theory

“STRN” for the Maximum Strain theory

See the Laminates chapter in the NX Nastran User's Guide for adetailed explanation of each theory.

TREF Reference temperature. See Remark 5. (Real; Default = 0.0)

GE Damping coefficient. See Remarks 7 and 16. (Real; Default = 0.0)

LAM Laminate Options. (Character or blank, Default = blank). SeeRemark 17.

“Blank” All plies must be specified and all stiffness terms aredeveloped.

“MEM” All plies must be specified, but only membrane terms(MID1 on the derived PSHELL entry) are computed.

“BEND” All plies must be specified, but only bending terms (MID2on the derived PSHELL entry) are computed.

“SMEAR” All plies must be specified, stacking sequence is ignored,MID1=MID2 on the derived PSHELL entry and MID3,MID4 and TS/T and 12I/T**3 terms are set to zero.

“SMCORE” Face plies on one side of the laminate and the core arespecified to define a laminate that is symmetric about themidplane of the core. The core is specified last. Whencalculating face sheet stiffness, stacking sequence ofthe face sheets is ignored.

GPLYIDi Global ply IDs. See Remark 2. (Integer > 0)

NX Nastran 10 Release Guide 7-9

Advanced nonlinear

Page 240: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

Field Contents

MIDi Material ID of the various plies. The plies are identified by seriallynumbering them from 1 at the bottom layer. The MIDs must refer toMAT1, MAT2, MAT8, MATSMA (SOL 601 only) or MATVE (SOL 601only) bulk entries. See Remark 4. (0 < Integer < 99999999 or blank,except MID1 must be specified.)

Ti Thicknesses of the various plies. See Remark 4. (Real or blank,except T1 must be specified.)

THETAi Orientation angle of the longitudinal direction of each ply with thematerial axis of the element. (If the material angle on the elementconnection entry is 0.0, the material axis and side 1-2 of the elementcoincide.) The plies are to be numbered serially starting with the firstlisted at the bottom layer. The bottom layer is defined as the surfacewith the largest -Z value in the element coordinate system. (Real;Default = 0.0)

SOUTi Controls individual ply stress and strain print or punch output. SeeRemarks 8 and 9. (Character: “YES” or “NO”; Default = “NO”)

REMARKS:

1. PID must be unique with respect to all PCOMP, PCOMPG, and PSHELLentries.

2. Each global ply identification number GPLYIDi in a single PCOMPG entryshould be unique.

The global ply identification numbers (GPLYIDi) are reused across differentPCOMPG bulk entires in order to post-process relative ply layers withcommon GPLYIDi.

3. Composite shell elements do not support nonlinear elastic materials definedwith the MATS1 bulk entry.

4. The default for MIDi+1, ..., MIDn is the last defined MIDi. In the exampleabove, MID(PLY1) is the default for MID(PLY2), MID(PLY3), and MID(PLY4).The same logic applies to Ti.

5. A temperature dependent material defined with the combined MATi andMATTi entries can be referenced for a ply material (MIDi field on thePCOMPG entry). For linear solutions, when computing the equivalent

7-10 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 241: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

PSHELL and MAT2 entries from the PCOMPG definition, the software usesTREF defined on the PCOMPG entry to evaluate any temperature dependentmaterial properties for the plies. TREF defaults to 0.0 if undefined. TheTEMPERATURE(INIT) case control command is not used in this phase of thesolution, although it must be defined, otherwise the software will ignore thetemperature dependent material properties and use the properties on thereferenced MATi entry. After the software creates the equivalent PSHELL andMAT2 entries, if a thermal load was defined with the TEMPERATURE(LOAD)case control command, the software will use the TEMPERATURE(INIT)command to compute thermal strains as described in the remarks on theTEMPERATURE case control command.

By default, SOL 106 behaves as described above. Although, if PARAM,COMPMATT, YES is defined, SOL 106 will use the temperatures selected withthe TEMPERATURE(LOAD) command to evaluate temperature dependentmaterial properties for the plies when computing the equivalent PSHELL andMAT2 entries. A unique TEMPERATURE(LOAD) command in each subcasewill result in the recomputing of the equivalent PSHELL and MAT2 entries.As described above for the linear solutions, the TEMPERATURE(INIT) casecontrol command is also required in SOL 106 in order for the software touse the temperature dependent material properties when computing theequivalent PSHELL and MAT2 entries.

6. At least one of the four values (MIDi, Ti, THETAi, SOUTi) must be present fora ply to exist. The minimum number of plies is one.

7. GE given on the PCOMPG entry will be used for the element and thevalues supplied on material entries for individual plies are ignored. You areresponsible for supplying the equivalent damping value on the PCOMPGentry. GE is ignored in a transient analysis if PARAM,W4 is not specified.See the parameter W4.

8. The parameter NOCOMPS determines if stress and/or strain recovery isat the composite ply layers (default), on the equivalent PSHELL, or both.See the parameter NOCOMPS. The STRESS and/or STRAIN case controlcommands are required for any of these recovery options. When ply resultsare requested, stress and/or strain are computed at the middle of each ply. Toprint the ply stress and/or strain results, the case control command requestmust include the “PRINT” option (default). To punch these results, the casecontrol command request must include the “PUNCH” option. SOUTi=YESshould then be defined on any ply definitions in which you would like printor punch output. The SOUTi entry is not used in the computing or printingof failure indices. See Remark 10.

9. Stress and strain output for individual plies are available in all superelementstatic and normal modes analysis and requested by the STRESS andSTRAIN case control commands.

10. To output STRESS failure index, the following must be present:

NX Nastran 10 Release Guide 7-11

Advanced nonlinear

Page 242: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= to HILL, HOFF or TSAI) on the PCOMPG Bulk Data entry.

d. Stress allowables Xt, Xc, Yt, Yc, and S on all referenced MAT8 BulkData entries.

e. Stress allowables ST, SC, and SS on all referenced MAT1 Bulk Dataentries.

To output STRAIN failure index, the following must be present:

a. STRESS case control command.

b. The parameter NOCOMPS set to 1 (default) or 0.

c. SB and FT (= STRN) on the PCOMPG Bulk Data entry.

d. Strain allowables Xt, Xc, Yt, Yc, S, and STRN=1.0 on all referencedMAT8 Bulk Data entries.

By default, failure index output prints in the f06 file even when using the PLOTor PUNCH describers on the STRESS and STRAIN case control commands.The parameter entry PARAM,NOFISR,1 can be used to turn off the printing ofthe failure index output. See the parameter NOFISR.

11. To output strength ratio, the failure index output conditions listed in Remark10 must exist, and the parameter SRCOMPS must equal “YES”. See theparameter SRCOMPS.

12. The failure index of the bonding material is calculated by:FIbonding = ( (τ1z, τ2z)/ allowable bonding stress).The allowable bonding stress is defined on the SB field. The strength ratio forthe bonding material is:SRbonding = (1 / FIbonding).

13. The software automatically creates equivalent PSHELL and MATi entriesfrom a PCOMPG definition. You can optionally include a sorted echo requestto print the derived PSHELL and MATi entries in User Information Message4379, or to the punch file. The parameter NOCOMPS controls if stress andstrain are computed for the composite elements, the equivalent homogeneouselement, or both. See the parameter NOCOMPS. The software designatesthe equivalent homogeneous elements with a MID1 or MID2 ID greater thanor equal to 108 on the PSHELL entry. Homogenous stresses are based upona smeared representation of the laminate’s properties and in general will besignificantly different than the more accurate lamina stresses available fromPCOMP-based elements.

7-12 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 243: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

14. If the value specified for Z0 is not equal to -0.5 times the thickness of theelement and PARAM,NOCOMPS,-1 is specified, then the homogeneouselement stresses are incorrect, while lamina stresses and element forcesand strains are correct. For correct homogeneous stresses, use ZOFFS onthe corresponding connection entry.

15. An unsymmetrical layup or the use of Z0 to specify an unsymmetrical layup,is not recommended in buckling analysis or the calculation of differentialstiffness. Also, Z0 should not be used to specify an unsymmetrical layup.

16. To obtain the damping coefficient GE, multiply the critical damping ratioC/Co by 2.0.

17. The MEM, BEND, SMEAR and SMCORE options provide the followingspecial purpose stiffness calculations: MEM option only considers membraneeffects, BEND option only considers bending effects, SMEAR ignoresstacking sequence and is intended for cases where the sequence is not yetknown, SMCORE allows simplified modeling of a sandwich panel with equalface sheets and a central core.

18. Element output for the SMEAR and SMCORE options are produced using thePARAM NOCOMPS -1 methodology that suppresses ply stress/strain resultsand prints results for the equivalent homogeneous element.

19. When the PCOMP or PCOMPG bulk entries are included in a distributedparallel method (DMP), the gpart keyword used for selecting the partitioningmethod must be gpart=1.

20. PCOMPG is supported in all solutions except SOL 153 or 159 heat transferanalysis, 601 and 701.

21. For elements referencing a PCOMPG, stress and strain output for theindividual lamina is supported in solutions 101, 103, 105, 106, 108, 109, 111,112, 114, 129, 144, and 200. In other solutions, stress and strain can onlybe recovered for the equivalent laminate. That is, output on the equivalentPSHELL created by the software.

REMARKS RELATED TO SOL 601:

1. Z0, NSM, SB, FT, TREF, GE, LAM, and SOUTi are ignored.

2. When the STRESS and/or STRAIN case control commands are defined,results at the composite ply layers are computed. Stress and straincomponents are computed at the center of each ply. Inter-laminar results,failure indices, and strength ratios are not computed. Stress resultant outputis not supported.

NX Nastran 10 Release Guide 7-13

Advanced nonlinear

Page 244: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 7: Advanced nonlinear

3. Large strain formulation is not available for multi-layered shell elements.

4. Elasto-plastic material model is supported, but not the nonlinear elasticmaterial model. That is, a MATS1 entry with TYPE=PLASTIC is supported,but not TYPE=NLELAST.

New element orientationPreviously, you could only define axisymmetric, plane stress and plane strainelements on the XZ plane for solutions 601 and 701. Now you can optionally definethese elements on the XY plane for these solutions. Specifically, the axisymmetricelements CTRAX3, CQUADX4, CTRAX6, CQUADX8, the plane stress elementsCPLSTS3, CPLSTS4, CPLSTS6, CPLSTS8, and the plane strain elementsCPLSTN3, CPLSTN4, CPLSTN6, CPLSTN8 can be defined on either the XZ or XYplane of the basic coordinate system.

Additional information:

• The software automatically determines the orientation.

• All of these element types must be defined in a consistent plane.

• When axisymmetric elements are defined on the XZ plane, X is the radialdirection, and Z is the axial direction. The grid points defining these elementsmust have X ≥ 0.0.

• When axisymmetric elements are defined on the XY plane, Y is the radialdirection, and X is the axial direction. The grid points defining these elementsmust have Y ≥ 0.0.

• The new 2D potential fluid elements modeled as axisymmetric elements mustbe defined on the XZ plane.

See "Surface elements – 2-D solids" in the Advanced Nonlinear Theory andModeling Guide.

Bolt Preload OutputWhen a bolt preload is defined for SOL 601, the bolt loading is applied in specialbolt loading iterations at the beginning of the analysis. Previously, results werenot output for the bolt loading iterations. Beginning in NX Nastran 10, results willbe output for the bolt loading iterations.

See "Bolt feature" in the Advanced Nonlinear Theory and Modeling Guide.

7-14 NX Nastran 10 Release Guide

Chapter 7: Advanced nonlinear

Page 245: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Advanced nonlinear

Alternate Power creep inputSOL 601 supports the Exponential creep law and the Power creep law (also knownas the Bailey-Norton creep model). The CREEP bulk entry can be used to defineeither of these creep laws. The Power creep law coefficients A, B, and D can also bedefined as temperature dependent with the addition of the MATTC bulk entry.

Now the MATCRP bulk entry is available to alternately define the Power creep law.On the MATCRP entry, define the coefficients of the Bailey-Norton creep model inthe A, B, and D fields.

• To define creep at a single temperature, enter real values.

• To define creep as temperature dependent, enter integer values that referenceTABLEM1 entries.

See "Evaluation of creep strains" in the Advanced Nonlinear Theory and ModelingGuide.

NX Nastran 10 Release Guide 7-15

Advanced nonlinear

Page 246: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 247: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 8: Element enhancements

Input and output for Axisymmetric elementsBefore NX Nastran 10, the stiffness, mass, and loads for the CTRAX3, CQUADX4,CTRAX6, CQUADX8, CTRIAX, and CQUADX elements were based on a per radiansection basis.

Now, the stiffness, mass, and loads for these elements are based on a 2*PI sectionbasis. For example, to apply a distributed load of 135.0 Newton/mm on a single gridwhere the radius is 0.5 mm:The value entered on a FORCE entry = (Distributed force * 2 * π * Radius) = 135.0N/mm * 2 * π * 0.5 mm= 424.115 Newtons

The system cell 587 can optionally be set to 1 to revert to the per radian sectionbasis. Note that the CTRAX3, CQUADX4, CTRAX6, CQUADX8, CTRIAX, andCQUADX elements are always on a per radian basis in solutions 601 and 701. Inaddition, the CTRAX3, CQUADX4, CTRAX6, and CQUADX8 elements are alwayson a 2*PI basis in a heat transfer solution.

In general, the section basis choice changes how force, strain energy, mass, volume,and work are computed. Displacement, pressure (surface tractions), stress, strain,and strain energy density will not change.

The following table summarizes the output and input items which change, or notchange, when system 587 =1 is defined. You should adjust the inputs listed here tobe consistent with the section basis you select.

Item Where Type ChangeDescription

BCRESULTS CaseControl Output YES Edge contact force output changes.

Pressure output does not change.

BGRESULTS CaseControl Output YES Edge glue force output changes.

Pressure output does not change.

EKE CaseControl Output YES Element kinetic energy changes.

ELSUM CaseControl Output NO

Always computed in a 2*PI basisregardless of the system cell 587setting.

ESE CaseControl Output YES Element strain energy changes.

GPFORCE CaseControl Output YES Grid point force changes.

GPKE CaseControl Output NO Grid point kinetic energy does not

change.

NX Nastran 10 Release Guide 8-1

Page 248: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 8: Element enhancements

MEFFMASS CaseControl Output YES Modal effective mass changes.

MPCFORCES CaseControl Output YES MPC constraint forces change.

OLOAD CaseControl Output YES Applied load vector output changes.

SPCFORCES CaseControl Output YES SPC force output changes.

GROUNDCHECK CaseControl Output YES Strain Energy output changes.

WEIGHTCHECK CaseControl Output YES Weight / Mass output changes.

External Work f06 fileOutput Output YES Work output changes.

GRID POINTWEIGHTGENERATOR

f06 fileOutput Output YES Grid point weight output changes.

K2GG CaseControl Input YES DMIG stiffness input changes.

K2PP CaseControl Input YES DMIG stiffness input changes.

K42GG CaseControl Input YES DMIG stiffness input changes.

M2GG CaseControl Input YES DMIG mass input changes.

M2PP CaseControl Input YES DMIG mass input changes.

P2G CaseControl Input YES Direct input load matrices change.

BOLTFOR BulkData Input YES Preload bolt force (LOAD) changes.

CELASi BulkData Input YES Spring element input changes.

CMASSi BulkData Input YES Mass element input changes.

PELAS BulkData Input YES Elastic stiffness for changes.

PMASS BulkData Input YES Scalar mass for changes.

CONM* BulkData Input YES Concentrated mass input changes.

CPLSTS* BulkData Input YES Plane stress thickness input changes.

FORCE BulkData Input YES GRID force magnitude changes.

FORCE1 BulkData Input YES GRID force magnitude changes.

FORCE2 BulkData Input YES GRID force magnitude changes.

8-2 NX Nastran 10 Release Guide

Chapter 8: Element enhancements

Page 249: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Element enhancements

PPLANE BulkData Input YES Thickness of plane stress element

changes.

SLOAD BulkData Input YES Static load changes.

CQUADR / CTRIAR normal rotational stiffnessBy default, the software computes stiffness in the normal rotationaldegree-of-freedom (R6) for the CQUADR and CTRIAR elements. The computed R6stiffness improves the membrane accuracy. It is not computed for the other shellelements (CQUAD4, CQUAD8, CTRIA3, CTRIA6).

The new system cell 589 is available to control the CQUADR and CTRIAR elementR6 stiffness.

System 589 setting Result

NASTRAN SYSTEM(589)=0The software computes the CQUADR and CTRIARelement normal rotational stiffness (Default).

NASTRAN SYSTEM(589)=1 The software does not compute the CQUADR andCTRIAR element normal rotational stiffness.

NASTRAN SYSTEM(589)=2

The software computes the CQUADR and CTRIARelement normal rotational stiffness for the elements whichhave membrane stiffness only. (MID2 and MID3 are blankon the PSHELL entry)

NX Nastran 10 Release Guide 8-3

Element enhancements

Page 250: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 251: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 9: GPU Computing

GPU ComputingThe graphics processing unit (GPU) is used for many applications in whichcomputations of large data can be done in parallel. A GPU is an add-on PCI Expresscard (PCIe) with its own onboard memory. The GPU approach to performanceis to divide computations across a large number of relatively small cores. Somecomputationally intensive portions are offloaded to the GPU, while the remainingcomputations still run on the CPU.

GPU computing was first supported in NX Nastran 9.1 with the Linux system. Now inNX Nastran 10, it is supported on both Windows and Linux systems for the followingcards and architectures.

• Intel’s MIC (Many Integrated Core) architecture, which is used by the Intel XeonPhi, is supported for NX Nastran math computations. NX Nastran supports theAutomatic Offload (AO) feature with the MIC-enabled MKL library. NX Nastrancommonly calls MKL (math kernel libraries) in all solutions. When AO is enabled,and MKL library deems a computation as sufficiently large, it will automaticallyoffload the computation to the MIC architecture.

You can use the intel_mic=1 keyword setting to enable MKL computations withIntel’s MIC architecture. For example,

nastran.exe intel_mic=1 input_file.dat

• AMD GPU cards, and the NVIDIA GPU cards are supported for NX Nastranmatrix decomposition (DCMP module) and frequency response (FRRD1 module)computations.

o Enabling GPU computations for the DCMP module will decrease the timefor matrix decomposition. The impact will be more significant for sparsematrices reporting a maximum front size larger than 30K in the .f04 file.

o Enabling GPU computations for the FRRD1 module will speed up modalfrequency response solutions (SOL 111) when viscous or structural dampingproduces coupled damping matrices. The impact becomes significant whenthe number of modes is at least 5,000.

You can use the gpgpu=any keyword setting to enable the GPU for both FRRD1and DCMP module computations. For example,

nastran.exe gpgpu=any input_file.dat

NX Nastran 10 Release Guide 9-1

Page 252: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 9: GPU Computing

There are also keyword options to enable the GPU for a specific module only,and for a specific GPU when you have more than one device. All keywordoptions are summarized below.

See OpenCL Precompiling Procedure.

Keyword Input Summary

You can use the new intel_mic keyword to enable MKL computations with Intel’sMIC architecture.

intel_micintel_mic=1 Enables MKL computations with Intel’s MIC architecture.

You can use the new gpgpu keyword to enable the GPU for both FRRD1 and DCMPmodule computations.

gpgpu

gpgpu=none Disables GPU for both FRRD1 and DCMP modulecomputations.

gpgpu=any Enables GPU for both FRRD1 and DCMP modulecomputations with the first available AMD or NVIDIA GPU.

gpgpu=amd Enables GPU for both FRRD1 and DCMP modulecomputations with the first available AMD GPU.

You can use the new cl_frrd keyword to enable the GPU for FRRD1 modulecomputations only.

cl_frrd

cl_frrd=1 Enables GPU for FRRD1 module computations with thefirst available AMD or NVIDIA GPU.

cl_frrd=2 Enables GPU for FRRD1 module computations with thefirst available AMD GPU.

cl_frrd=3 Enables GPU for FRRD1 module computations with thefirst available NVIDIA GPU.

You can use the new cl_dcmp keyword to enable the GPU for DCMP modulecomputations only.

cl_dcmp

cl_dcmp=1 Enables GPU for DCMP module computations with thefirst available AMD or NVIDIA GPU.

cl_dcmp=2 Enables GPU for DCMP module computations with thefirst available AMD GPU.

cl_dcmp=1sys531=1

Enables GPU for DCMP module computations with the firstavailable NVIDIA GPU. (Both cl_dcmp=1 and sys531=1are required for this option)

9-2 NX Nastran 10 Release Guide

Chapter 9: GPU Computing

Page 253: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

GPU Computing

Intel MIC Example

You use the intel_mic keyword to enable MKL computations with Intel’s MICarchitecture. For example,

nastran.exe intel_mic=1 input_file.dat

If an automatic offload occurs, you should see the following in your log file:

14:33:18 Application of Loads and Boundary Conditions started.14:33:21 Application of Loads and Boundary Conditions completed.[MKL] [MIC --] [AO Function] DGEMM[MKL] [MIC --] [AO DGEMM Workdivision] 0.00 1.00[MKL] [MIC 00] [AO DGEMM CPU Time] 0.816250 seconds[MKL] [MIC 00] [AO DGEMM MIC Time] 0.094590 seconds[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 9397248 bytes[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 24443904 bytes

Note: No messages are printed if Intel MIC was requested but not used.

Modal frequency response (FRRD1 module) Example

You can use the gpgpu or the cl_frrd keyword to enable the GPU for both FRRD1module computations. For example,

nastran.exe cl_frrd=1 input_file.dat

The FRRD1 module will report the following in the f04 file:

16:42:31 1:31 13595.0 ... FREQRS 256 FRRD1 BEGN*** USER INFORMATION MESSAGE 4157 (FRDGPU)

PARAMETERS FOR FRDGPU FOLLOWMATRIX SIZE = 7628 NUMBER OF FREQUENCIES = 64SYSTEM (107) = 32768 SYSTEM (573) = 1

Module DMAP Matrix Cols Rows F T NzWds Density BlockT StrL NbrStr BndAvgFRRD1 256 SCR 308 320 7628 2 4 30512 1.00000D+00 152 5204 469 7628FRRD1 256 UHF 320 7628 2 4 30512 1.00000D+00 152 5204 469 762816:53:32 12:32 15161.0 1566.0 417.1 326.9 FREQRS 256 FRRD1 END

FRRD1 Performance Example

AMD 24 core Magny-Cours, Tahiti GPU (4GB)

The damping definition in the model produced coupled damping matrices.

Modes were computed up to the given frequency, where e10k = 1785 modes, e20k= 3631 modes, e30k = 5576 modes, and e40k = 7646 modes. GPU memory wasexhausted around 10,000 modes.

NX Nastran 10 Release Guide 9-3

GPU Computing

Page 254: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 9: GPU Computing

OpenCL Precompiling Procedure

NX Nastran uses the OpenCL programming language with the AMD and NVIDIAcards. Before enabling GPU computations in an NX Nastran run with these cards,you can save run time by optionally precompiling the OpenCL kernels included withthe NX Nastran installation. The precompiling step is done only one time. If you donot, NX Nastran will compile them automatically, but it will need to do this eachtime you enable the GPU computations.

1. Copy the OpenCL source included with the NX Nastran installation atinstallation_location/nxn10/nast/cl/*.cl to a new location. For example, create adirectory named “kernel_directory”.2. Run “installation_location/nxn10/x86_64linux/clcompile *.cl” to compile thedirectory contents. This will produce files with the *.co extension.3. Create the new environment variable MAGMA_CL_DIR, and set it to the directoryname and path containing the compiled OpenCL.4. You can optionally create the new environment variable NXN_CL_DEV, and set itto AMD, NVIDIA, or ANY. This step is useful if you have multiple GPU devices, andyou would like to select one for the compiling step. The NXN_CL_DEV default is first

9-4 NX Nastran 10 Release Guide

Chapter 9: GPU Computing

Page 255: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

GPU Computing

available.Note: The resulting *.co binary objects for one GPU will not work with another GPU.

General Caveats

FRRD1 computations cannot be GPU enabled with the ILP–64 executable type.

OpenCL is not supported for Xeon Phi.

NVIDIA caveat

The OpenCL numerical libraries are tuned for AMD and NVIDIA Fermi, Kepler cards.As a result, the older Tesla cards will run significantly slower.

AMD caveats

Special instructions from AMD are required to run remotely on Linux.

You may need to define the environment variables GPU_FORCE_64BIT_PTR orGPU_MAX_ALLOC_PERCENT.

NX Nastran 10 Release Guide 9-5

GPU Computing

Page 256: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 257: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 10: RDMODES improvements

RDMODES improvementsRecursive Domain Normal Modes (RDMODES) is a parallel capability that usessubstructuring technology for large scale normal modes analysis.

The RDMODES performance has improved in NX Nastran 10. The improvementsreduce I/O and elapsed time. In one test case of a car body model that contains384,000 elements, 391,000 grids, and 2,300,000 DOF, the elapsed time is reducedby 30% compared to NX Nastran 9.

RDMODES can run in either DMP, serial, or SMP configurations. No changes to theuser interface are required to take advantage of the NX Nastran 10 improvements.The DMP, serial, and SMP runs will all benefit.

You activate RDMODES by entering the Nastran keyword ‘nrec’ on the commandline. To specify the desired parallel functionality, you can also enter the Nastrankeywords ‘dmp’ or ‘smp’. Sample command line entries include:

DMP: NASTRAN nrec = m dmp = p

Serial: NASTRAN nrec = m

SMP: NASTRAN nrec = m smp = p

where m is the number of external partitions and p is the number of processors.

See the Parallel Processing Guide for information on all parallel options.

NX Nastran 10 Release Guide 10-1

Page 258: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription
Page 259: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 11: Optimization

Optimization enhancementsThe optimizer choices for SOL 200 are DOT (default) and Siemens DesignOptimization (SDO). You can select SDO by setting the NASTRAN system cell425 to 1.

NASTRAN SYSTEM(425) = 1

• SDO enhancement

SDO has been enhanced to handle large optimization jobs that DOT may notbe able to handle in terms of the number of constraints and number of designvariables. The optimizer uses a linear programming approach coupled with anactive constraint set algorithm and significant supporting code to expand andimprove capabilities.

• SDO and DOT enhancements

o The handling of beam dimensions related to internal constraints has beenimproved. The improvement prevents a violation of these constraints.

o The mode tracking process has been improved. Previously, if the processwas unable to track a mode, it would end the solution with an error. Now,the software reports the mode tracking failure for the cycle to the .f06 file,and then continues with a smaller step size in an attempt to restore themode tracking.

SDO caveats (system425=1)

1. A failure can occur if you have not defined any design constraints, or theconstraints you have defined are determined to be trivial by the software andare filtered out. This may manifest itself as:

SDO STARTINGBIOMSG: ERROR 1044 HAS OCCURRED IN ROUTINE QOPEN , FILE INDEX = 0.STATUS = 0

…*** SYSTEM FATAL MESSAGE 4276 (QOPEN)

ERROR CODE 1044 PID= 0

A workaround is to add reasonable design constraints. This will be fixed withthe upcoming NX Nastran 10.1 maintenance release.

2. A job will show no progress if all the design variables have a starting value ofzero, or slow progress if some have a starting value of zero. A workaroundis to provide nonzero starting values, and preferably not very close to zero in

NX Nastran 10 Release Guide 11-1

Page 260: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 11: Optimization

order to avoid slow progress. The workaround will work well unless a designvariable achieves a zero value during the optimization process. This will befixed with the upcoming NX Nastran 10.1 maintenance release.

3. A job may show slow progress if the starting value of the most criticalconstraint is very close to or equal 1.0, which is the maximum possible valuefor SDO. The workarounds are (a) modification of the starting design topossibly decrease the value of the most critical constraint, or (b) temporarilyexpanding constraint bounds to achieve some progress after which theconstraint bounds may be tightened progressively.

4. An SDO job may fail with the following error message:

*** SYSTEM FATAL MESSAGE 3007 (DOM10)ILLEGAL INPUT TO SUBROUTINE DOM10F

If you encounter this error, the following DMAP alter can be used asa workaround. This will be fixed with the upcoming NX Nastran 10.1maintenance release.

compile desopt $alter 'call desswt1','call desswt1' $

call desswt1 xinit/dsvcsv,xlurng,xotsid,r1vlgd,rsp2gd,r1tbgd,cntbgd,coorgd,conngd,shpvgd,tbdqgd,dndlgd,rr2igd,rsp3gd,cvalgd,dscmgd,r2vlgd,r3vlgd,drstbg,frqrpg,uvlcin $

endalter $

11-2 NX Nastran 10 Release Guide

Chapter 11: Optimization

Page 261: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 12: Miscellaneous

New keyword settingsThe smemory and buffpool keywords now support the new optional input format nX,where n is a percentage and X is the total memory requested with the keywordmemory. For example, if smemory=20.0X is defined, and 45Gb is requested withthe keyword memory, the memory used for scratch memory is 20 percent of 45Gb,or 9Gb.

In addition, new memory keyword settings are included in the runtimeconfiguration (RC) file. The file is included with the software installation atinstallation_directory\conf\nast10.rcf. The goal of these changes is to create a moreefficient and robust out-of-the-box experience for a wider range of problems.

If you open the RC file in a text editor, you will see the following new settings:

memory=.45*physicalsmemory=20.0Xbuffpool=20.0Xbuffsize=32769

Note that the values in the RC file are not considered to be the default settings.The default settings are the values assigned internally by the program when thekeywords are undefined. The default settings are noted in the following table. Youcan optionally revert to the previous RC settings by deleting the keywords fromthe RC file.

Keyword Definition

memory

Requests an amount of open core memory for a job. Thenew RC file setting .45*physical requests the fraction .45 ofthe total physical memory on your machine. For example,if you run NX Nastran on a machine which has 100Gb ofphysical memory, the new RC file setting will request 45Gb.The program default is memory=estimate.

smemorySpecifies the memory to reserve for scratch memory. The newRC file setting 20.0X requests 20 percent of the total memoryrequested with the keyword memory for the scratch memoryportion. The program default is 100 buffers.

buffpool or bpool

Specifies the memory size of the buffer pool. The buffer pool isa portion of the total memory used to cache database memory.The new RC file setting 20.0X requests 20 percent of the totalmemory requested with the keyword memory for the bufferpool. The program default is 51 buffers.

NX Nastran 10 Release Guide 12-1

Page 262: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 12: Miscellaneous

buffsizeSpecifies the size of a buffer. A buffer is the data size NXNastran uses for I/O. The new RC file setting defines a bufferas 32769 words. The program default is buffsize=8193 words.

OP2 file default for the ILP-64 executableThe LP-64 executable always writes op2 files as 32-bit. However, the ILP-64executable can optionally produce a 32-bit or a 64-bit op2 file. All integers andfloating point data in a 64-bit op2 file have 64-bit precision.

When you are using the ILP-64 executable, you can use the parameter OP2FMT tocontrol if the op2 file is written as 32-bit or 64-bit:

• When PARAM,OP2FMT,32, the software writes the op2 file as 32-bit.

• When PARAM,OP2FMT,64, the software writes the op2 file as 64-bit.

• When PARAM,OP2FMT,0, the software automatically checks if a PARAM,POST,n entry exists. If n is less than 0, the OP2 file is written as 32-bit. If not,the OP2 file is written as 64-bit.

In NX Nastran 9 and 9.1, the default was PARAM,OP2FMT,0. The new default forNX Nastran 10 is PARAM,OP2FMT,32.

In addition, now in NX Nastran 10 when you are using the ILP-64 executable andSYSTEM(525)=1 is defined, the OP2FMT parameter is ignored, and the softwarewill write the op2 file as 64-bit. The maximum integer in this scenario is 11 digits, or99,999,999,999. A fatal error will occur if an integer exceeds this limit.

12-2 NX Nastran 10 Release Guide

Chapter 12: Miscellaneous

Page 263: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Updated data blocks

CASECC

Updated Record – REPEAT

Word Name Type Description

554 NONCUP I ADAMSMNF/MBDEXPORT

555 DTEMPSETI Time dependent temperature load (DTEMP)

556 JINSET I J integral output set (JINTEG)

557 JINMEDIA I J integral output media (JINTEG)

558 ADAPTRESUI Adaptive Meshing set, output errorestimator

559 ADAPTMEDIAI Error Estimator media code

560 ADAPTPYE I Error Estimator based on ENERGY FORMor STRESS FORM and STEP

561 INISTN I Initial strain (INISTN)

562 INISTS I Initial stress (INISTS)

563 OPRESSETI Pressures used at solution points, outputset (OPRESS)

564 OPRESDIA I Pressures used at solution points, outputmedia (OPRESS)

565 OPRESFMTI Pressures used at solution points, outputformat (OPRESS)

566 UNDEF(34) None

NX Nastran 10 Release Guide 13-1

Page 264: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

CLAMA

Updated Record 1 – OFPID

Word Name Type Description

........

11 RSPEED RS Rotor speed in RUNIT units

12 RUNIT CHAR4 RSPEED units; RPM, CPS, HZ,or RAD; blank or integer 0 in anon-rotor dynamic analyses

13 UNDEF(38) None

........

CONTACT

Record – BFLUID(9001,90,964)

Word Name Type Description

1 BID I Fluid boundary identification number

2 TYPE I FLUID=1 ,STRUC=2, FREE=3. RIGID=4

3 ID I ID for BSURFS, BCPROPS or BEDGE

5 -1 I Delimiter

DYNAMIC

Updated Record – PBEAR(9110,91,570)

Word Name Type Description

1 PID I Property identification number

2 TYPE1(2) CHAR4 Data type name (K, B, KD, BD, KF, or BF)

4 ITXX1 I Integer table ID for TXX values

13-2 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 265: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 ITXY1 I Integer table ID for TXY values

6 ITYX1 I Integer table ID for TYX values

7 ITYY1 I Integer table ID for TYY values

8 ITXZ1 I Integer table ID for TXZ values

9 ITYZ1 I Integer table ID for TYZ values

10 ITZX1 I Integer table ID for TZX values

11 ITZY1 I Integer table ID for TZY values

12 ITZZ1 I Integer table ID for TZZ values

13 ITRXRX1 I Integer table ID for TRXRX values

14 ITRXRY1 I Integer table ID for TRXRY values

15 ITRYRX1 I Integer table ID for TRYRX values

16 ITRYRY1 I Integer table ID for TRYRY values

17 NOMVAL1 RS Nominal value 1 for displacement or force

18 NOMVAL2 RS Nominal value 2 for displacement or force

19 NOMVAL3 RS Nominal value 3 for displacement or force

20 C1R RS Coefficient multiplying radial relativedisplacement/force in the composite radialrelative displacement/force equation

21 C1Z RS Coefficient multiplying axial relativedisplacement/force in the composite radialrelative displacement/force equation

22 C2R RS Coefficient multiplying radial relativedisplacement/force in the composite axialrelative displacement/force equation

23 C2Z RS Coefficient multiplying axial relativedisplacement/force in the composite axialrelative displacement/force equation

NX Nastran 10 Release Guide 13-3

Upward compatibility

Page 266: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

24 C3R RS Coefficient multiplying radial relativedisplacement/force in the compositerotational relative displacement/forceequation

25 C3Z RS Coefficient multiplying axial relativedisplacement/force in the compositerotational relative displacement/forceequation

26 D1O RS Constant preload term in the compositeradial relative displacement/force equation

27 D2O RS Constant preload term in the compositeaxial relative displacement/force equation

28 D3O RS Constant preload term in the compositerotational relative displacement/forceequation

29 RTXX1 RS Real constant TXX value

30 RTXY1 RS Real constant TXY value

31 RTYX1 RS Real constant TYX value

32 RTYY1 RS Real constant TYY value

33 RTXZ1 RS Real constant TXZ value

34 RTYZ1 RS Real constant TYZ value

35 RTZX1 RS Real constant TZX value

36 RTZY1 RS Real constant TZY value

37 RTZZ1 RS Real constant TZZ value

38 RTRXRX1 RS Real constant TRXRX value

39 RTRXRY1 RS Real constant TRXRY value

40 RTRYRX1 RS Real constant TRYRX value

41 RTRYRY1 RS Real constant TRYRY value

13-4 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 267: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

42 TYPE2(2) CHAR4 Data type name (K, B, KD, BD, KF, or BF)

44 ITXX2 I Integer table ID for TXX values

45 ITXY2 I Integer table ID for TXY values

46 ITYX2 I Integer table ID for TYX values

47 ITYY2 I Integer table ID for TYY values

48 ITXZ2 I Integer table ID for TXZ values

49 ITYZ2 I Integer table ID for TYZ values

50 ITZX2 I Integer table ID for TZX values

51 ITZY2 I Integer table ID for TZY values

52 ITZZ2 I Integer table ID for TZZ values

53 ITRXRX2 I Integer table ID for TRXRX values

54 ITRXRY2 I Integer table ID for TRXRY values

55 ITRYRX2 I Integer table ID for TRYRX values

56 ITRYRY2 I Integer table ID for TRYRY values

57 RTXX2 RS Real constant TXX value

58 RTXY2 RS Real constant TXY value

59 RTYX2 RS Real constant TYX value

60 RTYY2 RS Real constant TYY value

61 RTXZ2 RS Real constant TXZ value

62 RTYZ2 RS Real constant TYZ value

63 RTZX2 RS Real constant TZX value

64 RTZY2 RS Real constant TZY value

NX Nastran 10 Release Guide 13-5

Upward compatibility

Page 268: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

65 RTZZ2 RS Real constant TZZ value

66 RTRXRX2 RS Real constant TRXRX value

67 RTRXRY2 RS Real constant TRXRY value

68 RTRYRX2 RS Real constant TRYRX value

69 RTRYRY2 RS Real constant TRYRY value

New Record – ROTSE(9210,92,622)

Word Name Type Description

1 RSETID I Rotor ID (RSETi on ROTORD bulk entry)

2 TYPE CHAR4 “RL” for real modal reduction; “CX” forcomplex modal reduction

3 EVID I EIGRL bulk entry ID if TYPE=”RL”; EIGCbulk entry ID if TYPE=”CX”

4 GRID I Additional rotor grid ID to be added to a-set

Word 4 repeats until –1 occurs.

EPT and EPT705

New RECORD – PGPLSN(4102,41,904)

Word Name Type Description

1 PID I Property identification number

2 MID I Material identification number

3 CGID I Control grid point identification number

4 T RS Original thickness through control gridpoint

5–8 UNDEF(4)

13-6 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 269: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 TYPE I Integer flag indicating the data type forKNR (word 10)TYPE=0, KNR will be undefinedTYPE=1, KNR will be an integerTYPE=2, KNR will be a real value

10 KNR I, RS, blank

KNR=INTEGER I TABLE ID for time dependent userspecified stiffness

KNR=REAL RS User specified additive stiffness

Words 9 and 10 repeat 3 times

15 CSOPT I Reserved for coordinate system definitionof plane

16 UNDEF

New RECORD – PSHL3D(3901,39,969)

Word Name Type Description

1 PID I Property identification number

2 MID I Identification number of a MAT1,MATPLCY, MATHP or MATHE entry

3 T RS Default shell thickness

4 WARP CHAR4 Flag for warping rotational degrees offreedom

5 NELPRS I Number of pressure degrees of freedomin the r-s plane of the element

6 NELPT I Number of pressure degrees of freedomused in the t-direction of the element

7 TYING CHAR4 Flag indicating whether tying is used

8 UNDEF

NX Nastran 10 Release Guide 13-7

Upward compatibility

Page 270: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

GEOM2

New RECORD – CGPLSTN3(13101,131,9901)

Word Name Type Description

1 EID I Element identification number

2 PID I Property identification number

3–5 G(3) I Grid point identification numbers

6 CGID I Control grid point identification number

7 THETA RS or I Material property orientation angle orcoordinate system ID

8-17 UNDEF(10)

New RECORD – CGPLSTN4(13201,132,9902)

Word Name Type Description

1 EID I Element identification number

2 PID I Property identification number

3–6 G(4) I Grid point identification numbers

7 CGID I Control grid point identification number

8 THETA RS or I Material property orientation angle orcoordinate system ID

9-17 UNDEF(9)

CGPLSTN6(13301,133,9903)

Word Name Type Description

1 EID I Element identification number

2 PID I Property identification number

3–8 G(6) I Grid point identification numbers

13-8 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 271: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 CGID I Control grid point identification number

10 THETA RS or I Material property orientation angle orcoordinate system ID

11-17 UNDEF(7)

CGPLSTN8(13401,134,9904)

Word Name Type Description

1 EID I Element identification number

2 PID I Property identification number

3-10 G(8) I Grid point identification numbers

11 CGID I Control grid point identification number

12 THETA RS or I Material property orientation angle orcoordinate system ID

13-17 UNDEF(5) Grid point End B identification number

GEOM3

New RECORD – CRAKTP(7801,78,968)

Word Name Type Description

1 SID I Crack tip identification number

2 NR I Number of rings to compute J-integral

3 G I Grid point identification number

4 VCEV I Q vector identification number

Words 3 and 4 repeat until -1 occurs.

NX Nastran 10 Release Guide 13-9

Upward compatibility

Page 272: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

New RECORD – DTEMP(7701,77,619)

Word Name Type Description

1 SID I DTEMP set identification number

2 UNDEF(7)

9 TIME RS Time

10 TEMPi I Temperature set identification number

Words 9 and 10 repeat until -1,-1 occurs.

New RECORD – DTEMPEX(8001,80,620)

Word Name Type Description

1 SID I DTEMPEX set identification number

2 UNITID I Fortran unit number

3 UNDEF(6)

New RECORD – TEMPEX(8601,86,621)

Word Name Type Description

1 SID I TEMPEX set identification number

2 UNITID I Fortran unit number

3 UNDEF(6)

New RECORD – VCEV(7901,79,967)

Word Name Type Description

1 SID I Q vector set identification number

2 CRID I Coordinate system identification number

3–8 UNDEF(6)

13-10 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 273: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 VEC1 I First vector component

10 VEC2 I Second vector component

11 VEC3 I Third vector components

12–16 UNDEF(5)

Words 9 and 17 repeat for each vector defined, up to a maximum of 7 vectors

MPT

New RECORD – MATCRP(4603,46,623)

Word Name Type Description

1 MID I Material identification number

2 TYPE I Identification of creep law

3 THRESH RS Threshold limit for creep process

4 HARD Char4 Hardening rule: "STRAIN" or "TIME"

5 TID I TABLE ID

6 T0 RS Reference temperature at which creepcharacteristics are defined

9 EXP RS Temperature-dependent term in the creeprate expression

TCODE(C) If TCODE(C)=1, integer data follows defining a tableID defining temperature dependent material coefficientdata

If TCODE(C)=2, real data follows defining a creepcoefficient

10 TCODE(C) 1, 2 Defines data type

11 A I or RS Creep coefficient data

NX Nastran 10 Release Guide 13-11

Upward compatibility

Page 274: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 TCODE(C) 1, 2 Defines data type

13 B I or RS Creep coefficient data

14–15 UNDEF(2)

16 TCODE(C) 1, 2 Defines data type

17 C I or RS Creep coefficient data

18–25 UNDEF(8)

New RECORD – MATOVR(4703,47,624)

Word Name Type Description

1 GRPID I ID of group of elements or group ofphysical properties

2 PL I Include Plastic Effects, 0=YES, -1=NO

3 CR I Include Creep Effects, 0=YES, -1=NO

4-8 UNDEF(5)

New RECORD – MATSR(4201,42,966)

Word Name Type Description

1 MID I Identification number of a MATS1 entry

2 BVALUE RS Strain-rate hardening parameter

3 TSRATE RS Transition strain rate

4 TID I Identification number of a TABLESR entry

5–9 UNDEF(4) I

13-12 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 275: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

OEF

Updated Record – IDENT

Word Name Type Description

........

18 UNDEF(2) None

20 RSPEED RS Rotor speed in RUNIT units

21 RUNIT CHAR4 RSPEED units; RPM, CPS, HZ,or RAD; blank or integer 0 in anon-rotor dynamic analyses

22 UNDEF None

........

Updated Record – DATA

Word Name Type Description

ELTYPE =280 Generalized bearing element (CBEAR)

TCODE,7 =0 or 2 Real or Random Response

2 FX RS Force x

3 FY RS Force y

4 FZ RS Force z

5 MX RS Moment about x

6 MY RS Moment about y

7 MZ RS Moment about z

TCODE,7 =1 Real/imaginary or magnitude/phase

2 FXR RS Force x - real/mag. part

3 FYR RS Force y - real/mag. part

NX Nastran 10 Release Guide 13-13

Upward compatibility

Page 276: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

4 FZR RS Force z - real/mag. part

5 MXR RS Moment about x - real/mag. part

6 MYR RS Moment about y - real/mag. part

7 MZR RS Moment about z - real/mag. part

8 FXI RS Force x - imag./phase part

9 FYI RS Force y - imag./phase part

10 FZI RS Force z - imag./phase part

11 MXI RS Moment about x - imag./phase part

12 MYI RS Moment about y - imag./phase part

13 MZI RS Moment about z - imag./phase part

OES

Updated Record – IDENT

Word Name Type Description

........

19 VMFLAG I 0 = von Mises results are not presentfor complex results

20 RSPEED RS Rotor speed in RUNIT units

21 RUNIT CHAR4 RSPEED units; RPM, CPS, HZ,or RAD; blank or integer 0 in anon-rotor dynamic analyses

22 UNDEF(29) None

........

13-14 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 277: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Updated Record – DATA

Word Name Type Description

ELTYPE =95 QUAD4 composite

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

NX Nastran 10 Release Guide 13-15

Upward compatibility

Page 278: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

13-16 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 279: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

End TCODE,7

End SCODE,6

ELTYPE =96 QUAD8 composite (Same as QUAD4 composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

NX Nastran 10 Release Guide 13-17

Upward compatibility

Page 280: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

13-18 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 281: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

End TCODE,7

End SCODE,6

ELTYPE =97 TRIA3 composite (Same as QUAD4 composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

NX Nastran 10 Release Guide 13-19

Upward compatibility

Page 282: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

13-20 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 283: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

End TCODE,7

End SCODE,6

ELTYPE =98 TRIA6 composite (Same as QUAD4 composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

NX Nastran 10 Release Guide 13-21

Upward compatibility

Page 284: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

..........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

13-22 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 285: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

NX Nastran 10 Release Guide 13-23

Upward compatibility

Page 286: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

End TCODE,7

End SCODE,6

..........

Word Name Type Description

ELTYPE =232 QUADR composite

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13-24 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 287: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

NX Nastran 10 Release Guide 13-25

Upward compatibility

Page 288: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 ST1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

End TCODE,7

End SCODE,6

ELTYPE =233 TRIAR composite (Same as TRIAR composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

.........

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

13-26 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 289: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

..........

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

NX Nastran 10 Release Guide 13-27

Upward compatibility

Page 290: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

TCODE,7 =2 Random Response

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 ST1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

End TCODE,7

End SCODE,6

ELTYPE =269 Composite HEXA element (CHEXAL)

2 PLY I Lamina number

SCODE,6=0 Strain

TCODE,7 =0 Real

13-28 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 291: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 ETMAX1 RS Von Mises strain

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 4 through 11 repeat 5 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

NX Nastran 10 Release Guide 13-29

Upward compatibility

Page 292: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 16 repeat 5 times.

TCODE,7 =2 Random Response

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

13-30 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 293: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 10 repeat 5 times.

End TCODE,7

SCODE,6=1 Stress

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 STMAX1 RS Von Mises stress

Q4CSTR=1 Center and Corner option

NX Nastran 10 Release Guide 13-31

Upward compatibility

Page 294: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 5 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

13-32 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 295: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 16 repeat 5 times.

TCODE,7 =2 Random Response

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

Q4CSTR=1 Center and Corner option

NX Nastran 10 Release Guide 13-33

Upward compatibility

Page 296: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 10 repeat 5 times.

End TCODE,7

End SCODE,6

ELTYPE =270 Composite PENTA element (CPENTAL)

2 PLY I Lamina number

SCODE,6=0 Strain

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 ETMAX1 RS Von Mises strain

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 ETMAX1 RS Von Mises strain

13-34 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 297: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

For each fiber location requested (PLSLOC), words 4 through 11 repeat 4 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

NX Nastran 10 Release Guide 13-35

Upward compatibility

Page 298: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 16 repeat 4 times.

TCODE,7 =2 Random Response

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

13-36 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 299: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 10 repeat 4 times.

End TCODE,7

SCODE,6=1 Stress

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

..........

11 STMAX1 RS Von Mises stress

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

.......... GRID I Edge grid ID (center=0)

11 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 4 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

NX Nastran 10 Release Guide 13-37

Upward compatibility

Page 300: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

13-38 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 301: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

For each fiber location requested (PLSLOC), words 4 through 16 repeat 4 times.

TCODE,7 =2 Random Response

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

SL2 RS Shear stress in the 23-plane

NX Nastran 10 Release Guide 13-39

Upward compatibility

Page 302: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

For each fiber location requested (PLSLOC), words 4 through 10 repeat 4 times.

End TCODE,7

End SCODE,6

ELTYPE =312 Axisymmetric tria element (TRAX3)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

13-40 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 303: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =313 Axisymmetric quad element (QUADX4)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

NX Nastran 10 Release Guide 13-41

Upward compatibility

Page 304: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =314 Axisymmetric tria element (TRAX6)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

13-42 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 305: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =315 Axisymmetric quad element (QUADX8)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

NX Nastran 10 Release Guide 13-43

Upward compatibility

Page 306: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =316 Plane strain tria element (PLSTN3)

SCODE,6=0 Strain

TODE,7=0 Real

13-44 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 307: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

NX Nastran 10 Release Guide 13-45

Upward compatibility

Page 308: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

ELTYPE =317 Plane strain quad element (PLSTN4)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

13-46 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 309: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =318 Plane strain tria element (PLSTN6)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

NX Nastran 10 Release Guide 13-47

Upward compatibility

Page 310: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =319 Plane strain quad element (PLSTN8)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

13-48 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 311: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =320 Plane stress tria element (PLSTS3)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

NX Nastran 10 Release Guide 13-49

Upward compatibility

Page 312: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =321 Plane stress quad element (PLSTS4)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

13-50 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 313: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =322 Plane stress tria element (PLSTS6)

SCODE,6=0 Strain

TODE,7=0 Real

NX Nastran 10 Release Guide 13-51

Upward compatibility

Page 314: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

13-52 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 315: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ELTYPE =323 Plane stress quad element (PLSTS8)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

NX Nastran 10 Release Guide 13-53

Upward compatibility

Page 316: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =328 Generalized plane strain tria element (GPLSTN3)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

13-54 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 317: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =329 Generalized plane strain quad element (GPLSTN4)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

NX Nastran 10 Release Guide 13-55

Upward compatibility

Page 318: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =330 Generalized plane strain tria element (GPLSTN6)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

13-56 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 319: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =331 Generalized plane strain quad element (GPLSTN8)

SCODE,6=0 Strain

TODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

NX Nastran 10 Release Guide 13-57

Upward compatibility

Page 320: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

3 GRID I External grid ID

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

End SCODE,6

OESXRMS

Updated Record – DATA

Word Name Type Description

..... ..... ..... .....

13-58 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 321: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

ELTYPE =95 QUAD4 composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

8 TMAX1 RS von Mises

ELTYPE =96 QUAD8 composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

8 TMAX1 RS von Mises

ELTYPE =97 TRIA3 composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

NX Nastran 10 Release Guide 13-59

Upward compatibility

Page 322: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

8 TMAX1 RS von Mises

ELTYPE =98 TRIA6 composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

8 TMAX1 RS von Mises

..... ..... ..... .....

Word Name Type Description

ELTYPE =232 QUADR composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

8 TMAX1 RS von Mises

ELTYPE =233 TRIAR composite

2 PLY I Lamina number

3 SX1 RS Normal – 1

13-60 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 323: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

4 SY1 RS Normal – 2

5 T1 RS Shear – 12

6 SL1 RS Shear – 1Z

7 SL2 RS Shear – 2Z

8 TMAX1 RS von Mises

ELTYPE =269 Composite HEXA element (CHEXAL) – Center andcorners

2 PLY I Lamina number

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS von Mises stress

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

NX Nastran 10 Release Guide 13-61

Upward compatibility

Page 324: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 5 times.

ELTYPE =270 Composite PENTA element (CPENTAL) – Center andcorners

2 PLY I Lamina number

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS von Mises stress

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

13-62 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 325: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 4 times.

OQG

Updated Record – IDENT

Word Name Type Description

........

12 RSPEED RS Rotor speed in RUNIT units

13 RUNIT CHAR4 RSPEED units; RPM, CPS, HZ, orRAD; blank or integer 0 in a non-rotordynamic analyses

14 UNDEF(3) None

........

OUG

Updated Record – IDENT

Word Name Type Description

........

24 RSPEED RS Rotor speed in RUNIT units

NX Nastran 10 Release Guide 13-63

Upward compatibility

Page 326: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

25 RUNIT CHAR4 RSPEED units; RPM, CPS, HZ, orRAD; blank or integer 0 in a non-rotordynamic analyses

26 UNDEF(25) None

........

New data blocks

OCONST

Table of Contact Node/Grid Status

HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block name

3 WORD I No Def or Month, Year, One, One

IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach Code

2 TCODE(C) I Table Code

3 UNDEF None

4 SUBCASE I Subcase

TCODE=1 Sort 1

ACODE=01 Statics

5 LSDVMN I Load set number

13-64 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 327: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

6 UNDEF(2) None

ACODE=02 Real eigenvalues

5 MODE I Mode number

6 EIGN RS Eigenvalue

7 MODECYCL RS Mode or cycle

ACODE=03 Differential stiffness 0

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=04 Differential stiffness 1

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=05 Frequency

5 FREQ RS Frequency

6 UNDEF(2) None

ACODE=06 Transient (Used for SOL 401)

5 TIME RS Time step

6 UNDEF(2) None

ACODE=07 Buckling phase 0 (pre-buckling)

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=08 Buckling phase 1 (post-buckling)

5 LSDVMN I Mode number

NX Nastran 10 Release Guide 13-65

Upward compatibility

Page 328: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

6 EIGN RS Eigenvalue

7 UNDEF None

ACODE=09 Complex eigenvalues

5 MODE I Mode number

6 EIGR RS Eigenvalue (real)

7 EIGI RS Eigenvalue (imaginary)

ACODE=10 Nonlinear statics (SOL 601/701)

5 LFTSFQ RS Time step

6 UNDEF(2) None

ACODE=11 Old geometric nonlinear statics

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=12 CONTRAN (may appear as ACODE=6)

5 TIME RS Time step

6 UNDEF(2) None

End ACODE

TCODE=2 SORT2

5 LSDVMN I Load set, mode number

6 UNDEF(2) None

End TCODE

8 LSDVMN I Load set number

9 FCODE I Format code

13-66 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 329: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

10 NUMWDE I Number of words per entry in DATArecord

11 UNDEF None

12 PID I Physical property identificationnumber

13 UNDEF(38) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

115 LABEL(32) CHAR4 Label

DATA

Word Name Type Description

TCODE=1 SORT1

1 EKEY I Device code + 10 * grid/nodeidentification number

TCODE =2 SORT2

ACODE=01 Statics

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE =02 Normal modes or buckling (real eigenvalues)

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE=03 Differential Stiffness 0

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE =04 Differential Stiffness 1

NX Nastran 10 Release Guide 13-67

Upward compatibility

Page 330: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE=05 Frequency

1 FREQ RS Frequency

ACODE=06 Transient

1 TIME RS Time step

ACODE =07 Pre-buckling

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE,4 =08 Post-buckling

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE,4 =09 Complex Eigenvalues

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE=10 Nonlinear Statics

1 FQTS RS Frequency or Time step

ACODE=11 Geometric Nonlinear Statics

1 EKEY I Device code + 10 * grid/nodeidentification number

ACODE=12 CONTRAN (may appear as ACODE=6)

1 EKEY RS Device code + 10 * grid/nodeidentification number

End ACODE

End TCODE

2 I1 I Contact node/grid status

13-68 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 331: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3–4 UNDEF(2)

TRAILER

Word Name Type Description

1 UNDEF(6) None

OERR

Error estimator table.

Record - HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block name

3 WORD I No def or month, year, one, one

Word 3 repeats until End of Record

Record - IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach code =60+iand(print,plot)

2 TCODE(C) I Table code = 76

3 ELTYPE(C) I Element type

4 SUBCASE I Subcase or random identificationnumber

5 TIME RS Time step

6 UNDEF(4) None

10 NUMWDE I Number of words per entry in DATArecord

NX Nastran 10 Release Guide 13-69

Upward compatibility

Page 332: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

11 ESTOPT I Strain energy/stress code: 0=strainenergy, 1=stress

12 FLAG(C) I Stepping/max code: 0=steppingresults, 1=maximum results

13 UNDEF(38) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

115 LABEL(32) CHAR4 Label

Record - DATA

Word Name Type Description

1 ELID I Element ID*10 + device code

FLAG = 0 Stepping results

2 ERREST RS Energy/stress error norm

3 EST RS Energy/stress norm

FLAG = 1 Maximum results

2 ERREST RS Energy/stress error norm at TIMMAX

3 EST RS Energy/stress norm

4 TIMMAX RS Time point of MAX error estimators

End of Record

Record - TRAILER

Word Name Type Description

1 UNDEF(6) None

13-70 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 333: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

OESVM

Table of element stresses or strains with von Mises for frequency response results.

For all analysis types (real and complex) and SORT1 and SORT2 formats.

Record - HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block Name

3 WORD I No Def or Month, Year, One, One

Word 3 repeats until End of Record

Record - IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach Code

2 TCODE(C) I Table Code

3 ELTYPE(C) I Element Type

4 SUBCASE I Subcase or Random identificationnumber

TCODE,1 = 1 Sort 1

ACODE,4 = 05 Frequency

5 FREQ RS Frequency

6 UNDEF(2) None

End ACODE,4

TCODE,1 = 02 Sort 2

5 FREQ RS Frequency

6 UNDEF(2) None

End TCODE,1

NX Nastran 10 Release Guide 13-71

Upward compatibility

Page 334: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

8 LOADSET I Load set number or Zero

9 FCODE I Format Code

10 NUMWDE(C) I Number of words per entry in DATArecord

11 SCODE(C) I Stress/Strain code

12 PID (SOL 601and 701 only)

I Physical Property ID for SOL 601 &701 only. UNDEF for all other SOLs

13 ELRESCS I Coordinate system in which stressesare written. Applicable to SOL601/701, solid elements only.

0 = in element coordinate system(default)

1 = stresses are written according toCORDM

14 Q4CSTR(C) I Corner Stress Flag

15 PLSLOC(C) I Ply stress/strain location forelements referencing PCOMPSproperty entries.= 1 Middle of each ply.= 2 Bottom and top of each ply.= 3 Bottom, middle, and top of eachply.

16 CSOPT I Plane designation for axisymmetricand plane stress/strain elements

CSOPT=13 indicates these elementsare in the XZ-plane of the basiccoordinate system. For axisymmetricelements, Z is axial and X is radial.

CSOPT=21 indicates these elementsare in the XY-plane of the basiccoordinate system. For axisymmetricelements, X is axial and Y is radial.

17 UNDEF None

13-72 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 335: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

18 EPSTYPE(C) I Designates the type of strain.0 = Total Strain1 = Elastic Strain2 = Thermal Strain

19 VMFLAG I 1 = von Mises results are present forcomplex results.

20 UNDEF(31) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

115 LABEL(32) CHAR4 Label

Record - DATA

Word Name Type Description

SORTCODE=1 Sort 1 - SortCode=((TCODE/1000)+2)/2

TCODE,1 =1 o

1 EKEY I Device code + 10*Point identificationnumber

TCODE,1 =02 Sort 2

ACODE/10=01 Analysis type

ACODE,4 =05

1 FREQ RS Frequency

End ACODE,4

End ACODE/10

Word Name Type Description

ELTYPE =00 Grid - OES1G table

NX Nastran 10 Release Guide 13-73

Upward compatibility

Page 336: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 MATID I Material identification number

3 NX1 RS Normal in x at d1

4 NY1 RS Normal in y at d1

5 TXY1 RS Shear in xy at d1

6 SA1 RS Theta ( Shear Angle ) at d1

7 MJRP1 RS Major Principal at d1

8 MNRP1 RS Minor Principal at d1

9 TMAX1 RS Maximum Shear at d1

10 PCODE I 10*interpolation points + projectioncode

11 NX2 RS Normal in x at d2

12 NY2 RS Normal in y at d2

13 TXY2 RS Shear in xy at d2

14 SA2 RS Theta ( Shear Angle ) at d2

15 MJRP2 RS Major Principal at d2

16 MNRP2 RS Minor Principal at d2

17 TMAX2 RS Maximum Shear at d2

ELTYPE =01 Rod element (CROD)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 AER RS Axial Strain

3 AEI RS Axial Strain

4 TER RS Torsional Strain

13-74 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 337: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 TEI RS Torsional Strain

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 ASR RS Axial Stress

3 ASI RS Axial Stress

4 TSR RS Torsional Stress

5 TSI RS Torsional Stress

End TCODE,7

End SCODE,6

ELTYPE =02 Beam element (CBEAM)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 GRID I External Grid Point identificationnumber

3 SD RS Station Distance/Length

4 ERCR RS Long. Strain at Point C

5 EXDR RS Long. Strain at Point D

6 EXER RS Long. Strain at Point E

7 EXFR RS Long. Strain at Point F

8 EXCI RS Long. Strain at Point C

9 EXDI RS Long. Strain at Point D

10 EXEI RS Long. Strain at Point E

NX Nastran 10 Release Guide 13-75

Upward compatibility

Page 338: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

11 EXFI RS Long. Strain at Point F

Words 2 through 11 repeat 011 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7=1 Real/Imaginary

2 GRID I External Grid Point identificationnumber

3 SD RS Station Distance/Length

4 SRCR RS Long. Stress at Point C

5 SXDR RS Long. Stress at Point D

6 SXER RS Long. Stress at Point E

7 SXFR RS Long. Stress at Point F

8 SXCI RS Long. Stress at Point C

9 SXDI RS Long. Stress at Point D

10 SXEI RS Long. Stress at Point E

11 SXFI RS Long. Stress at Point F

Words 2 through 11 repeat 011 times

EndTCODE,7

EndSCODE,6

ELTYPE=03 Tube element (CTUBE)

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

13-76 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 339: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 AER RS Axial Strain

3 AEI RS Axial Strain

4 TER RS Torsional Strain

5 TEI RS Torsional Strain

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 ASR RS Axial Stress

3 ASI RS Axial Stress

4 TSR RS Torsional Stress

5 TSI RS Torsional Stress

End TCODE,7

End SCODE,6

ELTYPE =04 Shear panel element (CSHEAR)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 ETMAXR RS Maximum Shear

3 ETMAXI RS Maximum Shear

4 ETAVGR RS Average Shear

5 ETAVGI RS Average Shear

End TCODE,7

SCODE,6 =01 Stress

NX Nastran 10 Release Guide 13-77

Upward compatibility

Page 340: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

TCODE,7 =1 Real / Imaginary

2 TMAXR RS Maximum Shear

3 TMAXI RS Maximum Shear

4 TAVGR RS Average Shear

5 TAVGI RS Average Shear

End TCODE,7

End SCODE,6

ELTYPE =05 FORCE1/FORCE2/MOMENT1/MOMENT2 (followerstiffness)

2 UNDEF None

ELTYPE =06 Unused

2 UNDEF None

ELTYPE =07 PLOAD4 (follower stiffness)

2 UNDEF None

ELTYPE =08 PLOADX1 (follower stiffness)

2 UNDEF None

ELTYPE =09 PLOAD and PLOAD2 (follower stiffness)

2 UNDEF None

Word Name Type Description

ELTYPE =10 Rod element connection and property (CONROD)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 AER RS Axial Strain

13-78 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 341: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 AEI RS Axial Strain

4 TER RS Torsional Strain

5 TEI RS Torsional Strain

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 ASR RS Axial Stress

3 ASI RS Axial Stress

4 TSR RS Torsional Stress

5 TSI RS Torsional Stress

End TCODE,7

End SCODE,6

ELTYPE =11 Scalar spring element (CELAS1)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 ER RS

3 EI RS

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 SR RS Stress

3 SI RS Stress

NX Nastran 10 Release Guide 13-79

Upward compatibility

Page 342: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

End TCODE,7

End SCODE,6

ELTYPE =12 Scalar spring element with properties (CELAS2)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 ER RS

3 EI RS

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real/Imaginary

2 SR RS Stress

3 SI RS Stress

End TCODE,7

End SCODE,6

ELTYPE =13 Scalar spring element to scalar points only (CELAS3)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 ER RS

3 EI RS

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1

13-80 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 343: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 SR RS Stress

3 SI RS Stress

End TCODE,7

End SCODE,6

ELTYPE =14 Scalar spring element to scalar points only withproperties (CELAS4)

2 UNDEF None

ELTYPE =15 AEROT3

2 UNDEF None

ELTYPE =16 AEROBEAM

2 UNDEF None

ELTYPE =17 Unused (pre-V69 TRIA2 Same as TRIA1)

2 UNDEF None

ELTYPE =18 Unused (pre-V69 QUAD2 Same as TRIA1)

2 UNDEF None

ELTYPE =19 Unused (pre-V69 QUAD1 Same as TRIA1)

2 UNDEF None

Word Name Type Description

ELTYPE =20 Scalar damper (CDAMP1)

2 UNDEF None

ELTYPE =21 Scalar damper with properties (CDAMP2)

2 UNDEF None

ELTYPE =22 Scalar damper to scalar points only (CDAMP3)

NX Nastran 10 Release Guide 13-81

Upward compatibility

Page 344: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 UNDEF None

ELTYPE =23 Scalar damper to scalar points only with properties(CDAMP4)

2 UNDEF None

ELTYPE =24 Viscous damper (CVISC)

TCODE,7 =1 Real / Imaginary

2 ASR RS Axial Stress

3 ASI RS Axial Stress

4 TAUR RS Torque

5 TAUI RS Torque

End TCODE,7

ELTYPE =25 Scalar mass (CMASS1)

2 UNDEF None

ELTYPE =26 Scalar mass with properties (CMASS2)

2 UNDEF None

ELTYPE =27 Scalar mass to scalar points only (CMASS3)

2 UNDEF None

ELTYPE =28 Scalar mass to scalar pts. only with properties(CMASS4)

2 UNDEF None

ELTYPE =29 Concentrated mass element - general form (CONM1)

2 UNDEF None

13-82 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 345: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

ELTYPE =30 Concentrated mass element - rigid body form(CONM2)

2 UNDEF None

ELTYPE =31 Dummy plot element (PLOTEL)

2 UNDEF None

ELTYPE =32 Unused

2 UNDEF None

ELTYPE =33 Quadrilateral plate element (CQUAD4)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 EX1R RS Normal in x at Z1

4 EX1I RS Normal in x at Z1

5 EY1R RS Normal in y at Z1

6 EY1I RS Normal in y at Z1

7 EXY1R RS Shear in xy at Z1

8 EXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 EX2R RS Normal in x at Z2

12 EX2I RS Normal in x at Z2

13 EY2R RS Normal in y at Z2

14 EY2I RS Normal in y at Z2

NX Nastran 10 Release Guide 13-83

Upward compatibility

Page 346: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

15 EXY2R RS Shear in xy at Z2

16 EXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 SX1R RS Normal in x at Z1

4 SX1I RS Normal in x at Z1

5 SY1R RS Normal in y at Z1

6 SY1I RS Normal in y at Z1

7 TXY1R RS Shear in xy at Z1

8 TXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 SX2R RS Normal in x at Z2

12 SX2I RS Normal in x at Z2

13 SY2R RS Normal in y at Z2

14 SY2I RS Normal in y at Z2

15 TXY2R RS Shear in xy at Z2

16 TXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

13-84 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 347: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

End TCODE,7

End SCODE,6

ELTYPE =34 Simple beam element (CBAR and see alsoELTYPE=100)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 EX1AR RS SA1

3 EX2AR RS SA2

4 EX3AR RS SA3

5 EX4AR RS SA4

6 AER RS Axial

7 EX1AI RS SA1

8 EX2AI RS SA2

9 EX3AI RS SA3

10 EX4AI RS SA4

11 AEI RS Axial

12 EX1BR RS SB1

13 EX2BR RS SB2

14 EX3BR RS SB3

15 EX4BR RS SB4

16 EX1BI RS SB1

17 EX2BI RS SB2

18 EX3BI RS SB3

NX Nastran 10 Release Guide 13-85

Upward compatibility

Page 348: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

19 EX4BI RS SB4

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 SX1AR RS SA1

3 SX2AR RS SA2

4 SX3AR RS SA3

5 SX4AR RS SA4

6 ASR RS Axial

7 SX1AI RS SA1

8 SX2AI RS SA2

9 SX3AI RS SA3

10 SX4AI RS SA4

11 ASI RS Axial

12 SX1BR RS SB1

13 SX2BR RS SB2

14 SX3BR RS SB3

15 SX4BR RS SB4

16 SX1BI RS SB1

17 SX2BI RS SB2

18 SX3BI RS SB3

19 SX4BI RS SB4

13-86 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 349: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

End TCODE,7

End SCODE,6

ELTYPE =35 Axisymmetric shell element (CCONEAX)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 UNDEF None

TCODE,7 =2 Random Response

2 UNDEF None

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 UNDEF None

End TCODE,7

End SCODE,6

ELTYPE =36 Unused (Pre-V69 CTRIARG)

2 UNDEF None

ELTYPE =37 Unused (Pre-V69 CTRAPRG)

2 UNDEF None

ELTYPE =38 Gap element (CGAP)

2 FX RS

3 SFY RS

4 SFZ RS

5 U RS

NX Nastran 10 Release Guide 13-87

Upward compatibility

Page 350: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

6 V RS

7 W RS

8 SV RS

9 SW RS

ELTYPE =39 Tetra

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

5 GRID I External grid ID (0=center)

6 EXR RS Normal in x

7 EYR RS Normal in y

8 EZR RS Normal in z

9 ETXYR RS Shear in xy

10 ETYZR RS Shear in yz

11 ETZXR RS Shear in zx

12 EXI RS Normal in x

13 EYI RS Normal in y

14 EZI RS Normal in z

15 ETXYI RS Shear in xy

16 ETYZI RS Shear in yz

17 ETZXI RS Shear in zx

13-88 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 351: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

18 VM RS von Mises

Words 5 through 18 repeat 005 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

5 GRID I External grid identification number(0=center)

6 SXR RS Normal in x

7 SYR RS Normal in y

8 SZR RS Normal in z

9 TXYR RS Shear in xy

10 TYZR RS Shear in yz

11 TZXR RS Shear in zx

12 SXI RS Normal in x

13 SYI RS Normal in y

14 SZI RS Normal in z

15 TXYI RS Shear in xy

16 TYZI RS Shear in yz

17 TZXI RS Shear in zx

18 VM RS von Mises

NX Nastran 10 Release Guide 13-89

Upward compatibility

Page 352: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

Words 5 through 18 repeat 005 times

End TCODE,7

End SCODE,6

Word Name Type Description

ELTYPE =40 Rod type spring and damper (CBUSH1D)

TCODE,7 =1 Real / Imaginary

2 FER RS Element Force

3 UER RS Axial Displacement

4 ASR RS Axial Stress*

5 AER RS Axial Strain*

6 FEI RS Element Force

7 UEI RS Axial Displacement

8 ASI RS Axial Stress*

9 AEI RS Axial Strain*

End TCODE,7

ELTYPE =41 Unused (Pre-V69 CHEXA1)

2 UNDEF None

ELTYPE =42 Unused (Pre-V69 CHEXA2)

2 UNDEF None

ELTYPE =43 Fluid element with 2 points (CFLUID2)

2 UNDEF None

ELTYPE =44 Fluid element with 3 points (CFLUID3)

13-90 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 353: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 UNDEF None

ELTYPE =45 Fluid element with 4 points (CFLUID4)

2 UNDEF None

ELTYPE =46 Cflmass

2 UNDEF None

ELTYPE =47 Fluid element with 2 points (CAXIF2)

TCODE,7 =1 Real / Imaginary

2 RAR RS Radial Axis

3 AAR RS Axial Axis

4 TER RS Tangential Edge

5 CER RS Circumferential Edge

6 RAI RS Radial Axis

7 AAI RS Axial Axis

8 TEI RS Tangential Edge

9 CEI RS Circumferential Edge

End TCODE,7

ELTYPE =48 Fluid element with 3 points (CAXIF3)

TCODE,7 =1 Real / Imaginary

2 RCR RS Radial centroid

3 CCR RS Circumferential centroid

4 ACR RS Axial centroid

5 TE1R RS Tangential edge 1

6 CE1R RS Circumferential edge 1

NX Nastran 10 Release Guide 13-91

Upward compatibility

Page 354: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

7 TE2R RS Tangential edge 2

8 CE2R RS Circumferential edge 2

9 TE3R RS Tangential edge 3

10 CE3R RS Circumferential edge 3

11 RCI RS Radial centroid

12 CCI RS Circumferential centroid

13 ACR RS Axial centroid

14 TE1I RS Tangential edge 1

15 CE1I RS Circumferential edge 1

16 TE2I RS Tangential edge 2

17 CE2I RS Circumferential edge 2

18 TE3I RS Tangential edge 3

19 CE3I RS Circumferential edge 3

End TCODE,7

ELTYPE =49 Fluid element with 4 points (CAXIF4)

TCODE,7 =1 Real / Imaginary

2 RCR RS Radial centroid

3 CCR RS Circumferential centroid

4 ACR RS Axial centroid

5 TE1R RS Tangential edge 1

6 CE1R RS Circumferential edge 1

7 TE2R RS Tangential edge 2

13-92 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 355: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

8 CE2R RS Circumferential edge 2

9 TE3R RS Tangential edge 3

10 CE3R RS Circumferential edge 3

11 TE4R RS Tangential edge 4

12 CE4R RS Circumferential edge 4

13 RCI RS Radial centroid

14 CCI RS Circumferential centroid

15 ACR RS Axial centroid

16 TE1I RS Tangential edge 1

17 CE1I RS Circumferential edge 1

18 TE2I RS Tangential edge 2

19 CE2I RS Circumferential edge 2

20 TE3I RS Tangential edge 3

21 CE3I RS Circumferential edge 3

22 TE4I RS Tangential edge 4

23 CE4I RS Circumferential edge 4

End TCODE,7

Word Name Type Description

ELTYPE =50 Three-point slot element (CSLOT3)

TCODE,7 =1 Real / Imaginary

2 RCR RS Radial centroid

3 ACR RS Axial centroid

NX Nastran 10 Release Guide 13-93

Upward compatibility

Page 356: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

4 TE1R RS Tangential edge 1

5 TE2R RS Tangential edge 2

6 TE3R RS Tangential edge 3

7 RCI RS Radial centroid

8 ACI RS Axial centroid

9 TE1I RS Tangential edge 1

10 TE2I RS Tangential edge 2

11 TE3I RS Tangential edge 3

End TCODE,7

ELTYPE =51 Four-point slot element (CSLOT4)

TCODE,7 =1 Real / Imaginary

2 RCR RS Radial centroid

3 ACR RS Axial centroid

4 TE1R RS Tangential edge 1

5 TE2R RS Tangential edge 2

6 TE3R RS Tangential edge 3

7 TE4R RS Tangential edge 4

8 RCI RS Radial centroid

9 ACI RS Axial centroid

10 TE1I RS Tangential edge 1

11 TE2I RS Tangential edge 2

12 TE3I RS Tangential edge 3

13-94 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 357: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

13 TE4I RS Tangential edge 4

End TCODE,7

ELTYPE =52 Heat transfer plot element for CHBDYG and CHBDYP

2 UNDEF None

ELTYPE =54 Unused (Pre-V69 CTRIM6)

2 UNDEF None

ELTYPE =55 Three-point dummy element (CDUM3)

TCODE,7 =1 Real/imaginary or magnitude/phase

2 SR(9) RS User defined - real/mag.

11 SI(9) RS User defined - mag./phase

End TCODE,7

ELTYPE =56 Four-point dummy element (CDUM4)

TCODE,7 =1 Real/imaginary or magnitude/phase

2 SR(9) RS User defined - real/mag.

11 SI(9) RS User defined - mag./phase

End TCODE,7

ELTYPE =57 Five-point dummy element (CDUM5)

TCODE,7 =1 Real/imaginary or magnitude/phase

2 SR(9) RS User defined - real/mag.

11 SI(9) RS User defined - mag./phase

End TCODE,7

ELTYPE =58 Six-point dummy element (CDUM6)

TCODE,7 =1 Real/imaginary or magnitude/phase

NX Nastran 10 Release Guide 13-95

Upward compatibility

Page 358: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 SR(9) RS User defined - real/mag.

11 SI(9) RS User defined - mag./phase

End TCODE,7

ELTYPE =59 Seven-point dummy element (CDUM7)

TCODE,7 =1 Real/imaginary or magnitude/phase

2 SR(9) RS User defined - real/mag.

11 SI(9) RS User defined - mag./phase

End TCODE,7

Word Name Type Description

ELTYPE =60 Two-dimensional crack tip element (CRAC2D orCDUM8)

2 X RS X coordinate

3 Y RS Y coordinate

4 SX RS Normal X

5 SY RS Normal Y

6 TXY RS Shear XY

7 KI RS Stress Intensity Factor KI

8 KII RS Stress Intensity Factor KII

9 S8 RS

10 S9 RS

ELTYPE =61 Three-dimensional crack tip element (CRAC3D orCDUM9)

2 X RS Normal X

13-96 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 359: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 Y RS Normal Y

4 Z RS Normal Z

5 TXY RS Shear XY

6 TYZ RS Shear YZ

7 TZX RS Shear ZX

8 KI RS Stress Intensity Factor KI

9 KII RS Stress Intensity Factor KII

10 KIII RS Stress Intensity Factor KIII

ELTYPE =62 Unused (Pre-V69 CQDMEM1)

2 UNDEF None

ELTYPE =63 Unused (Pre-V69 CQDMEM2)

2 UNDEF None

ELTYPE =64 Curved quadrilateral shell element (CQUAD8)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4 "CENTER"

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 EX1R RS Normal in x at Z1

6 EX1I RS Normal in x at Z1

7 EY1R RS Normal in y at Z1

8 EY1I RS Normal in y at Z1

NX Nastran 10 Release Guide 13-97

Upward compatibility

Page 360: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

9 ETXY1R RS Shear in xy at Z1

10 ETXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 EX2R RS Normal in x at Z2

14 EX2I RS Normal in x at Z2

15 EY2R RS Normal in y at Z2

16 EY2I RS Normal in y at Z2

17 ETXY2R RS Shear in xy at Z2

18 ETXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 005 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I Number active grids identificationnumbers or grid identification number

4 FD1 RS Fiber distance at Z1

5 SX1R RS Normal in x at Z1

6 SX1I RS Normal in x at Z1

7 SY1R RS Normal in y at Z1

8 SY1I RS Normal in y at Z1

13-98 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 361: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 TXY1R RS Shear in xy at Z1

10 TXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 SX2R RS Normal in x at Z2

14 SX2I RS Normal in x at Z2

15 SY2R RS Normal in y at Z2

16 SY2I RS Normal in y at Z2

17 TXY2R RS Shear in xy at Z2

18 TXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 005 times

End TCODE,7

End SCODE,6

ELTYPE =65 Unused (Pre-V69 CHEX8)

2 UNDEF None

ELTYPE =66 Unused (Pre-V69 CHEX20)

2 UNDEF None

ELTYPE =67 Hexa

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

NX Nastran 10 Release Guide 13-99

Upward compatibility

Page 362: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

4 NODEF I Number of Active Points

5 GRID I External grid identification number(0=center)

6 EXR RS Normal in x

7 EYR RS Normal in y

8 EZR RS Normal in z

9 ETXYR RS Shear in xy

10 ETYZR RS Shear in yz

11 ETZXR RS Shear in zx

12 EXI RS Normal in x

13 EYI RS Normal in y

14 EZI RS Normal in z

15 ETXYI RS Shear in xy

16 ETYZI RS Shear in yz

17 ETZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 repeat 009 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

13-100 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 363: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 GRID I External grid identification number(0=center)

6 SXR RS Normal in x

7 SYR RS Normal in y

8 SZR RS Normal in z

9 TXYR RS Shear in xy

10 TYZR RS Shear in yz

11 TZXR RS Shear in zx

12 SXI RS Normal in x

13 SYI RS Normal in y

14 SZI RS Normal in z

15 TXYI RS Shear in xy

16 TYZI RS Shear in yz

17 TZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 repeat 009 times

End TCODE,7

End SCODE,6

ELTYPE =68 Penta

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

NX Nastran 10 Release Guide 13-101

Upward compatibility

Page 364: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

4 NODEF I Number of Active Points

5 GRID I External grid identification number(0=center)

6 EXR RS Normal in x

7 EYR RS Normal in y

8 EZR RS Normal in z

9 ETXYR RS Shear in xy

10 ETYZR RS Shear in yz

11 ETZXR RS Shear in zx

12 EXI RS Normal in x

13 EYI RS Normal in y

14 EZI RS Normal in z

15 ETXYI RS Shear in xy

16 ETYZI RS Shear in yz

17 ETZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 repeat 007 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

13-102 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 365: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 GRID I External grid identification number(0=center)

6 SXR RS Normal in x

7 SYR RS Normal in y

8 SZR RS Normal in z

9 TXYR RS Shear in xy

10 TYZR RS Shear in yz

11 TZXR RS Shear in zx

12 SXI RS Normal in x

13 SYI RS Normal in y

14 SZI RS Normal in z

15 TXYI RS Shear in xy

16 TYZI RS Shear in yz

17 TZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 repeat 007 times

End TCODE,7

End SCODE,6

ELTYPE =69 Curved beam or pipe element (CBEND)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 GRID I External Grid Point identificationnumber

NX Nastran 10 Release Guide 13-103

Upward compatibility

Page 366: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

3 CA RS Circumferential Angle

4 ECR RS Long. strain at Point C

5 EDR RS Long. strain at Point D

6 EER RS Long. strain at Point E

7 EFR RS Long. strain at Point F

8 ECI RS Long. strain at Point C

9 EDI RS Long. strain at Point D

10 EEI RS Long. strain at Point E

11 EFI RS Long. strain at Point F

Words 2 through 11 repeat 002 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 GRID I External Grid Point identificationnumber

3 CA RS Circumferential Angle

4 SCR RS Long. Stress at Point C

5 SDR RS Long. Stress at Point D

6 SER RS Long. Stress at Point E

7 SFR RS Long. Stress at Point F

8 SCI RS Long. Stress at Point C

9 SDI RS Long. Stress at Point D

10 SEI RS Long. Stress at Point E

13-104 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 367: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

11 SFI RS Long. Stress at Point F

Words 2 through 11 repeat 002 times

End TCODE,7

End SCODE,6

Word Name Type Description

ELTYPE =70 Triangular plate element (CTRIAR)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4 "CENTER"

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 EX1R RS Normal in x at Z1

6 EX1I RS Normal in x at Z1

7 EY1R RS Normal in y at Z1

8 EY1I RS Normal in y at Z1

9 ETXY1R RS Shear in xy at Z1

10 ETXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 EX2R RS Normal in x at Z2

14 EX2I RS Normal in x at Z2

NX Nastran 10 Release Guide 13-105

Upward compatibility

Page 368: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

15 EY2R RS Normal in y at Z2

16 EY2I RS Normal in y at Z2

17 ETXY2R RS Shear in xy at Z2

18 ETXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 004 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 SX1R RS Normal in x at Z1

6 SX1I RS Normal in x at Z1

7 SY1R RS Normal in y at Z1

8 SY1I RS Normal in y at Z1

9 TXY1R RS Shear in xy at Z1

10 TXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 SX2R RS Normal in x at Z2

14 SX2I RS Normal in x at Z2

13-106 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 369: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

15 SY2R RS Normal in y at Z2

16 SY2I RS Normal in y at Z2

17 TXY2R RS Shear in xy at Z2

18 TXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 004 times

End TCODE,7

End SCODE,6

ELTYPE =71 Unused

2 UNDEF None

ELTYPE =72 AEROQ4

2 UNDEF None

ELTYPE =73 Unused (Pre-V69 CFTUBE)

2 UNDEF None

ELTYPE =74 Triangular shell element (CTRIA3)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 EX1R RS Normal in x at Z1

4 EX1I RS Normal in x at Z1

5 EY1R RS Normal in y at Z1

6 EY1I RS Normal in y at Z1

7 EXY1R RS Shear in xy at Z1

NX Nastran 10 Release Guide 13-107

Upward compatibility

Page 370: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

8 EXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 EX2R RS Normal in x at Z2

12 EX2I RS Normal in x at Z2

13 EY2R RS Normal in y at Z2

14 EY2I RS Normal in y at Z2

15 EXY2R RS Shear in xy at Z2

16 EXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 SX1R RS Normal in x at Z1

4 SX1I RS Normal in x at Z1

5 SY1R RS Normal in y at Z1

6 SY1I RS Normal in y at Z1

7 TXY1R RS Shear in xy at Z1

8 TXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

13-108 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 371: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

11 SX2R RS Normal in x at Z2

12 SX2I RS Normal in x at Z2

13 SY2R RS Normal in y at Z2

14 SY2I RS Normal in y at Z2

15 TXY2R RS Shear in xy at Z2

16 TXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

End SCODE,6

ELTYPE =75 Curved triangular shell element (CTRIA6)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4 "CENTER"

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 EX1R RS Normal in x at Z1

6 EX1I RS Normal in x at Z1

7 EY1R RS Normal in y at Z1

8 EY1I RS Normal in y at Z1

9 ETXY1R RS Shear in xy at Z1

10 ETXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

NX Nastran 10 Release Guide 13-109

Upward compatibility

Page 372: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 FD2 RS Fiber distance at Z2

13 EX2R RS Normal in x at Z2

14 EX2I RS Normal in x at Z2

15 EY2R RS Normal in y at Z2

16 EY2I RS Normal in y at Z2

17 ETXY2R RS Shear in xy at Z2

18 ETXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 004 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 SX1R RS Normal in x at Z1

6 SX1I RS Normal in x at Z1

7 SY1R RS Normal in y at Z1

8 SY1I RS Normal in y at Z1

9 TXY1R RS Shear in xy at Z1

10 TXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

13-110 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 373: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

12 FD2 RS Fiber distance at Z2

13 SX2R RS Normal in x at Z2

14 SX2I RS Normal in x at Z2

15 SY2R RS Normal in y at Z2

16 SY2I RS Normal in y at Z2

17 TXY2R RS Shear in xy at Z2

18 TXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 004 times

End TCODE,7

End SCODE,6

ELTYPE =76 Acoustic velocity/pressures in six-sided solid element(CHEXA)

2 UNDEF None

ELTYPE =77 Acoustic velocity/pressures in five-sided solidelement (CPENTA)

2 UNDEF None

ELTYPE =78 Acoustic velocity/pressures in four-sided solidelement (CTETRA)

2 UNDEF None

ELTYPE =79 Undef

2 UNDEF None

NX Nastran 10 Release Guide 13-111

Upward compatibility

Page 374: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =80 Undef

2 UNDEF None

ELTYPE =81 Undef

2 UNDEF None

ELTYPE =82 Quadrilateral plate element (CQUADR)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4 "CENTER"

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 EX1R RS Normal in x at Z1

6 EX1I RS Normal in x at Z1

7 EY1R RS Normal in y at Z1

8 EY1I RS Normal in y at Z1

9 ETXY1R RS Shear in xy at Z1

10 ETXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 EX2R RS Normal in x at Z2

14 EX2I RS Normal in x at Z2

15 EY2R RS Normal in y at Z2

16 EY2I RS Normal in y at Z2

13-112 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 375: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

17 ETXY2R RS Shear in xy at Z2

18 ETXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 005 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I Number active grids identificationnumber or grid identification number

4 FD1 RS Fiber distance at Z1

5 SX1R RS Normal in x at Z1

6 SX1I RS Normal in x at Z1

7 SY1R RS Normal in y at Z1

8 SY1I RS Normal in y at Z1

9 TXY1R RS Shear in xy at Z1

10 TXY1I RS Shear in xy at Z1

11 VM1 RS von Mises at Z1

12 FD2 RS Fiber distance at Z2

13 SX2R RS Normal in x at Z2

14 SX2I RS Normal in x at Z2

15 SY2R RS Normal in y at Z2

16 SY2I RS Normal in y at Z2

NX Nastran 10 Release Guide 13-113

Upward compatibility

Page 376: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

17 TXY2R RS Shear in xy at Z2

18 TXY2I RS Shear in xy at Z2

19 VM2 RS von Mises at Z2

Words 3 through 19 repeat 005 times

End TCODE,7

End SCODE,6

ELTYPE =83 Acoustic absorber element (CHACAB)

2 UNDEF None

ELTYPE =84 Acoustic barrier element (CHACBR)

2 UNDEF None

ELTYPE =85 TETRA - Nonlinear

2 CTYPE CHAR4

3 GRID I Grid / Gauss

4 SX RS Stress in x

5 SY RS Stress in y

6 SZ RS Stress in z

7 SXY RS Stress in xy

8 SYZ RS Stress in yz

9 SZX RS Stress in zx

10 SE RS Equivalent stress

11 EPS RS Effective plastic strain

12 ECS RS Effective creep strain

13 EX RS Strain in x

13-114 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 377: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

14 EY RS Strain in y

15 EZ RS Strain in z

16 EXY RS Strain in xy

17 EYZ RS Strain in yz

18 EZX RS Strain in zx

Words 3 through 18 repeat 005 times

ELTYPE =86 GAP - Nonlinear

2 CPX RS Comp x

3 SHY RS Shear in y

4 SHZ RS Shear in z

5 AU RS Axial in u

6 SHV RS Shear in v

7 SHW RS Shear in w

8 SLV RS Slip in v

9 SLP RS Slip in w

10 FORM1 CHAR4 No definition

11 FORM2 CHAR4 No definition

ELTYPE =87 Nonlinear tube element (CTUBE)

2 AS RS Axial Stress

3 SE RS Equivalent Stress

4 TE RS Total Strain

5 EPS RS Effective Plastic strain

6 ECS RS Effective Creep strain

NX Nastran 10 Release Guide 13-115

Upward compatibility

Page 378: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

7 LTS RS Linear torsional stress

ELTYPE =88 TRIA3 - Nonlinear (Same as QUAD4)

NUMWDE =13

2 FD1 RS Z1 = Fiber distance

3 SX1 RS Stress in x at Z1

4 SY1 RS Stress in y at Z1

5 SZ1 RS Stress in z at Z1

6 TXY1 RS Shear stress in xy at Z1

7 ES RS Equivalent stress at Z1

8 EPS1 RS Effective plastic/inelastic strain at Z1

9 ECS1 RS Effective creep strain at Z1

10 EX1 RS Strain in x at Z1

11 EY1 RS Strain in y at Z1

12 EZ1 RS Strain in z at Z1

13 ETXY1 RS Shear strain in xy at Z1

NUMWDE =25

2 FD1 RS Z1 = Fiber distance

3 SX1 RS Stress in x at Z1

4 SY1 RS Stress in y at Z1

5 UNDEF None Stress in z at Z1

6 TXY1 RS Shear stress in xy at Z1

7 ES RS Equivalent stress at Z1

8 EPS1 RS Effective plastic/inelastic strain at Z1

13-116 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 379: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 ECS1 RS Effective creep strain at Z1

10 EX1 RS Strain in x at Z1

11 EY1 RS Strain in y at Z1

12 UNDEF None Strain in z at Z1

13 ETXY1 RS Shear strain in xy at Z1

14 FD2 RS Z2 = Fiber distance

15 SX2 RS Stress in x at Z2

16 SY2 RS Stress in y at Z2

17 UNDEF None Stress in z at Z2

18 TXY2 RS Shear stress in xy at Z2

19 ES RS Equivalent stress at Z2

20 EPS2 RS Effective plastic/inelastic strain at Z2

21 ECS2 RS Effective creep strain at Z2

22 EX2 RS Strain in x at Z2

23 EY2 RS Strain in y at Z2

24 UNDEF None Strain in z at Z2

25 ETXY2 RS Shear strain in xy at Z2

End NUMWDE

ELTYPE =89 Nonlinear rod element (CROD)

2 AS RS Axial Stress

3 SE RS Equivalent Stress

4 TE RS Total Strain

5 EPS RS Effective Plastic strain

NX Nastran 10 Release Guide 13-117

Upward compatibility

Page 380: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

6 ECS RS Effective Creep strain

7 LTS RS Linear torsional stress

Word Name Type Description

ELTYPE =90 QUAD4 - Nonlinear

NUMWDE =13

2 FD1 RS Z1 = Fiber distance

3 SX1 RS Stress in x at Z1

4 SY1 RS Stress in y at Z1

5 SZ1 RS Stress in z at Z1

6 TXY1 RS Shear stress in xy at Z1

7 ES RS Equivalent stress at Z1

8 EPS1 RS Effective plastic/inelastic strain at Z1

9 ECS1 RS Effective creep strain at Z1

10 EX1 RS Strain in x at Z1

11 EY1 RS Strain in y at Z1

12 EZ1 RS Strain in z at Z1

13 ETXY1 RS Shear strain in xy at Z1

NUMWDE =25

2 FD1 RS Z1 = Fiber distance

3 SX1 RS Stress in x at Z1

4 SY1 RS Stress in y at Z1

5 UNDEF None Stress in z at Z1

13-118 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 381: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

6 TXY1 RS Shear stress in xy at Z1

7 ES RS Equivalent stress at Z1

8 EPS1 RS Effective plastic/inelastic strain at Z1

9 ECS1 RS Effective creep strain at Z1

10 EX1 RS Strain in x at Z1

11 EY1 RS Strain in y at Z1

12 UNDEF None Strain in z at Z1

13 ETXY1 RS Shear strain in xy at Z1

14 FD2 RS Z2 = Fiber distance

15 SX2 RS Stress in x at Z2

16 SY2 RS Stress in y at Z2

17 UNDEF None Stress in z at Z2

18 TXY2 RS Shear stress in xy at Z2

19 ES RS Equivalent stress at Z2

20 EPS2 RS Effective plastic/inelastic strain at Z2

21 ECS2 RS Effective creep strain at Z2

22 EX2 RS Strain in x at Z2

23 EY2 RS Strain in y at Z2

24 UNDEF None Strain in z at Z2

25 ETXY2 RS Shear strain in xy at Z2

End NUMWDE

ELTYPE =91 Nonlinear five-sided solid element (CPENTA)

2 CTYPE CHAR4 Grid or Gauss

NX Nastran 10 Release Guide 13-119

Upward compatibility

Page 382: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

3 GRID I Extermal Grid identification number; 0= Center

4 SX RS Stress in x

5 SY RS Stress in y

6 SZ RS Stress in z

7 SXY RS Stress in xy

8 SYZ RS Stress in yz

9 SZX RS Stress in zx

10 SE RS Equivalent stress

11 EPS RS Equivalent plastic strain

12 ECS RS Effective creep strain

13 EX RS Strain in x

14 EY RS Strain in y

15 EZ RS Strain in z

16 EXY RS Strain in xy

17 EYZ RS Strain in yz

18 EZX RS Strain in zx

Words 3 through 18 repeat 007 times

ELTYPE =92 Nonlinear rod element connection and property(CONROD)

2 AS RS Axial Stress

3 SE RS Equivalent Stress

4 TE RS Total Strain

5 EPS RS Effective Plastic strain

13-120 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 383: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

6 ECS RS Effective Creep strain

7 LTS RS Linear torsional stress

ELTYPE =93 Nonlinear six-sided solid element (CHEXA)

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Extermal Grid identification number; 0= Center

4 SX RS Stress in x

5 SY RS Stress in y

6 SZ RS Stress in z

7 SXY RS Stress in xy

8 SYZ RS Stress in yz

9 SZX RS Stress in zx

10 SE RS Equivalent stress

11 EPS RS Equivalent plastic strain

12 ECS RS Effective creep strain

13 EX RS Strain in x

14 EY RS Strain in y

15 EZ RS Strain in z

16 EXY RS Strain in xy

17 EYZ RS Strain in yz

18 EZX RS Strain in zx

Words 3 through 18 repeat 009 times

ELTYPE =94 Nonlinear beam element (CBEAM)

NX Nastran 10 Release Guide 13-121

Upward compatibility

Page 384: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 GRIDA I External Grid point Id at A

3 LOCCA CHAR4 'C' (BCD Value) at A

4 NSXCA RS Long. Stress at point C at A

5 NSECA RS Equivalent Stress at A

6 TECA RS Total Strain at A

7 EPECA RS Effective Plastic strain at A

8 ECECA RS Effective Creep strain at A

9 LOCDA CHAR4 'D' (BCD Value) at A

10 NSXDA RS Long. Stress at point D at A

11 NSEDA RS Equivalent Stress at A

12 TEDA RS Total Strain at A

13 EPEDA RS Effective Plastic strain at A

14 ECEDA RS Effective Creep strain at A

15 LOCEA CHAR4 'E' (BCD Value) at A

16 NSXEA RS Long. Stress at point E at A

17 NSEEA RS Equivalent Stress at A

18 TEEA RS Total Strain at A

19 EPEEA RS Effective Plastic strain at A

20 ECEEA RS Effective Creep strain at A

21 LOCFA CHAR4 'F' (BCD Value) at A

22 NSXFA RS Long. Stress at point F at A

23 NSEFA RS Equivalent Stress at A

13-122 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 385: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

24 TEFA RS Total Strain at A

25 EPEFA RS Effective Plastic strain at A

26 ECEFA RS Effective Creep strain at A

27 GRIDB I External Grid point identificationnumber at B

28 LOCCB CHAR4 'C' (BCD Value) at B

29 NSXCB RS Long. Stress at point C at B

30 NSECB RS Equivalent Stress at B

31 TECB RS Total Strain at B

32 EPECB RS Effective Plastic strain at B

33 ECECB RS Effective Creep strain at B

34 LOCDB CHAR4 'D' (BCD Value) at B

35 NSXDB RS Long. Stress at point D at B

36 NSEDB RS Equivalent Stress at B

37 TEDB RS Total Strain at B

38 EPEDB RS Effective Plastic strain at B

39 ECEDB RS Effective Creep strain at B

40 LOCEB CHAR4 'E' (BCD Value) at B

41 NSXEB RS Long. Stress at point E at B

42 NSEEB RS Equivalent Stress at B

43 TEEB RS Total Strain at B

44 EPEEB RS Effective Plastic strain at B

45 ECEEB RS Effective Creep strain at B

NX Nastran 10 Release Guide 13-123

Upward compatibility

Page 386: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

46 LOCFB CHAR4 'F' (BCD Value) at B

47 NSXFB RS Long. Stress at point F at B

48 NSEFB RS Equivalent Stress at B

49 TEFB RS Total Strain at B

50 EPEFB RS Effective Plastic strain at B

51 ECEFB RS Effective Creep strain at B

ELTYPE =95 QUAD4 composite

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

13-124 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 387: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

NX Nastran 10 Release Guide 13-125

Upward compatibility

Page 388: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

End TCODE,7

End SCODE,6

ELTYPE =96 QUAD8 composite (Same as QUAD4 composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

13-126 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 389: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

NX Nastran 10 Release Guide 13-127

Upward compatibility

Page 390: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

End TCODE,7

End SCODE,6

ELTYPE =97 TRIA3 composite (Same as QUAD4 composite)

13-128 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 391: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

NX Nastran 10 Release Guide 13-129

Upward compatibility

Page 392: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

13-130 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 393: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

End TCODE,7

End SCODE,6

ELTYPE =98 TRIA6 composite (Same as QUAD4 composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

NX Nastran 10 Release Guide 13-131

Upward compatibility

Page 394: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

13-132 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 395: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

End TCODE,7

End SCODE,6

ELTYPE =99 Undef

2 UNDEF None

Word Name Type Description

ELTYPE =100 Simple beam element w/stations (CBAR withCBARAO or PLOAD1)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

NX Nastran 10 Release Guide 13-133

Upward compatibility

Page 396: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 SD RS % along bar for output

3 EXCR RS Strain at point c

4 EXDR RS Strain at point d

5 EXER RS Strain at point e

6 EXFR RS Strain at point f

7 AER RS Axial strain

8 EMAXR RS Maximum strain

9 EMINR RS Minimum strain

10 EXCI RS Strain at point c

11 EXDI RS Strain at point d

12 EXEI RS Strain at point e

13 EXFI RS Strain at point f

14 AEI RS Axial strain

15 EMAXI RS Maximum strain

16 EMINI RS Minimum strain

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 SD RS % along bar for output

3 SXCR RS Stress at point c

4 SXDR RS Stress at point d

5 SXER RS Stress at point e

13-134 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 397: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

6 SXFR RS Stress at point f

7 ASR RS Axial stress

8 SMAXR RS Maximum stress

9 SMINR RS Minimum stress

10 SXCI RS Stress at point c

11 SXDI RS Stress at point d

12 SXEI RS Stress at point e

13 SXFI RS Stress at point f

14 ASI RS Axial stress

15 SMAXI RS Maximum stress

16 SMINI RS Minimum stress

End TCODE,7

End SCODE,6

ELTYPE =101 Acoustic absorber element with freq. dependence(CAABSF)

TCODE,7 =1 Real / Imaginary

2 IMPEDR RS Impedance

3 IMPEDI RS Impedance

4 ABSORB RS Absorption Coefficient

End TCODE,7

ELTYPE =102 Generalized spring and damper element (CBUSH)

TCODE,7 =1 Real / Imaginary

2 TXR RS Translation x R

NX Nastran 10 Release Guide 13-135

Upward compatibility

Page 398: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

3 TYR RS Translation y R

4 TZR RS Translation z R

5 RXR RS Rotation x R

6 RYR RS Rotation y R

7 RZR RS Rotation z R

8 TXI RS Translation x I

9 TYI RS Translation y I

10 TZI RS Translation z I

11 RXI RS Rotation x I

12 RYI RS Rotation y I

13 RZI RS Rotation z I

End TCODE,7

ELTYPE =103 Quadrilateral shell element (QUADP)

2 UNDEF None

ELTYPE =104 Triangular shell p-element (TRIAP)

2 UNDEF None

ELTYPE =105 Beam p-element (BEAMP)

2 UNDEF None

ELTYPE =106 Scalar damper with material property (CDAMP5)

2 UNDEF None

ELTYPE =107 Heat transfer boundary condition element -(CHBDYE)

2 UNDEF None

13-136 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 399: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

ELTYPE =108 Heat transfer boundary condition element (CHBDYG)

2 UNDEF None

ELTYPE =109 Heat transfer boundary condition element (CHBDYP)

2 UNDEF None

Word Name Type Description

ELTYPE =110 CONV

2 UNDEF None

ELTYPE =111 CONVM

2 UNDEF None

ELTYPE =115 RADBC

2 UNDEF None

ELTYPE =112 QBDY3

2 UNDEF None

ELTYPE =113 QVECT

2 UNDEF None

ELTYPE =114 QVOL

2 UNDEF None

ELTYPE =115 Radbc

2 UNDEF None

ELTYPE =116 Slideline contact (SLIF1D)

2 UNDEF None

NX Nastran 10 Release Guide 13-137

Upward compatibility

Page 400: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =127 CQUAD

ELTYPE =128 CQUADX

ELTYPE =129 RELUC

Word Name Type Description

ELTYPE =130 RES

ELTYPE =131 TETRAE

ELTYPE =132 CTRIA

ELTYPE =133 CTRIAX

ELTYPE =134 LINEOB

ELTYPE =135 LINXOB

ELTYPE =136 QUADOB

ELTYPE =137 TRIAOB

ELTYPE =138 LINEX

ELTYPE =139 Hyperelastic QUAD4FD

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

13-138 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 401: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

Words 3 through 9 repeat 004 times

Word Name Type Description

ELTYPE =140 Hyperelastic 8-noded hexahedron element linearformat (HEXAFD)

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

NX Nastran 10 Release Guide 13-139

Upward compatibility

Page 402: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 008 times

ELTYPE =141 Six-sided solid p-element (HEXAP)

2 UNDEF None

ELTYPE =142 Five-sided solid p-element (PENTAP)

2 UNDEF None

ELTYPE =143 Four-sided solid p-element (TETRAP)

2 UNDEF None

ELTYPE =144 Quadrilateral plate element for corner stresses(CQUAD4)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I

4 FD1 RS Fiber distance at z1

5 EX1R RS Normal in x at z1

6 EX1I RS Normal in x at z1

7 EY1R RS Normal in y at z1

8 EY1I RS Normal in y at z1

9 ETXY1R RS Shear in xy at z1

10 ETXY1I RS Shear in xy at z1

13-140 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 403: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

11 VM1 RS von Mises at z1

12 FD2 RS Fiber distance at z2

13 EX2R RS Normal in x at z2

14 EX2I RS Normal in x at z2

15 EY2R RS Normal in y at z2

16 EY2I RS Normal in y at z2

17 ETXY2R RS Shear in xy at z2

18 ETXY2I RS Shear in xy at z2

19 VM2 RS von Mises at z2

Words 3 through 19 repeat 005 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 TERM CHAR4

3 GRID I

4 FD1 RS Fiber distance at z1

5 SX1R RS Normal in x at z1

6 SX1I RS Normal in x at z1

7 SY1R RS Normal in y at z1

8 SY1I RS Normal in y at z1

9 TXY1R RS Shear in xy at z1

10 TXY1I RS Shear in xy at z1

11 VM1 RS von Mises at z1

NX Nastran 10 Release Guide 13-141

Upward compatibility

Page 404: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 FD2 RS Fiber distance at z2

13 SX2R RS Normal in x at z2

14 SX2I RS Normal in x at z2

15 SY2R RS Normal in y at z2

16 SY2I RS Normal in y at z2

17 TXY2R RS Shear in xy at z2

18 TXY2I RS Shear in xy at z2

19 VM2 RS von Mises at z2

Words 3 through 19 repeat 005 times

End TCODE,7

End SCODE,6

ELTYPE =145 Six-sided solid display element (VUHEXA)

2 PARENTID I

NUMWDE =98 Len=2+ 12 * No. of points

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

8 TYZ RS

9 TZX RS

10 PRIN01 RS

11 PRIN02 RS

13-142 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 405: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

12 PRIN03 RS

13 MEAN RS

14 VONOROCT RS

Words 3 through 14 repeat 008 times

NUMWDE =58 Len= 2 + 7 * No. of points

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

8 TYZ RS

9 TZX RS

Words 3 through 9 repeat 008 times

NUMWDE =106 Len= 2 + 13 * No. of points

3 GRIDID I

4 XNORMR RS

5 YNORMR RS

6 ZNORMR RS

7 TXYR RS

8 TYZR RS

9 TZXR RS

10 XNORMI RS

11 YNORMI RS

NX Nastran 10 Release Guide 13-143

Upward compatibility

Page 406: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 ZNORMI RS

13 TXYI RS

14 TYZI RS

15 TZXI RS

Words 3 through 15 repeat 008 times

End NUMWDE

ELTYPE =146 Five-sided solid display element (VUPENTA)

2 PARENTID I

NUMWDE =74

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

8 TYZ RS

9 TZX RS

10 PRIN01 RS

11 PRIN02 RS

12 PRIN03 RS

13 MEAN RS

14 VONOROCT RS

Words 3 through 14 repeat 006 times

NUMWDE =44

13-144 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 407: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

8 TYZ RS

9 TZX RS

Words 3 through 9 repeat 006 times

NUMWDE =80 2 + 6*13

3 GRIDID I

4 XNORMR RS

5 YNORMR RS

6 ZNORMR RS

7 TXYR RS

8 TYZR RS

9 TZXR RS

10 XNORMI RS

11 YNORMI RS

12 ZNORMI RS

13 TXYI RS

14 TYZI RS

15 TZXI RS

Words 3 through 15 repeat 006 times

NX Nastran 10 Release Guide 13-145

Upward compatibility

Page 408: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

End NUMWDE

ELTYPE =147 Four-sided solid display element (VUTETRA)

2 PARENTID I

NUMWDE =50

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

8 TYZ RS

9 TZX RS

10 PRIN01 RS

11 PRIN02 RS

12 PRIN03 RS

13 MEAN RS

14 VONOROCT RS

Words 3 through 14 repeat 004 times

NUMWDE =30

3 GRIDID I

4 XNORM RS

5 YNORM RS

6 ZNORM RS

7 TXY RS

13-146 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 409: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

8 TYZ RS

9 TZX RS

Words 3 through 9 repeat 004 times

NUMWDE =54 2 + 4*13

3 GRIDID I

4 XNORMR RS

5 YNORMR RS

6 ZNORMR RS

7 TXYR RS

8 TYZR RS

9 TZXR RS

10 XNORMI RS

11 YNORMI RS

12 ZNORMI RS

13 TXYI RS

14 TYZI RS

15 TZXI RS

Words 3 through 15 repeat 004 times

End NUMWDE

ELTYPE =148 HEXAM

2 UNDEF None

ELTYPE =149 PENTAM

2 UNDEF None

NX Nastran 10 Release Guide 13-147

Upward compatibility

Page 410: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =150 TETRAM

2 UNDEF None

ELTYPE =151 QUADM

2 UNDEF None

ELTYPE =152 TRIAM

2 UNDEF None

ELTYPE =153 QUADXM

2 UNDEF None

ELTYPE =154 TRIAXM

2 UNDEF None

ELTYPE =155 QUADPW

2 UNDEF None

ELTYPE =156 TRIAPW

2 UNDEF None

ELTYPE =157 LINEPW

2 UNDEF None

ELTYPE =158 QUADOBM

2 UNDEF None

ELTYPE =159 TRIAOBM

2 UNDEF None

Word Name Type Description

ELTYPE =160 Hyperelastic 5-sided 6-noded solid element(PENTAFD) Linear form

13-148 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 411: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 006 times

ELTYPE =161 Linear form for hyperelastic 4 node TETRA

NX Nastran 10 Release Guide 13-149

Upward compatibility

Page 412: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 001 times

ELTYPE =162 Linear form for hyperelastic 3 node TRIA (strain)

13-150 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 413: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 001 times

ELTYPE =163 Linear form for hyperelastic 20 node HEXAFD

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

NX Nastran 10 Release Guide 13-151

Upward compatibility

Page 414: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 027 times

ELTYPE =164 Hyperelastic quadrilateral 9-noded element(QUADFD) Linear

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 009 times

ELTYPE =165 Hyperelastic 5-sided 15-noded solid element(PENTAFD) Linear

13-152 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 415: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 021 times

ELTYPE =166 Linear form for hyperelastic 10 node TETRA

NX Nastran 10 Release Guide 13-153

Upward compatibility

Page 416: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 TYPE CHAR4 Gaus

3 ID I

4 SX RS

5 SXY RS

6 PA RS

7 AX RS

8 AY RS

9 AZ RS

10 PRESSURE RS

11 SY RS

12 SYZ RS

13 PB RS

14 BX RS

15 BY RS

16 BZ RS

17 SZ RS

18 SZX RS

19 PC RS

20 CX RS

21 CY RS

22 CZ RS

Words 3 through 22 repeat 005 times

13-154 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 417: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

ELTYPE =167 Linear form for hyperelastic 6 node TRIA (planestrain)

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 003 times

ELTYPE =168 Linear form for hyperelastic 3 node TRIA (axisymm)

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 001 times

ELTYPE =169 Linear form for hyperelastic 6 node TRIA (axisymm)

2 TYPE CHAR4

NX Nastran 10 Release Guide 13-155

Upward compatibility

Page 418: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 003 times

Word Name Type Description

ELTYPE =170 Linear form for hyperelastic 4 node QUAD (axisymm)

2 TYPE CHAR4

3 ID I

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 004 times

ELTYPE =171 Linear form for hyperelastic 9 node QUAD (axisymm)

2 TYPE CHAR4

3 ID I

13-156 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 419: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

4 SX RS

5 SY RS

6 SXY RS

7 ANGLE RS

8 SMJ RS

9 SMI RS

Words 3 through 9 repeat 009 times

Word Name Type Description

ELTYPE =189 Quadrilateral plate view element (VUQUAD)

SCODE,6 =0 Strain

2 PARENT I Parent p-element identification number

3 COORD I CID coordinate system identificationnumber

4 ICORD CHAR4 ICORD flat/curved and so on

5 THETA I THETA angle

6 ITYPE I ITYPE strcur =0, fiber=1

TCODE,7 =1 Real / Imaginary

7 VUID I VU grid identification number this corner

8 UNDEF(2 ) None

10 MSXR RS Membrane strain x RM

11 MSYR RS Membrane strain y RM

12 MXYR RS Membrane strain xy RM

NX Nastran 10 Release Guide 13-157

Upward compatibility

Page 420: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

13 UNDEF(3 ) None

16 BCXR RS Bending curvature x RM

17 BCYR RS Bending curvature y RM

18 BCXYR RS Bending curvature xy RM

19 TYZR RS Shear yz RM

20 TZXR RS Shear zx RM

21 UNDEF None

22 MSXI RS Membrane strain x IP

23 MSYI RS Membrane strain y IP

24 MXYI RS Membrane strain xy IP

25 UNDEF(3 ) None

28 BCXI RS Bending curvature x IP

29 BCYI RS Bending curvature y IP

30 BCXYI RS Bending curvature xy IP

31 TYZI RS Shear yz IP

32 TZXI RS Shear zx IP

33 UNDEF None

Words 7 through 33 repeat 004 times

End TCODE,7

SCODE,6 =01 Stress

2 PARENT I Parent p-element identification number

3 COORD I CID coordinate system identificationnumber

13-158 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 421: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

4 ICORD CHAR4 ICORD flat/curved and so on

5 THETA I THETA angle

6 ITYPE I ITYPE strcur =0, fiber=1

TCODE,7 =1 Real / Imaginary

7 VUID I VU grid identification number for thiscorner

8 Z1 RS Z1 fiber distance

9 Z2 RS Z2 fiber distance

10 NX1R RS Normal x rm at Z1

11 NX1I RS Normal x ip at Z1

12 NY1R RS Normal y rm at Z1

13 NY1I RS Normal y ip at Z1

14 TXY1R RS Shear xy rm at Z1

15 TXY1I RS Shear xy ip at Z1

16 NZ1R RS Normal z rm at Z1 or n/a

17 NZ1I RS Normal z ip at Z1 or n/a

18 TYZ1R RS Shear yz rm at Z1 or n/a

19 TYZ1I RS Shear yz ip at Z1 or n/a

20 TZX1R RS Shear zx rm at Z1 or n/a

21 TZX1I RS Shear zx ip at Z1 or n/a

22 NX2R RS Normal x rm at Z2

23 NX2I RS Normal x ip at Z2

24 NY2R RS Normal y rm at Z2

NX Nastran 10 Release Guide 13-159

Upward compatibility

Page 422: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

25 NY2I RS Normal y ip at Z2

26 TXY2R RS Shear xy rm at Z2

27 TXY2I RS Shear xy ip at Z2

28 NZ1R RS Normal z rm at Z1 or n/a

29 NZ1I RS Normal z ip at Z1 or n/a

30 TYZ1R RS Shear yz rm at Z1 or n/a

31 TYZ1I RS Shear yz ip at Z1 or n/a

32 TZX1R RS Shear zx rm at Z1 or n/a

33 TZX1I RS Shear zx ip at Z1 or n/a

Words 7 through 33 repeat 004 times

End TCODE,7

End SCODE,6

Word Name Type Description

ELTYPE =190 Triangular shell view element (VUTRIA)

SCODE,6 =0 Strain

2 PARENT I Parent p-element identification number

3 COORD I CID coordinate system identificationnumber

4 ICORD CHAR4 ICORD flat/curved and so on

5 THETA I THETA angle

6 ITYPE I ITYPE strcur =0, fiber=1

TCODE,7 =1 Real / Imaginary

13-160 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 423: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

7 VUID I VU grid identification number this corner

8 UNDEF(2 ) None

10 MSXR RS Membrane strain x RM

11 MSYR RS Membrane strain y RM

12 MXYR RS Membrane strain xy RM

13 UNDEF(3 ) None

16 BCXR RS Bending curvature x RM

17 BCYR RS Bending curvature y RM

18 BCXYR RS Bending curvature xy RM

19 TYZR RS Shear yz RM

20 TZXR RS Shear zx RM

21 UNDEF None

22 MSXI RS Membrane strain x IP

23 MSYI RS Membrane strain y IP

24 MXYI RS Membrane strain xy IP

25 UNDEF(3 ) None

28 BCXI RS Bending curvature x IP

29 BCYI RS Bending curvature y IP

30 BCXYI RS Bending curvature xy IP

31 TYZI RS Shear yz IP

32 TZXI RS Shear zx IP

33 UNDEF None

Words 7 through 33 repeat 003 times

NX Nastran 10 Release Guide 13-161

Upward compatibility

Page 424: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

End TCODE,7

SCODE,6 =01 Stress

2 PARENT I Parent p-element identification number

3 COORD I CID coordinate system identificationnumber

4 ICORD CHAR4 ICORD flat/curved and so on

5 THETA I THETA angle

6 ITYPE I ITYPE strcur =0, fiber=1

TCODE,7 =1 Real / Imaginary

7 VUID I VU grid identification number for thiscorner

8 Z1 RS Z1 fiber distance

9 Z2 RS Z2 fiber distance

10 NX1R RS Normal x rm at Z1

11 NX1I RS Normal x ip at Z1

12 NY1R RS Normal y rm at Z1

13 NY1I RS Normal y ip at Z1

14 TXY1R RS Shear xy rm at Z1

15 TXY1I RS Shear xy ip at Z1

16 NZ1R RS Normal z rm at Z1 or n/a

17 NZ1I RS Normal z ip at Z1 or n/a

18 TYZ1R RS Shear yz rm at Z1 or n/a

19 TYZ1I RS Shear yz ip at Z1 or n/a

20 TZX1R RS Shear zx rm at Z1 or n/a

13-162 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 425: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

21 TZX1I RS Shear zx ip at Z1 or n/a

22 NX2R RS Normal x rm at Z2

23 NX2I RS Normal x ip at Z2

24 NY2R RS Normal y rm at Z2

25 NY2I RS Normal y ip at Z2

26 TXY2R RS Shear xy rm at Z2

27 TXY2I RS Shear xy ip at Z2

28 NZ1R RS Normal z rm at Z1 or n/a

29 NZ1I RS Normal z ip at Z1 or n/a

30 TYZ1R RS Shear yz rm at Z1 or n/a

31 TYZ1I RS Shear yz ip at Z1 or n/a

32 TZX1R RS Shear zx rm at Z1 or n/a

33 TZX1I RS Shear zx ip at Z1 or n/a

Words 7 through 33 repeat 003 times

End TCODE,7

End SCODE,6

ELTYPE =191 Beam view element (VUBEAM)

2 PARENT I Parent p-element identification number

3 COORD I CID coordinate system identificationnumber

4 ICORD CHAR4 ICORD flat/curved and so on

TCODE,7 =1 Real / Imaginary

5 VUGRID I VU grid ID for output grid

NX Nastran 10 Release Guide 13-163

Upward compatibility

Page 426: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

6 POSIT RS x/L position of VU grid identificationnumber

7 POS(3) RS Y, Z, W coordinate of output point

10 NXR RS Normal x RM

11 NXI RS Normal x IP

12 TXYR RS Shear xy RM

13 TXYI RS Shear xy IP

14 TZXR RS Shear zx RM

15 TZXI RS Shear zx IP

Words 7 through 15 repeat 4 times

Words 5 through 15 repeat 2 times

End TCODE,7

ELTYPE =192 CVINT

2 UNDEF None

ELTYPE =193 QUADFR

2 UNDEF None

ELTYPE =194 TRIAFR

2 UNDEF None

ELTYPE =195 LINEFR

2 UNDEF None

ELTYPE =196 LINXFR

2 UNDEF None

ELTYPE =197 GMINTS

13-164 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 427: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 UNDEF None

ELTYPE =198 CNVPEL

2 UNDEF None

ELTYPE =199 VUHBDY

2 UNDEF None

Word Name Type Description

ELTYPE =200 CWELD

2 UNDEF None

ELTYPE =201 Hyperelastic quadrilateral 4-noded, nonlinear format(QUAD4FD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 004 times

NX Nastran 10 Release Guide 13-165

Upward compatibility

Page 428: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =202 Hyperelastic hexahedron 8-noded, nonlinear format(HEXA8FD)

2 TYPE CHAR4 Grid or Gaus

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 008 times

ELTYPE =203 Slideline contact (SLIF1D)

2 REGIONID I Contact region identification number

3 MGRID1 I Master grid 1

4 MGRID2 I Master grid 2

13-166 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 429: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 SCOORD RS Surface coordinate

6 F RS Normal force

7 S RS Shear force

8 SIGMA RS Normal stress

9 TAU RS Shear stress

10 NGAP RS Normal gap

11 SLIP RS Slip

12 SLIPRAT RS Slip ratio

13 SLIPCODE(2) CHAR4 Slip code

ELTYPE =204 Hyperelastic pentahedron 6-noded, nonlinear format(PENTA6FD)

2 TYPE CHAR4 Grid or Gaus

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

NX Nastran 10 Release Guide 13-167

Upward compatibility

Page 430: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 006 times

ELTYPE =205 Hyperelastic tetrahedron 4-noded, nonlinear format(TETRA4FD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

13-168 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 431: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

Words 3 through 17 repeat 001 times

ELTYPE =206 Hyperelastic triangular 3-noded, nonlinear format(TRIA3FD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 001 times

ELTYPE =207 Hyperelastic hexahedron 20-noded, nonlinear format(HEXAFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

NX Nastran 10 Release Guide 13-169

Upward compatibility

Page 432: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 027 times

ELTYPE =208 Hyperelastic quadrilateral 8-noded, nonlinear format(QUADFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

13-170 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 433: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 009 times

ELTYPE =209 Hyperelastic pentahedron 15-noded nonlinear format(PENTAFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 021 times

NX Nastran 10 Release Guide 13-171

Upward compatibility

Page 434: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =210 Hyperelastic tetrahedron 10-noded nonlinear format(TETRAFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 005 times

ELTYPE =211 Hyperelastic triangular 6-noded, nonlinear format(TRIAFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

13-172 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 435: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 003 times

ELTYPE =212 Hyperelastic axi. triangular 3-noded nonlinear format(TRIAX3FD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

NX Nastran 10 Release Guide 13-173

Upward compatibility

Page 436: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

13 EXY RS

Words 3 through 13 repeat 001 times

ELTYPE =213 Hyperelastic axi. triangular 6-noded nonlinear format(TRIAXFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 003 times

ELTYPE =214 Hyperelastic axi. quadrilateral 4-noded nonlinearformat(QUADX4FD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

13-174 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 437: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 004 times

ELTYPE =215 Hyperelastic axi. quadrilateral 8-noded nonlinearformat (QUADXFD)

2 TYPE CHAR4 GAUS

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 009 times

NX Nastran 10 Release Guide 13-175

Upward compatibility

Page 438: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

ELTYPE =216 Hyperelastic tetrahedron 4-noded nonlinear format(TETRA4FD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 004 times

ELTYPE =217 Hyperelastic triangular 3-noded nonlinear format(TRIA3FD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

13-176 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 439: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 003 times

ELTYPE =218 Hyperelastic hexahedron 20-noded nonlinear format(HEXAFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

NX Nastran 10 Release Guide 13-177

Upward compatibility

Page 440: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 008 times

ELTYPE =219 Hyperelastic quadrilateral 8-noded nonlinear format(QUADFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 004 times

13-178 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 441: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

ELTYPE =220 Hyperelastic pentahedron 15-noded nonlinear format(PENTAFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 006 times

ELTYPE =221 Hyperelastic tetrahedron 10-noded nonlinear format(TETRAFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

NX Nastran 10 Release Guide 13-179

Upward compatibility

Page 442: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 SY RS

6 SZ RS

7 SXY RS

8 SYZ RS

9 SZX RS

10 PRESSURE RS

11 VOLSTR RS

12 EX RS

13 EY RS

14 EZ RS

15 EXY RS

16 EYZ RS

17 EZX RS

Words 3 through 17 repeat 004 times

ELTYPE =222 Hyperelastic axi. triangular 3-noded nonlinear format(TRIAX3FD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

13-180 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 443: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 003 times

ELTYPE =223 Hyperelastic axi. quadrilateral 8-noded nonlinearformat (QUADXFD)

2 TYPE CHAR4 GRID

3 ID I

4 SX RS

5 SY RS

6 SZ RS

7 SXY RS

8 PRESSURE RS

9 VOLSTR RS

10 EX RS

11 EY RS

12 EZ RS

13 EXY RS

Words 3 through 13 repeat 004 times

ELTYPE =224 Nonlinear ELAS1

2 F RS Force

NX Nastran 10 Release Guide 13-181

Upward compatibility

Page 444: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

3 S RS Stress

ELTYPE =225 Nonlinear ELAS3

2 F RS Force

3 S RS Stress

ELTYPE =226 Nonlinear BUSH

2 FX RS Force X

3 FY RS Force Y

4 FZ RS Force Z

5 STX RS Stress Translational X

6 STY RS Stress Translational Y

7 STZ RS Stress Translational Z

8 ETX RS Strain Rotational X

9 ETY RS Strain Rotational Y

10 ETZ RS Strain Rotational Z

11 MX RS Moment X

12 MY RS Moment Y

13 MZ RS Moment Z

14 SRX RS Stress Rotational X

15 SRY RS Stress Rotational Y

16 SRZ RS Stress Rotational Z

17 ERX RS Strain Rotational X

18 ERY RS Strain Rotational Y

13-182 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 445: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

19 ERZ RS Strain Rotational Z

ELTYPE =227 Triangular shell element (CTRIAR)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 EX1R RS Normal in x at Z1

4 EX1I RS Normal in x at Z1

5 EY1R RS Normal in y at Z1

6 EY1I RS Normal in y at Z1

7 EXY1R RS Shear in xy at Z1

8 EXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 EX2R RS Normal in x at Z2

12 EX2I RS Normal in x at Z2

13 EY2R RS Normal in y at Z2

14 EY2I RS Normal in y at Z2

15 EXY2R RS Shear in xy at Z2

16 EXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

SCODE,6 =01 Stress

NX Nastran 10 Release Guide 13-183

Upward compatibility

Page 446: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 SX1R RS Normal in x at Z1

4 SX1I RS Normal in x at Z1

5 SY1R RS Normal in y at Z1

6 SY1I RS Normal in y at Z1

7 TXY1R RS Shear in xy at Z1

8 TXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 SX2R RS Normal in x at Z2

12 SX2I RS Normal in x at Z2

13 SY2R RS Normal in y at Z2

14 SY2I RS Normal in y at Z2

15 TXY2R RS Shear in xy at Z2

16 TXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

End SCODE,6

ELTYPE =228 Quadrilateral plate element (CQUADR)

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

13-184 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 447: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

2 FD1 RS Z1 = Fibre Distance

3 EX1R RS Normal in x at Z1

4 EX1I RS Normal in x at Z1

5 EY1R RS Normal in y at Z1

6 EY1I RS Normal in y at Z1

7 EXY1R RS Shear in xy at Z1

8 EXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 EX2R RS Normal in x at Z2

12 EX2I RS Normal in x at Z2

13 EY2R RS Normal in y at Z2

14 EY2I RS Normal in y at Z2

15 EXY2R RS Shear in xy at Z2

16 EXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 FD1 RS Z1 = Fibre Distance

3 SX1R RS Normal in x at Z1

4 SX1I RS Normal in x at Z1

NX Nastran 10 Release Guide 13-185

Upward compatibility

Page 448: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 SY1R RS Normal in y at Z1

6 SY1I RS Normal in y at Z1

7 TXY1R RS Shear in xy at Z1

8 TXY1I RS Shear in xy at Z1

9 VM1 RS von Mises at Z1

10 FD2 RS Z2 = Fibre Distance

11 SX2R RS Normal in x at Z2

12 SX2I RS Normal in x at Z2

13 SY2R RS Normal in y at Z2

14 SY2I RS Normal in y at Z2

15 TXY2R RS Shear in xy at Z2

16 TXY2I RS Shear in xy at Z2

17 VM2 RS von Mises at Z2

End TCODE,7

End SCODE,6

Word Name Type Description

ELTYPE =232 QUADR composite

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

13-186 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 449: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

NX Nastran 10 Release Guide 13-187

Upward compatibility

Page 450: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

13-188 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 451: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

End TCODE,7

End SCODE,6

ELTYPE =233 TRIAR composite (Same as TRIAR composite)

SCODE,6 =0 Strain

TCODE,7 =0 Real

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 A1 RS Shear angle

9 EMJRP1 RS Major Principal

10 EMNRP1 RS Minor Principal

11 ETMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 EX1 RS Normal-1

4 EY1 RS Normal-2

5 ET1 RS Shear-12

6 EL1 RS Shear-1Z

7 EL2 RS Shear-2Z

8 EX1I RS Normal-1

NX Nastran 10 Release Guide 13-189

Upward compatibility

Page 452: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

9 EY1I RS Normal-2

10 ET1I RS Shear-12

11 EL1I RS Shear-1Z

12 EL2I RS Shear-2Z

13 EVM RS von Mises

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =0 Real

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 A1 RS Shear angle

9 MJRP1 RS Major Principal

10 MNRP1 RS Minor Principal

11 TMAX1 RS von Mises or Maximum shear

TCODE,7 =1 Real/imaginary

2 PLY I Lamina Number

3 SX1 RS Normal-1

4 SY1 RS Normal-2

5 T1 RS Shear-12

13-190 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 453: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

6 SL1 RS Shear-1Z

7 SL2 RS Shear-2Z

8 SX1I RS Normal-1

9 SY1I RS Normal-12

10 T1I RS Shear-12

11 SL1I RS Shear-1Z

12 SL2I RS Shear-2Z

13 SVM RS von Mises

End TCODE,7

End SCODE,6

Word Name Type Description

ELTYPE =240 CTRIA6 - Nonlinear - Center and corners

2 TERM CHAR4 “CEN”

3 GRID ID I 0 for center

4 FD1 RS Z1 = Fiber distance

5 SX1 RS Stress in x at Z1

6 SY1 RS Stress in y at Z1

7 SZ1 RS Stress in z at Z1

8 TXY1 RS Shear stress in xy at Z1

9 ES RS Equivalent stress at Z1

10 EPS1 RS Effective plastic/inelastic strain at Z1

11 ECS1 RS Effective creep strain at Z1

NX Nastran 10 Release Guide 13-191

Upward compatibility

Page 454: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

12 EX1 RS Strain in x at Z1

13 EY1 RS Strain in y at Z1

14 EZ1 None Strain in z at Z1

15 ETXY1 RS Shear strain in xy at Z1

16 FD2 RS Z2 = Fiber distance

17 SX2 RS Stress in x at Z2

18 SY2 RS Stress in y at Z2

19 SZ2 None Stress in z at Z2

20 TXY2 RS Shear stress in xy at Z2

21 ES2 RS Equivalent stress at Z2

22 EPS2 RS Effective plastic/inelastic strain at Z2

23 ECS2 RS Effective creep strain at Z2

24 EX2 RS Strain in x at Z2

25 EY2 RS Strain in y at Z2

26 EZ2 None Strain in z at Z2

27 ETXY2 RS Shear strain in xy at Z2

Words 3 through 27 process 4 times

Word Name Type Description

ELTYPE =241 CQUAD8 - Nonlinear - Center and corners

2 TERM CHAR4 “CEN”

3 GRID ID I 0 for center

4 FD1 RS Z1 = Fiber distance

13-192 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 455: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 SX1 RS Stress in x at Z1

6 SY1 RS Stress in y at Z1

7 SZ1 RS Stress in z at Z1

8 TXY1 RS Shear stress in xy at Z1

9 ES RS Equivalent stress at Z1

10 EPS1 RS Effective plastic/inelastic strain at Z1

11 ECS1 RS Effective creep strain at Z1

12 EX1 RS Strain in x at Z1

13 EY1 RS Strain in y at Z1

14 EZ1 None Strain in z at Z1

15 ETXY1 RS Shear strain in xy at Z1

16 FD2 RS Z2 = Fiber distance

17 SX2 RS Stress in x at Z2

18 SY2 RS Stress in y at Z2

19 SZ2 None Stress in z at Z2

20 TXY2 RS Shear stress in xy at Z2

21 ES2 RS Equivalent stress at Z2

22 EPS2 RS Effective plastic/inelastic strain at Z2

23 ECS2 RS Effective creep strain at Z2

24 EX2 RS Strain in x at Z2

25 EY2 RS Strain in y at Z2

26 EZ2 None Strain in z at Z2

NX Nastran 10 Release Guide 13-193

Upward compatibility

Page 456: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

27 ETXY2 RS Shear strain in xy at Z2

Words 3 through 27 process 5 times

ELTYPE =242 Axisymmetric triangular element (CTRAX3) – LinearStress/Strain - Center and corners

TCODE,7 =1 Real / Imaginary

2 CTYPE CHAR4 Coordinate Type (BCD)

3 LOC I Location Code

4 SXR RS Normal stress in X – Real part

5 SXI RS Normal stress in X – Imaginary part

6 SYR RS Normal stress in Y – Real part

7 SYI RS Normal stress in Y – Imaginary part

8 SZR RS Normal stress in Z – Real part

9 SZI RS Normal stress in Z – Imaginary part

10 SPR RS In-plane shear stress – Real part

11 SPI RS In-plane shear stress – Imaginary part

12 VM RS von Mises stress

Words 3 through 12 process 4 times

End TCODE,7

ELTYPE =243 Axisymmetric quad element (CQUADX4) – LinearStress/Strain - Center and corners

TCODE,7 =1 Real / Imaginary

2 LOC I Location Code

13-194 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 457: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

3 SXR RS Normal stress in X – Real part

4 SXI RS Normal stress in X – Imaginary part

5 SYR RS Normal stress in Y – Real part

6 SYI RS Normal stress in Y – Imaginary part

7 SZR RS Normal stress in Z – Real part

8 SZI RS Normal stress in Z – Imaginary part

9 SPR RS In-plane shear stress – Real part

10 SPI RS In-plane shear stress – Imaginary part

11 VM RS von Mises stress

Words 2 through 11 process 5 times

End TCODE,7

ELTYPE =244 Axisymmetric triangle element (CTRAX6) – LinearStress/Strain - Center and corners

TCODE,7 =1 Real / Imaginary

2 LOC I Location Code

3 SXR RS Normal stress in X – Real part

4 SXI RS Normal stress in X – Imaginary part

5 SYR RS Normal stress in Y – Real part

6 SYI RS Normal stress in Y – Imaginary part

7 SZR RS Normal stress in Z – Real part

8 SZI RS Normal stress in Z – Imaginary part

9 SPR RS In-plane shear stress – Real part

10 SPI RS In-plane shear stress – Imaginary part

NX Nastran 10 Release Guide 13-195

Upward compatibility

Page 458: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

11 VM RS von Mises stress

Words 2 through 11 process 4 times

End TCODE,7

ELTYPE =245 Axisymmetric quad element (CQUADX8) – LinearStress/Strain - Center and corners

TCODE,7 =1 Real / Imaginary

2 LOC I Location Code

3 SXR RS Normal stress in X – Real part

4 SXI RS Normal stress in X – Imaginary part

5 SYR RS Normal stress in Y – Real part

6 SYI RS Normal stress in Y – Imaginary part

7 SZR RS Normal stress in Z – Real part

8 SZI RS Normal stress in Z – Imaginary part

9 SPR RS In-plane shear stress – Real part

10 SPI RS In-plane shear stress – Imaginary part

11 VM RS von Mises stress

Words 2 through 11 process 5 times

End TCODE,7

ELTYPE =246 Axisymmetric triangle element (CTRAX3) – NonlinearStress/Strain - Center and corners

2 CTYPE CHAR4 Coordinate Type (GRID)

3 LOC I Location Code

4 SX RS Normal stress in X

13-196 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 459: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 ES RS Equivalent Stress

9 EPS RS Effective Plastic Strain

10 ECS RS Effective Creep Strain

11 EX RS Normal strain in X

12 EY RS Normal strain in Y

13 EZ RS Normal strain in Z

14 EP RS In-plane shear strain

Words 3 through 14 process 4 times

ELTYPE =247 Axisymmetric quad element (CQUADX4) – NonlinearStress/Strain - Center and corners

2 CTYPE CHAR4 Coordinate Type (GRID)

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 ES RS Equivalent Stress

9 EPS RS Effective Plastic Strain

10 ECS RS Effective Creep Strain

11 EX RS Normal strain in X

NX Nastran 10 Release Guide 13-197

Upward compatibility

Page 460: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

12 EY RS Normal strain in Y

13 EZ RS Normal strain in Z

14 EP RS In-plane shear strain

Words 3 through 14 process 5 times

ELTYPE =248 Axisymmetric triangle element (CTRAX6) – NonlinearStress/Strain - Center and corners

2 CTYPE CHAR4 Coordinate Type (GRID)

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 ES RS Equivalent Stress

9 EPS RS Effective Plastic Strain

10 ECS RS Effective Creep Strain

11 EX RS Normal strain in X

12 EY RS Normal strain in Y

13 EZ RS Normal strain in Z

14 SE RS In-plane shear strain

Words 3 through 14 process 4 times

ELTYPE =249 Axisymmetric quad element (CQUADX8) – NonlinearStress/Strain - Center and corners

2 CTYPE CHAR4 Coordinate Type (GRID)

13-198 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 461: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 ES RS Equivalent Stress

9 EPS RS Effective Plastic Strain

10 ECS RS Effective Creep Strain

11 EX RS Normal strain in X

12 EY RS Normal strain in Y

13 EZ RS Normal strain in Z

14 EP RS In-plane shear strain

Words 3 through 14 process 5 times

ELTYPE =250 Axisymmetric triangle element (CTRAX3) – Linearform of hyperelastic – Gauss Location

2 LOC I Location Code

3 SX RS Normal stress in X

4 SY RS Normal stress in Y

5 SZ RS Normal stress in Z

6 SP RS In-plane shear stress

7 SMJ RS Major Principle

8 SMI RS Minor Principle

Words 3 through 8 process 3 times

NX Nastran 10 Release Guide 13-199

Upward compatibility

Page 462: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

ELTYPE =251 Axisymmetric quad element (CQUADX4) – Linearform of hyperelastic – Gauss Locations

2 LOC I Location Code

3 SX RS Normal stress in X

4 SY RS Normal stress in Y

5 SZ RS Normal stress in Z

6 SP RS In-plane shear stress

7 SMJ RS Major Principle

8 SMI RS Minor Principle

Words 3 through 8 process 4 times

ELTYPE =252 Axisymmetric triangle element (CTRAX6) – Linearform of hyperelastic – Gauss Locations

2 LOC I Location Code

3 SX RS Normal stress in X

4 SY RS Normal stress in Y

5 SZ RS Normal stress in Z

6 SP RS In-plane shear stress

7 SMJ RS Major Principle

8 SMI RS Minor Principle

Words 3 through 8 process 3 times

ELTYPE =253 Axisymmetric quad element (CQUADX8) – Linearform of hyperelastic – Gauss Locations

2 LOC I Location Code

3 SX RS Normal stress in X

13-200 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 463: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

4 SY RS Normal stress in Y

5 SZ RS Normal stress in Z

6 SP RS In-plane shear stress

7 SMJ RS Major Principle

8 SMI RS Minor Principle

Words 3 through 8 process 9 times

Word Name Type Description

ELTYPE =254 CQUAD4 - Nonlinear - Center and corners

2 TERM CHAR4 “CEN”

3 GRID ID I 0 for center

4 FD1 RS Z1 = Fiber distance

5 SX1 RS Stress in x at Z1

6 SY1 RS Stress in y at Z1

7 SZ1 RS Stress in z at Z1

8 TXY1 RS Shear stress in xy at Z1

9 ES RS Equivalent stress at Z1

10 EPS1 RS Effective plastic/inelastic strain at Z1

11 ECS1 RS Effective creep strain at Z1

12 EX1 RS Strain in x at Z1

13 EY1 RS Strain in y at Z1

14 EZ1 None Strain in z at Z1

15 ETXY1 RS Shear strain in xy at Z1

16 FD2 RS Z2 = Fiber distance

NX Nastran 10 Release Guide 13-201

Upward compatibility

Page 464: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

17 SX2 RS Stress in x at Z2

18 SY2 RS Stress in y at Z2

19 SZ2 None Stress in z at Z2

20 TXY2 RS Shear stress in xy at Z2

21 ES2 RS Equivalent stress at Z2

22 EPS2 RS Effective plastic/inelastic strain at Z2

23 ECS2 RS Effective creep strain at Z2

24 EX2 RS Strain in x at Z2

25 EY2 RS Strain in y at Z2

26 EZ2 None Strain in z at Z2

27 ETXY2 RS Shear strain in xy at Z2

Words 3 through 27 process 5 times

ELTYPE = 255 CPYRAM – Linear Strain/Stress

SCODE,6 =0 Strain

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

5 GRID I External grid ID (0=center)

6 EXR RS Normal in x

7 EYR RS Normal in y

8 EZR RS Normal in z

13-202 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 465: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

9 ETXYR RS Shear in xy

10 ETYZR RS Shear in yz

11 ETZXR RS Shear in zx

12 EXI RS Normal in x

13 EYI RS Normal in y

14 EZI RS Normal in z

15 ETXYI RS Shear in xy

16 ETYZI RS Shear in yz

17 ETZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 process 6 times

End TCODE,7

SCODE,6 =01 Stress

TCODE,7 =1 Real / Imaginary

2 CID I Stress Coordinate System

3 CTYPE CHAR4 Coordinate System Type (BCD)

4 NODEF I Number of Active Points

5 GRID I External grid identification number(0=center)

6 SXR RS Normal in x

7 SYR RS Normal in y

8 SZR RS Normal in z

9 TXYR RS Shear in xy

10 TYZR RS Shear in yz

NX Nastran 10 Release Guide 13-203

Upward compatibility

Page 466: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

11 TZXR RS Shear in zx

12 SXI RS Normal in x

13 SYI RS Normal in y

14 SZI RS Normal in z

15 TXYI RS Shear in xy

16 TYZI RS Shear in yz

17 TZXI RS Shear in zx

18 VM RS von Mises

Words 5 through 18 process 6 times

End TCODE,7

End SCODE,6

ELTYPE =256 CPYRAM - Nonlinear

2 CTYPE CHAR4 GRID or GAUSS

3 GRID I 0 for center

4 SX RS Stress in x

5 SY RS Stress in y

6 SZ RS Stress in z

7 SXY RS Stress in xy

8 SYZ RS Stress in yz

9 SZX RS Stress in zx

10 SE RS Equivalent stress

11 EPS RS Effective plastic strain

12 ECS RS Effective creep strain

13-204 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 467: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

13 EX RS Strain in x

14 EY RS Strain in y

15 EZ RS Strain in z

16 EXY RS Strain in xy

17 EYZ RS Strain in yz

18 EZX RS Strain in zx

Words 3 through 18 process 6 times

ELTYPE =257 CPYRAM (linear element, 5 grids) – Hyperelasticnonlinear format

2 CTYPE CHAR4 GRID

3 ID I Grid ID

4 SX RS Stress in X

5 SY RS Stress in Y

6 SZ RS Stress in Z

7 SXY RS Stress in XY

8 SYZ RS Stress in YZ

9 SZX RS Stress in ZX

10 PRESSURE RS Pressure

11 VOLSTR RS Volumetric Strain

12 EX RS Strain in X

13 EY RS Strain in Y

14 EZ RS Strain in Z

15 EXY RS Strain in XY

NX Nastran 10 Release Guide 13-205

Upward compatibility

Page 468: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

16 EYZ RS Strain in YZ

17 EZX RS Strain in ZX

Words 3 through 17 process 5 times

ELTYPE =258 CPYRAM (parabolic element, 13 grids) – Hyperelasticnonlinear format

2 TYPE CHAR4 GRID

3 ID I Grid ID

4 SX RS Stress in X

5 SY RS Stress in Y

6 SZ RS Stress in Z

7 SXY RS Stress in XY

8 SYZ RS Stress in YZ

9 SZX RS Stress in ZX

10 PRESSURE RS Pressure

11 VOLSTR RS Volumetric Strain

12 EX RS Strain in X

13 EY RS Strain in Y

14 EZ RS Strain in Z

15 EXY RS Strain in XY

16 EYZ RS Strain in YZ

17 EZX RS Strain in ZX

Words 3 through 17 process 5 times

13-206 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 469: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ELTYPE =259 Reserved for hyperelastic PYRAM 5-noded, linearform.

ELTYPE =260 Reserved for hyperelastic PYRAM 13-noded, linearform.

ELTYPE =261 Axisymmetric triangle element (CTRAX3) – Nonlinearform of hyperelastic

2 TYPE CHAR4 GAUS or GRID

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 PRESSURE RS Pressure

9 VOLSTR RS Volumetric Strain

10 EX RS Normal strain in X

11 EY RS Normal strain in Y

12 EZ RS Normal strain in Z

13 EP RS In-plane shear strain

Words 3 through 13 process 3 times

ELTYPE =262 Axisymmetric quad element (CQUADX4) – Nonlinearform of hyperelastic

2 TYPE CHAR4 GAUS or GRID

3 LOC I Location Code

4 SX RS Normal stress in X

NX Nastran 10 Release Guide 13-207

Upward compatibility

Page 470: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 PRESSURE RS Pressure

9 VOLSTR RS Volumetric Strain

10 EX RS Normal strain in X

11 EY RS Normal strain in Y

12 EZ RS Normal strain in Z

13 EP RS In-plane shear strain

Words 3 through 13 process 4 times

ELTYPE =263 Axisymmetric triangle element (CTRAX6) – Nonlinearform of hyperelastic

2 TYPE CHAR4 GAUS or GRID

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 PRESSURE RS Pressure

9 VOLSTR RS Volumetric Strain

10 EX RS Normal strain in X

11 EY RS Normal strain in Y

12 EZ RS Normal strain in Z

13-208 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 471: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

13 EP RS In-plane shear strain

Words 3 through 13 process 3 times

ELTYPE =264 Axisymmetric quad element (CQUADX8) – Nonlinearform of hyperelastic – Grid Locations

2 TYPE CHAR4 GRID

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 PRESSURE RS Pressure

9 VOLSTR RS Volumetric Strain

10 EX RS Normal strain in X

11 EY RS Normal strain in Y

12 EZ RS Normal strain in Z

13 EP RS In-plane shear strain

Words 3 through 13 process 4 times

ELTYPE =266 Axisymmetric quad element (CQUADX8) – Nonlinearform of hyperelastic – 9 Gauss Locations

2 TYPE CHAR4 GAUS

3 LOC I Location Code

4 SX RS Normal stress in X

5 SY RS Normal stress in Y

NX Nastran 10 Release Guide 13-209

Upward compatibility

Page 472: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SZ RS Normal stress in Z

7 SP RS In-plane shear stress

8 PRESSURE RS Pressure

9 VOLSTR RS Volumetric Strain

10 EX RS Normal strain in X

11 EY RS Normal strain in Y

12 EZ RS Normal strain in Z

13 EP RS In-plane shear strain

Words 3 through 13 process 9 times

ELTYPE =269 Composite HEXA element (CHEXAL)

2 PLY I Lamina number

SCODE,6=0 Strain

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

13-210 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 473: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

10 EL2 RS Shear strain in the 23-plane

11 ETMAX1 RS Von Mises strain

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 4 through 11 repeat 5 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

NX Nastran 10 Release Guide 13-211

Upward compatibility

Page 474: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

17 EVM RS von Mises

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

17 EVM RS von Mises

13-212 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 475: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

For each fiber location requested (PLSLOC), words 4 through 17 repeat 5 times.

End TCODE,7

SCODE,6=1 Stress

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS Von Mises stress

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

NX Nastran 10 Release Guide 13-213

Upward compatibility

Page 476: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

11 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 5 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

17 SVM RS von Mises

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

13-214 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 477: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

17 SVM RS von Mises

For each fiber location requested (PLSLOC), words 3 through 15 repeat 5 times.

End TCODE,7

End SCODE,6

ELTYPE =270 Composite PENTA element (CPENTAL)

2 PLY I Lamina number

SCODE,6=0 Strain

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

NX Nastran 10 Release Guide 13-215

Upward compatibility

Page 478: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 ETMAX1 RS Von Mises strain

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 4 through 11 repeat 4 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

13-216 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 479: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

17 EVM RS von Mises

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 EX1 RS Normal strain in the 1-direction

6 EY1 RS Normal strain in the 2-direction

7 ET1 RS Shear strain in the 12-plane

8 EZ1 RS Normal strain in the 3-direction

9 EL1 RS Shear strain in the 13-plane

10 EL2 RS Shear strain in the 23-plane

11 EX1I RS Normal strain in the 1-direction

12 EY1I RS Normal strain in the 2-direction

13 ET1I RS Shear strain in the 12-plane

NX Nastran 10 Release Guide 13-217

Upward compatibility

Page 480: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

14 EZ1I RS Normal strain in the 3-direction

15 EL1I RS Shear strain in the 13-plane

16 EL2I RS Shear strain in the 23-plane

17 EVM RS von Mises

For each fiber location requested (PLSLOC), words 4 through 17 repeat 4 times.

End TCODE,7

SCODE,6=1 Stress

TCODE,7 =0 Real

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS Von Mises stress

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (center=0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

13-218 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 481: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 4 through 11 repeat 4 times.

TCODE,7 =1 Real/imaginary

Q4CSTR=0 Center option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

17 SVM RS von Mises

NX Nastran 10 Release Guide 13-219

Upward compatibility

Page 482: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Q4CSTR=1 Center and Corner option

3 FLOC CHAR4 Fiber location (BOT, MID, TOP)

4 GRID I Edge grid ID (Center = 0)

5 SX1 RS Normal stress in the 1-direction

6 SY1 RS Normal stress in the 2-direction

7 ST1 RS Shear stress in the 12-plane

8 SZ1 RS Normal stress in the 3-direction

9 SL1 RS Shear stress in the 13-plane

10 SL2 RS Shear stress in the 23-plane

11 SX1I RS Normal stress in the 1-direction

12 SY1I RS Normal stress in the 2-direction

13 ST1I RS Shear stress in the 12-plane

14 SZ1I RS Normal stress in the 3-direction

15 SL1I RS Shear stress in the 13-plane

16 SL2I RS Shear stress in the 23-plane

17 SVM RS von Mises

For each fiber location requested (PLSLOC), words 4 through 17 repeat 4 times.

End TCODE,7

End SCODE,6

ELTYPE =271 Triangle plane strain (CPLSTN3) – Center

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 EXR RS Normal strain in x – real part

13-220 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 483: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

3 EXI RS Normal strain in x – imaginary part

4 EYR RS Normal strain in y – real part

5 EYI RS Normal strain in y – imaginary part

6 EZR RS Normal strain in z – real part

7 EZI RS Normal strain in z – imaginary part

8 EPR RS In-plane shear strain – real part

9 EPI RS In-plane shear strain – imaginary part

10 VM RS von Mises strain

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 SXR RS Normal stress in x – real part

3 SXI RS Normal stress in x – imaginary part

4 SYR RS Normal stress in y – real part

5 SYI RS Normal stress in y – imaginary part

6 SZR RS Normal stress in z – real part

7 SZI RS Normal stress in z – imaginary part

8 SPR RS In-plane shear stress – real part

9 SPI RS In-plane shear stress – imaginary part

10 VM RS von Mises stress

End TCODE,7

End SCODE,6

NX Nastran 10 Release Guide 13-221

Upward compatibility

Page 484: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

ELTYPE =272 Quadrilateral plane strain (CPLSTN4) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

12 VM RS von Mises strain

Words 3 through 12 repeat 5 times

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

13-222 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 485: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 5 times

End TCODE,7

End SCODE,6

ELTYPE =273 Triangle plane strain (CPLSTN6 ) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

NX Nastran 10 Release Guide 13-223

Upward compatibility

Page 486: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

12 VM RS von Mises strain

Words 3 through 12 repeat 4 times

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 4 times

End TCODE,7

End SCODE,6

ELTYPE =274 Quadrilateral plane strain (CPLSTN8) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

13-224 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 487: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

12 VM RS von Mises strain

Words 3 through 12 repeat 5 times

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

NX Nastran 10 Release Guide 13-225

Upward compatibility

Page 488: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 5 times

End TCODE,7

End SCODE,6

ELTYPE =275 Triangle plane stress (CPLSTS3) – Center

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 EXR RS Normal strain in x – real part

3 EXI RS Normal strain in x – imaginary part

4 EYR RS Normal strain in y – real part

5 EYI RS Normal strain in y – imaginary part

6 EZR RS Normal strain in z – real part

7 EZI RS Normal strain in z – imaginary part

8 EPR RS In-plane shear strain – real part

9 EPI RS In-plane shear strain – imaginary part

10 VM RS von Mises strain

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 SXR RS Normal stress in x – real part

3 SXI RS Normal stress in x – imaginary part

13-226 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 489: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

4 SYR RS Normal stress in y – real part

5 SYI RS Normal stress in y – imaginary part

6 SZR RS Normal stress in z – real part

7 SZI RS Normal stress in z – imaginary part

8 SPR RS In-plane shear stress – real part

9 SPI RS In-plane shear stress – imaginary part

10 VM RS von Mises stress

End TCODE,7

End SCODE,6

ELTYPE =276 Quadrilateral plane stress (CPLSTS4) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

NX Nastran 10 Release Guide 13-227

Upward compatibility

Page 490: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

12 VM RS von Mises strain

Words 3 through 12 repeat 5 times

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 5 times

End TCODE,7

End SCODE,6

ELTYPE =277 Triangle plane stress (CPLSTS6) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

13-228 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 491: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

12 VM RS von Mises strain

Words 3 through 12 repeat 4 times

End TCODE,7

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

NX Nastran 10 Release Guide 13-229

Upward compatibility

Page 492: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 4 times

End TCODE,7

End SCODE,6

ELTYPE =278 Quadrilateral plane stress (CPLSTS8) – Center andCorners

SCODE,6=0 Strain

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 EXR RS Normal strain in x – real part

5 EXI RS Normal strain in x – imaginary part

6 EYR RS Normal strain in y – real part

7 EYI RS Normal strain in y – imaginary part

8 EZR RS Normal strain in z – real part

9 EZI RS Normal strain in z – imaginary part

10 EPR RS In-plane shear strain – real part

11 EPI RS In-plane shear strain – imaginary part

12 VM RS von Mises strain

Words 3 through 12 repeat 5 times

End TCODE,7

13-230 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 493: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

SCODE,6=1 Stress

TCODE,7=1 Real / Imaginary

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SXR RS Normal stress in x – real part

5 SXI RS Normal stress in x – imaginary part

6 SYR RS Normal stress in y – real part

7 SYI RS Normal stress in y – imaginary part

8 SZR RS Normal stress in z – real part

9 SZI RS Normal stress in z – imaginary part

10 SPR RS In-plane shear stress – real part

11 SPI RS In-plane shear stress – imaginary part

12 VM RS von Mises stress

Words 3 through 12 repeat 5 times

End TCODE,7

End SCODE,6

ELTYPE =281 Triangle plane strain (CPLSTN3) – Nonlinear format– Center

2 SX RS Normal stress in x

3 SY RS Normal stress in y

4 SZ RS Normal stress in z

5 SXZ RS Shear stress in xz

6 ES RS Equivalent stress

NX Nastran 10 Release Guide 13-231

Upward compatibility

Page 494: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

7 EPS RS Effective plastic/inelastic strain

8 ECS RS Effective creep strain

9 EX RS Strain in x

10 EY RS Strain in y

11 EZ RS Strain in z

12 ETXZ RS Shear strain in xz

ELTYPE =283 Triangle plane strain (CPLSTN6) – Nonlinear format –Center and Corners

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 4 times

13-232 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 495: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ELTYPE =284 Quadrilateral plane strain (CPLSTN8) – Nonlinearformat – Center and Corners

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 5 times

ELTYPE =285 Triangle plane stress (CPLSTS3) – Nonlinear format– Center

2 SX RS Normal stress in x

3 SY RS Normal stress in y

4 SZ RS Normal stress in z

5 SXZ RS Shear stress in xz

6 ES RS Equivalent stress

7 EPS RS Effective plastic/inelastic strain

NX Nastran 10 Release Guide 13-233

Upward compatibility

Page 496: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

8 ECS RS Effective creep strain

9 EX RS Strain in x

10 EY RS Strain in y

11 EZ RS Strain in z

12 ETXZ RS Shear strain in xz

ELTYPE =287 Triangle plane stress (CPLSTS6) – Nonlinear format –Center and Corners

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 4 times

ELTYPE =288 Quadrilateral plane stress (CPLSTS8) – Nonlinearformat – Center and Corners

13-234 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 497: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 5 times

ELTYPE =289 Quadrilateral plane strain (CPLSTN4) – Nonlinearformat – Center and Corners

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

NX Nastran 10 Release Guide 13-235

Upward compatibility

Page 498: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 5 times

ELTYPE =290 Quadrilateral plane stress (CPLSTS4) – Nonlinearformat – Center and Corners

2 TERM CHAR4 “CEN”

3 GRID I Grid identification number; 0 for centroid

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 ES RS Equivalent stress

9 EPS RS Effective plastic/inelastic strain

10 ECS RS Effective creep strain

11 EX RS Strain in x

12 EY RS Strain in y

13 EZ RS Strain in z

14 ETXZ RS Shear strain in xz

Words 3 through 14 repeat 5 times

13-236 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 499: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ELTYPE =291 Triangle plane strain (CPLSTN3) – Hyperelastic - Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 3 times

ELTYPE =292 Quadrilateral plane strain (CPLSTN4) – Hyperelastic- Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

NX Nastran 10 Release Guide 13-237

Upward compatibility

Page 500: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 4 times

ELTYPE =293 Triangle plane strain (CPLSTN6) – Hyperelastic - Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 3 times

ELTYPE =294 Quadrilateral plane strain (CPLSTN8) – Hyperelastic- Grid

13-238 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 501: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 4 times

ELTYPE =295 Triangle plane stress (CPLSTS3) – Hyperelastic - Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

NX Nastran 10 Release Guide 13-239

Upward compatibility

Page 502: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 3 times

ELTYPE =296 Quadrilateral plane stress (CPLSTS4) – Hyperelastic- Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 4 times

ELTYPE =297 Triangle plane stress (CPLSTS6) – Hyperelastic - Grid

2 TERM CHAR4 “GRID”

13-240 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 503: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 3 times

ELTYPE =298 Quadrilateral plane stress (CPLSTS8) – Hyperelastic- Grid

2 TERM CHAR4 “GRID”

3 ID I Point ID

4 SX RS Normal stress in x

5 SY RS Normal stress in y

6 SZ RS Normal stress in z

7 SXZ RS Shear stress in xz

8 PRESSURE RS Pressure

9 VOLSTR RS Volume strain

10 EX RS Strain in x

NX Nastran 10 Release Guide 13-241

Upward compatibility

Page 504: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

11 EY RS Strain in y

12 EZ RS Strain in z

13 ETXZ RS Shear strain in xz

Words 3 through 13 repeat 4 times

ELTYPE =300 HEXA element (CHEXA)

SCODE,6=0 Strain

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 8 times.

SCODE,6=1 Stress

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

13-242 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 505: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 8 times.

End SCODE,6

ELTYPE =301 PENTA element (CPENTA )

SCODE,6=0 Strain

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 6 times.

NX Nastran 10 Release Guide 13-243

Upward compatibility

Page 506: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

SCODE,6=1 Stress

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 6 times.

End SCODE,6

ELTYPE =302 TETRA element (CTETRA)

SCODE,6=0 Strain

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

13-244 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 507: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 4 times.

End SCODE,6

ELTYPE =303 PYRAM element (CPYRAM)

SCODE,6=0 Strain

TCODE,7=0 Real

2 CID I Coordinate System

NX Nastran 10 Release Guide 13-245

Upward compatibility

Page 508: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 5 times.

SCODE,6=1 Stress

TCODE,7=0 Real

2 CID I Coordinate System

3 CTYPE CHAR4 Grid or Gaus

4 GRID I Corner grid ID

5 EX RS Strain in X

6 EY RS Strain in Y

7 EZ RS Strain in Z

8 EXY RS Strain in XY

9 EYZ RS Strain in YZ

10 EZX RS Strain in ZX

11 EVM RS Von Mises strain

Words 4 through 11 repeat 5 times.

End SCODE,6

13-246 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 509: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ELTYPE =304 Linear composite HEXA element (CHEXAL)

1 PLY I Lamina number

SCODE,6=0 Strain

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 EX1 RS Normal strain in the 1-direction

5 EY1 RS Normal strain in the 2-direction

6 ET1 RS Shear strain in the 12-plane

7 EZ1 RS Normal strain in the 3-direction

8 EL1 RS Shear strain in the 13-plane

9 EL2 RS Shear strain in the 23-plane

10 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 SX1 RS Normal stress in the 1-direction

5 SY1 RS Normal stress in the 2-direction

6 ST1 RS Shear stress in the 12-plane

7 SZ1 RS Normal stress in the 3-direction

8 SL1 RS Shear stress in the 13-plane

9 SL2 RS Shear stress in the 23-plane

NX Nastran 10 Release Guide 13-247

Upward compatibility

Page 510: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

10 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =305 Linear composite PENTA element (CPENTAL)

1 PLY I Lamina number

SCODE,6=0 Strain

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 EX1 RS Normal strain in the 1-direction

5 EY1 RS Normal strain in the 2-direction

6 ET1 RS Shear strain in the 12-plane

7 EZ1 RS Normal strain in the 3-direction

8 EL1 RS Shear strain in the 13-plane

9 EL2 RS Shear strain in the 23-plane

10 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 SX1 RS Normal stress in the 1-direction

5 SY1 RS Normal stress in the 2-direction

13-248 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 511: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 ST1 RS Shear stress in the 12-plane

7 SZ1 RS Normal stress in the 3-direction

8 SL1 RS Shear stress in the 13-plane

9 SL2 RS Shear stress in the 23-plane

10 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =306 Nonlinear composite HEXA element (CHEXALN)

1 PLY I Lamina number

SCODE,6=0 Strain

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 EX1 RS Normal strain in the 1-direction

5 EY1 RS Normal strain in the 2-direction

6 ET1 RS Shear strain in the 12-plane

7 EZ1 RS Normal strain in the 3-direction

8 EL1 RS Shear strain in the 13-plane

9 EL2 RS Shear strain in the 23-plane

10 ETMAX1 RS Von Mises strain

For each fiber location requested (PLSLOC), words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

NX Nastran 10 Release Guide 13-249

Upward compatibility

Page 512: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

3 GRID I Edge grid ID (center=0)

4 SX1 RS Normal stress in the 1-direction

5 SY1 RS Normal stress in the 2-direction

6 ST1 RS Shear stress in the 12-plane

7 SZ1 RS Normal stress in the 3-direction

8 SL1 RS Shear stress in the 13-plane

9 SL2 RS Shear stress in the 23-plane

10 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 3 through 10 repeat 4 times.

End SCODE,6

ELTYPE =307 Nonlinear composite PENTA element (CPENTALN)

1 PLY I Lamina number

SCODE,6=0 Strain

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 EX1 RS Normal strain in the 1-direction

5 EY1 RS Normal strain in the 2-direction

6 ET1 RS Shear strain in the 12-plane

7 EZ1 RS Normal strain in the 3-direction

8 EL1 RS Shear strain in the 13-plane

9 EL2 RS Shear strain in the 23-plane

10 ETMAX1 RS Von Mises strain

13-250 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 513: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

For each fiber location requested (PLSLOC), words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

2 FLOC CHAR4 Fiber location (BOT, MID, TOP)

3 GRID I Edge grid ID (center=0)

4 SX1 RS Normal stress in the 1-direction

5 SY1 RS Normal stress in the 2-direction

6 ST1 RS Shear stress in the 12-plane

7 SZ1 RS Normal stress in the 3-direction

8 SL1 RS Shear stress in the 13-plane

9 SL2 RS Shear stress in the 23-plane

10 STMAX1 RS Von Mises stress

For each fiber location requested (PLSLOC), words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =312 Axisymmetric TRIA element (TRAX3)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

NX Nastran 10 Release Guide 13-251

Upward compatibility

Page 514: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =313 Axisymmetric QUAD element (QUADX4)

SCODE,6=0 Strain

TCODE,7=0 Real

13-252 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 515: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

NX Nastran 10 Release Guide 13-253

Upward compatibility

Page 516: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

End SCODE,6

ELTYPE =314 Axisymmetric TRIA element (TRAX6)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 6 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

13-254 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 517: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 6 times.

End SCODE,6

ELTYPE =315 Axisymmetric QUAD element (QUADX8)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 8 times.

SCODE,6=1 Stress

NX Nastran 10 Release Guide 13-255

Upward compatibility

Page 518: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 8 times.

End SCODE,6

ELTYPE =316 Plane strain TRIA element (PLSTN3)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

13-256 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 519: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =317 Plane strain QUAD element (PLSTN4)

SCODE,6=0 Strain

TCODE,7=0 Real

NX Nastran 10 Release Guide 13-257

Upward compatibility

Page 520: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

13-258 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 521: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

End SCODE,6

ELTYPE =318 Plane strain TRIA element (PLSTN6)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 6 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

NX Nastran 10 Release Guide 13-259

Upward compatibility

Page 522: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 6 times.

End SCODE,6

ELTYPE =319 Plane strain QUAD element (PLSTN8)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 8 times.

SCODE,6=1 Stress

13-260 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 523: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 8 times.

End SCODE,6

ELTYPE =320 Plane stress TRIA element (PLSTS3)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

NX Nastran 10 Release Guide 13-261

Upward compatibility

Page 524: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =321 Plane stress QUAD element (PLSTS4)

SCODE,6=0 Strain

TCODE,7=0 Real

13-262 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 525: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

NX Nastran 10 Release Guide 13-263

Upward compatibility

Page 526: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

End SCODE,6

ELTYPE =322 Plane stress TRIA element (PLSTS6)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 6 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

13-264 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 527: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 6 times.

End SCODE,6

ELTYPE =323 Plane stress QUAD element (PLSTS8)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 8 times.

SCODE,6=1 Stress

NX Nastran 10 Release Guide 13-265

Upward compatibility

Page 528: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 8 times.

End SCODE,6

ELTYPE =328 Generalized plane strain TRIA element (GPLSTN3)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

13-266 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 529: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 3 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 3 times.

End SCODE,6

ELTYPE =329 Generalized plane strain QUAD element (GPLSTN4)

SCODE,6=0 Strain

TCODE,7=0 Real

NX Nastran 10 Release Guide 13-267

Upward compatibility

Page 530: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 4 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 4 times.

13-268 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 531: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

End SCODE,6

ELTYPE =330 Generalized plane strain TRIA element (GPLSTN6)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 6 times.

SCODE,6=1 Stress

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

NX Nastran 10 Release Guide 13-269

Upward compatibility

Page 532: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 6 times.

End SCODE,6

ELTYPE =331 Generalized plane strain QUAD element (GPLSTN8)

SCODE,6=0 Strain

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I External grid ID

4 EX RS Normal strain in the X-direction

5 EY RS Normal strain in the Y-direction

6 EZ RS Normal strain in the Z-direction

7 EXY RS Shear strain in the XY-plane

8 EYZ RS Shear strain in the YZ-plane

9 EZX RS Shear strain in the ZX-plane

10 EVM RS Von Mises strain

Words 3 through 10 repeat 8 times.

SCODE,6=1 Stress

13-270 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 533: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

TCODE,7=0 Real

1 CID I Coordinate system

2 CTYPE CHAR4 Grid or Gauss

3 GRID I Edge grid ID (center=0)

4 SX RS Normal stress in the X-direction

5 SY RS Normal stress in the Y-direction

6 SZ RS Normal stress in the Z-direction

7 SXY RS Shear stress in the XY-plane

8 SYZ RS Shear stress in the YZ-plane

9 SZX RS Shear stress in the ZX-plane

10 SVM RS Von Mises stress

Words 3 through 10 repeat 8 times.

End SCODE,6

Word Name Type Description

End ELTYPE

Record - TRAILER

Word Name Type Description

1 UNDEF(6) None

Notes:

1. For CBEAM (2) Item codes are given for end A. Addition of the quantity (K-1) 10to the item code points to the same information for other stations, where K is thestation number. K=11 for end B and 2-10 for intermediate stations.

2. For CTRIA6 (53) The stresses are repeated for each of the stress points withineach element. For CHEX8 there are 9 stress points for each element. For

NX Nastran 10 Release Guide 13-271

Upward compatibility

Page 534: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

CHEX20 there are 9 plus (the number of nondeleted mid-side nodes) stresspoints for each element.

3. For QUAD8 (64) For corner grids, real, add 17I to items 3 through 19, where I= 1,2,3,4 (87 total words). For corner grids, real/imaginary add 15I to items 3through 19, where I = 1,2,3,4 (77 total words).

OJINT

Table of J-integral for a crack defined by CRAKTP.

Record - HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block name

3 WORD I No def or month, year, one, one

Word 3 repeats until End of Record

Record - IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach code

2 TCODE(C) I Table code = 73

3 UNDEF None

4 SUBCASE I Subcase or random identificationnumber

5 TIME RS Time step

6 UNDEF(4) None

10 NUMWDE I Number of words per entry in DATArecord

13 UNDEF(40) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

13-272 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 535: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

115 LABEL(32) CHAR4 Label

Record - DATA

Word Name Type Description

1 CRACK I Crack ID

2 CRAGD I Grid ID on the crack front

3 RINGN I Ring number

4 CIVJ(7) RS J-integral at the ith Q-vector

End of Record

Record - TRAILER

Word Name Type Description

1 NGRID I Number of total grids defined in allCRAKTP bulk entries

2 UNDEF None

3 NOUT I Number of solution time points thathave OJINT output

4 UNDEF(3) None

OPRESS

Table of grid point pressures.

Record - HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block name

3 WORD I No def or month, year, one, one

NX Nastran 10 Release Guide 13-273

Upward compatibility

Page 536: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

Word 3 repeats until End of Record

Record - IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach code

2 TCODE(C) I Table code

3 PCODE(C) I PLOAD code

4 SUBCASE I Subcase or random identificationnumber

5 TIMESTEP RS Current time step

6 ECODE I Element code

7 UNDEF(2) None

9 FCODE I Format code

10 NUMWDE I Number of words per entry in DATArecord

13 UNDEF(40) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

115 LABEL(32) CHAR4 Label

Record - DATA

Word Name Type Description

PCODE,5 = 1 PLOAD4

1 EID I Device code + 10*Element ID

2 P1 RS Pressure at corner 1

13-274 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 537: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

3 P2 RS Pressure at corner 2

4 P3 RS Pressure at corner 3

5 P4 RS Pressure at corner 4

6 G1 I Grid point ID at a corner of the face

7 G34 I Grid point ID at a diagonal from G1 orCTETRA corner

PCODE,5 = 2 PLOADX1

1 EID I Device code + 10*Element ID

2 P1 RS Pressure at corner 1

3 P2 RS Pressure at corner 2

4 G1 I Grid point ID at a corner of the face

5 G2 I Grid point ID of the corner grid adjacentto G1

PCODE,5 = 3 PLOADE1

1 EID I Device code + 10*Element ID

2 P1 RS Pressure at corner 1

3 P2 RS Pressure at corner 2

4 G1 I Corner grid point ID

5 G2 I Corner grid point ID

End of Record

Record - TRAILER

Word Name Type Description

1 UNDEF(6) None

NX Nastran 10 Release Guide 13-275

Upward compatibility

Page 538: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

OSLIDE

Incremental and total slide output for contact/glue.

Record - HEADER

Word Name Type Description

1 NAME(2) CHAR4 Data block name, for example, OSLIDE

Record - IDENT

Word Name Type Description

1 ACODE(C) I Device code + 10*Approach Code

2 TCODE(C) I Table Code

3 UNDEF None

4 SUBCASE I Subcase

TCODE=1 Sort 1

ACODE=01 Statics

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=02 Real eigenvalues

5 MODE I Mode number

6 EIGN RS Eigenvalue

7 MODECYCL RS Mode or cycle

ACODE=03 Differential stiffness 0

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=04 Differential stiffness 1

13-276 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 539: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Word Name Type Description

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=05 Frequency

5 FREQ RS Frequency

6 UNDEF(2) None

ACODE=06 Transient (Used for SOL 401)

5 TIME RS Time step

6 UNDEF(2) None

ACODE=07 Buckling phase 0 (pre-buckling)

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=08 Buckling phase 1 (post-buckling)

5 LSDVMN I Mode number

6 EIGN RS Eigenvalue

7 UNDEF None

ACODE=09 Complex eigenvalues

5 MODE I Mode number

6 EIGR RS Eigenvalue (real)

7 EIGI RS Eigenvalue (imaginary)

ACODE=10 Nonlinear statics (SOL 601/701)

5 LFTSFQ RS Time step

6 UNDEF(2) None

ACODE=11 Old geometric nonlinear statics

NX Nastran 10 Release Guide 13-277

Upward compatibility

Page 540: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

5 LSDVMN I Load set number

6 UNDEF(2) None

ACODE=12 CONTRAN (may appear as ACODE=6)

5 TIME RS Time step

6 UNDEF(2) None

End ACODE

TCODE=2 Sort 2

5 LSDVMN I Load set, mode number

6 UNDEF(2) None

End TCODE

8 LSDVMN I Load set number

9 FCODE I Format code

10 NUMWDE I Number of words per entry in DATArecord

11 UNDEF None

12 PID I Physical property identificationnumber

13 UNDEF(38) None

51 TITLE(32) CHAR4 Title

83 SUBTITL(32) CHAR4 Subtitle

115 LABEL(32) CHAR4 Label

13-278 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 541: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Record - DATA

Word Name Type Description

TCODE=1 SORT1

1 EKEY I Device code + 10 * grid identificationnumber

TCODE =2 SORT2

ACODE=01 Statics

1 EKEY I Device code + 10 * grid identificationnumber

ACODE =02 Normal modes or buckling (real eigenvalues)

1 EKEY I Device code + 10 * grid identificationnumber

ACODE=03 Differential Stiffness 0

1 EKEY I Device code + 10 * grid identificationnumber

ACODE =04 Differential Stiffness 1

1 EKEY I Device code + 10 * grid identificationnumber

ACODE=05 Frequency

1 FREQ RS Frequency

ACODE=06 Transient

1 TIME RS Time step

ACODE =07 Pre-buckling

1 EKEY I Device code + 10 * grid identificationnumber

ACODE,4 =08 Post-buckling

NX Nastran 10 Release Guide 13-279

Upward compatibility

Page 542: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Word Name Type Description

1 EKEY I Device code + 10 * grid identificationnumber

ACODE,4 =09 Complex Eigenvalues

1 EKEY I Device code + 10 * grid identificationnumber

ACODE=10 Nonlinear Statics

1 FQTS RS Frequency or Time step

ACODE=11 Geometric Nonlinear Statics

1 EKEY I Device code + 10 * grid identificationnumber

ACODE=12 CONTRAN (may appear as ACODE=6)

1 EKEY RS Device code + 10 * grid identificationnumber

End ACODE

End TCODE

2 T1 RS Incremental slide in the x-direction of thebasic coordinate system

3 T2 RS Incremental slide in the y-direction of thebasic coordinate system

4 T3 RS Incremental slide in the z-direction of thebasic coordinate system

5 TT1 RS Total slide in the x-direction of the basiccoordinate system

6 TT2 RS Total slide in the y-direction of the basiccoordinate system

7 TT3 RS Total slide in the z-direction of the basiccoordinate system

13-280 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 543: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Record - TRAILER

Word Name Type Description

1 UNDEF(6) None

Notes:

1. The results are grid point based.

2. Incremental and total slide for contact are expressed as vector quantities(magnitude and direction) in the basic coordinate system.

Updated modules

BCDR

Updated Format:

BCDR CASECC//SEID/SOLAPP/S,N,NSKIP/S,N,NLOADS/S,N,BCFLAG/S,N,SPC/S,N,MPC/S,N,SUPORT/S,N,BCSET/S,N,BGSET/S,N,BOLTPRE/S,N,RIGID/S,N,LOAD/S,N,LSEQ/S,N,STATSUB/S,N,BC/BCLABL/NLBEAR $

New Parameter:

NLBEAR Input-logical-default=FALSE. Flag indicating presence of nonlinearbearings.

BDRYINFO

Updated Format:

BDRYINFO CASECC,GEOM1,GEOM2,BGPDT,GPDT,USET,EQEXIN,GPECT,EST,ECT,KDICT,MDICT,BDICT/GEOM1EX,GEOM2EX,GEOM4EX,CASEX,USETX,EQEXINX,BGPDTX,GPECTX,ESTX,ECTX,KDICTX,MDICTX,BDICTX/NOQSET/NOMATK/NOMATM/NOMATB/NOMATKY/NOMATP/DMIGSFIX $

New Input Data Blocks:

EST Element summary table.

NX Nastran 10 Release Guide 13-281

Upward compatibility

Page 544: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

ECT Element connectivity table.

KDICT Element stiffness dictionary.

MDICT Element mass dictionary.

BDICT Element damping dictionary.

New Output Data Blocks:

ESTX Modified EST table (only if NOQSET > 0).

ECTX Modified ECT table (only if NOQSET > 0).

KDICTX Modified KDICT table (only if NOQSET > 0).

MDICTX Modified MDICT table (only if NOQSET > 0).

BDICTX Modified BDICT table (only if NOQSET > 0).

CEAD

Updated Format:

CEAD KXX,BXX,MXX,DYNAMIC,CASECC,VDXC,VDXR/CPHX,CLAMA,OCEIG,LCPHX,CLAMMAT/S,N,NEIGV/UNUSED2/SID/METH/EPS/ND1/ALPHAJ/OMEGAJ/MAXBLK/IBLK/KSTEP/NDJ/RSPEED/RUNIT $

New Parameters:

RSPEED Input-real-default=0.0. Rotor speed in RUNIT units.

RUNIT Input-character-default=‘ ’ (8 blank spaces). Units for RSPEED.Options are ‘RPM’, ‘CPS’, ‘HZ’, and ‘RAD’. Blank for non-rotordynamic analyses.

DLT2SLT

Updated Format:

DLT2SLT DLT,SLT,DIT,EST/NEWSLT/DTIME/CASELOAD/CASEDLOD/S,N,NEWLOAD $

13-282 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 545: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

New Parameters:

CASELOAD Input-integer-no default. LOAD case control for the subcase. Setto 0, if no LOAD in the subcase

NEWLOAD Output-integer-no default. SID of the equivalent static load inNEWSLT

New Remarks:

1. If CASELOAD=0 and CASEDLOD=0, there are no mechanical loads in thesubcase. For this situation, NEWLOAD is 0 and NEWSLT will be purged.

2. If CASELOAD=0 and CASEDLOD>0, there is DLOAD in the subcase only. Forthis situation, NEWLOAD is 1.

3. If CASELOAD>0 but CASEDLOD=0, there is LOAD in the subcase only.For thissituation, NEWLOAD is the same as CASELOAD and NEWSLT is the sameas the input SLT.

DOM9

Updated Format:

DOM9 XINIT,DESTAB,CONSBL*,DPLDXI*,XZ,DXDXI,DPLDXT*,DEQATN,DEQIND,DXDXIT,PLIST2*,OPTPRMG,R1VALRG,RSP2RG,R1TABRG,CNTABRG,DSCMG,DVPTAB*,PROPI*,CONS1T,OBJTBG,COORDO,CON,SHPVEC,DCLDXT,TABDEQ,EPTTAB*,DBMLIB,BCON0,BCONXI,BCONXT,DNODEL,RR2IDR,RESP3RG,CVALRG,DESVUP,GCMMAI,DSVCSV,XLURNG,XOTSID,CNTBSV,CVALSV,UVLCIN/XO,CVALO,R1VALO,R2VALO,PROPO,R3VALO,GCMMAO,XNRANG,DESVEC,UVLCOT/OBJIN/S,N,OBJOUT/PROTYP/PROPTN/PBRPROP/DESMAX/DESCYCLE/S,N,FLGINT//UNUSED5/UNUSED6/UNUSED7/UNUSED8/UNUSED9/UNUSED10 $

New Input Data Blocks:

GCMMAI Currently not active.

DSVCSV Previous best design.

XLURNG Design variables dynamic ranges.

XOTSID Worsened design in this cycle.

NX Nastran 10 Release Guide 13-283

Upward compatibility

Page 546: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

CNTBSV Unused

CVALSV Unused

UVLCIN Internally generated blocking constraint vector(s).

New Output Data Blocks:

GCMMAO Currently not active.

XNRANG Updated design variables dynamic ranges.

DESVEC Saves entry design as previous best if FLGINT=0.

UVLCOT Internally generated blocking constraint vector(s).

New Parameters:

DESMAX Maximum number of design cycles specified.

DESCYCLE Current design cycle.

FLGINT Flag for design quality level.

Note

DESMAX, DESCYCLE, and FLGINT are located in three previously unusedparameter fields.

DOM12

Updated Description:

Performs soft and hard convergence checks in design optimization. Outputs updatedoptimization data into the punch file, and prints final optimization results. Helpssteer the SDO optimization process.

13-284 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 547: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Updated Format:

DOM12 XINIT,XO,CVAL,PROPI*,PROPO*,OPTPRM,HIS,DESTAB,GEOM1N,COORDO,EDOM,MTRAK,EPT,GEOM2,MPT,EPTTAB*,DVPTAB*,XVALP,GEOM1P,R1TABRG,R1VALRG,RSP2RG,R2VALRG,PCOMPT,OBJTBG,ALBULK,AMLIST,DIT,CNTABRG/HISADD,NEWPRM,DBCOPT,NEWDES,XNTSID/DESCYCLE/OBJIN/OBJOUT/S,N,CNVFLG/CVTYP/OPTEXIT/DESMAX/MDTRKFLG/DESPCH/DESPCH1/MODETRAK/EIGNFREQ/DSAPRT/PROTYP/BADMESH/XYUNIT/FSDCYC/S,N,FLGINT $

New Input Data Block:

CNTABRG Global table of retained constraint attributes.

New Output Data Block:

XNTSID Worsened design that triggers intermediate design stage.

Note

The OPTNEW and DESNEW output data blocks are renamed NEWPRM andNEWDES, respectively. This is a documentation correction only.

New Parameter:

FLGINT Flag for design quality level.

Removed Examples:

Note

Examples are removed from the documentation of the module.

DPD

Updated Format:

DPD DYNAMIC,GPL,SIL,USET,CASECC,PG,PKYG,PBYG,PMYG,YG,SLT,GEOM4/GPLD,SILD,USETD,TFPOOL,DLT,PSDL,RCROSSL,NLFT,TRL,EED,EQDYN/LUSET/S,N,LUSETD/S,N,NOTFL/S,N,NODLT/S,N,NOPSDL/DATAREC/S,N,NONLFT/S,N,NOTRL/S,N,NOEED/UNUSED10/S,N,NOUE/UNUSED12/SEID $

NX Nastran 10 Release Guide 13-285

Upward compatibility

Page 548: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

New Input Data Block:

GEOM4 Table of bulk data entry images related to constraints,degree-of-freedom membership, and rigid element connectivity.

EFFMAS

Updated Format:

EFFMAS CASECC,MAA,PHA,LAMA,USET,BGPDT,UNUSED,CSTM,VGQ,VAFS/TEMF,EMM,DMA,MEMF,MPFEM,MEM,MEW,MDLIST/SEID/WTMASS/S,N,CARDNO/SETNAM/IUNIT/S,N,IPLOT/EFOPT/S,N,NORBM/FLUID $

New Input Data Block:

VAFS A-set size partitioning vector of structure and fluid

New Parameter:

FLUID Input-integer-default=0. When set to 0, calculation is based onstructural DOF. When set to 1, calculation is based on fluid DOF.

EMA

New Format:

EMA GPECT,XDICT,XELM,BGPDT,SIL,CSTM,XDICTP,XELMP,X4ELM,X4DICT/XGG,UNUSED2/NOK4GG/WTMASS/S,N,CONGE/NOSHIFT $

New Parameters:

CONGE Output-real-default=0.0. The most common GE value. ForNOSHIFT>0, only affects assembly of K4GG matrix in SOL 111

NOSHIFT Input-integer-no default. Controls whether to attempt to shift=0 Do not shift>0 Attempt to shift

13-286 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 549: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

EMG

Updated Format:

EMG EST,CSTM,MPT,DIT,CASECC,UG,ETT,EDT,DEQATN,DEQIND,BGPDT,GPSNT,ECTA,EPTA,EHTA,DITID,EBOLT,COMPEST,EFILL,PCOMPT,EPT/KELM,KDICT,MELM,MDICT,BELM,BDICT,ELMMOD,CONFAC2/S,N,NOKGG/S,N,NOMGG/S,N,NOBGG/S,N,NOK4GG/S,N,NONLHT/COUPMASS/TEMPSID/DEFRMSID/PENFAC/IGAPS/LUMPD/LUMPM/MATCPX/KDGEN/TABS/SIGMA/K6ROT/LANGLE/NOBKGG/ALTSHAPE/PEXIST/FREQTYP/FREQVAL/FREQWA/UNSYMF/S,N,BADMESH/DMGCHK/BOLTFACT/REDMAS/TORSIN/SHLDAMP/SHLDMP/BSHDMP/LMSTAT/LMDYN/STFOPTN/MODOPTN $

New Output Data Blocks:

ELMMOD Effective element modulus table at a temperature

CONFAC2 Condensation factors

New Parameters:

STFOPTN Input-integer-default=1. Stiffness optionSTFOPTN = 1 for elastic stiffnessSTFOPTN = 2 for tangent stiffness

MODOPTN Input-integer-default=0. Effective element modulus table creationoptionMODOPTN = 0 to not createMODOPTN ≠ 0 to create

FOELCS

Updated Format:

FOELCS CNELM,BGPDT,CSTM,USET/ELCNST,ELCTST $S,N,NLHEAT/S,N,IMODE/K6ROT $

New Parameter:

K6ROT Input-real-default=100.0. Specifies the stiffness to be added to thenormal rotation for CQUAD4 and CTRIA3 elements.

NX Nastran 10 Release Guide 13-287

Upward compatibility

Page 550: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

FOGLEL

Updated Format:

FOGLEL CASECC,BGPDT,CSTM,GEOM2,EST,MPT,CONTACT,SIL,GPSNTC,UNUSED/GNELM,GPECTC/NSKIP/OPTION/NLHEAT/MEL/S,N,REFOPT/S,N,GLUSET/S,N,NGELS $

FOCOEL

Updated Format:

FOCOEL CASECC,BGPDT,CSTM,GEOM2,EST,MPT,CONTACT,SIL,GPSNTC,UG/CNELM,GPECTC/NSKIP/OPTION/NLHEAT/MEL/S,N,REFOPT/S,N,CNTSET/S,N,NCELS/S,N,MAXO/S,N,MAXI/CNTS/S,N,AITK/S,N,MPLI/S,N,RESET/S,N,CTOL/CNTLOOP $

New Input Data Block:

UG Nodal displacements in basic coordinate system.

New Parameter:

CNTLOOP Input-integer-no default. Contact loop ID.

FONOTR

Updated Format:

FONOTR CNELM,ECSTAT,ELAMDA,CASESX/OQGCFF1,OBC1,CONFON,ELTRCT/NROW/NVEC/DMAPNO/RSTIME/LGDISP $

New Parameters:

DMAPNO Input-integer-no default. DMAP number.

RSTIME Input-real-no default. Results output time.

LGDISP Input-integer-default=-1. Large displacement flag.

13-288 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 551: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

GKAM

Updated Format:

GKAM USETD,PHA,MI,LAMA,DIT,M2DD,B2DD,K2DD,CASECC/MHH,BHH,KHH,PHDH,ZETA/NOUE/LMODES/LFREQ/HFREQ/UNUSED5/UNUSED6/UNUSED7/S,N,NONCUP/S,N,FMODE/KDAMP/FLUID/UNUSED12/NOPHI $

New Parameter:

NOPHI Input-integer-no default. If positive, the input data block PHA isrecycled for the performance improvement and the output datablock PHDH is purged.

GP3

Updated Format:

GP3 GEOM3,EQEXIN,GEOM2,EDT,UGH,ESTH,BGPDTH,CASEHEAT,CASECC,GEOM5/SLT,ETT,CASECCN/S,N,NOLOAD/S,N,NOGRAV/S,N,NOTEMP $

New Input Data Block:

GEOM5 Table of bulk data entry images related to thermal loads fromexternal files

GP4

Updated Format:

GP4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM,MEDGE,MFACE,MBODY,GEOM2,GDNTAB,GPECTO,DYNAMIC/RMG,YS0,USET0,PARTV/LUSET/S,N,NOMSET/S,N,MPCF2/S,N,NOSSET/S,N,NOOSET/S,N,NORSET/S,N,NSKIP/S,N,REPEAT/S,N,NOSET/S,N,NOL/S,N,NOA/SEID/ALTSHAPE/SEBULK/DMAPNO/AUTOMPC/AMPCZ/RSONLY/NLBEAR $

New Input Data Block:

DYNAMIC Table of bulk data entry images related to dynamics.

NX Nastran 10 Release Guide 13-289

Upward compatibility

Page 552: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

New Parameter:

NLBEAR Input-logical-default=FALSE. Flag indicating presence of nonlinearbearings.

LCGEN

Updated Format:

LCGEN CASECC,SLT,ETT,DYNAMIC,GEOM4/CASESX/NSKIP/APP/IOPT $

New Parameter:

IOPT Input-integer-default=0. If IOPT = 1, skip overwrite of the forth word(the external static load set) of CASECC for SOL 401.

MATMOD

Updated Format:

MATMOD I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,I16/O1,O2/P1/P2/P3/P4/P5/P6/P7/P8/P9/P10/P11/P12/p13/p14/p15/p16/p17/p18/p19$

Note

One input data block field is added to the MATMOD format.

Updated Option P1=42

Updated Format:

MATMOD BGPDT,EQEXIN,SIL,CASECC,EDOM,EPT,EPTABF,GEOM2,XYCDB,PARTV,DYNAMIC,,,,,/RGPV,/42/NEPT/NOSE $

New Input Data Block:

DYNAMIC Table of bulk data entry images related to dynamics.

13-290 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 553: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Updated Option P1=44

Updated Format:

MATMOD BGPDTS,SILS,CASES,USETS,EPTS,GEOM2S,EQEXINS,XYCDB,GMTG,GOATG,GPECT,PCDB,POSTCDB,SETMC,EDT,DYNAMIC/PARTV,/44/NOEPT/NOSE/IWHO///NUMPAN $

New Input Data Block:

DYNAMIC Table of bulk data images related to dynamics.

NLCOMB

Updated Format:

NLCOMB CASECC,ESTNL,KDICTNL,BKDICT,ETT,PTELEM0,UNUSED8,MPT,EQEXIN,SLT,DLT,BGPDT/ELDATA,{SLT1 or DLT1}/NSKIP/LSTEP/LINC/STATIC/LGDISP/TSETPREV $

Note

The TSETPREV parameter replaces the OSTEP parameter.

Updated Parameter:

TSETPREV Input-integer-default=0. Set ID of TEMP(LOAD) from the previoussubcase. For the first subcase or the global case, set TSETPREVto zero.

NX Nastran 10 Release Guide 13-291

Upward compatibility

Page 554: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

NLTRD3

Updated Format:

NLTRD3 CASESX2H,PDT,YS,ELDATAH,KELMNL,KDDL,GMNL,MPTS,DITS,KBDD,DLT1,CSTMS,BGPDT,SILS,USETD,BRDD,MJJ,NLFT,UNUSED,UNUSED,BDDL,GPSNTS,DITID,DEQIND,DEQATN,ELGNST,GLUESEQ,COMPEST,KDICTUP,EPT,ECTS,EDT,RGNL,UNUSED,SLT,KELMUP,GEOM3,GEOM5,ETT,FBSIN,CNELM,ECSTAT,ELAMDA,UNUSED,PLAMDA,EST,GPECT,UNUSED,UGCPREV,YS1I,ECDISPG,DLT,KDICTNL,CONFAC2,GEOM1,GEOM2/ULNTH,IFSH,ESTNLH,IFDH,OES1,PNLH,TELH,MULNT,MESTNL,UNUSED,UNUSED,UNUSED,OSTR1,OSTR1EL,OSTR1TH,OSTR1PL,OSTR1CR,OES1G,OSTR1G,OSTR1ELG,OSTR1THG,OSTR1PLG,OSTR1CRG,OTEMP1,OES1C,OSTR1C,OSTR1ELC,OSTR1THC,OQGGF1,OBG1,PLPG,FENLR,PLFG,UGLAST,FBSOUT,TLAMUP,ADGPECT,ADEST,ADSTRES,OERRES,OERREP,OERRSS,OERRSP,CNELMUP,OJINT,ECSTATUP,ELAMUP,YS2F,UDLAST,ESTNLINI,CSDATA,PBDATA,OJINE,CNTPENTR/KRATIO/S,N,CONV/S,N,RSTIME/S,N,NEWP/S,N,NEWDT/S,N,OLDDT/S,N,NSTEP/LGDISP/S,N,UNUSED/S,N,ITERID/ITIME/S,N,KTIME/S,N,LASTUPD/S,N,NOGONL/S,N,NBIS/MAXLP/TSTATIC/LANGLE/NDAMP/TABS/UNUSED/MATNL/S,N,UNUSED/UNUSED/UNUSED/GLUE/GPFORCE/BCSET/S,N,CITO/S,N,CITI/MAXI/S,N,CNVO/S,N,CNVI/S,N,CONFLAG/MINILP/S,N,BISFLAG/S,N,DTLAST/S,N,CPLFLG/S,N,PBCONV/S,N,CNTUPDT/NCELS/S,N,CRPFLAG/S,N,COUNT $

Changed Input Data Block:

• The 34th input data block changes from YG to UNUSED.

New Input Data Blocks:

GEOM3 Table of Bulk Data entry images related to static and thermal loads

GEOM5 Table of Bulk Data entry images related to thermal loads fromexternal files

ETT Element temperature table

FBSIN Stiffness matrix decomposition for reuse

CNELM Contact element definition table

ECSTAT Contact element status table

ELAMDA Previous augment contact tractions

UNUSED Unused

PLAMDA Contact tractions from previous time step

EST Element summary table

GPECT Grid point element connections table

13-292 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 555: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

UNUSED Unused

UGCPREV Last converged GSET displacement

YS1I Matrix of time assigned enforced displacements

ECDISPG Contact element displacements

DLT Table of dynamic loads

KDICTNL KELMNL dictionary table, output by EMG

CONFAC2 Table of condensation factors used for bubble functions

GEOM1 Table of bulk data entry images related to geometry

GEOM2 Table of bulk data entry images related to element connectivity andscalar points

New Output Data Blocks:

FENLR Element energy and forces in nonlinear matrix format

PLFG Matrix of internal force vectors

UGLAST Matrix of vectors needed for automatic stiffness update method

FBSOUT Stiffness matrix decomposition. If reuse is intended, it is copiedinto FBSIN

TLAMUP Updated total contact tractions

ADGPECT Grid point element connection table used for mesh adaptive

ADEST Element and grid table used for mesh adaptive

ADSTRES Table for average stress for each element for mesh adaptive

OERRES Table for error estimator for strain energy, step results (used formesh adaptive)

OERREP Table for error estimator for strain energy, profile results (used formesh adaptive)

OERRSS Table for error estimator for stress, step results (used for meshadaptive)

NX Nastran 10 Release Guide 13-293

Upward compatibility

Page 556: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

OERRSP Table for error estimator for stress, profile results (used for meshadaptive)

CNELMUP Updated contact table

OJINT Table for J integral output

ECSTATUP Updated contact element status

ELAMUP Updated augmented contact tractions

YS2F Matrix of time assigned enforced displacement in the solution format

UDLAST Matrix containing D-set displacement, velocity and accelerationat the subcase end

ESTNLINI Initial stress/strain datablock

CSDATA Bolt preload cross-section data

PBDATA Bolt preload load data

OJINE Table for intermediate data used for J-integral calculations

CNTPENTR Contact element penetrations

Changed Parameter:

• The 22th parameter changes from UNUSED to MATNL.

MATNL Input-Integer-default =0. Material nonlinear flag

0 No material nonlinear effects

1 Material nonlinear effects present

New Parameters:

GLUE Input-logical-no default. Set to “TRUE” if glue is defined

GPFORCE Input-integer-default=-1. Represents number of columns in FENLR

If GPFORCE≤0, no GPFORCE or ESE is requested

BCSET Input-Integer-no default. Contact set from bulk data

13-294 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 557: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

CITO Input/Output-Integer-default=0. Contact augmentation number

CITI Input/Output -Integer-default=0. Number of contact inner iterations

MAXI Input-Integer-no default. Maximum number of contact inneriteration before updating stiffness

CNVO Input/Output -Integer-default=0. Convergence flag for contact

CNVI Input/Output-Integer-default=0. Convergence flag for contact inneriterations

CONFLAG Input-Integer-default=0. Contact output request

0 No contact output for the current time step.

1 Produce contact output for the current time step.

MINILP Input-Integer-no default. Number of contact inner iterations beforeupdating stiffness

BISFLAG Input/Output-Integer-default=0

0 Bisection not initiated for a contact solution

1 Bisection initiated for a contact solution

DTLAST Output–real–no default. Last converged time step size for asubcase

CPLFLG Input-Integer-default=1

1 Flag for sequential coupling solution in multiphysics 401analysis

2 Flag for iterative coupling solution in multiphysics 401 analysis

PBCONV Output-Integer–default=0. Bolt convergence flag

0 Either Bolt not present or bolt preload update is not needed

1 Bolt has converged

2 Bolt hasn’t converged and bolt preload needs to be updated

CNTUPDT Output-Integer–default=0. Geometry update flag for contact

NX Nastran 10 Release Guide 13-295

Upward compatibility

Page 558: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

0 No geometry update needed

1 Geometry update needed

NCELS Input-Integer-no default. Number of contact elements formed

CRPFLAG Input/Output-integer-default=0

0 Creep solution not requested

1 Creep solution requested

COUNT Input/Output-integer-default=0. Counter for number of boltiterations

RANDOM

Updated Format:

RANDOM XYCDB,DIT,PSDL,OUG2,OPG2,OQG2,OES2,OEF2,CASECC,OSTR2,OQMG2,RCROSSL,OFMPF2M,OSMPF2M,OLMPF2M,OPMPF2M,OGPMPF2M/PSDF,AUTO,OUGPSD2,OUGATO2,OUGRMS2,OUGNO2,OUGCRM2,OPGPSD2,OPGATO2,OPGRMS2,OPGNO2,OPGCRM2,OQGPSD2,OQGATO2,OQGRMS2,OQGNO2,OGGCRM2,OESPSD2,OESATO2,OESRMS2,OESNO2,OESCRM2,OEFPSD2,OEFATO2,OEFRMS2,OEFNO2,OEFCRM2,OEEPSD2,OEEATO2,OEERMS2,OEENO2,OEECRM2,OQMPSD2,OQMATO2,OQMRMS2,OQMNO2,OGMCRM2,OCPSDF,OCCORF,SABFIL/S,N,NORAND/RMSINT/CPLX/SSFLAG/RMSSF/CMPFLAG $

New Parameter:

CMPFLAG Input-integer-default = 0. Set to 1 if the table of composite elementstresses/strains is present.

ROTSDB

Updated Format:

ROTSDB I1,I2/O1,O2,O3,O4,O5,O6,O7,O8,O9,O10,O11,O12,O13/P1/P2/P3/P4/P5/P6/P7/P8/P9/P10/P11/P12/P13/P14/P15/P16/P17/P18/P19/P20/P21/P22/P23/P24/P25/P26/P27/P28/P29/P30/P31/P32/P33/P34/P35/P36/P37/P38/P39/P40/P41/P42/P43 $

13-296 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 559: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Note

7 output data block fields and 29 parameter fields are added to the ROTSDBformat.

Updated Option P1 = 1

Updated Format:

ROTSDB DIT,EQEXINS/BEARXX,BEARXY,BEARYX,BEARYY,BEARXZ,BEARYZ,BEARZX,BEARZY,BEARZZ,BEARRXX,BEARRXY,BEARRYX,BEARRYY/1////GRIDA/GRIDB $

New Output Data Blocks:

BEARXZ Matrix mapping the bearing XZ translational component into thesystem matrix.

BEARYZ Matrix mapping the bearing YZ translational component into thesystem matrix.

BEARZX Matrix mapping the bearing ZX translational component into thesystem matrix.

BEARZY Matrix mapping the bearing ZY translational component into thesystem matrix.

BEARZZ Matrix mapping the bearing ZZ translational component into thesystem matrix.

BEARRXX Matrix mapping the bearing XX rotational component into thesystem matrix.

BEARRXY Matrix mapping the bearing XY rotational component into thesystem matrix.

BEARRYX Matrix mapping the bearing YX rotational component into thesystem matrix.

BEARRYY Matrix mapping the bearing YY rotational component into thesystem matrix.

Deleted Parameter:

NUMRPM Input-integer-no default. Number of steps for reference rotor speed.

NX Nastran 10 Release Guide 13-297

Upward compatibility

Page 560: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Updated Option P1 = 2

Updated Format:

ROTSDB DIT,EQEXINS/BEARS (or BEARD),,BEARSDF (or BEARDDF),,,,,,,,,,/2/NUMRPM/BGNRPM/DELRPM/TXX/TXY/TYX/TYY/TXZ/TYZ/TZX/TZY/TZZ/TRXX/TRXY/TRYX/TRYY/DFTYPE/RXX/RXY/RYX/RYY/RXZ/RYZ/RZX/RZY/RZZ/RRXX/RRXY/RRYX/RRYY/NOMVAL1/NOMVAL2/NOMVAL3/C1R/C1Z/C2R/C2Z/C3R/C3Z/D10/D20/D30 $

New Output Data Blocks:

BEARSDF Bearing displacement-dependent or force-dependent stiffnessvalues.

BEARDDF Bearing displacement-dependent or force-dependent stiffnessvalues.

New Parameters:

TXZ Input-integer-no default. Table ID referenced by the PBEAR bulkentry for XZ translational component.

TYZ Input-integer-no default. Table ID referenced by the PBEAR bulkentry for YZ translational component.

TZX Input-integer-no default. Table ID referenced by the PBEAR bulkentry for ZX translational component.

TZY Input-integer-no default. Table ID referenced by the PBEAR bulkentry for ZY translational component.

TZZ Input-integer-no default. Table ID referenced by the PBEAR bulkentry for ZZ translational component.

TRXX Input-integer-no default. Table ID referenced by the PBEAR bulkentry for XX rotational component.

TRXY Input-integer-no default. Table ID referenced by the PBEAR bulkentry for XY rotational component.

TRYX Input-integer-no default. Table ID referenced by the PBEAR bulkentry for YX rotational component.

13-298 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 561: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

TRYY Input-integer-no default. Table ID referenced by the PBEAR bulkentry for YY rotational component.

DFTYPE Input-integer-no default. Displacement or force dependency flag.

0 Not displacement- or force-dependent

1 Displacement-dependent

2 Force-dependent

RXZ Input-real-no default. Direct value for bearing stiffness or dampingfor XZ translational component.

RYZ Input-real-no default. Direct value for bearing stiffness or dampingfor YZ translational component.

RZX Input-real-no default. Direct value for bearing stiffness or dampingfor ZX translational component.

RZY Input-real-no default. Direct value for bearing stiffness or dampingfor ZY translational component.

RZZ Input-real-no default. Direct value for bearing stiffness or dampingfor ZZ translational component.

RRXX Input-real-no default. Direct value for bearing stiffness or damping forXX rotational component.

RRXY Input-real-no default. Direct value for bearing stiffness or damping forXY rotational component.

RRYX Input-real-no default. Direct value for bearing stiffness or damping forYX rotational component.

RRYY Input-real-no default. Direct value for bearing stiffness or damping forYY rotational component.

NOMVAL1 Input-real-no default. NOMVAL entry from PBEAR bulk entry.

NOMVAL2 Input-real-no default. NOMVAL entry from PBEAR bulk entry.

NOMVAL3 Input-real-no default. NOMVAL entry from PBEAR bulk entry.

C1R Input-real-no default. Constant for composite equation from PBEARbulk entry.

NX Nastran 10 Release Guide 13-299

Upward compatibility

Page 562: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

C1Z Input-real-no default. Constant for composite equation from PBEARbulk entry.

C2R Input-real-no default. Constant for composite equation from PBEARbulk entry.

C2Z Input-real-no default. Constant for composite equation from PBEARbulk entry.

C3R Input-real-no default. Constant for composite equation from PBEARbulk entry.

C3Z Input-real-no default. Constant for composite equation from PBEARbulk entry.

D10 Input-real-no default. Preload value for composite equation fromPBEAR bulk entry.

D20 Input-real-no default. Preload value for composite equation fromPBEAR bulk entry.

D30 Input-real-no default. Preload value for composite equation fromPBEAR bulk entry.

Updated Option P1 = 3

Updated Format:

ROTSDB DIT,/TSPEEDR,,,,,,,,,,,,/3/NUMRPM/BGNRPM/DELRPM/TABLEID//////////////RSPEED $

New Parameter:

RSPEED Input-real-no default. Constant multiplier of the reference rotor speedfor this rotor. RSPEED = 0.0 implies “use TABLEID”.

13-300 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 563: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

SDR2

Updated Format:

SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SILD,ETT,{OL or EDT},BGPDT,PG,QG,UG,EST,XYCDB,OINT,PELSET,VIEWTB,GPSNT,DEQATN,DEQIND,DITID,PCOMPT,GPKE,BOLTFOR,MDLIST,COMPEST,EPT,DYNAMIC,EDT,CBRROT/OPG1,OQG1,OUG1,OES1,OEF1,PUG,OGPKE1,OEFIIP,OEFIIS,OESRIP,OESRIS/APP/S,N,NOSORT2/NOCOMP/ACOUSTIC/METRIK/ISOFLG/GPF/ACOUT/PREFDB/TABS/SIGMA/ADPTINDX/ADPTEXIT/BSKIP/FREQW/BTBRS/LANGLE/OMID/SRCOMPS/APP1/GSPF/RPM/SWPANGLE/STFOPTN/RUNIT $

New Input Data Block:

CBRROT CBEAR/rotor connection table. Required for CBEAR elementforces in rotor dynamic analysis.

Updated Parameter:

RPM Input-real-default=0.0

Reference rotor speed in units of RUNIT on ROTORD bulk entry.Required for CBEAR element forces in rotor dynamic analysis.

New Parameters:

SWPANGLE Input-real-default=1.0. Sweep angle increment in degrees forfailure index and strength ratio calculation.

STFOPTN Input-integer-default=1. Stiffness optionSTFOPTN = 1 for elastic stiffnessSTFOPTN = 2 for tangent stiffness

RUNIT Input-character-default=’RPM’. Rotor speed units. Options are‘RPM’, ‘CPS’, ‘HZ’, and ‘RAD’.

SDRCOMP

Updated Format:

SDRCOMP CASECC,MPT,EPT,ETT,EST,OES1A,OEF1A,DIT,BGPDT,PCOMPT/OES1C,OEFIT,OEF1AA,OESRT,OGPLYSS,OGPLYFI,OGPSR/STRNFLG/DESOPT/LOADFAC/SRCOMPS/SWPANGLE $

NX Nastran 10 Release Guide 13-301

Upward compatibility

Page 564: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

New Parameter:

SWPANGLE Input-real-default=1.0. Sweep angle increment in degrees forfailure index and strength ratio calculation.

SEPDIS

Updated Format:

SEPDIS CNELM,ECDISP,CASECC/OSPDS/NVEC/DMAPNO/TIME $

New Parameters:

DMAPNO Input-integer-no default. DMAP number.

TIME Input-real-no default. Results output time.

TA1

Updated Format:

TA1

MPT,ECT,EPT,BGPDT,SIL,ETT,CSTM,DIT,ECTA,EHT/EST,ESTNL,GEI,GPECT,ESTL,VGFD,DITID,NFDICT,COMPEST,NSMEST/LUSET/S,N,NOESTL/S,N,NOSIMP/NOSUP/S,N,NOGENL/SEID/LGDISP/NLAYERS/S,N,FREQDEP/BSHDAMP/S,N,BSHDMP/NSMID/MATNL $

New Parameter:

MATNL Input-integer-default=-1. Material nonlinearity flag.

-1 Turn off material nonlinearity.

1 Turn on material nonlinearity.

UPGLSTF

Updated Format:

UPGLSTF GNELM,BGPDT,CSTM,UGVBAS/ELGNST/NLHEAT/NROW/K6ROT $

13-302 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 565: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

New Parameter:

K6ROT Input-real-default=100.0. Specifies the stiffness to be added to thenormal rotation for CQUAD4 and CTRIA3 elements.

New modules

CKROTCN

Check rotor connections for rotor dynamic analysis.

Format:

CKROTCN DYNAMIC,GPECT,BGPDT//RSETI $

Input Data Blocks:

DYNAMIC Table of bulk entry images related to dynamics

GPECT Grid point element connectivity table

BGPDT Basic grid point definition table

Output Data Blocks:

None

Parameters:

RESTI Input-integer-no default. RSETI value for the current rotor fromthe ROTORD bulk entry

Remarks:

If there are any invalid connections between a rotor and the stationary portion of thestructure, Error 2050 is issued and the NOGO flag is set. NOGO=–1 in the DMAPcode indicates that CKROTCN has issued one or more errors.

NX Nastran 10 Release Guide 13-303

Upward compatibility

Page 566: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

CNTMAPTR

Map the contact tractions from the contact face to the new contact points following ageometry update.

Format:

CNTMAPTR CNELM,TFTRAC/TLAMDA/ $

Input Data Blocks:

CNELM Contact element definition table

TFTRAC Extrapolated contact tractions on a per face basis

Output Data Blocks:

TLAMDA Contact tractions at new contact locations after geometry update

Parameters:

None

CNTSTAT

Compute and update contact element status.

Format:

CNTSTAT CNELM,ECSTAT,ELAMDA,TLAMDA,ECDISP,UGCB,BGPDT/ECSTAT2/S,N,CITO/NOFAC/S,N,NCS0/S,N,NCS1/S,N,NCS2/S,N,NCS3/S,N,NCSC/S,Y,INREL/S,N,NOGSET/LGDISP $

Input Data Blocks:

CNELM Contact element definition table

ECSTAT Contact element status

ELAMDA Contact element tractions from last augmented state

TLAMDA Current total contact element tractions

13-304 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 567: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

ECDISP Contact element displacements

UGCB Nodal displacements in the basic coordinate system

BGPDT Basic grid point definition table

Output Data Blocks:

ECSTAT2 Updated contact element status

Parameters:

CITO Input-integer-default=0. Contact augmentation loop ID

NOFAC Integer-real-no default. Percentage of initially open contactelements to make active

NCS0 Output-integer-default=0. Number of inactive contact elements

NCS1 Output-integer-default=0. Number of active open contact elements

NCS2 Output-integer-default=0. Number of sticking contact elements

NCS3 Output-integer-default=0. Number of sliding contact elements

NCSC Output-integer-default=0. Number of contact status changes

INREL Input-integer-default=0. Inertia relief options=0 No inertia relief=1 Manual inertia relief=2 Automatic inertia relief

NOGSET Input-integer-no default. Size of g-set

LGDISP Input-integer-default=-1. Large displacement flag

CNTXTRAP

Extrapolates contact tractions to contact face.

Format:

CNTXTRAP CNELM,ECSTAT,TLAMDA/TFTRAC/ $

NX Nastran 10 Release Guide 13-305

Upward compatibility

Page 568: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Input Data Blocks:

CNELM Contact element definition table

ECSTAT Contact status table

TLAMDA Contact tractions

Output Data Blocks:

TFTRAC Extrapolated contact tractions for each face involved in contact

Parameters:

None

CONSTF

Forms contact element stiffness.

Format:

CONSTF CNELM,BGPDT,CSTM,UGCB,ECSTAT,TLAMDA,ELAMDA/ELCNST,ELCTST/GSIZE/LGDISP/IOPT $

Input Data Blocks:

CNELM Contact element definition table

BGPDT Basic grid point definition table

CSTM Coordinate system definition table

UGCB Nodal displacements in basic coordinate system

ECSTAT Contact element status table

TLAMBDA Current total contact element tractions

ELAMBDA Previous augmented contact element tractions

13-306 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 569: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Output Data Blocks:

ELCNST Normal contact element stiffness

ELCTST Tangential contact element stiffness

Parameters:

GSIZE Input-integer-no default. Size of the g-set

LGDISP Input-integer-default=-1. Large displacement flag

IOPT Input-integer-no default. Analysis flag=1 Statics=2 Modal

CONTOUT

Computes separation distance, slide distance and status at each contact node atrequested output time intervals.

Format:

CONTOUT CNELM,ECDISP,CASESX2H,ECSTAT,ECDISD,BGPDT,CNTPENTR/OSPDS1,OSLIDE1,OCONST1/NVEC/DMAPNO/RSTIME/LGDISP $

Input Data Blocks:

CNELM Contact element definition table

ECDISP Contact element displacements at requested output time interval

CASESX2H Case control for current subcase

ECSTAT Contact element status table

ECDISD Contact element displacements from last output time interval

BGPDT Basic grid point definition table

CNTPENTR Contact element penetrations

NX Nastran 10 Release Guide 13-307

Upward compatibility

Page 570: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Output Data Blocks:

OSPDS1 Separation distance in SORT1 format

OSLIDE1 Slide distance in SORT1 format

OCONST1 Contact status in SORT1 format

Parameters:

NVEC Input-integer-no default. Number of solution results to process

DMAPNO Input-integer-no default. DMAP number

RSTIME Input-real-no default. Current output interval time

LGDISP Input-integer-default=-1. Large displacement flag

GP7

Generates TEMP, TEMPD, and DTEMP bulk data entries for DTEMPEX andTEMPEX bulk data entries. The TEMP, TEMPD and DTEMP bulk data entries fornodal temperatures are created by reading the bun files assigned to the DTEMPEXand TEMPEX bulk data entries. The new bulk data entries are stored in the GEOM5output data block.

Format:

GP7 GEOM3/GEOM5/S,N,NOGOGP7/UNITSYS $

Input Data Blocks:

GEOM3 Table of bulk data entry images related to static and thermal loads

Output Data Blocks:

GEOM5 Table of bulk data entry images related to thermal loads fromexternal files

13-308 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 571: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Parameters:

NOGOGP7 Output-logical-default=FALSE. Output data of type logical forGO/NOGO flag. If TRUE, abort.

UNITSYS Input-character-no default. Stores the NX unit system. For validentries, see the UNITSYS parameter in the NX Nastran QuickReference Guide.

Remarks:

1. For a TEMPEX bulk data entry, a TEMP bulk data entry is created for eachnodal temperature. All of the TEMP bulk data entries have the same SID. ForDTEMPEX bulk data entries, TEMP bulk data entries are created at each timeinstant. All TEMP bulk data entries at the same time instant have a unique SID.An additional DTEMP bulk data entry is created to represent the time-varyingtemperature field of the DTEMPEX bulk data entry.

2. It is possible to assign a TEMPD and a DTEMPEX with same SID. For suchcases, a TEMPD bulk data entry is also created at each time instant along withthe TEMP bulk data entries. In this case, the SID of the TEMPD bulk data entryat each instant is same as the SID of the corresponding TEMP bulk data entry.

MODGMRB

Modifies GEOM2 and GEOM4 data blocks for converting RBAR and RBE2 elementsinto CBEAM and CELAS1 elements in SOL 401 when either RIGID = STIFF isspecified or RIGID = AUTO with LGDISP = 1 are specified.

Format:

MODGMRB BGPDT,IGEOM2,IGEOM4,MPT/OGEOM2,OGEOM4/RGLCRIT/RGBEAME/RGBEAMA/RGSPRGK $

Input Data Blocks:

BGPDT Basic grid point definition table

IGEOM2 Table of bulk data entry images related to element connectivity andscalar points

IGEOM4 Table of bulk data entry images related to constraints,degree-of-freedom membership, and rigid element connectivity

MPT Table of bulk data entry images related to material properties

NX Nastran 10 Release Guide 13-309

Upward compatibility

Page 572: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

Output Data Blocks:

OGEOM2 Modified table of bulk data entry images related to elementconnectivity and scalar points

OGEOM4 Modified table of bulk data entry images related to constraints,degree-of-freedom membership, and rigid element connectivity

Parameters:

RGLCRIT Input-real-default = 1.0 x 10-6 x largest dimension in the model.Coincident grid tolerance.

RGBEAME Input-real-default = 1.0 x 102 x largest Young’s Modulus in themodel. Determines the Young’s modulus for the beam element.Default = 1.0 x 1012 if an MPT data block is not present.

RGBEAMA Input-real-default = (1.0 x 10–2 x largest dimension in the model)2.Determines the cross-sectional area of the beam element.

RGSPRGK Input-real-default = largest dimension in the model x largest Young’sModulus in the model. Determines the stiffness of the CELAS1element. Default = 1.0 x 1012 if an MPT data block is not present.

NLCBRFOR

Nonlinear CBEAR element force request checker.

Format:

NLCBRFOR CASECC,DYNAMIC,EDT//S,N,FLAG $

Input Data Blocks:

CASECC Table of case control command images

DYNAMIC Table of bulk data entry images related to dynamics

EDT Element definition table

Output Data Blocks:

None

13-310 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 573: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

Parameters:

FLAG Output-integer-no default. If returned as “1”, nonlinear CBEARelements are requested for element force output

OPRESSDB

Uses linear interpolation to compute the pressure loads at certain time points.

Format:

OPRESSDB CASECC,GEOM3PLD0,GEOM3PLD,TELH/OPRESS/STIME/ETIME/LVAR $

Input Data Blocks:

CASECC Table of case control command images

GEOM3PLD0Table of bulk data entry images related to pressure loads such asPLOAD4, PLOADE1, AND PLOADX1 at the start time

GEOM3PLD Table of bulk data entry images related to pressure loads such asPLOAD4, PLOADE1, AND PLOADX1 at the end time

TELH Time output list

Output Data Blocks:

OPRESS Table that contains pressure loads at certain time points

Parameters:

STIME Input-real-no default. Start time

ETIME Input-real-no default. End time

LVAR Input-integer-default = 0. Selects pressure computationIf LVAR = 0, use the pressure at the ending time point as thepressure for all time points.If LVAR = 1, use the pressure at the starting and ending time pointsto linearly interpolate the pressure at all other time points.

NX Nastran 10 Release Guide 13-311

Upward compatibility

Page 574: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

SDR2CVM

Calculates von Mises results for complex solutions.

Format:

SDR2CVM OES2/OESVM2 $

Input Data Blocks:

OES2 Table of element stresses in SORT2 format

Output Data Blocks:

OESVM2 Table of element stresses including von Mises stress in SORT2format

Parameters:

None

Remarks:

1. For strain results, OES2/OESVM2 are replaced with OSTR2/OSTRVM2, whereOSTRVM2 includes von Mises strain.

TEMPATT

Generates nodal temperature data at a given time instant for a time-assignedtemperature load (DTEMP or DTEMPEX). It also checks whether the solution timefalls within the definition of the time interval for the DTEMP or DTEMPEX bulkdata entries.

Format:

TEMPATT CASECC,GEOM3,GEOM5,ETTORIG/TSETATT/S,N,ERRTEMPATT/RSTIME/TEMPOPT/S,N,NEWTSETID/S,N,TIMEDEP/S,N,TIMEINDT/TEMPINIT/TEMPLOAD/DTEMP $

Input Data Blocks:

CASECC Table of case control command images

13-312 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 575: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

GEOM3 Table of bulk data entry images related to static and thermal loads

GEOM5 Table of bulk data entry images related to thermal loads fromexternal files

ETTORIG Element nodal temperature table that is created by the NLCOMBmodule

Output Data Blocks:

TSETATT Table containing TEMP and/or TEMPD bulk entries for interpolatednodal temperature values at the time-instant, RSTIME. See Remark1.

Parameters:

ERRTEMPATTOutput-logical-no default. Output data of type logical forGO/NOGO flag. If TRUE, abort.

RSTIME Input-real-no default. Current solution time

TEMPOPT Input-integer-no default. Calling options=0 Determine if RSTIME for interpolation is inside or outside thedefinition of DTEMP=1 Compute the interpolated temperature bulk entries and storethem in TSETATT

NEWTSETID Output-integer-no default. The SID of the new temperature bulkentry for the interpolated nodal temperature. See Remarks 3and 4.

TIMEDEP Output-integer-no default. Notifies whether the subcase includestime-assigned temperature loads=1 if the subcase has time-dependent temperature load fromDTEMP/DTEMPEX=0 if the subcase has time-unassigned temperature load fromTEMP(LOAD)=TEMP/TEMPD/TEMPEX=-1 if the subcase has no temperature load

NX Nastran 10 Release Guide 13-313

Upward compatibility

Page 576: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

TIMEINDT Output-integer-no default. Notifies whether the solution timeRSTIME is inside or outside the interval of definition of DTEMP orDTEMPEX=0 if RSTIME is outside the interval of definition of DTEMP orDTEMPEX=1 if RSTIME is inside the interval of definition of DTEMP orDTEMPEX=-1 if not applicable such as when the subcase does not includeDTEMP or DTEMPEX

TEMPINIT Input-integer-no default. Required if the current subcase isMODAL subcase. Set ID specified for TEMP(INIT) of the laststatic subcase that comes before the current modal subcase. Setto 0 if the last static subcase does not have TEMP(INIT). Setto -1 for static a subcase in which CASECC is specified. SeeRemark 2.

TEMPLOAD Input-integer-no default. Required if the current subcase is aMODAL subcase. Set ID specified for TEMP(LOAD) of the laststatic subcase that comes before the current modal subcase. Setto 0 if the last static subcase does not have TEMP(LOAD). Setto -1 for a static subcase in which CASECC is specified. SeeRemark 2.

DTEMP Input-integer-no default. Required if the current subcase is aMODAL subcase. Set ID specified for DTEMP of the last staticsubcase that comes before the current modal subcase. Set to 0if the last static subcase does not have DTEMP. Set to -1 for astatic subcase in which CASECC is specified. See Remark 2.

Remarks:

1. If the solution time, RSTIME, lies within the definition of the DTEMP or DTEMPEXbulk entry, the nodal temperatures are interpolated by linear interpolation. IfRSTIME lies outside the time domain of the DTEMP or DTEMPEX bulk entry,the temperature values are step-extension.

2. For a modal subcase, CASECC may not have TEMP(INIT), TEMP(LOAD),or DTEMP. These values should be provided for the previous static subcasepreceding the modal subcase. Therefore, for the MODAL subcase, insteadof CASECC, the values of TEMPINIT, TEMPLOAD and DTEMP should beprovided as input.

3. If the subcase has DTEMP case control only, such as time-assignedtemperatures with DTEMP or DTEMPEX, the NEWTSETID is the ID of the newtemperature set in TSETATT.

13-314 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 577: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Upward compatibility

4. If the subcase has TEMP(LOAD) only, the value of NEWTSETID will be sameas TEMP(LOAD).

TOPOPT

Performs Topology optimization with the LMS implementation of the GCMMAoptimizer.

Format:

TOPOPT EFILL,OBJMA,SENSMA,DVARMA,WMEMIN,FORCEM,BEGCM/EFILLI,WMEMOUT,/ITOITCNT/ITOMXITR/ITOPOPT/ITOOPITR/S,Y,DONE/ITODENS/ITOSIMP/ITORMAS/ITONGHBR/ITOPDIAG/ITOPALG/ITOPCONV/ITOPALLR $

Input Data Blocks:

EFILL Element fill table.

OBJMA Objective matrix.

SENSMA Sensitivity matrix.

DVARMA Design variable matrix.

WMEMIN Cached working memory.

FORCEM Force matrix.

BEGCM Boolean element-grid connectivity matrix.

Output Data Blocks:

EFILLI Updated EFILL table for subsequent iterations.

WMEMOUT Updated cached working memory.

Parameters:

ITOITCNT Input-integer, no default. The counter of iterations.

ITOMXITR Input-integer, no default. The maximum number of iterations.

ITOPOPT Input-integer, no default. Optimizer option:

NX Nastran 10 Release Guide 13-315

Upward compatibility

Page 578: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 13: Upward compatibility

1 External optimization branch.

2 Embedded optimization with LMS optimizer.

4 Embedded optimization with GCMMA optimizer.

ITOOPITR Input-integer, no default. The number of the optimum iteration.

DONE Output-integer, no default. The completion flag of the optimization.

ITODENS Input-real, no default. The density of the material assigned to theelements in the EFILL list.

ITOSIMP Input-integer-default=0. Penalty factor. ITOSIMP=1 to activepenalty factor.

ITORMAS Input-real, no default. The residual mass of the structure to beoptimized.

ITONGHBR Input-integer, default=0. Flag for checkerboard filter. ITONGHBR=1to enable checkerboard filter.

ITOPDIAG Input-integer, default= -1. Diagnostic level.

ITOPALG Input-integer, default= -1. Algorithm type.

ITOPCONV Input-real, default=0.0. Convergence threshold.

ITOPALLR Input-integer, default=0. Helps control the size of opt and punch file.By default, output only occurs for the last iteration.

13-316 NX Nastran 10 Release Guide

Chapter 13: Upward compatibility

Page 579: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

NX Nastran 10 Problem Report (PR) fixesThe following list summarizes the problems found in previous releases of NXNastran and prototype versions of NX Nastran 10 that are fixed in NX Nastran 10.If applicable, workaround information is provided for use with earlier versions ofNX Nastran.

PR# ProblemReported Problem Description

1941062 V8.5When error PCGLSS0087 occurs, the error messageNX Nastran issues is not descriptive and does notoffer suggestions for correcting the problem.

1944178 V8.5

NX Nastran does not recognize the SHLTHK = 1option on a global BCTPARM bulk entry specification.

The workaround is to use the SHLTHK = 1 option ona local BCTPARM bulk entry specification.

1955496 V8.5With sparse data recovery enabled, NX Nastran 8.5takes much longer to solve a model as compared toNX Nastran 8.1.

1957256 V9.0When error A1031 occurs, the error message NXNastran issues is not descriptive and does not offersuggestions for correcting the problem.

1962740 V8.5Because of a problem with the GPFORCE outputrequest, the solver crashes and issues error code 25during a SOL 601 run.

1966353 V8.5

Because of a problem with CRAC3D elements, amodel that runs to completion in NX Nastran 8.1crashes when run in either NX Nastran 8.5 or NXNastran 9.

The workaround is to set the material density to zero.

1966764 V9.0 A problem associated with the GP3 module causesa solve to hang up.

1970760 V9.0

For models that contain thermal loads andtemperature-dependent elastic moduli, the results ofa static analysis differ if the sparse solver is used ascompared to if the iterative solver is used.

NX Nastran 10 Release Guide 14-1

Page 580: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

1972394 V8.5

The NX Nastran memory allocation for a SOL 106 runis insufficient which causes the run to terminate andsystem fatal message 4276 to be issued.

The default memory settings are increased in NXNastran 10.

1973161 V8.5 Same as PR#1944178

1975903 V9.0NX Nastran does not generate the .mon1 and .mon2monitor files if the combined path and filenameexceeds 125 characters.

1975921 V9.0

In SOL 105 buckling analyses, surface-to-surfacecontact is ignored if the contact definition does notinclude friction.

A workaround is to specify a very small coefficient offriction. Another workaround that is only applicableto NX Nastran 9 and NX Nastran 9.1 is to use thefollowing DMAP Alter:

compile phase1d,nolistalter 'COLMTAB=OVRWRT,SAVE' $FILE KTTC=OVRWRT,SAVE $

1979376 V9.0

A NX Nastran SOL 601,106 run terminates and thefollowing error message is issued:

*** SOL 601 EXITED WITH INVALID STATUS CODE 255*** MOST LIKELY, PROGRAM HAS CRASHED.*** FATAL ERROR: SOL 601 DID NOT FINISH SUCCESSFULLY.*** ADVANCED NONLINEAR EXIT CODE 0 ****** ISHELL PROGRAM 'NXNA' COMPLETED ***^^^ USER FATAL MESSAGE^^^ ERROR IN ADVANCED NONLINEAR MODULE 0^^^SOL601 FAILED

1981095 V8.5

When using NX Nastran 8.5 or NX Nastran 9, .op4files that are exported for use in a multibody dynamicssimulations do not contain damping data.

The workaround is to specify PARAM,WMODAL,YES.

1982319 V9.0In SOL 112, NX Nastran solution times are longerthan MSC Nastran solution times for the same modelbecause sparse data recovery is not used.

1982651 V9.0

Because SOL 601 can accelerate the computationalprocess and override the number of time steps thatare specified on a TSTEP bulk entry, it is possiblefor NX Nastran to complete a SOL 601 solve, but notwrite the results to the output file.

1986064 V9.0

The AUTOMPC capability places some DOF in boththe b-set and c-set, which leads to DMAP errors.

The workaround is to remove the DOF that are inboth sets from c-set.

14-2 NX Nastran 10 Release Guide

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

Page 581: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 Problem Report (PR) fixes

1990980 V8.5

In a SOL 103 multibody export run, system fatalmessage 6144 is issued when q-set reduction is usedwithout any a-set reduction.

The workaround is to use the following DMAP Alter:

compile statemg nolist $alter 20,21 $DBSTATUS GOTX//S,N,NOGOTX $IF ( NOGOTX>-1 ) THEN $

PARAML GOTX//'TRAILER'/1/S,N,NOASET// $PARAML GOTX//'TRAILER'/2/S,N,NOOSET// $

ELSE $PARAML CMPHIX2//'TRAILER'/1/S,N,NOASET// $PARAML CMPHIX2//'TRAILER'/2/S,N,NOOSET// $

ENDIF $alter 73 $if ( nogotx>-1 ) then $alter 74 $else $

equivx tfho/tfh1/-1 $endif $alter 83 $if ( nogotx>-1 ) then $alter 84 $else $

equivx tfhq/tfh1/-1 $endif $

1997804 V9.1

The default server name is pre-set in the .rcf file whichcauses an NX Nastran authorization error.

The workaround is to change the server name in theauthorization line of the .rcf file.

The default name is removed from the .rcf file in NXNastran 10.

2223097 V8.5NX Nastran issues an insufficient memory errormessage when a fluid grid is connected to a structuralelement.

2231704 V8.5A fatal error occurs when the PCOMPS bulk entryand STATSUB case control command are used withthe RFORCE bulk entry.

2236282 V8.5Due to a defect in the DMAP specification for theRMAXMIN module, paneling and averaging is notsupported in NX Nastran 8.5 and NX Nastran 9.

2247088 V9.1 Same as PR#1997804

6790256 P8.5 Insufficient memory allocation causes an optimizationrun to issue user fatal message 6499.

6793120 V8.0

The results from a SOL 200 optimization are differentdepending on whether non-structural mass is enteredin the NSM field of a PCOMP bulk entry or enteredfrom a NSML bulk entry.

NX Nastran 10 Release Guide 14-3

NX Nastran 10 Problem Report (PR) fixes

Page 582: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

6893208 V8.5

NX Nastran issues a misleading warning messageregarding using RFORCE bulk entries in combinationwith p-elements, even though the model does notcontain any p-elements.

6910858 V8.5In SOL 601, TEMP(LOAD) defaults to TEMP(INIT)when time-dependent temperature is specified withDLOAD.

6912451 V7.1 Same as PR#1962740

6928207 P9.0

For a system-level run with external superelements,SORT2 acceleration output is not written to the .op2file.

The workaround is to use the following DMAP Alter:

compile sedrcvr nolist $alter 'ougvc,oqg1c' $output2 ougv2//otape2/ounit2//omaxr $

6930413 P9.0If AF normalization and a MEFFMASS output requestare both specified, erroneous generalized mass andstiffness results occur.

6934501 P8.5A fatal error message is not issued when the MID ofa PCOMP or PCOMPG bulk entry is greater than99,999,999.

6935432 P9.0The results from rotor dynamic analyses withnonlinear bearings and multiple subcases areincorrect.

6937049 P9.0

For ILP-64 with SYSTEM(525)=0, NX Nastranproduces valid 32–bit .op2 files only if there are nointernally generated IDs and there are no other IDs inexcess of 214,000,000. When SYSTEM(525)=1, NXNastran always produces 64–bit .op2 files, and theparameter OP2FMT is ignored.

6945696 P8.5

The buffer used to hold an error message in thesubroutine ELTPRT is too small, which causesa buffer-overrun on LP-64, but not ILP-64, whenmessage 5459 is issued.

6947494 P8.5

System fatal message 6424 is issued because ofa DMAP coding error related to the situation ofauto-support for a fluid/structure problem with residualvectors.

For NX Nastran 8.5 and NX Nastran 9, theworkaround is to use the following DMAP Alter:

compile resvec nolist $alter 'prlama' $type parm,,logi,n,partx=true $alter 'partn px3,,vafs3','partn px3,,vafs3' $

partn px3,,vafs3/px33,,,/1 $trnsp vxr/vxrt $paraml vxrt//'trailer'/12/s,n,nzero $paraml px33//'trailer'/2/s,n,nrowp $

14-4 NX Nastran 10 Release Guide

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

Page 583: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 Problem Report (PR) fixes

if ( nzero>nrowp ) then $nrowa = nzero - nrowp $trnsp px33/px3t $append px3t,/px3ta/1//nrowa $trnsp px3ta/px3tat $merge px3tat,,,,,vxr/pz/1 $

else if ( nzero=nrowp ) then $paraml lxx//'trailer'/s,n,nrowlxx $if ( nrowlxx>nrowp ) then $

merge px33,,,,,vxr/pz/1 $else $

equivx px33/pz/-1 $partx = false $

endif $else $

merge px33,,,,,vxr/pz/1 $endif $delete /px33,vxrt,px3t,px3ta,px3tat $

alter 'if ( novxr>0' (2,0),'partn ux1' $if ( novxr>0 ) then $

if ( partx ) then $partn ux1,,vxr/ua,,,/1 $

else $equivx ux1/ua/-1 $

endif $

6954608 V6.1When ACCEL bulk entries are defined relativeto a local coordinate system, incorrect loads aregenerated at negative coordinates.

6958198 V7.1NX Nastran issues an error message that warns ofexcessive distance between glued surfaces, eventhough the glued surfaces are actually in contact.

6959088 P9.0 In the .f06 file, the header lines for MODCON andPANCON are misleading.

6959756 P9.0

A DMAP failure occurs and system fatal message6144 is issued when NX Nastran calculates themodal contributions for a fluid-structural model thathas enforced motion input defined with the constraintmode method.

6971287 V8.5In SOLs 101, 103, 105, 111, and 112, an error occurswhen a displacement coordinate system is defined ona grid that is also used in the definition of a CGAPelement.

6972858 V9.0 In rotor dynamics analyses, specifying scr=minicauses the solution to fail.

6976565 V9.0The sign of the interaction term in the Hill failuretheory for laminates is incorrect because it does notdepend exclusively on the sign of the longitudinalstress.

6983556 V8.5For SOLs 106 and 129, NX Nastran fails to issuea user fatal message before the solve starts whena TABLEST bulk entry is used to define a plasticmaterial behavior.

NX Nastran 10 Release Guide 14-5

NX Nastran 10 Problem Report (PR) fixes

Page 584: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

6984660 V9.0

Because of an incorrect qualification of some datablocks; the code fails to recognize the K42GG qualifierwhich results in the system solution not recoveringthe results for all of the superelements.

The workaround is to remove the K42GG case controlcommand, which will allow the system solution torecover the results for all of the superelements.

6984676 V9.0 AUTOMPC processing causes DOF defined in the U4and U5 USET sets to be clobbered.

6989744 V8.5 Same as PR#6971287

7001524 V9.0User fatal message 2019 is issued when running ajob with a MATT11 temperature dependency definedwith a TABLEM2 bulk entry.

7101016 V9.0A bug in the Fortran code that is related to the sizingof a scratch file causes a matrix multiply error to occurand the job to terminate.

7108682 V9.0

When running SOL 601, the software issues warningmessage A1095 when it writes an unfactorized matrixthat exceeds 2.1GB to the disk.

The workaround is to use the 3D iterative solver ifpossible.

7109635 V9.0The code does not write the correct geometry datablocks to the .op2 file when PARAM,POST,-1 andPARAM,SECOMB,YES are both specified.

7113519 V9.0 Very slow performance occurs with the INPUTT4module in ILP-64.

7114950 V9.0 Same as PR#19759037115666 V9.0 A user interface issue causes acoustical solves to fail.7116142 V9.0 Same as PR#7115666

7129499 V9.0The use of bndfix (b-set) or bndfree (c-set) without anyq-set definition causes an incorrect redefinition of theb-set or c-set DOF, which leads to incorrect results.

7130228 V9.0 Dynamic analysis solves fail if PARAM,INREL,-2 isspecified.

7134953 V9.0When a local coordinate system is used to definethe rotor orientation on the ROTORD bulk entry, theCBEAR does not seem to have the correct stiffness.

7134966 V9.0 Same as PR#7134953

7137291 V9.0

Incorrect results occur when the REB3 couplingmethod is used on the ACMODL bulk data entry.

The workaround is to use the default fluid-structuralcoupling method.

7143107 V9.0 Same as PR#7115666

14-6 NX Nastran 10 Release Guide

Chapter 14: NX Nastran 10 Problem Report (PR) fixes

Page 585: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

NX Nastran 10 Problem Report (PR) fixes

7147649 P10.0 An error in the array pointer causes undefined valuesto be used in transient response calculations on ILP.

7148453 V9.0NX Nastran prints CROD stress as linear stress ifGPFORCE output is requested, and as nonlinearstress if GPFORCE output is not requested.

7157482 V9.0 In SOL 105, multiple ACCEL1 bulk entries with thesame SID cause an access violation fatal error.

7158172 V9.0

In SOL 601,106, because of a tolerance in the code,RBE2 elements are internally converted to beamelements.

The workaround is to run the model in SOL 601,129.7158708 P10.0 Because of a DMAP bug, requesting the MODCON

case control command for SPCF causes a fatal error.7159890 P10.0 NX Nastran issues user fatal message 300 if the

SETMC bulk entry is too long.

7159916 P10.0 For vibro-acoustic models, NX Nastran does notgenerate an .op2 file.

7161018 P10.0Because the MODCON capability does not accountfor the frequency-dependent characteristics of theCAABSF acoustic absorber element, incorrect resultsoccur.

7161836 V9.0 HIWATER words are specified as a string of asterisksin the f04 file.

7167503 P10.0 NX Nastran fails when input file contains anon-breaking space instead of a space.

7169221 P10.0 For RDMODES, redundant OFP messages arewritten on slave nodes.

7184068 V9.0When PARAM,AUTOMPC,YES is specified, SOL103response simulations crash and an access violationmessage is issued.

7192302 P10.0 A modal frequency response run terminates when aMODCON output request is specified.

NX Nastran 10 Release Guide 14-7

NX Nastran 10 Problem Report (PR) fixes

Page 586: NX Nastran 10 Release Guide - Siemens · PDF fileNX Nastran 10 Release Guide. Contents ... NX Nastran 10 summary of changes. Chapter1: NXNastran10summaryofchanges Parameter Parameterdescription

Siemens Industry Software

HeadquartersGranite Park One5800 Granite ParkwaySuite 600Plano, TX 75024USA+1 972 987 3000

AmericasGranite Park One5800 Granite ParkwaySuite 600Plano, TX 75024USA+1 314 264 8499

EuropeStephenson HouseSir William Siemens SquareFrimley, CamberleySurrey, GU16 8QD+44 (0) 1276 413200

Asia-PacificSuites 4301-4302, 43/FAIA Kowloon Tower, Landmark East100 How Ming StreetKwun Tong, KowloonHong Kong+852 2230 3308

About Siemens PLM Software

Siemens PLM Software, a business unit of the SiemensIndustry Automation Division, is a leading global providerof product lifecycle management (PLM) software andservices with 7 million licensed seats and 71,000 customersworldwide. Headquartered in Plano, Texas, SiemensPLM Software works collaboratively with companiesto deliver open solutions that help them turn moreideas into successful products. For more informationon Siemens PLM Software products and services, visitwww.siemens.com/plm.

© 2014 Siemens Product Lifecycle ManagementSoftware Inc. Siemens and the Siemens logo areregistered trademarks of Siemens AG. D-Cubed,Femap, Geolus, GO PLM, I-deas, Insight, JT, NX,Parasolid, Solid Edge, Teamcenter, Tecnomatix andVelocity Series are trademarks or registered trademarksof Siemens Product Lifecycle Management SoftwareInc. or its subsidiaries in the United States and in othercountries. All other trademarks, registered trademarksor service marks belong to their respective holders.