numerical modeling of seismic wave propagation in selected...

77
1 Numerical modeling of seismic wave propagation in selected anisotropic media by., Danek, T., Lesniak, A, Pieta, A.

Upload: others

Post on 20-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

1

Numerical modeling of seismic wave propagation in selected

anisotropic media

by., Danek, T., Lesniak, A, Pieta, A.

Page 2: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

2

Preface

This study is the first step toward creation of a computer system which allows efficient

modeling of seismic wave field in all kinds of 3D media. At the beginning, this study was a

part of a project of Oil and Gas Institute, Cracow, Poland, where solutions were created and

tested under the supervision of Prof. Halina Jędrzejowska-Tyczkowska. Then the study was

continued as a part of Statutory Research of a Department of Geoinformatics and Applied

Computer Science at AGH University of Science and Technology, Cracow, Poland,

no.11.11.140.561. Of course this kind of research and performed computation would have

never been possible without appropriate computer infrastructure which was financed by

special donation from the Polish Ministry of Science and Higher Education.

Summary

This book reports a comprehensive study of numerical modeling of wave propagation in 3D

anisotropic media. Finite-difference methods were used for efficient modeling of wave

propagation in such a media. After a short introduction, the book presents the theory of

anisotropic model that describes real geological media and its approximation using horizontal,

vertical, titled transverse isotropic and orthorhombic media in the second chapter. Also, the

construction of efficient and universal wave field modeling algorithm that is deduced from the

basic ones using stiffness matrix transformation by Bond matrices is shown. The third

chapter presents numerical solution of the elastic wave equation in various types of

anisotropic media. The second order in space and time finite-difference method was used to

obtain a detailed solution for all considered types of anisotropic media. Stability criteria for all

discussed algorithms are also presented. Fourth order in time finite-difference method is

presented additionally as an example of alternative numerical solution. In the next chapter

implementation of the finite-difference schemas including initial and border conditions and

computational environment is discussed. In the last chapter example results of wave

propagation modeling for different types of anisotropy and for various seismic sources are

presented and discussed.

Page 3: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

3

Contents

1. Introduction (ALeśniak, TDanek, APięta)...........................................................................5

2. Description of anisotropic models of real geological medium and its approximation (VTI,

HTI, TTI, orthorhombic media)(ALeśniak).............................................................................6

2.1. Introduction: Analogies to crystallography...................................................................6

2.2. Symmetry of stiffness tensor........................................................................................8

2.3. Anisotropy types of rock media....................................................................................9

2.4. Transformations of stiffness tensor.............................................................................12

2.5. Effective parameters for VTI medium........................................................................17

2.6. Thomsen parameters for VTI medium........................................................................22

2.7. Thomsen parameters for orthorhombic medium .........................................................24

3. Numerical solution of the elastic wave equation (APięta) .................................................26

3.1. Rhombic, transversely isotropic and isotropic media ..................................................27

3.2. Tilted transverse anisotropy media .............................................................................29

3.2.1 Rotation of vertical transverse isotropy medium around x1 axis by angle θ ........................ 29 3.2.2 Rotation of vertical transverse isotropy medium around x2 axis by angle θ ........................ 30 3.2.3 Rotation of horizontal transverse isotropy medium around x3 axis by angle θ .................... 31

3.3. Numerical solution of equation of motion using finite-difference method...................33

3.4. The stability criterion of second-order finite-difference schema .................................35

3.4.1 The stability criterion for vertical transverse isotropy medium............................................. 35 3.4.2 The stability criterion for horizontal transverse isotropy medium ........................................ 36 3.4.3 The stability criterion for rhombic isotropy medium ............................................................. 36 3.4.4. The stability criterion for tilted transverse anisotropy media - rotation of vertical transverse

isotropy medium around x1 axis by angle θ .................................................................................. 37 3.4.5. The stability criterion for tilted transverse anisotropy medium - rotation of vertical

transverse isotropy media around x2 axis by angle θ ................................................................... 38 3.4.6. The stability criterion for tilted transverse anisotropy medium - rotation of horizontal

transverse isotropy media around x3 axis by angle θ ................................................................... 39 4. Implementation of the finite-difference schemas (TDanek) ...............................................41

4.1. Initial and border conditions.......................................................................................41

4.2 Seismic wave propagation, finite-difference algorithm................................................41

4.3 Computational environment........................................................................................42

5. Example results of wave propagation modeling in anisotropic media(ALeśniak, TDanek,

APięta) .................................................................................................................................43

Page 4: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

4

5.1 Sources .......................................................................................................................45

5.1.1 Explosive source.................................................................................................................. 45 5.1.2 Double couple source .......................................................................................................... 45 5.1.3 Single force source .............................................................................................................. 45

5.2 Selected results and discussion....................................................................................45

5.2.1 Isotropic medium.................................................................................................................. 45 5.2.2 HTI medium ......................................................................................................................... 46 5.2.3 VTI medium.......................................................................................................................... 47 5.2.4 Orthorhombic medium ......................................................................................................... 48 5.2.5 Heterogeneous orthorhombic medium ................................................................................ 49

6. Summary(ALeśniak, TDanek, APięta)..............................................................................53

7. References........................................................................................................................54

Appendix 1. Matrix notation for constitutive relations ..........................................................56

Appendix 2.The finite-difference schema for horizontal transverse isotropy media...............57

Appendix 3. The finite-difference schema for tilted transverse anisotropy media - rotation

around x1 axis .......................................................................................................................58

Appendix 4. The finite-difference schema for tilted transverse anisotropy media - rotation

around x2 axis .......................................................................................................................59

Appendix 5. The finite-difference schema for tilted transverse anisotropy media - rotation

around x3 axis .......................................................................................................................60

Appendix 6. The fourth-order in time and second-order in space finite-difference schema for

transversely isotropic media .................................................................................................61

Appendix 7. Main computational kernel loop .......................................................................64

Appendix 8. Modeling results...............................................................................................66

Page 5: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

5

1. Introduction

Full-wave field modelling is a powerful tool of seismic exploration and seismology. It can be

used for various earthquake-related analyses and during many stages of seismic

investigations. Recent rapid progress in full-wave form seismic inversion methods has made

these simulations even more important.

The seismic wave field propagation is studied in simplified geological media. The heterogenic

medium is one of the common models of the real, complicated subsurface structure of earth. It

consists of homogeneous parts of different shapes and sizes. In most cases they are considered

as isotropic ones; e.g., mechanical parameters inside each part are constant and independent

of directions. But in an anisotropic medium, parameters that are measured depend on the

direction. The anisotropic and heterogeneous medium can be nowadays regarded as a

sufficient approximation of the real medium of seismic wave propagation.

Generally, the more complicated analyzed medium is, the more important correct

understanding of anisotropy is necessary. In the case of three dimensional (3D) anisotropic

media, abundance of possible waves and interactions between them can make wave form

analysis very complicated even if there is lack of any heterogeneity (e.g. layer borders).

Analysis of synthetic seismograms and modeled snapshots can be very interesting not only for

theoretical studies but also for solving real, “production” problems (Jędrzejowska-

Tyczkowska, 2006). Sometimes one synthetic seismogram or snapshot can reveal the true

nature and/or genesis of observed complicated wave forms. In complicated anisotropic media,

various wave forms can be created by simple wave propagation through homogeneous

medium. In a detailed analysis anisotropy can no longer be treated as a simple variation of

seismic wave speed with direction. Various waves, sometimes surprisingly hard to interpret,

can be observed in the case of even very limited anisotropy. On the other hand very subtle

distortion of wave speed symmetry can be crucial for final seismic or seismological

interpretation. Proper understanding of all effects of seismic anisotropy seems to be one of the

most important problems of modern geophysics.

The beginning of these studies can be traced back to 2004 when a series of papers concerning

wave filed modeling in complex and/or anisotropic media were published by authors (Leśniak

& Danek 2004; Danek & Franczyk 2004a, 2004b, Danek 2004). One year later these works

were continued as a part of European Union program – HPC Europa (Danek 2005a, 2005b).

Obtained results were a background to more mature studies which were conducted later (e.g.

Leśniak & Danek 2006, Pietsh et al. 2007). Finally during the second HPC Europe

cooperation (Danek 2007) additional efficiency studies for big, 3D models were carried out.

These results led to some complicated, full scale simulation (e.g. Danek et al. 2008, Pięta et

al. 2009) and to studies concerning alternative ways of wave filed modeling (Danek 2009).

All this experience in wave field propagation theory, computational methods and parallel

computing gave a proper background for the most ambitious task – full scale 3D modeling in

anisotropic media.

Page 6: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

6

2. Description of anisotropic models of real geological medium and its

approximation (VTI, HTI, TTI, orthorhombic media)

2.1. Introduction: Analogies to crystallography

At microscopic scale, anisotropy is related with crystals. Anisotropic properties of crystals

reflect their periodic structure at atomic scale. The terminology and basic models of

anisotropy that are used in geophysics are based mainly on information and names from

crystallography. Hence, there is a direct reference to the crystallography in the first chapter of

this publication.

Properties of anisotropic media can be represented by tensors. In the case of anisotropic media

measured physical properties depend on direction. A response of a crystal to the applied force

will not depend on force amplitude alone but on its direction as well. The manner in which a

given crystal will change its properties along with changes of the direction depends on its

symmetry. If a 3D crystal has defined planes of symmetry, its form will not change after the

symmetrical reflection about those planes.

Likewise, physical parameters measured in that direction do not change as a result of such

transformations. In other words, it is symmetry planes that determine the directions in which

physical parameters of a given crystal do not change. If stresses are applied in those

directions, the deformations will be the same. This also means that if a medium is

symmetrical about given transformation, the transformation does not change the stiffness

matrix that describes the medium.

The 3D space periodic structures (like crystals) can be constructed only in 32 ways: so-called

32 classes of symmetry that are grouped in seven systems that are listed below (e.g. Auld,

1973):

- triclinic

- monoclinic

- rhombic

- hexagonal

- rhombohedral (trigonal)

- tetragonal

- regular

The symmetry planes for basic classes of symmetry are shown in Fig.1.

Page 7: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

7

Fig.2.1. Symmetry planes for basic symmetry systems; a) monoclinic, b) tetragonal, c) rhombic, d) hexagonal, e)

rhombohedral, f) cubic (modified after Crampin 1984)

Rys. 2.1. Płaszczyzny symetrii podstawowych systemów symetrii. a) jednoskośny b) tetragonalny c) rombowy d)

heksagonalny e) romboedryczny f) kubiczny(Crampin 1984, zmodyfikowany)

Generally, more than 32 symmetry classes can be distinguished for a rock medium

(Winterstein, 1990). For instance, a plane-parallel medium is isotropic in any horizontal

direction. Any vertical plane is the symmetry plane for such a medium. This does not happen

in crystals. The same type of anisotropy is observed for a homogeneous medium with a

system of cracks with horizontal boundaries. Such media are anisotropic with so-called

vertical transverse isotropy (VTI). Adding two systems of parallel cracks with plane

boundaries into an anisotropic medium gives anisotropy that simultaneously belongs to

triclinic, rhombic, and tetragonal systems. Three-crack systems in a homogeneous medium

give anisotropy which is simultaneously included to triclinic, rhombohedric, hexagonal, and

regular systems.

Of greatest importance to geophysicists are media with vertical transverse isotropy; however,

other types of anisotropic media can be employed in seismics. We shall discuss them later in

this study.

Page 8: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

8

2.2. Symmetry of stiffness tensor

Anisotropic properties in geophysics are analyzed through studying the symmetry of stiffness

tensor that links stress with deformation:

3,2,1,,, == lkjic klijklij εσ

It is known that anisotropic systems can be classified based on the mutual position of their

symmetry planes (Crampin 1984). One can prove a theorem saying that ‘a plane 0=px is

the symmetry plane of an anisotropic system with stiffness tensor ijklc if and only if one or

three indexes i,j,k,l are equal to p’ (Crampin 1984).

To illustrate how this theorem acts, the stiffness tensor must be somewhat simplified.

Theoretically, it has 34

= 81components; however, they are not mutually independent.

Because stress and deformation are symmetric

lkkljiij εεσσ == (2.1)

we get the following identities

jilkijlkjiklijkl cccc === (2.2)

which reduce the number of independent components of the stiffness tensor to 36. In turn, the

identity

klijijkl cc = (2.3)

reduces that number to 21. The components can be written as a 6 x 6 symmetrical matrix (see

Appendix 1).

αβ

1111111

11

11

1111111111111111

ijkl C

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

C =

=

=

665646362616

565545352515

464544342414

363534332313

262524232212

65432

121212131223123312221211

131213131323133313221311

231223132323233323222311

3312331333233333332233

2212221322232233222222

23233322

(2.4)

Let a rhombic system with symmetry planes 01 =x , 02 =x and 03 =x be an example. Using

the Crampin theorem we conclude that the stiffness matrix for rhombic system has the form

Page 9: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

9

=

66

33313

31

13111

αβ

c00000

0c0000

00c000

000ccc

000ccc

000ccc

C

55

44

2

2222

2

(2.5)

with nine independent elements.

2.3. Anisotropy types of rock media

Throughout this book appropriate stiffness matrices are used in computer programs for wave-

field modeling. Each anisotropic medium has a specific stiffness matrix. What is important,

the number of independent matrix elements decreases when symmetry of the medium

increases.

The simplest medium we can consider is homogeneous and isotropic: only two components of

elastic tensor Cijkl are mutually independent. A symmetric tensor has the following form:

−−

−−

−−

=

44

44

44

44334433

4433334433

4433443333

c00000

0c0000

00c000

000c2cc2cc

0002ccc2cc

0002cc2ccc

C33

αβ

(2.6)

The Lame constants are given as: c44 = µ and c33 = λ+2µ.

From a practical point of view of the seismic exploration, three types of anisotropic media are

distinguished:

1. With hexagonal symmetry (transverse isotropy) in which physical properties do not change

perpendicular to the symmetry axis but they change parallel to it. Four types of anisotropy are

distinguished in these media:

• Vertical transverse isotropy (VTI) - for almost horizontal plane-parallel finely layered

media; the symmetry axis is vertical.

• Horizontal transverse isotropy (HTI) – for almost vertical plane-parallel finely layered

media; the symmetry axis is horizontal.

Page 10: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

10

Fig. 2.2. Models of VTI and HTI finely layered media with symmetry axis shown.

Rys. 2.2 Model ośrodka VTI i HTI zbudowane z ośrodków cienkowarstwowanych z zaznaczonymi osiami symetrii.

• Extensive dilatancy anisotropy (EDA) – caused by cracks with orientation different

from horizontal; the symmetry axis is different from vertical.

• Tilted transverse anisotropy (TTI) – for tilted plane-horizontal finely layered media;

the symmetry axis is different from vertical.

There are five independent components of stiffness tensors for these types of media. They

have the forms

− for VTI anisotropy:

=

66

331313

13116611

13661111

c00000

0c0000

00c000

000ccc

000cc2cc

000c2ccc

C

55

55

)(VTI

αβ

(2.7)

− for HTI anisotropy:

(2.8)

To explicitly obtain the stiffness matrix for TTI medium, the matrix for VTI medium

must be rotated around the corresponding horizontal axis.

=

55

55

44

4433

443333

)(

c00000

0c0000

00c000

000c2ccc

0002cccc

000ccc

C3313

13

131311

HTI

αβ

Page 11: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

11

2. Second, there is orthorhombic (rhombic) anisotropy that is a superposition of VTI and

EDA. It occurs for a vertical system of cracks in horizontally stratified media (e.g.

limestones). Usually VTI >> EDA.

Fig. 2.3. A scheme of orthorhombic system – plane-parallel medium with a system of vertical cracks (modified after

Tsvankin, 2001).

Rys. 2.3 Schematyczny model układu ortoromboidalnego - ośrodek płasko -równoległy wraz z nałoŜonym układem

pionowych szczelin (Tsvankin, 2001, zmodyfikowany).

The stiffness matrix for orthorhombic anisotropy has the form below.

=

66

33313

31

13111

αβ

c00000

0c0000

00c000

000ccc

000ccc

000ccc

C

55

44

2

2222

2

(2.9)

As it has been mentioned earlier, there are nine independent components of the stiffness

matrix.

3. Third, there is a monoclinic anisotropy that is observed if a system of non-vertical cracks

occurs in horizontally stratified systems. The monoclinic anisotropy also exists in media

where two, nonorthogonal systems of cracks exist.

Page 12: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

12

Fig. 2.4. Two systems of parallel cracks forming monoclinic anisotropy. There, the symmetry plane is horizontal

(modified after Tsvankin, 2001).

Rys. 2.4 Dwa systemy równoległych szczelin tworzących układ jednoskośny. Płaszczyzną symetrii jest w tym wypadku

płaszczyzna pozioma (Tsvankin, 2001, zmodyfikowany).

The stiffness tensor has the following form:

=

661

33313

31

113111

αβ

c00ccc

0cc000

0cc000

c00ccc

c00ccc

c00ccc

C

36266

5545

4544

362

262222

62

(2.10)

An interesting case occurs when 0

21 90=+φφ . Then the above shown system reduces to the

rhombic system.

Theoretically, at least a dozen or so other symmetry systems can be distinguished for the

elastic tensor, and hence the same number of anisotropy types. However, only the three

above-mentioned types were found during seismic field survey. Maybe other types of

anisotropy do not appear in nature, possibly because of physical reasons.

2.4. Transformations of stiffness tensor

The more complicated anisotropy models can be evaluated from the basic ones (described

above) through application of the specific transformation of the stiffness tensor. This stiffness

tensor transformation is achieved when a specific rotation is made around a given symmetry

axis. Since rotations belong to orthogonal transformations, they can be characterized by

matrix { } 3,2,1, == jiaija that satisfies conditionsTaa =−1

, Iaa =Tand ( ) 1det =a for

rotation and ( ) 1det −=a for symmetry. Equations that transform stress tensors and

Page 13: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

13

deformation tensors to a new (‘) coordinate system (the Einstein’s summation convention is

consistently applied) are

kljlikij aa εε =′

kljlikij aa σσ =′ (2.11)

The equations have the following form in matrix notation:

Nεε =′ (2.12)

Mσσ =′

where N and M are transformation matrices from one coordinate system to the other. The

explicit forms of matrices N and M are as follows:

+++

+++

+++=

211222112311211322132312231322212111

311232113311311332133312133312321131

322131223123331232233322332332223121

323131333332

2

33

2

32

2

31

222121232322

2

23

2

22

2

21

121111131312

2

13

2

12

2

11

222

222

222

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

N

+++

+++

+++=

211222112311211322132312231322212111

311232113311311332133312133312321131

322131223123331232233322332332223121

323131333332

2

33

2

32

2

31

222121232322

2

23

2

22

2

21

121111131312

2

13

2

12

2

11

222

222

222

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

M

(2.13)

The N matrix and M matrix are known as ‘Bond matrices’. Using formula (2.1) and because

matrix a is orthogonal, one can easily prove that T1 MN =− . It can be concluded that

εCσ ′′=′

1MCNC −=′ (2.14)

and finally:

TMCMC =′ (2.15)

For rotation around the vertical axis, the matrix of rotation by angle θ has the form

Page 14: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

14

=

100

0cossin

0sincos

θθ

θθ

a

(2.16)

Similarly, for rotation around x1 and x2 axis there is

−=

θθ

θθ

cossin0

sincos0

001

a

=

θθ

θθ

cos0sin

010

sin0cos

a

(2.17)

The two above given formulas enable the explicit expressions for stiffness matrix for specific

anisotropy models to be obtained.

As the first example, let us consider a TTI medium (a VTI medium rotated by angle θ around

x1 or x2 axis). First, we must determine the Bond matrices for those rotations. For rotation

around X1 axis the Bond matrix is

=

θθ

θθ

θθθ

θθθ

θθθ

cossin0000

sincos0000

002cos2sin2sin0

002sincossin0

002sinsincos0

000001

22

22

M

(2.18)

whereas for rotation around X2 axis it is

−−

=

θθ

θθθθθ

θθ

θθθ

θθθ

cos0sin000

02cos0cossin0cossin

sin0cos000

02sin0cos0sin

000010

02sin0sin0cos

22

22

M

(2.19)

To obtain explicit expressions for stiffness matrix components for TTI (rotation around x1

axis), we must perform pretty arduous matrix multiplication:

θθ

θθ

θθθ

θθθ

θθθ

cossin0000

sincos0000

002cos2sin2sin0

002sincossin0

002sinsincos0

000001

22

22

66

55

55

331313

13116611

13661111

00000

00000

00000

000

0002

0002

c

c

c

ccc

cccc

cccc

θθ

θθ

θθθ

θθθ

θθθ

cossin0000

sincos0000

002cos2sin2sin0

002sincossin0

002sinsincos0

000001

22

22

As a result we get the following expressions for stiffness tensor coefficients for TTI:

c'11= 11c

Page 15: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

15

c'21= c'12= ( ) θθ 2

13

2

6611 sincos2 ccc +−

c'31= c'13= ( ) θθ 2

13

2

6611 cossin2 ccc +−

c'41= c'41= ( ) θθ 2sin2sin2 136611 ccc −−

c'22= θθθθθ 2sinsincos2sincos2

55

22

13

4

33

4

11 cccc +++

c'23= c'32= ( ) ( ) θθθθθ 2sincossincossin 2

55

22

1133

44

13 cccc −+++

c'24= c'42= θθθθθθθθ 2cos2sin2sinsin2cossin2sincos 55

2

33

2

13

2

11 cccc −−−

c'33= θθθθθ 2sincoscossin2sin 2

55

4

33

22

13

4

11 cccc +++

c'43= c'34= θθθθθθθ 2sin2sincos2sin2cos2sinsin2

55

2

3313

2

11 cccc −−+

c'44= ( ) θθ 2cos2sin2 2

55

2

331311 cccc ++−

c'55= θθ sincos 6655 cc +

c'65= c'56= ( ) θθ cossin5566 cc −

c'66= θθ cossin 6655 cc + (2.20)

Other coefficients of the stiffness matrix are equal to zero. Stiffness matrix coefficients for

rotation around x2 axis can be calculated in the same way. The values are as follows:

θθθθθθθ cossin2sinsinsincos2cos 55

4

33

22

13

4

11

'

11 ccccc +++=

( ) θθ 2

13

2

6611

'

21

'

12 sincos2 ccccc +−==

( ) ( ) θθθθθθθ cossin2sincossinsincos 55

44

13

22

3311

'

13 ccccc −+++=

( ) θθθθ 2sin2cossincos 55

2

3313

2

11

'

15 ccccc −++=

11

'

22 cc =

( ) θθ 2

13

2

6611

'

32

'

23 cossin2 ccccc +−==

( ) θ2sin2 136611

'

25 cccc +−=

( ) ( ) θθθθθθθ sincos2sinsincossincos 55

44

13

22

3311

'

31 ccccc ++++=

θθθθθθθ cossin2sincossincos2sin 55

4

33

22

13

4

11

'

33 ccccc −++=

Page 16: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

16

( ) θθθθ 2sin2coscossin 55

2

3313

2

11

'

35 ccccc −++= (2.21)

θθ 2

66

2

55

'

44 sincos ccc −=

( ) θθ sincos6655

'

46 ccc +=

( )( )θθθθθθθ 2cossincossincoscossin 55

2

33

22

13

2

11

'

51 ccccc −−−+=

( ) θθ cossin2 136611

'

52 cccc −−=

( )( )θθθθθθθ 2coscossincossincossin 55

2

33

22

13

2

11

'

53 ccccc +−−+=

( ) θθθθ 2cos2sincossin 2

553311

'

55 cccc +−=

( ) θθ sincos6655

'

46

'

64 cccc +−==

θθ 2

66

2

55

'

66 cossin ccc +−=

Let the stiffness matrix transformation around x1 axis by angle θ for HTI be the third

example.

−−

=

=

001

sincos0

cossin0

001

010

100

100

0cossin

0sincos

θθ

θθ

θθ

θθ

a

(2.22)

The Bond matrix has the form:

−−

−−

=

002cos2sin2

12sin2

10

sincos0000

cossin0001

000000

002sinsincos0

002sincossin022

22

θθθ

θθ

θθ

θθθ

θθθ

M

(2.23)

To obtain an expression for the stiffness matrix for HTI medium rotated by θ around the

vertical axis, we must perform the transformation TMCMC =′ , where C is the stiffness

matrix for VTI medium. As a result we get the following expressions for stiffness tensor

coefficients for TTI medium:

c'11= ( )( ) θθθ 4

11

2

5513

4

33 sin2sin221cos cccc +++

Page 17: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

17

c'21= c'12= ( ) ( )[ ]θ4cos424681 5533131155331311 cccccccc −+−−−++

c'31= c'13= θθ 2

13

2

12 cossin cc +

c'61= c'16= ( ) ( )[ ] θθ 2sin2cos4241 553313113311 cccccc −+−++−

c'22= ( )( ) θθθ 2sin221sincos 2

5513

4

33

4

11 cccc +++

c'23= c'32= θθ 2

13

2

12 sincos cc +

c'26= c'62= ( ) ( )[ ] θθ 2sin2cos4241 553313113311 cccccc −+−−+−

c'33= 11c

c'63= c'36= ( )( ) θ2sin21 1213 cc −

c'44= ( )( ) θθ 2

55

2

1211 sincos21 ccc +−

c'55= ( )( ) θθ 2

55

2

1211 cossin21 ccc +−

c'45= c'54= ( )( ) θ2sin241 551211 ccc ++−

c'66= ( ) ( )[ ]θ4cos424281 5533131155331311 cccccccc −+−−++− (2.24)

Using the above given expressions and examples one can relatively easily determine stiffness

matrix coefficients for plane-parallel media with different orientations of the symmetry axis,

for example from VTI through TTI to HTI media.

2.5. Effective parameters for VTI medium

Sedimentary structures often take cyclic forms with plane-parallel boundaries, as it is shown

in the figure below.

Page 18: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

18

2.5. Cyclic form of sedimentary structure

Rys. 2.5. Forma cykliczna struktury sedymentacyjnej.

For long-enough wave lengths, the structure shown in the figure will behave as a

homogeneous anisotropic structure.

Fig.2.6. Schematic image of a stratified structure that behaves as an anisotropic medium

Rys. 2.6 Schematyczny obraz struktury warstwowanej zachowującej się jak ośrodek anizotropowy.

At a macroscopic scale, seismic anisotropy in stratified media occurs when the wavelength, λλλλ,

is much bigger than layer thickness, hi. It can be assumed that the following condition must be

satisfied:

Page 19: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

19

max8h≥λ (2.25)

Let us assume that a VTI structure is periodic and built of homogeneous and isotropic layers

with thickness 1h and 2h . Each layer is described by the stiffness matrix having two

parameters, λ and µ (Lame constants). On the other hand, an equivalent VTI medium is

characterized by the stiffness matrix with five independent coefficients (6655331311 ,,,, ccccc ). It

should be remembered that 661112 2ccc −= . One can prove that stiffness matrix coefficients

for such a structure (Postma, 1955) take the following form:

c11= ( ) ( )( ) ( ) ( ) ( )[ ]{ }22121212211

2

21 224221

µλµλµµµλµλ +−+−++++ hhhhL

c21= ( ) ( )( ){ }2112221121

2

21 21

hhhhhhL

µµλλλλ ++++

c31= ( ) ( ) ( )[ ]{ }1122221121 221

µλλµλλ ++++ hhhhL

c33= ( ) ( )( ){ }2211

2

21 221

µλµλ +++ hhL

c55=( )

1221

2121

µµ

µµ

hh

hh

+

+

c66=( )

( )21

2211

hh

hh

+

+ µµ

(2.26)

where ( ) ( ) ( )[ ]11222121 22 µλµλ ++++= hhhhL .

A different situation is observed for non-periodic media. We assume that a plane-parallel

medium is built of L single layers whose thickness is much smaller than the dominating

seismic wave length; in this case transverse isotropy rather than isotropy is assumed, with the

symmetry axis perpendicular to stratification. Moreover, the stationarity of layer sequence is

assumed. This means that the percent contribution of individual components is stable for

packets whose thickness is much smaller than the wavelength. In such a case, stiffness matrix

coefficients are a combination of average coefficient values for individual layers (Backus,

1962):

c11=2

1

3313

11

33

1

33

2

1311

−−

−− +− cccccc

c21= 2

1

3313

11

33

1

33

2

1312

−−−− +− cccccc

c31= 1

3313

11

33

−−−ccc

Page 20: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

20

c33=1

1

33

−−c

c55=1

1

55

−−c

c66= 66c (2.27)

where the value in cone brackets is the weighted mean of corresponding parameters:

∑=

=L

i

iiawa1

(2.28)

where the weighting value iw depends on layers’ thicknesses.

The results shown above were extended to sequences of arbitrary, thin (as compared to

seismic wavelength) anisotropic layers (Schoenberg, Muir, 1989). Let us assume such a

sequence satisfies the stationary conditions. Let )(n

ijσ be a stress tensor for n-th layer, )(n

klε be a

deformation tensor for that layer, and )(n

ijklc be its stiffness tensor. Changing from fourth-order

tensor notation to second-order tensors (as explained above and in Appendix 1), the

generalized Hooke’s law for n-th layer can be written:

6,5,4,3,2,1,)()()( == kjcn

k

n

jk

n

j εσ (2.29)

We assume that all stress components that act tangentially to stratification are identical for

each layer. A similar assumption is taken for deformation components parallel to

stratification. Other components of both stress and deformation can change from layer to

layer.

Let us define the following vectors:

- tangent stress vector [ ]Tnnnn

TS)(

6

)(

2

)(

1

)( ,, σσσ=

- normal stress vector [ ]TNS 543 ,, σσσ=

- tangent strain vector [ ]TTE 621 ,, εεε=

- normal strain vector [ ]Tnnnn

NE)(

5

)(

4

)(

3

)( ,, εεε= .

Using that notation we can write the Hooke’s law in the following form:

)()()()( n

N

n

TNT

n

TT

n

T ECECS +=

)()()( n

N

n

NNT

n

NTN ECECS += (2.30)

where:

Page 21: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

21

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=nnn

nnn

nnn

n

TT

ccc

ccc

ccc

C

662616

262212

161211

)(

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=nnn

nnn

nnn

n

TN

ccc

ccc

ccc

C

564636

252423

151413

)(

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=nnn

nnn

nnn

n

NN

ccc

ccc

ccc

C

554535

454434

353433

)(

while )(n

NTC is a transposition of )(n

TNC .

Coefficients of an equivalent homogeneous medium are obtained as a result of averaging

procedure. Solving the above equations for )(n

TS and )(n

NE we get:

( ) N

n

NN

n

TNT

n

NT

n

NN

n

TN

n

TT

n

T SCCECCCCS )(1)()()(1)()()( −− +−=

N

n

NNT

n

NT

n

NN

n

N SCECCE)(1)()(1)( −− +−= .

(2.31)

The first equation gives values of tangent stresses in each layer. The average of those stresses

i.e. the sum over all layers divided by the total layer thickness gives the mean force tangent to

stratification of the medium. Through averaging procedure the second equation gives the

mean thickness change of the layer packet.

Through weighted averaging (the weighting coefficients are equal to thicknesses of the layers)

we get

( ) NNNTNTNTNNTNTTT SCCECCCCS 11 −− +−=

NNNTNTNNN SCECCE 11 −− +−= (2.32)

where ⋅ stands for weighted averaging procedure.

Solving the second equation for NS and substituting the result into the first equation we get:

NTNTTTT ECECS +=

NNNTNTN ECECS += (2.33)

where

Page 22: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

22

11

−−= NNNN CC

NNNNTNTN CCCC 1−=

NTNNNNNNTNNTNNTNTTTT CCCCCCCCCC 111 −−− +−=

The above given equations describe relationships between stress and strain in a homogeneous

medium that is equivalent to a medium consisting of N anisotropic layers (arbitrary

anisotropy).

2.6. Thomsen parameters for VTI medium

There are several disadvantages of the conventional notation for a VTI medium:

• inconvenient evaluation of a strength of anisotropy (particularly for small offsets that

are used in seismic surveys); no possibility to evaluate anisotropy of P waves

propagating in near-vertical direction;

• subordination of P-wave and SV-wave propagation to four parameters (c11, c33, c55,

c13); in the so-called “Thomsen notation”, the number of parameters responsible for P-

wave and SV-wave propagation can be reduced to three;

• due to the relationship between c55 and c13, the inversion of P section does not allow

the above parameters to be reproduced ;

• expressions for kinematic corrections are very complicated; they can be simplified

using the Thomsen parameters.

For VTI medium, Thomsen (1986) proposed substituting five independent material constants

with combination of them so that new constants could better describe seismic wave

propagation. If we take that

ρ33

0

cVP =

ρ55

0

cVS =

33

3311

2c

cc −=ε

( ) ( )( )553333

2

5533

2

5513

2 ccc

cccc

−−+=δ

55

5566

2c

cc −=γ

(2.34)

where ρ is medium density, then P-wave and SV-wave propagation will be described by first

four constants while SH-wave propagation will depend on parameters VS0 and γ alone. If the

last three parameters take small values, we can get approximated expressions for longitudinal

and shear wave propagation depending on θ angle (Thomsen, 1986):

( ) ( )

( ) ( )

( ) ( )θγθ

θθδεθ

θεθθδθ

2

0

222

0

2

00

422

0

sin1

cossin1

sincossin1

+=

−+=

++=

SSH

s

pSSV

PP

VV

V

VVV

VV

(2.35)

Page 23: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

23

Constants VP0 and VS0 are, respectively, P-wave and S-wave propagation velocities in

direction parallel to the symmetry axis of VTI medium (perpendicular to stratification).

Analyzing expressions for P-wave and S-wave propagation velocities one can find that

coefficient ε controls P-wave velocity for near horizontal propagation (big values of θ angle).

In turn, for small θ angles (almost vertical propagation that is a frequent case in practice) it is

coefficient δ that controls anisotropic properties for P-wave propagation.

Fig. 2.7. P-wave rays (black lines) and wave fronts (white solid lines) in VTI medium with parameters εεεε = 0.1 and δδδδ =

-0.1. P-wave front for isotropic medium is marked in white dashed line (Tsvankin, 2001).

Rys 2.7 Promienie fali podłuŜnej (czarne linie proste) i fronty falowe (linie białe ciągłe) w ośrodku VTI o parametrach

εεεε=0.1 oraz δδδδ= -0.1. Front falowy fali podłuŜnej dla ośrodka izotropowego zaznaczono białą linią przerywaną

(Tsvankin, 2001).

Phase velocities obtained from Thomsen relations are shown in polar diagrams that illustrate a

dependence of P-wave and SV-wave phase velocity on phase angle θ for two anisotropic

media (Fig. 2.8). Values for components of stiffness tensor and corresponding Thomsen

parameters for both media are given in Table 2.1.

Table 2.1. Parameters of two sample anisotropic media of VTI type

ρ C11 C13 C33 C55 C66 VP0 VS0 ε δ γ

Layer 1 2000 18 6.4 12.0 5.5 4.2 2.45 1.66 0.25 0.64 -0.12

Layer 2 2100 40 13.0 33.0 12.0 8.0 3.96 2.39 0.106 0.13 -0.167

Page 24: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

24

Fig. 2.8. Direction distribution of P-wave (solid line) and SV-wave (dashed line) phase velocity depending on phase

angle θθθθ for two anisotropic media with parameters listed in Table 1. A – layer 1, B- layer 2.

Rys 2.8 Rozkład kierunkowy prędkości fazowej propagacji fal sejsmicznych P (linia ciągła) i SV (linia przerywana) w

zaleŜności od kąta fazowego θ dla dwóch ośrodków anizotropowych scharakteryzowanych parametrami

przedstawionymi w Tabeli 1. A – warstwa 1, B – warstwa 2.

2.7. Thomsen parameters for orthorhombic medium

A HTI model is merely the first approximation of an anisotropic medium in which the

velocity depends on the azimuth. A more viable model of real anisotropic medium is an

above-defined orthorhombic (rhombic) medium that has two vertical symmetry planes shown

in Fig. 2.3 as [x1,x3] i [x2,x3].

Thomsen parameters for a rhombic medium are defined as follows:

1) equivalent of parameter ε for symmetry plane [x1,x3]

( )

33

33112

2c

cc −=ε

(2.36a)

2) equivalent of parameter δ for symmetry plane [x1,x3]

( ) ( ) ( )( )553333

2

5533

2

55132

2 ccc

cccc

−−+=δ

(2.36b)

3) equivalent of parameter γ for symmetry plane [x1,x3]

( )

44

44662

2c

cc −=γ

(2.36c)

4) equivalent of parameter ε for symmetry plane [x2,x3]

( )

33

33221

2c

cc −=ε

(2.36d)

Page 25: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

25

5) equivalent of parameter δ for symmetry plane [x2,x3]

( ) ( ) ( )( )443333

2

4433

2

44231

2 ccc

cccc

−−+=δ

(2.36e)

6) equivalent of parameter γ for symmetry plane [x2,x3]

( )

55

55661

2c

cc −=γ

(2.36f)

7) equivalent of parameter δ for symmetry plane [x1,x2]

( ) ( ) ( )( )661111

2

6611

2

66123

2 ccc

cccc

−−+=δ

(2.36g)

8) vertical velocity for P wave

ρ33

0

cVP =

(2.36h)

9) vertical velocity for S wave polarized in x2 axis direction

ρ44

0

cVS =

(2.36i)

Both VTI medium and HTI medium are special cases of rhombic anisotropy. It reduces to

VTI medium when parameters of the medium are identical around symmetry planes [x1,x3]

and [x2,x3] and P-wave and S-wave velocity in [x1,x2] plane are constant.

Page 26: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

26

3. Numerical solution of the elastic wave equation

In this chapter numerical solution of equation of motion in anisotropic medium is presented.

The second-order in space and time finite-difference method was used to obtain a detailed

solution for vertical, horizontal and rhombic transverse isotropy and tilted transverse

anisotropy media. Stability criteria for all discussed algorithms are also presented. As an

example of alternative numerical solution the fourth order in time finite-difference method is

presented additionally.

The equation of motion for perfectly elastic medium can be written as

zyxt

w

zyxt

v

zyxt

u

zzzyzx

zyyyyx

zxyxxx

∂+

∂+

∂=

∂+

∂+

∂=

∂+

∂+

∂=

σσσρ

σσσρ

σσσρ

2

2

2

2

2

2

(3.1)

where ρ is density,

( )wvuu ,,r

is displacement vector and { }zyxjiij ,,,; ∈σ is stress tensor.

After applying relationship between stress and strain (3.2) to the equation (3.1)

εσ C= (3.2)

where

[ ]Tzxyzxyzzyyxx σσσσσσσ = is stress vector;

[ ]Tzxyzxyzzyyxx εεεεεεε 222= is strain vector;

=

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

C is stiffness matrix.

The general form of the equation of motion in anisotropic medium takes the following form:

Page 27: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

27

[ ]

[ ]

[ ]zxyzxyzzyyxx

zxyzxyzzyyxx

zxyzxyzzyyxx

ccccccz

ccccccy

ccccccxt

u

εεεεεε

εεεεεε

εεεεεερ

666564636261

464544434241

1615141312112

2

222

222

222

+++++∂

++++++∂

++++++∂

∂=

[ ]

[ ]

[ ]zxyzxyzzyyxx

zxyzxyzzyyxx

zxyzxyzzyyxx

ccccccz

ccccccy

ccccccxt

v

εεεεεε

εεεεεε

εεεεεερ

565554535251

262524232221

4645444342412

2

222

222

222

+++++∂

++++++∂

++++++∂

∂=

(3.3)

[ ]

[ ]

[ ]zxyzxyzzyyxx

zxyzxyzzyyxx

zxyzxyzzyyxx

ccccccz

ccccccy

ccccccxt

w

εεεεεε

εεεεεε

εεεεεερ

363534333231

565554535251

6665646362612

2

222

222

222

+++++∂

++++++∂

++++++∂

∂=

Components of the strain tensor in (3.3) can be eliminated using the strain displacement

relation (3.4) (Igel et al., 1995). In the following chapters detailed forms of equation of

motion which describes wave propagation in vertical and horizontal transversely isotropic

media and tilted transverse anisotropy media will be presented.

∂+

∂=

i

u

j

u jiij

2

1ε (3.4)

3.1. Rhombic, transversely isotropic and isotropic media

In rhombic medium the stiffness matrix takes the form

=

66

55

44

333231

232221

131211

00000

00000

00000

000

000

000

c

c

c

ccc

ccc

ccc

C (3.5)

Hence after applying the strain displacement relation (3.4), equation of motion (3.3) can be

rewritten as

Page 28: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

28

( ) ( )zx

wcc

yx

vcc

z

uc

y

uc

x

uc

t

u

∂∂

∂++

∂∂

∂++

∂+

∂+

∂=

∂ 2

6613

2

44122

2

662

2

442

2

112

2

ρ

( ) ( )zy

wcc

yx

ucc

z

vc

y

vc

x

vc

t

v

∂∂

∂++

∂∂

∂++

∂+

∂+

∂=

∂ 2

5523

2

44212

2

552

2

222

2

442

2

ρ (3.6)

( ) ( )zy

vcc

zx

ucc

z

wc

y

wc

x

wc

t

w

∂∂

∂++

∂∂

∂++

∂+

∂+

∂=

∂ 2

5532

2

66312

2

332

2

552

2

662

2

ρ

For rhombic medium nine elastic constants are independent whereas for transversely isotropic

medium only five elastic constants are independent and for isotropic only two (Thomsen,

1986). This is due to symmetry of stiffness matrix and dependences among elastic constants

discussed in detail in Chapter 2.

For rhombic and isotropic media these dependences can be written as: (3.7a) and (3.7b)

respectively.

3223

3113

2112

cc

cc

cc

=

=

=

(3.7a)

4433322331132112

446655

332211

2cccccccc

ccc

ccc

−======

==

==

(3.7b)

For transversely isotropic media with a vertical axis of symmetry (VTI - vertical transverse

isotropy ) and horizontal axis of symmetry (HTI - horizontal transverse isotropy) these

dependences take the form (3.8a and 3.8b respectively):

5544

133223

1122

3113

66112112 2

cc

ccc

cc

cc

cccc

=

==

=

=

−==

(3.8a)

5566

44333223

3322

3113

132112

2

cc

cccc

cc

cc

ccc

=

−==

=

=

==

(3.8b)

Page 29: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

29

3.2. Tilted transverse anisotropy media

3.2.1 Rotation of vertical transverse isotropy medium around x1 axis by angle θθθθ

Fig. 3.1. Rotation of vertical transverse isotropy medium around x1 axis by angle θθθθ (the view after rotation)

Rys. 31. Rotacja ośrodka z anizotropią typu VTI względem osi x1 o kąt θθθθ (widok po rotacji).

After rotation of VTI medium around x1 axis the stiffness matrix takes the form

'

66

'

56

'

56

'

55

'

44

'

34

'

24

'

14

'

34

'

33

'

23

'

13

'

24

'

23

'

22

'

12

'

14

'

13

'

12

'

11

0000

0000

00

00

00

00

cc

cc

cccc

cccc

cccc

cccc

(3.9)

where elastic constants are linear combination of unrotated elastic constants and trigonometric

values of rotation angles described in previous chapter (equation 2.20)

Equation of motion for this kind of anisotropy is reduced to

xz

wc

yz

wc

zy

wc

zx

wc

z

vc

y

vc

yx

vc

xy

vc

x

vc

z

uc

y

uc

yx

uc

yx

uc

x

uc

t

u

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂

∂+

∂+

∂∂

∂+

∂∂

∂+

+∂

∂+

∂+

∂∂

∂+

∂∂

∂+

∂=

2'

66

2'

56

2'

34

2'

13

2

2'

562

2'

24

2'

12

2'

442

2'

14

2

2'

662

2'

44

2'

14

2'

142

2'

112

2

ρ

Page 30: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

30

xz

wc

yz

wc

zy

wc

zx

wc

z

vc

y

vc

yx

vc

xy

vc

x

vc

z

uc

y

uc

yx

uc

yx

uc

x

uc

t

v

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂

∂+

∂+

∂∂

∂+

∂∂

∂+

+∂

∂+

∂+

∂∂

∂+

∂∂

∂+

∂=

2'

56

2'

55

2'

23

2'

34

2

2'

552

2'

22

2'

24

2'

242

2'

44

2

2'

562

2'

24

2'

12

2'

442

2'

142

2

ρ

(3.10)

2

2'

332

2'

55

2'

56

2'

562

2'

66

2'

23

2'

34

2'

55

2'

56

2'

13

2'

34

2'

56

2'

662

2

z

wc

y

wc

yx

wc

yx

wc

x

wc

yz

vc

xz

vc

zy

vc

zx

vc

xz

uc

yz

uc

zy

uc

zx

uc

t

w

∂+

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂=

∂ρ

3.2.2 Rotation of vertical transverse isotropy medium around x2 axis by angle θθθθ

Fig. 3.2. Rotation of vertical transverse isotropy medium around x2 axis by angle θθθθ (the view after rotation)

Rys. 3.2. Rotacja ośrodka z anizotropią typu VTI względem osi x2 o kąt θθθθ (widok po rotacji).

Stiffness matrix for VTI medium rotated around x2 axis takes the form:

Page 31: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

31

'

66

'

64

'

55

'

53

'

52

'

51

'

46

'

44

'

35

'

33

'

32

'

31

'

25

'

23

'

22

'

21

'

15

'

13

'

12

'

11

0000

00

0000

00

00

00

cc

cccc

cc

cccc

cccc

cccc

(3.11)

Elastic constants from equation (3.11) are calculated using relation described in previous the

chapter (equation 2.21).

For this kind of anisotropy, equation of motion can be written as

xz

wc

xy

wc

zx

wc

yx

wc

xz

vc

xy

vc

zx

vc

yx

vc

z

uc

yz

uc

zy

uc

y

uc

x

uc

t

u

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂

∂+

∂∂

∂+

∂∂

∂+

∂+

∂=

2'

66

2'

46

2'

13

2'

15

2'

64

2'

44

2'

15

2'

12

2

2'

66

2'

64

2'

462

2'

442

2'

112

2

ρ

2

2'

53

2'

55

2'

232

2'

252

2'

46

2

2'

55

2'

52

2'

252

2'

222

2'

44

2'

51

2'

21

2'

46

2'

442

2

z

wc

yz

wc

zy

wc

y

wc

x

wc

z

vc

yz

vc

zy

vc

y

vc

x

vc

xz

uc

xy

uc

zx

uc

yx

uc

t

v

∂+

∂∂

∂+

∂∂

∂+

∂+

+∂

∂+

∂∂

∂+

∂∂

∂+

∂+

+∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂=

∂ρ

(3.12)

2

2'

33

2'

35

2'

532

2'

552

2'

66

2

2'

35

2'

32

2'

552

2'

522

2'

64

2'

31

2'

51

2'

66

2'

642

2

z

wc

yz

wc

zy

wc

y

wc

x

wc

z

vc

yz

vc

zy

vc

y

vc

x

vc

xz

uc

xy

uc

zx

uc

yx

uc

t

w

∂+

∂∂

∂+

∂∂

∂+

∂+

+∂

∂+

∂∂

∂+

∂∂

∂+

∂+

+∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂=

∂ρ

3.2.3 Rotation of horizontal transverse isotropy medium around x3 axis by angle θθθθ

Page 32: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

32

Fig. 3.3. Rotation of horizontal transverse isotropy medium around x3 axis by angle θθθθ (the view after rotation)

Rys. 3.3. Rotacja ośrodka z anizotropią typu HTI względem osi x3 o kąt θθθθ (widok po rotacji).

Stiffness matrix for horizontal isotropic medium rotated around x3 axis can be written as

'

66

'

36

'

26

'

16

'

55

'

45

'

45

'

44

'

36

'

33

'

23

'

13

'

26

'

23

'

22

'

12

'

16

'

13

'

12

'

11

00

0000

0000

00

00

00

cccc

cc

cc

cccc

cccc

cccc

(3.13)

where elastic constants are calculated using relation described in the previous chapter

(equation 2.24)

and equation of motion for this kind of anisotropy is reduced to the form of

2

2'

36

2'

662

2'

45

2'

132

2'

16

2'

26

2'

45

2'

44

2'

12

2

2'

66

2'

162

2'

44

2'

162

2'

112

2

z

wc

xz

wc

y

wc

zx

wc

x

wc

yz

vc

zy

vc

xy

vc

yx

vc

z

uc

xz

uc

y

uc

zx

uc

x

uc

t

u

∂+

∂∂

∂+

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂

∂+

∂∂

∂+

∂+

∂∂

∂+

∂=

∂ρ

Page 33: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

33

yz

wc

zy

wc

xy

wc

yx

wc

z

vc

xz

vc

y

vc

zx

vc

x

vc

yz

uc

zy

uc

xy

uc

yx

uc

t

v

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂=

2'

55

2'

23

2'

26

2'

45

2

2'

55

2'

452

2'

22

2'

452

2'

44

2'

45

2'

26

2'

12

2'

442

2

ρ

(3.14)

2

2'

33

2'

362

2'

55

2'

362

2'

66

2'

23

2'

55

2'

45

2'

26

2

2'

36

2'

132

2'

45

2'

662

2'

162

2

z

wc

xz

wc

y

wc

zx

wc

x

wc

yz

vc

zy

vc

xy

vc

yx

vc

z

uc

xz

uc

y

uc

zx

uc

x

uc

t

w

∂+

∂∂

∂+

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂+

∂∂

+∂

∂+

∂∂

∂+

∂+

∂∂

∂+

∂=

∂ρ

3.3. Numerical solution of equation of motion using finite-difference method

Finite-difference methods are widely used to model seismic wave propagation in elastic

media (Alford, 1974; Kelly i in., 1976, Reynolds 1987). Numerical solution of the equation of

motion can be obtained using various formulations of finite-difference schemes and these

differ from one another by accuracy, efficiency and computational time. In this study the

explicate schemes computationally simpler than implicit ones were used. In this schemes

motion at a given spatial grid point and time level is calculated only from motion at a previous

time level (or levels) and adjacent grid points.

Second-order in space and time explicate finite-difference scheme can be obtained by

adopting the central difference (3.15) to approximate partial derivative of equation of motion

( )( )[ ]2

2

,1,,1

,

2

2 2xO

x

uuu

x

u jijiji

ji

∆+∆

+−=

∂ −+ (3.15)

( ) ( )[ ]221,11,11,11,1

,

2

,222

1yxO

y

uu

y

uu

xyx

u jijijiji

ji

∆∆+

−−

∆=

∂∂

∂ −−+−−+++

where ∆x, ∆y denote the spatial increments in x and y directions, respectively,

( )[ ]2xO ∆ and ( ) ( )[ ]22

, yxO ∆∆ are approximation errors.

The discrete form of equations of motion obtained by adopting central difference to second-

order partial derivatives and mixed partial derivatives (3.15) is presented in Appendix 2. In

order to obtain a detailed solution for isotropic, rhombic, vertical transverse isotropy and

horizontal transverse isotropy media adequate dependences (3.7a, 3.7b, 3.8a or 3.8b) must be

satisfied. In Appendices 3, 4, 5 the discrete form of equations of motion for TTI media is

presented.

Page 34: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

34

Finite-difference method often suffers from grid dispersion and unphysical oscillations which

appear when the computational grid is too coarse. Although finer spatial grids and time-

sampling can be use to eliminate the numerical dispersion they result in large computational

costs and large amount of memory necessary to store data. The gain in computational

efficiency can be made by using higher-order approximation for derivatives of equation of

motion.

Fourth-order in time finite-difference schema is an example of such approximation. The

discrete form of equations of motion obtained by using fourth order in time schema can be

written as

( ) ( ) ( )

( )

( )[ ] ( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂

∂+

∂∂

∂+++

∂∂

∂+++

∂+

∂+

∆+

+

∂∂

∂++

∂∂

∂++

∂+

∂+

∂∆+−= −+

zyx

wcccccccc

zx

wcccc

zx

wcccc

zyx

vcccccccc

yx

vcccc

yx

vcccc

zy

ucc

zx

ucccc

yx

ucccc

z

uc

y

uc

x

uc

t

zx

wcc

yx

vcc

z

uc

y

uc

x

uc

tuuu

nnn

nnn

nnnnnn

nnnnnnnn

2

4

55234412554466133

4

663366133

4

11666613

2

4

55236613665544123

4

442244123

4

44124411

22

4

664422

42

6613661122

42

441244114

42

664

42

444

42

11

2

4

2

6613

2

44122

2

662

2

442

2

11

2

11

222

12

2

ρ

ρ

( ) ( ) ( )

( )

( )[ ] ( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂

∂+

∂∂

∂+++

∂∂

∂+++

∂+

∂+

∆+

+

∂∂

∂++

∂∂

∂++

∂+

∂+

∂∆+−= −+

zyx

wcccccccc

zy

wcccc

zy

wcccc

zyx

ucccccccc

yx

ucccc

yx

ucccc

zx

vcc

zy

vcccc

yx

vcccc

z

vc

y

vc

x

vc

t

zy

wcc

yx

ucc

z

vc

y

vc

x

vc

tvvv

nnn

nnn

nnnnnn

nnnnnnnn

2

4

66134412664455233

4

553355233

4

22555523

2

4

66135523556644123

4

224444123

4

44114412

22

4

554422

42

5523552222

42

441222444

42

554

42

224

42

44

2

4

2

5523

2

44122

2

552

2

222

2

44

2

11

222

12

2

ρ

ρ

(3.16)

( ) ( ) ( )

( )

( )[ ] ( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

( )( ) ( )( ) ( )( ) ( )( )[ ]

∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂∂

∂++++++

∂∂

∂+++

∂∂

∂++

+∂∂

∂+

∂∂

∂+++

∂∂

∂+++

∂+

∂+

∆+

+

∂∂

∂++

∂∂

∂++

∂+

∂+

∂∆+−= −+

zyx

vcccccccc

zy

vcccc

zy

vcccc

zyx

ucccccccc

zx

ucccc

zx

ucccc

yx

wcc

zy

wcccc

zx

wcccc

z

wc

y

wc

x

wc

t

zy

vcc

zx

ucc

z

wc

y

wc

x

wc

twww

nnn

nnn

nnnnnn

nnnnnnnn

2

4

66134412664455233

4

335555233

4

55225523

2

4

44125523445566133

4

663366133

4

11666613

22

4

556622

42

5523335522

42

661333664

42

334

42

554

42

66

2

4

2

5523

2

66132

2

332

2

552

2

66

2

11

222

12

2

ρ

ρ

The discrete form of the above equation in isotropic, rhombic or transversely isotropic media

obtained after adopting central difference to second- and fourth-order partial derivatives and

mixed partial derivatives is presented in Appendix 6. Detailed solution for isotropic, rhombic,

vertical transverse isotropy or horizontal transverse isotropy media can be obtained after

taking into account equations 3.7a, 3.7b, 3.8a and 3.8b, respectively.

Fourth order in time and second order in space finite-difference schema presented above is

more accurate but also much more computationally complex than the second order in space

and time finite-difference schema. It also suffers for numerical dispersion, thus second-order

in space and time finite-difference schema is presented only for more complicated, tilted

transverse anisotropy media.

Page 35: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

35

3.4. The stability criterion of second-order finite-difference schema

General form of equation of motion can be written as (Yang et al., 2002)

uz

Iy

Hx

Gz

uz

Fy

Ex

Dy

uz

Cy

Bx

Axt

u

∂+

∂+

∂+

∂+

∂+

∂+

∂+

∂+

∂=

∂2

2

ρ (3.17)

Applying central differences one can receive

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

+−+

−−

∆+

−−

−−

∆+

+−+

−−

−−

∆+

−−

∆+

+−∆

=−−

−+−−−++−++−−−++−++

−−+−−+++−+−−−++−++

−−+−−+++−−+−−+++−+

−+

2

1,,,,1,,1,1,1,1,1,1,1,1,1,,11,,11,,11,,12

1,1,1,1,1,1,1,1,

2

,1,,,,1,,1,1,1,1,1,1,1,12

1,,11,,11,,11,,1,1,1,1,1,1,1,1,1

2

,,1,,,,12

1

,,,,

1

,,

2

222

1

222

1

222

12

222

1

222

1

222

12

2

z

uuuI

y

uu

y

uu

zH

x

uu

x

uu

zG

t

z

uu

z

uu

yF

y

uuuE

x

uu

x

uu

yD

t

z

uu

z

uu

xC

y

uu

y

uu

xB

x

uuuA

t

uuu

kjil

kjil

kjill

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kjikjil

kjil

kjill

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kjikjil

kjil

kjil

l

kji

l

kji

l

kji

ρ

ρ

ρ

(3.18)

Application of von Neumann stability method (Tannehill, 1997) and substituting into the

difference equation a term of the form

zikyikxikatl

kjizyx eeeeu =,,

After a series of mathematical operations, the following stability criterion of the finite-

difference schema is obtained:

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )

1444

2

maxmaxmax

2

maxmaxmaxmaxmax

2

max

2

∆+

∆∆

++

∆+

∆∆

++

∆∆

++

zzyyzxyxx

tIHFEGCDBA σσσσσσσσσ

ρ (3.19)

where A

maxσ is the largest eigenvalue of A matrix , B

maxσ is the largest eigenvalue of B matrix

etc.

The A, B, C, D, E, F, G, H and I matrices for each type of anisotropy have different form. In

the next sections a detailed account of these matrices and stability criterion for VTI, HTI,

rhombic and TTI media is presented.

3.4.1 The stability criterion for vertical transverse isotropy medium

In this case matrices from equation (3.17) take the form

=

66

55

11

00

00

00

c

c

c

A

=

000

00

020

55

6611

c

cc

B

=

00

000

00

66

13

c

c

C

=

000

00

020

55

6611

c

cc

D

=

55

11

55

00

00

00

c

c

c

E

=

00

00

000

55

13

c

cF

Page 36: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

36

=

00

000

00

66

13

c

c

G

=

00

00

000

55

13

c

cH

=

33

55

66

00

00

00

c

c

c

I

0maxmaxmaxmaxmaxmax ====== HFGCBD σσσσσσ .

Thus stability criterion of finite-difference schema for VTI media can be written as:

( )( ) ( ) ( )

12

max

2

max

2

max

2

∆+

∆+

zyx

tIEA σσσ

ρ,

( ) ( ) ( )2

max

2

max

2

max

zyx

tIEA

∆+

∆+

≤∆σσσ

ρ

where: { }665511max ,,max ccc

A =σ , { }1155max ,max cc

E =σ , { }335566max ,,max ccc

I =σ

3.4.2 The stability criterion for horizontal transverse isotropy medium

In this case matrices from equation (3.17) take the form

=

55

44

11

00

00

00

c

c

c

A

=

000

00

00

44

13

c

c

B

=

00

000

00

55

13

c

c

C

=

000

00

00

44

13

c

c

D

=

55

33

44

00

00

00

c

c

c

E

−=

00

200

000

55

4433

c

ccF

=

00

000

00

55

13

c

c

G

−=

00

200

000

55

4433

c

ccH

=

33

55

55

00

00

00

c

c

c

I

0maxmaxmaxmaxmaxmax ====== HFGCBD σσσσσσ .

Thus stability criterion of finite-difference schema for HTI media can be written as

( )( ) ( ) ( )

12

max

2

max

2

max

2

∆+

∆+

zyx

tIEA σσσ

ρ,

( ) ( ) ( )2

max

2

max

2

max

zyx

tIEA

∆+

∆+

≤∆σσσ

ρ

where { }554411max ,,max cccA =σ , { }553344max ,,max ccc

E =σ , { }3355max ,max ccI =σ .

3.4.3 The stability criterion for rhombic isotropy medium

In this case matrices from equation (3.17) take the form

Page 37: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

37

=

66

44

11

00

00

00

c

c

c

A

=

000

00

00

44

12

c

c

B

=

00

000

00

66

13

c

c

C

=

000

00

00

44

12

c

c

D

=

55

22

44

00

00

00

c

c

c

E

=

00

00

000

55

23

c

cF

=

00

000

00

66

13

c

c

G

=

00

00

000

55

23

c

cH

=

33

55

66

00

00

00

c

c

c

I

0maxmaxmaxmaxmaxmax ====== HFGCBD σσσσσσ .

Thus stability criterion of finite-difference schema for rhombic media can be written as

( )( ) ( ) ( )

12

max

2

max

2

max

2

∆+

∆+

zyx

tIEA σσσ

ρ,

( ) ( ) ( )2

max

2

max

2

max

zyx

tIEA

∆+

∆+

≤∆σσσ

ρ

where { }664411max ,,max ccc

A =σ , { }552244max ,,max ccc

E =σ , { }335566max ,,max ccc

I =σ .

3.4.4. The stability criterion for tilted transverse anisotropy media - rotation of vertical

transverse isotropy medium around x1 axis by angle θθθθ

In this case matrices from equation (3.17) take the form

='

66

'

44

'

14

'

14

'

11

00

0

0

c

cc

cc

A

='

56

'

24

'

44

'

12

'

14

00

0

0

c

cc

cc

B

=

0

00

00

'

56

'

66

'

34

'

13

cc

c

c

C

='

56

'

24

'

12

'

44

'

14

00

0

0

c

cc

cc

D

='

55

'

22

'

24

'

24

'

44

00

0

0

c

cc

cc

E

=

0

00

00

'

55

'

56

'

23

'

34

cc

c

c

F

=

0

00

00

'

34

'

13

'

56

'

66

cc

c

c

G

=

0

00

00

'

23

'

34

'

55

'

56

cc

c

c

H

='

33

'

55

'

56

'

56

'

66

00

0

0

c

cc

cc

I

because

( )2'

14

'

44

'

11

'

66)det( ccccA −=

Page 38: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

38

( )'

44

'

12

'

24

'

14

'

56)det()det( cccccDB −==

( )2'

24

'

22

'

44

'

55)det( ccccE −=

( )2'

56

'

55

'

66

'

33)det( ccccI −=

0)det()det()det()det( ==== FHGC

0maxmaxmaxmax ==== HFGC σσσσ .

The stability criterion of finite-difference schema for this kind of anisotropy can be written as

( )( ) ( )( ) ( ) ( )

14

2

max

2

maxmaxmax

2

max

2

∆+

∆+

∆∆

++

zyyxx

tIEDBA σσσσσ

ρ

( ) ( ) ( ) ( )( )yxzyx

tBIEA

∆∆+

∆+

∆+

≤∆

2

max

2

max

2

max

2

max σσσσ

ρ

where { }'

44

'

11

'

66max ,max cccA =σ , { }'

22

'

44

'

55max ,max cccE =σ , { }'

55

'

66

'

33max ,max cccI =σ ,

{ }'

44

'

12

'

24

'

14

'

56maxmax ,max cccccDB −== σσ .

3.4.5. The stability criterion for tilted transverse anisotropy medium - rotation of

vertical transverse isotropy media around x2 axis by angle θθθθ

In this case matrices from equation (3.17) take the form

='

66

'

64

'

46

'

44

'

11

0

0

00

cc

cc

c

A

=

00

00

0

'

64

'

44

'

15

'

12

c

c

cc

B

=

00

00

0

'

66

'

46

'

13

'

15

c

c

cc

C

=

00

00

0

'

51

'

21

'

46

'

44

c

c

cc

D

='

55

'

52

'

25

'

22

'

44

0

0

00

cc

cc

c

E

='

53

'

55

'

23

'

25

'

46

0

0

00

cc

cc

c

F

=

00

00

0

'

31

'

51

'

66

'

64

c

c

cc

G

='

35

'

32

'

55

'

52

'

64

0

0

00

cc

cc

c

H

='

33

'

35

'

53

'

55

'

66

0

0

00

cc

cc

c

I

because

( )'

46

'

64

'

44

'

66

'

11)det( cccccA −=

Page 39: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

39

( )'

52

'

25

'

22

'

55

'

44)det( cccccE −=

( )'

23

'

55

'

53

'

25

'

46)det( cccccF −=

( )'

32

'

55

'

35

'

52

'

64)det( cccccH −=

( )'

35

'

53

'

55

'

33

'

66)det( cccccI −=

0)det()det()det()det( ==== GDCB

0maxmaxmaxmax ==== GDCB σσσσ .

The stability criterion of finite-difference schema for this kind of anisotropy can be written as

( )( ) ( ) ( )( ) ( )

14

2

maxmaxmax

2

max

2

max

2

∆+

∆∆

++

∆+

zzyyx

tIHFEA σσσσσ

ρ

( ) ( ) ( ) ( )( )yxzyx

tHFIEA

∆∆

++

∆+

∆+

≤∆

4

maxmax

2

max

2

max

2

max σσσσσ

ρ

where { }'

64

'

46

'

66

'

44

'

11max ,max cccccA −=σ , { }'

52

'

25

'

55

'

22

'

44max ,max cccccE −=σ ,

{ }'

35

'

53

'

33

'

55

'

66max ,max cccccI −=σ , { }'

23

'

55

'

53

'

25

'

46max ,max cccccF −=σ , { }'

32

'

55

'

35

'

52

'

64max ,max cccccH −=σ .

3.4.6. The stability criterion for tilted transverse anisotropy medium - rotation of

horizontal transverse isotropy media around x3 axis by angle θθθθ

In this case matrices from equation (3.17) take the form

='

66

'

16

'

44

'

16

'

11

0

00

0

cc

c

cc

A

=

00

0

00

'

26

'

45

'

44

'

12

c

cc

c

B

='

36

'

66

'

45

'

13

'

16

0

00

0

cc

c

cc

C

=

00

0

00

'

45

'

26

'

12

'

44

c

cc

c

D

='

55

'

45

'

22

'

45

'

44

0

00

0

cc

c

cc

E

=

00

0

00

'

55

'

23

'

26

'

45

c

cc

c

F

='

36

'

13

'

45

'

66

'

16

0

00

0

cc

c

cc

G

=

00

0

00

'

23

'

55

'

45

'

26

c

cc

c

H

='

33

'

36

'

55

'

36

'

66

0

00

0

cc

c

cc

I

because

( )2'

16

'

66

'

11

'

44)det( ccccA −=

Page 40: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

40

( )'

13

'

66

'

36

'

16

'

45)det()det( cccccGC −==

( )2'

45

'

55

'

44

'

22)det( ccccE −=

( )2'

36

'

33

'

66

'

55)det( ccccI −=

0)det()det()det()det( ==== HFDB

0maxmaxmaxmax ==== HFDB σσσσ .

The stability criterion of finite-difference schema for kind of anisotropy can be written as

( )( ) ( )( ) ( ) ( )

14

2

max

2

maxmaxmax

2

max

2

∆+

∆+

∆∆

++

zyzxx

tIEGCA σσσσσ

ρ

( ) ( ) ( ) ( )( )zxzyx

tCIEA

∆∆+

∆+

∆+

≤∆

2

max

2

max

2

max

2

max σσσσ

ρ

where { }'

66

'

11

'

44max ,max cccA =σ , { }'

13

'

66

'

36

'

16

'

45maxmax ,max cccccGC −== σσ , { }'

55

'

44

'

22max ,max cccE =σ

{ }'

33

'

66

'

55max ,max cccI =σ .

Page 41: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

41

4. Implementation of the finite-difference schemas

4.1. Initial and border conditions

Numerical modeling of seismic wave field is a computational problem in which continuous

space-time has to be simulated in discrete mesh with a defined time step. To do this, various

previously mentioned time and space stability conditions have to be fulfilled. But even if

stability of the solution is achieved there are other limitations of this discrete representation.

First of all real waves propagate in continuous and practically unlimited medium. The first

problem with discrete representation is “instant” reaction of neighboring points when wave is

passing through the computational grid. It means that modeled waves seem to have a couple

of percent higher velocities then those defined in modeling parameters. The other, more

important problem is definition of border conditions. Of course 3D computational cube has

borders which limit the propagation. There are various ways to define and then calculate

border conditions. It is possible to add additional “artificial” set of grid points “outside” a

cube, redefine computational schemes for border planes or add dumping zones around a cube.

Of course, all these solutions require additional time and/or memory consuming operations.

Usually the most efficient is dumping solution but it has one important disadvantage:

additional “dumping” cube has to be allocated which is memory consuming. Fortunately in

tests presented below time of computation was short and only wave field snapshots were

taken into consideration.

Initial conditions for this kind of computations are very simple. Motion in each point of

computational grid in time t+1 is calculated using motions of the examined point and

neighboring points in time t and t-1. It means that at the beginning all cubes have to be zeroed

in all points except source point or area. In all later time steps all computational cubes for

time t-1 are recalculated for time t+1 and all other cubes are shifted one time space back.

4.2 Seismic wave propagation, finite-difference algorithm

Modeling of seismic wave propagation in the anisotropic media can be described by the

following four steps:

1. data input – providing values of geological model, location and type of the source of

seismic wave, establishing of proper values of stiffness matrix;

2. providing initial values for 0

,, kjiU , 0

,, kjiV , 0

,, kjiW ;

3. utilizing the finite-difference scheme described in Appendix 2,3,4 or 5 to compute 1

,,

+n

kjiU , 1

,,

+n

kjiV , 1

,,

+n

kjiW , where 0≥n ;

4. providing boundary condition.

The steps 3 and 4 have to be repeated until simulation time is reached.

Page 42: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

42

4.3 Computational environment

Full wave form numerical modeling in 3D media is a very complicated time and hardware

resources-consuming task. Even in the case of a simple isotropic, acoustic 3D modeling the

memory consumption is enormous. Single 100 x 100 x 100 cube of 8 byte floating point

numbers needs more than 22 MB of memory and in this simplest case at least four cubes are

needed (without consideration of matrices or cubes for storing results). In case of HTI, VTI or

orthorhombic models at least 19 cubes (elastic constraints and 3D displacements in three

continuous time steps) are needed, which gives about 0.5 GB of memory for every 1,000,000

grid points. The other problem is time of computations. In case of modern CPU one average

scale anisotropic model is usually calculated in 10 to 20 hours. Fortunately parallelization of

this kind of computations is very easy.

All proposed solutions were evaluated on IBM Blade Linux cluster*. One BladeCenter

chassis with 11 HC21 and 3 HC10 Blade servers was used. 88 Intel Xeon E5405 2.00 GHz

cores and 6 Intel Core2 6700 2.66 GHz cores with 200 GB of total RAM were available. This

environment was previously successfully used as a hardware platform for many other projects

connected with seismic wave filed modeling in complex media (e.g. Danek et al. 2008, Kowal

et al. 2008, Pięta et al. 2009, Danek 2009).

All computer codes were written in C language. The most important part of the code –

computational kernel loop is presented in Appendix 7.

* The cluster is located in Department of Geosciences and Applied Computer Science, Faculty of Geology,

Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland.

Page 43: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

43

5. Example results of wave propagation modeling in anisotropic media

In this chapter wave propagation in HTI, VTI and orthorhombic homogeneous media is

presented. Also, propagation in simple isotropic models is calculated for comparison

purposes. In all cases three kinds of seismic sources were used: explosive, unidirectional

vertical force and double couple force. Double couple source was always localized in X2

(“cross line”) plane. For all computations the Ricker signal, which is very often used in

seismic simulations, was chosen. All parameters used in modeling are presented in Table 5.1

and were exactly the same in all analyzed cases of this research. Results of modeling can be

presented in three perpendicular planes (X1, X2, X3) and three components of the modeled

wave field (x1, x2, x3) can be exhibited. It means that up to 9 combinations of motion pictures

(three planes, in each three different directions of wave motions) can be evaluated and

analyzed in every time step. In this study results for planes crossing source area and planes

shifted 20 m away from the source were selected for further, detailed analysis (Fig. 5.1).

Fig.5.1. Illustration of X1 observation planes: (A) plane crossing source area, (B) plane shifted 20 m away from the

source

Rys.5.1. Płaszczyzna obserwacyjna X1: (A) przechodząca przez obszar źródłowy, (B) odsunięta o 20 m od źródła.

Table 5.1. Parameters of seismic propagation modeling

Name Value

Number of points in all directions 250

Distance between grid points 1 m

Time steps of computations 0.05 s

Source point localization (125,125,125)

Peek frequency of Ricker signal 90 Hz

Page 44: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

44

Elastic constraints used in this experiment were calculated in a very special manner. First of

all constraints for the orthorhombic anisotropy were chosen. Then, using the method

described in Chapter 3 this medium was reduced to HTI, VTI and finally isotropic media. All

parameters used in numerical experiments are presented below:

Stiffness matrix for:

- isotropic medium:

0.300000

00.30000

000.3000

0003.103.43.4

0003.43.103.4

0003.43.43.10

- horizontal transverse isotropy medium HTI:

0.300000

00.30000

003.3000

0003.107.35.6

0007.33.105.6

0005.65.66.16

- vertical transverse isotropy medium VTI:

9.300000

00.30000

000.3000

0003.105.65.6

0005.66.168.8

0005.68.86.16

- orthorhombic medium:

9.300000

00.30000

003.3000

0003.104.65.6

0004.65.154.7

0005.64.76.16

Page 45: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

45

5.1 Sources

5.1.1 Explosive source

Explosive source is one of the most commonly used sources in seismic exploration. It can be

also used in the case of wave field modeling of mine tremors and explosions induced by

mining activity. From numerical point of view the source was defined as a 3 x 3 x 3 grid point

cube and in each point force pointing outside the cube was attached.

5.1.2 Double couple source

Double couple mechanism is one of the most commonly used source models in seismology.

Wave propagation caused by earthquakes related with rock mass movements along faults is

very similar to wave propagation excited by double couple mechanism. In this study a simple

double couple combination of forces was assumed to simulate the vertical fault lying in the X2

plane. This orientation of fault was chosen because it allows simple comparison with a 2D

case. Additionally this strict set of directions of wave propagation results in a very clear

image of waves propagating from the source. In the case of source-crossing planes waves

propagate in all planes (as it was expected) but particles move only in very well-determined

directions (empty frames in figures in Appendix 8 mean no motion at all).

5.1.3 Single force source

Single force source model can be used to simulate vibrations caused by unidirectional force.

In case shallow seismic exploration hammer or hammer source can be approximated by such

a source. But even if this kind of source is not very common in seismic exploration or

seismology analysis its unidirectional nature can be useful because waves generated by it are

very well separated and its polarization is clear. In these studies vertically directed force was

used in all cases.

5.2 Selected results and discussion

5.2.1 Isotropic medium

Propagation in simple isotropic models was calculated for comparison purposes. All

results should be easy to analyze and interpret and then be used as a background for

interpretations in case of more complicated media. All modeling results for this and the rest of

the media are presented in Appendix 8. As mentioned above, three kinds of sources were

used: explosive, double couple and single force. It is clearly visible that in the case of

explosive source and isotopic homogeneous medium wave-form propagation is very regular

and stable (fig. A8.1). As expected, almost all energy is propagating as a primary wave. Very

limited, almost invisible amounts of shear wave energy can be observed only in shifted planes

(fig. A8.2). It is due to the discrete character of computational grid and limited size of the

source. In case of planes crossing directly through the center point of the source these

energies are invisible because all the source forces are lying inside planes. This is also the

reason why there are almost no displacements in directions normal to presented planes (e.g.

plane X1 and x1 direction in figure A8.1). It is also important to mention that the relation

between point of evaluation and source location determines the sign of displacement value. In

Page 46: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

46

case of motion directions other than direction of the planes an apparent phase change can be

visible (e.g. plane X1 and x2 direction). When motion direction is normal to plane (e.g. X1

and x1) there is no sign change and this effect is not visible.

In the case of double couple source, P- and S-wave fronts have purely circular shapes

(fig. A8.9-10). Used source mechanism makes S wave stronger and better visible. Typical

changes of wave phases with direction of propagation can also be noticed. Results obtained

for X2 plane are very similar to 2D ones. There is no “cross line” component but both P and S

waves are visible in “in line” and vertical directions. In X1 and X3 planes, motions of shear

wave-related particles are clearly visible in a direction normal to planes.

Results obtained for single force source (fig. A8.17-18) were exactly as expected. P

and S waves have circular shapes and only one shear wave propagates through the media. In

source crossing X3 plane, almost all of the energy is propagating as SV wave with no

polarization changes. In other source crossing X3 planes, P and S waves are visible and their

polarizations are consistent with the direction of the source.

5.2.2 HTI medium

In horizontally transverse isotropic medium which simulates rocks with vertical, parallel

fractures waves should propagate symmetrically along these structures (fig A8.3-4, A8.11-12,

A8.19-20). In analyzed model fractures are parallel to X1 plane. This is why in this plane

primary wave has circular shape whereas shear wave has ellipsoidal shape. It is due to motion

directions of particles involved in S-wave propagation. These directions are of course

perpendicular to X1 plane. In other words, if a particle moves parallel to the plane of isotropy

its motion will generate isotropic wave fronts. The other interesting phenomenon to discuss is

shear waves propagating from the exploding source (fig A8.3-4). This is easy to explain. In

the case of anisotropic media, even as simple as HTI, there is no clear differentiation between

P and S waves. More complicated relation between elastic constraints makes simple

exploding source, which produce only P wave, no longer possible. It is due to the fact that

some of source energy is radiated in directions perpendicular to the direction of motion. In

other words some of P-wave energy is converted into S waves in a source point even without

the presence of any media discontinuity.

In HTI media, a symmetrical propagation of double couple source results in a plane of

isotropy can be observed but in other planes relatively small amounts of - wave energy

propagates with angle dependent velocities (fig. A8.11-12). In shifted planes the shear wave

splitting phenomenon is visible. In X2 and X3 planes in pictures presenting x2 component of

motion two S-wave fronts are separated from each other. In this particular combination of

source mechanism and kind of anisotropy this effect is very easy to observe because most of

energy is propagating as shear waves, and phase variations make both modes better contrasted

(fig 5.2).

Combination of directly polarized source mechanism and HTI medium makes velocity

differences between S waves polarized in different directions clearly visible (fig. A8.19-20).

The other interesting phenomenon is the limited but visible amount of P-wave energy in

Page 47: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

47

source crossing X3 plane. More complicated relations between elastic constraints makes P

wave visible in this plane even if no direct “compress” energy is radiated from the source

along x1 and x2 directions.

Figure 5.2. Zoom of S-wave results for double couple source in HTI media. Displacements in x2 direction and shifted

X2 (left) and X3 (right) planes are presented.

Rys 5.2. Powiększenie wyników propagacji fali S dla źródła opisywanego za pomocą podwójnej pary sił w ośrodku

typu HTI. Zaprezentowano przemieszczenia w kierunku x2 w odsuniętej płaszczyźnie obserwacji X2 (lewy obraz) i

odsuniętej płaszczyźnie obserwacji X3 (prawy obraz).

5.2.3 VTI medium

In the case of VTI media and explosive source, results (fig. A8.5-6) are comparable to those

of HTI (fig. A8.3-4). It is because these two media are very similar to each other. When real

media are concerned the most important difference between them is the direction of parallel

fractures which are horizontally oriented in the case of VTI. This orientation of symmetry axis

is clearly visible in snapshot figures. In X1 and X2 planes P-wave fronts have ellipsoidal shape

whereas in X3 (horizontal) plane this front is circular. Shear wave splitting effect is better

visible in this case. In both source-crossing and shifted horizontal planes, it is possible to

separate two wave fronts which are crossing each other. This phenomenon is observed here

because the polarization of S waves varies with angle and the more energy is radiated with

particle vibrations along faster direction the faster the whole wave front is.

Page 48: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

48

Fig 5.3 Wave propagation velocity in symmetry plane [X1, X3]

Rys 5.3 Prędkości propagacji fali w płaszczyźnie [X1,X3]

Double couple source generates results in VTI media similar to those observed for real fault-

related earthquakes in horizontally layered rocks. In “in line” cross section P wave

propagates faster along layers (fig. A8.13-14). Phase changes of the S waves determine

possible orientation of fault. In X1 plane S-wave front for x1 component is circular because in

this case all particles involved in shear wave propagation moves in the isotropic (“cross line”)

direction.

In the case of VTI media, results for single force source (fig. A8.21-22) are a very good

background for comparison with double couple source (fig. 5.4). Different orientations of the

symmetry axis are clearly visible (e.g. X2 plane x2 direction). Another interesting and

expected result is that the slightly more energy is radiated from source as P wave in the case

of single force. It is due more to the direct nature of this source.

Figure 5.4. VTI medium, X2 shifted plane, x2 direction results of modeling in the case of double couple (left) and single

force (right) sources

Rys. 5.4. Wyniki modelowań dla ośrodka VTI w odsuniętej płaszczyźnie obserwacji X2. Przemieszczenia w kierunku

x2 dla źródła definiowanego za pomocą podwójnej pary sił (obraz po lewej) i pojedynczej siły (obraz po prawej)

5.2.4 Orthorhombic medium

Orthorhombic anisotropy is the most complicated case analyzed in this study. Results are

very similar to those of VTI case but some subtle but very important differences can be

spotted. The most important one is the expected rotation around X1 axis. It can be observed

that in the case of explosive source (fig. A8.7-8) there are almost no differences of P-wave

ellipsoid in VTI and orthorhombic case in X2 plane. In X3 plane, primary wave shape is no

longer a circle. It is an ellipsoid with a little bit longer horizontal axis (“flattened circle shape”

–fig 5.5). In X1 plane the longer axis of ellipsoid is shorter than that in VTI medium. The

second important fact is better separation of splitted shear waves propagating from source

point. At the same time sharper shapes of wave fronts (especially S waves) are observed. It is

Page 49: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

49

probably a purely numerical phenomenon. As the possible explanation we can regard the fact

that in orthorhombic media axis of symmetry are no longer identical with axis of

computational frame.

Double couple source mechanism and additional axis of rotation make separation of shear

waves better visible in some plane-direction combinations (like X3-x1 for example in fig.

A8.15-16). But in the case of X3 plane and x2 (“cross line”), S waves are better separated in

results for VTI model. It could let us make a conclusion that in the case of double couple

source, anisotropic effects connected with S waves are easier to observe on a surface in case

of simpler, VTI model. The other important thing which this detailed study revealed is that

when a full analysis of anisotropy is necessary, tree component surface (on one plane)

recordings are insufficient.

Orthorhombic anisotropy and singe force source is the last analyzed case in this study (fig.

A8.23-24). All previously described phenomena like shear wave splitting and subtle

asymmetry of P-wave “circle” in X3 plane connected with this kind of anisotropy are visible.

The interesting thing to note is the similarity between these results and those of exploding

source. Of course in the case of explosion much more energy propagating as a P wave but

other characteristics are similar. It can be concluded that in numerical experiment focused on

P wave, explosion source should be used but when more energy of S wave is needed single

force source is better.

Figure 5.5. Orthorobic medium, X3 shifted plane, x1 direction results of modeling in exploding source. Inner ellipse

shows actual shape of P wave front. Outer circle represents the shape of the wave front in the case of isotropic solution

Rys. 5.5. Wyniki modelowań dla składowej ruchu w kierunku x1 dla ośrodka o anizotropii ortorombowej, rzut na

płaszczyznę odsuniętą X3. Wewnętrzna elipsa przedstawia bieŜący front falowy fali P, zewnętrzna reprezentuje ten

sam front dla ośrodka izotropowego.

5.2.5 Heterogeneous orthorhombic medium

Orthorhombic medium was also a subject for further studies for bigger and more complicated

models. This time modeling of seismic wave propagation was made for a three-layer

model. The model dimension was 800 x 800 x 400 m. Layers’ borders were on 200

and 300 m depths. Two variants of the model were calculated. In the first one, the

Page 50: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

50

central layer was orthorhombic whereas upper and lower were isotropic. In the second

one, all layers were isotropic but the central one was recalculated from orthorhombic

according to the previously mentioned rule. All parameters are presented in Table 1.

All test runs were done for 2 m grid point interval. Wave motion was modeled for 0.8 second.

As a source function a 40 Hz Ricker signal was used. All results were stored with 2 ms time

step. It is also important to mention that for models of this size and complication, 32 bit

computational architecture is no longer sufficient.

Orthorhombic

c11 c12 c13 c22 c23 c33 c44 c55 c66

L1 4.5 0.5 0.5 4.5 0.5 4.5 2.0 2.0 2.0

L2 16.6 7.4 6.5 15.5 6.4 10.3 3.3 3.0 3.9

L3 4.5 0.5 0.5 4.5 0.5 4.5 2.0 2.0 2.0

Isotropic

c11 c12 c13 c22 c23 c33 c44 c55 c66

L1 4.5 0.5 0.5 4.5 0.5 4.5 2.0 2.0 2.0

L2 10.3 4.3 4.3 10.3 4.3 10.3 3.0 3.0 3.0

L3 4.5 0.5 0.5 4.5 0.5 4.5 2.0 2.0 2.0

Table 1 Elastic constraints used in numerical modeling

Results for all combinations of directions and plane orientation were stored. Selected wave

form snapshots and synthetic seismograms for vertical component of motion are presented in

consecutive figures.

Page 51: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

51

Fig. 5.6 Snapshots of elastic wave propagation in the case of isotropic (a) and orthorhombic model: vertical

component of motion in X1 (“in-line”) (b) and in X2 (“cross-line”) (c) directions and differences between isotropic and

orthorhombic (d) and orthorhombic models in and cross line directions (e). Amplitudes on pictures (d) and (e) are

normalized.

Fig. 5.6. Migawki wyników propagacji fail elastycznej dla ośrodka izotropowego (a) i ortorombowego: składowej

pionowej ruchu w płaszczyźnie X1 („in line”)(b) i w płaszczyźnie X2 („cross line”)(c) oraz róŜnice pomiędzy

wynikami dla ośrodka izotropowego i ortorombowego (d) ortorombowego w kierunku „cross line”(d). Amplitudy na

rysunkach d i e zostały znormalizowane.

Page 52: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

52

Fig. 5.7 Synthetic seismograms obtained for isotropic (a) and anisotropic (b) model, (c) differences between isotropic

and anisotropic model. Vertical component of motion in cross-line plane.

Rys. 5.7. Sejsmogramy syntetyczne obliczone dla modelu izotropowego (a) i anizotropowego (b) oraz sejsmogram

róŜnicowy (c) obliczony dla sejsmogramów (a) i (b). Wszystkie rysunki przedstawiają składową ruchu w płaszczyźnie

„cross-line”.

As it was expected differences between two analyzed models are clearly visible mostly

because of faster wave propagation in the horizontal direction in the anisotropic layer.

The additional phenomenon is a very sharp refracted wave in the upper layer. There

are also visible differences between in-line and cross-line directions in the case of

anisotropic model.

But in the case of ground recordings, the situation is a little bit different. Of course, these are

differences between iso- and anisotropic results but rather minor and hard to spot on synthetic

section. So in this case a difference seismogram is much more informative (figure 5.7.c). It is

clearly visible that in case of all three presented wave forms (top reflected, bottom reflected

and top converted) expected amplitude and time changes in the function of offset are present.

Page 53: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

53

6. Summary

The basic aim of the presented study was to build, test and apply the effective parallel

algorithms to evaluate the seismic wave propagation in 3D anisotropic media. The further aim

was to find how important is the impact of the anisotropy on wave propagation for typical

anisotropy parameters and common seismic sources. Contrary to numerous theoretical studies

we have only used the direct method of evaluation – a numerical modeling.

Numerical algorithms used here for full-wave-field propagation modeling use stiffness tensor

of VTI and orthorhombic media. The more complicated models of anisotropy (like HTI or

TTI media) are deduced from the basic ones using the Bond matrices. It allows the

construction of efficient and universal programs that are in a position to evaluate wave fields

in the anisotropic medium (e.g. the same program can be used to model wave propagation in

numerous TTI media for different dip angles).

The results of modeling presented here are encouraging and interesting. The evaluated results

perfectly agree with theoretical models and prove the constructed software is correct, reliable

and well suited to modeling tasks. The important limitation of a numerical modeling is the

size of the model and number of iterations. The 3D anisotropic wave field modeling is

extremely time consuming and unrealizable in a single-node environment. The parallelization

of the computing process is the only effective way to face the real size models of the

geological medium and large offsets.

We can summarize the modeling results from the point of view of practical seismic

prospecting. We focus only on the impact of anisotropy on the shape of wave fronts and

propagation times. The results of performed modeling for different seismic sources show

relatively small differences between related isotropic and real anisotropic media. On the other

hand the most distinctive differences can be observed for heterogeneous, orthorhombic

medium for large offsets.

Another important result that can be drawn from the study is about the order of the differential

scheme used in computation. As it was expected the second order of time and space

expansion is the best compromise between speed and precision of modeling process. The

results of modeling with higher order differential schemes are not beneficial enough to

explain costs of additional computation time.

Further progress of a large scale and massive full-wave field propagation modeling strongly

depends on the progress in computer science especially in hardware development and new

methods of efficient computation. One of the promising techniques is utilization of GPU

instead of CPU, particularly in a multinode version. The experiences show that in this case

several dozens of acceleration can be achieved compared to standard CPU processing. In the

near future GPU processing will increase in importance allowing evaluation of the 3D

modeling with reasonable effort and in reasonable time.

Page 54: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

54

7. References

Alford, R.,. M., Kelly K., R., Boore D., M., Accuracy of finite-difference modeling of the

acoustic wave equation, Geophysics 1974, Vol. 39, No. 6, 834-842

Auld, B., A., 1973, Acoustic fields and waves in solids, vol. 1 , John Wiley & Sons, Inc, New

York.

Backus, G., E., 1962. Long-wave elastic anisotropy produced by horizontal layering: J.

Geophys. Res., 67,4427-4440.

Crampin, S., 1984, An introduction to wave propagation in anisotropic media, Geophys. J.

Roy. Astr. Soc. 76, 17-28.

Danek T., Elastic wave-field modeling in seismic exploration. Science and supercomputing

in Europe : report 2005, HPC-Europa, Pan-European Research Infrastructure on High

Performance Computing

Danek T., Franczyk A., Parallel and distributed seismic wave-field modeling, TASK

Quarterly, 2004 vol. 8 no. 4, 573–581

Danek T., Franczyk A., PC clusters in numerical modeling of seismic wave field,

Proceedings of XI KK KOWBAN '2004 (in Polish)

Danek T., Parallel computing and PC clusters in seismic wave field modeling /

Geoinformatica Polonica, 2005, Vol 7 25–34 (in Polish)

Danek T., Parallel computing in numerical modeling of seismic wave field. GEOPETROL

2004, (in Polish)

Danek T., Seismic wave field modeling as a tool in reservoir evaluation, Science and

supercomputing in Europe : raport 2007 HPC-Europa Pan-European Research Infrastructure

on High Performance Computing.

Danek T., Seismic wave field modeling with graphics processing units, Lecture Notes in

Computer Sciences 2009, 435–442.

Danek T., Pięta A., Leśniak A., Simulation of seismic waveforms from “Rudna” copper

mine, Poland, using staggered grid, Proceedings of 31st General Assembly of the European

Seismological Commission, Hersonissos, Crete, 2008

Igel H., Mora P., Riollet B., Anisotropic wave propagation through finite-difference grids,

Geophysics, 1995, Vol. 60 No 4, 1203-1216

Jędrzejowska-Tyczkowska H., 2006. Integrated Studies of the Fractures Induced Anisotropy

of Devonian Carbonates in the South Ekstern Poland. The 12th International Workshop on

Seismic Anisotropy. 22-27 October 2006, Beijing, China. Expanded abstracts. p 153.

Page 55: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

55

Kelly K. R., Ward R. W., Sven Treitel, Alford R., M., Synthetic seismograms: a finite

difference approach, Geophysics, 1976, Vol. 41 No 2, 2-27

Kowal A., Piórkowski A., Danek T., Pięta A., Analysis of selected component technologies

efficiency for parallel and distributed seismic wave field modeling. CISSE 2008: international

joint conference on Computer, Information, and Systems Sciences, and Engineering.

Leśniak A., Danek T., Analysis of elastic wave field in simple anisotropic media with

applications in 3C seismic. Proceedings of GEOPETROL 2004. (in Polish)

Leśniak A., Danek T., Efficiency of Linux clusters in multi-component elastic wave field

modeling in anisotropic media, Proceedings of 68th EAGE conference & exhibition, Vienna

2006

Pięta A., Danek T., Leśniak A., Numerical modeling of ground vibration caused by

underground tremors in LGOM mining area. Mineral Resources Management, 2009, 261–

271 (in Polish)

Pietsh K., Marzec P., Kobylarski M., Danek T., Leśniak A., Tatarata A., Gruszczyk E.,

Identification of seismic anomalies caused by gas saturation on the basis of theoretical P and

PS wavefield in the Carpathian Foredeep, SE Poland. Acta Geophysica 2007 vol. 55 no. 2.

191–208

Postma, G., W., 1955, Wave propagation in stratified medium, Geophysics, 20, 780-806.

Reynolds A. C., Boundary conditions for the numerical solution of wave propagation

problems, Geophysics, 1978, Vol. 43, 1099–1110.

Schoenberg, M., Muir, F., 1989, A calculus for finely layered anisotropic media, Geophysics,

54, 581-589.

Tannehill J. C., Anderson D.A., Pletcher R.H., Computational Fluid Mechanics and Heat

Transfer, Second Eddition, Taylor & Francis, Washington 1997

Thomsen, L., 1986, Weak elastic anisotropy, Geophysics, vol. 51.

Tsvankin, I., 1997, Reflection moveout and parameter estimation for horizontal transverse

isotropy, Geophysics, 62, 614–629.

Tsvankin, I., 2001, Seismic signatures and analysis of reflection data in anisotropic media,

Pergamon, UK.

Winterstein, D., F., 1990, Velocity anisotropy terminology for geophysicists, Geophysics, 55,

1070-1088.

Yang D. H., Liu E., Zhang Z. J., Teng J., Finite-difference modelling in two-dimensional

anisotropic media using a flux-corrected transport technique, Geophys. J. Int., 2002, Vol. 148,

320-328

Page 56: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

56

Appendix 1. Matrix notation for constitutive relations

Because of the following symmetry of the stiffness tensor,

jilkijlkjiklijkl cccc ===

we can use two indices instead of four, i.e.

6,,1,3,2,1,,, K=== JIlkjicc IJijkl.

There is the following conversion rule:

Tensor notation Matrix notation

ij or

kl i or

j

11 1

22 2

33 3

23 or 32 4

13 or 31 5

12 or 21 6

In shortened notation, a relationship between stress and deformation is

6,5,4,3,2,1, == JIc JIJI εσ

where

( ) ( )TT

121323332211654321 ,,,,,,,,,, σσσσσσσσσσσσ ==σ

( ) ( )TT

121323332211654321 2,2,2,,,,,,,, εεεεεεεεεεεε ==ε

Page 57: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

57

Appendix 2.The finite-difference schema for horizontal transverse isotropy media

( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

−−

∆+

+

−−

∆+

+

+−+

+−+

+−∆+−=

−−+−−+++

−−+−−+++

−+−+−+−+

z

ww

z

ww

xcc

t

y

vv

y

vv

xcc

t

z

uuuc

y

uuuc

x

uuuc

tuuu

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

2222

1,,11,,11,,11,,166

,,

13

,,

2

,1,1,1,1,1,1,1,144

,,

12

,,

2

2

1,,,,1,,66

,,2

,1,,,,1,44

,,2

,,1,,,,111

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

−−

∆+

−−

∆+

+−+

+−+

+−∆+−=

−−+−−+++

−−+−−+++

−+−+−+−+

z

ww

z

ww

ycc

t

y

uu

y

uu

xcc

t

z

vvvc

y

vvvc

x

vvvc

tvvv

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

2222

1,1,1,1,1,1,1,1,55

,,

23

,,

2

,1,1,1,1,1,1,1,144

,,

21

,,

2

2

1,,,,1,,55

,,2

,1,,,,1,22

,,2

,,1,,,,144

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

−−

∆+

−−

∆+

+−+

+−+

+−∆+−=

−−+−−+++

−−+−−+++

−+−+−+−+

z

vv

z

vv

ycc

t

z

uu

z

uu

xcc

t

z

wwwc

y

wwwc

x

wwwc

twww

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

2222

1,1,1,1,1,1,1,1,55

,,

32

,,

2

1,,11,,11,,11,,166

,,

31

,,

2

2

1,,,,1,,33

,,2

,1,,,,1,55

,,2

,,1,,,,166

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

Page 58: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

58

Appendix 3. The finite-difference schema for tilted transverse anisotropy media - rotation around x1 axis

( )( ) ( ) ( ) ( ) ( ) ( )

( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

−−

∆++

−−

∆+

+

+−+

+−+

−−

∆++

+−∆

+

+−+

+−+

−−

∆+

+−∆

+−=

−−−++−++−−+−−+++

−+−+−−+−−+++−+

−+−+−−+−−+++−+

−+

y

ww

y

ww

zcc

z

ww

z

ww

xcc

t

z

vvvc

y

vvvc

y

vv

y

vv

xcc

x

vvvc

t

z

uuuc

y

uuuc

y

uu

y

uu

xc

x

uuuc

t

uuu

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

22

222

12

22

222

12

2

2

1,1,1,1,1,1,1,1,34'

,,

56'

,,

1,,11,,11,,11,,113'

,,

66'

,,

2

2

1,,,,1,,56'

,,2

,1,,,,1,24'

,,

,1,1,1,1,1,1,1,112'

,,

44'

,,2

,,1,,,,114'

,,

2

2

1,,,,1,,66'

,,2

,1,,,,1,44'

,,

,1,1,1,1,1,1,1,114'

,,2

,,1,,,,111'

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( )( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

−−

∆++

−−

∆+

+

+−+

+−+

−−

∆+

+−∆

+

+−+

+−+

−−

∆++

+−∆

+−=

−−−++−++−−+−−+++

−+−+−−+−−+++−+

−+−+−−+−−+++−+

−+

y

ww

y

ww

zcc

z

ww

z

ww

xcc

t

z

vvvc

y

vvvc

y

vv

y

vv

xc

x

vvvc

t

z

uuuc

y

uuuc

y

uu

y

uu

xcc

x

uuuc

t

vvv

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

22

222

12

2

22

222

12

2

1,1,1,1,1,1,1,1,23'

,,

55'

,,

1,,11,,11,,11,,134'

,,

56'

,,

2

2

1,,,,1,,55'

,,2

,1,,,,1,22'

,,

,1,1,1,1,1,1,1,124'

,,2

,,1,,,,144'

,,

2

2

1,,,,1,,56'

,,2

,1,,,,1,24'

,,

,1,1,1,1,1,1,1,112'

,,

44'

,,2

,,1,,,,114'

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

+−+

+−+

−−

∆+

+−∆

+

−−

∆++

−−

∆+

+

−−

∆++

−−

∆+

+−=

−+−+−−+−−+++−+

−−−++−++−−+−−+++

−−−++−++−−+−−+++

−+

2

1,,,,1,,33'

,,2

,1,,,,1,55'

,,

,1,1,1,1,1,1,1,156'

,,2

,,1,,,,166'

,,

2

1,1,1,1,1,1,1,1,23'

,,

55'

,,

1,,11,,11,,11,,134'

,,

56'

,,

2

1,1,1,1,1,1,1,1,34'

,,

56'

,,

1,,11,,11,,11,,113'

,,

66'

,,

2

1

,,,,

1

,,

22

222

12

2

222

1

222

1

222

1

222

1

2

z

wwwc

y

wwwc

y

ww

y

ww

xc

x

wwwc

t

y

vv

y

vv

zcc

z

vv

z

vv

xcc

t

y

uu

y

uu

zcc

z

uu

z

uu

xcc

t

www

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

ρ

ρ

ρ

Page 59: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

59

Appendix 4. The finite-difference schema for tilted transverse anisotropy media - rotation around x2 axis

( )( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

−−

∆++

−−

∆+

+

−−

∆++

−−

∆+

+

+−+

−−

∆++

+−+

+−∆

+−=

−−+−−+++−−+−−+++

−−+−−+++−−+−−+++

−+−−−++−++−+−+

−+

z

ww

z

ww

xcc

y

ww

y

ww

xcc

t

y

vv

y

vv

xcc

z

vv

z

vv

xcc

t

z

uuuc

y

uu

y

uu

zcc

y

uuuc

x

uuuc

t

uuu

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

222

1

222

1

222

1

222

1

2

222

122

2

1,,11,,11,,11,,113'

,,

66'

,,

,1,1,1,1,11,1,146'

,,

15'

,,

2

,1,1,1,1,1,1,1,112'

,,

44'

,,

1,,11,,11,,11,,164'

,,

15'

,,

2

2

1,,,,1,,66'

,,

1,1,1,1,1,1,1,1,64'

,,

46'

,,2

,1,,,,1,44'

,,2

,,1,,,,111'

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( )

( )( ) ( ) ( ) ( )

+−+

−−

∆++

+−+

+−∆

+

+−+

−−

∆++

+−+

+−∆

+

−−

∆++

−−

∆+

+−=

−+−−−++−++−+−+

−+−−−++−++−+−+

−−+−−+++−−+−−+++

−+

2

1,,,,1,,53'

,,

1,1,1,1,1,1,1,1,23'

,,

55'

,,2

,1,,,,1,25'

,,2

,,1,,,,146'

,,

2

2

1,,,,1,,55'

,,

1,1,1,1,1,1,1,1,52'

,,

25'

,,2

,1,,,,1,22'

,,2

,,1,,,,144'

,,

2

1,,11,,11,,11,,151'

,,

46'

,,

,1,1,1,1,1,1,1,121'

,,

44'

,,

2

1

,,,,

1

,,

2

222

122

2

222

122

222

1

222

1

2

z

wwwc

y

ww

y

ww

zcc

y

wwwc

x

wwwc

t

z

vvvc

y

vv

y

vv

zcc

y

vvvc

x

vvvc

t

z

uu

z

uu

xcc

y

uu

y

uu

xcc

t

vvv

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

ρ

ρ

ρ

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( )

( )( ) ( ) ( ) ( )

+−+

−−

∆++

+−+

+−∆

+

+−+

−−

∆++

+−+

+−∆

+

−−

∆++

−−

∆+

+−=

−+−−−++−++−+−+

−+−−−++−++−+−+

−−+−−+++−−+−−+++

−+

2

1,,,,1,,33'

,,

1,1,1,1,1,1,1,1,53'

,,

35'

,,2

,1,,,,1,55'

,,2

,,1,,,,166'

,,

2

2

1,,,,1,,35'

,,

1,1,1,1,1,1,1,1,32'

,,

55'

,,2

,1,,,,1,52'

,,2

,,1,,,,164'

,,

2

1,,11,,11,,11,,131'

,,

66'

,,

,1,1,1,1,1,1,1,151'

,,

64'

,,

2

1

,,,,

1

,,

2

222

122

2

222

122

222

1

222

1

2

z

wwwc

y

ww

y

ww

zcc

y

wwwc

x

wwwc

t

z

vvvc

y

vv

y

vv

zcc

y

vvvc

x

vvvc

t

z

uu

z

uu

xcc

y

uu

y

uu

xcc

t

www

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

ρ

ρ

ρ

Page 60: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

60

Appendix 5. The finite-difference schema for tilted transverse anisotropy media - rotation around x3 axis

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( )

( )( ) ( ) ( ) ( ) ( )

+−+

+−+

−−

∆++

+−∆

+

−−

∆++

−−

∆+

+

+−+

+−+

−−

∆+

+−∆

+−=

−+−+−−−++−++−+

−−+−−+++−−+−−+++

−+−+−−−++−++−+

−+

2

1,,,,1,,36'

,,2

,1,,,,1,45'

,,

1,,11,,11,,11,,113'

,,

66'

,,2

,,1,,,,116'

,,

2

1,1,1,1,1,1,1,1,26'

,,

45'

,,

,1,1,1,1,1,1,1,112'

,,

44'

,,

2

2

1,,,,1,,66'

,,2

,1,,,,1,44'

,,

1,,11,,11,,11,,116'

,,2

,,1,,,,111'

,,

2

1

,,,,

1

,,

22

222

12

222

1

222

1

22

222

12

2

2

z

wwwc

y

wwwc

x

ww

x

ww

zcc

x

wwwc

t

z

vv

z

vv

ycc

y

vv

y

vv

xcc

t

z

uuuc

y

uuuc

x

uu

x

uu

zc

x

uuuc

t

uuu

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

ρ

ρ

ρ

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

−−

∆++

−−

∆+

+

+−+

+−+

−−

∆+

+−∆

+

−−

∆++

−−

∆+

+−=

−−+−−+++−−+−−+++

−+−+−−−++−++−+

−−+−−+++−−+−−+++

−+

z

ww

z

ww

ycc

y

ww

y

ww

xcc

t

z

vvvc

y

vvvc

x

vv

x

vv

zc

x

vvvc

t

z

uu

z

uu

ycc

y

uu

y

uu

xcc

t

vvv

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

222

1

222

1

22

222

12

2

222

1

222

1

2

1,1,1,1,1,1,1,1,23'

,,

55'

,,

,1,1,1,1,1,1,1,126'

,,

45'

,,

2

2

1,,,,1,,55'

,,2

,1,,,,1,22'

,,

1,,11,,11,,11,,145'

,,2

,,1,,,,144'

,,

2

1,1,1,1,1,1,1,1,45'

,,

26'

,,

,1,1,1,1,1,1,1,112'

,,

44'

,,

2

1

,,,,

1

,,

ρ

ρ

ρ

( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

+−+

+−+

−−

∆+

+−∆

+

−−

∆++

−−

∆+

+

+−+

+−+

−−

∆++

+−∆

+−=

−+−+−−−++−++−+

−−+−−+++−−+−−+++

−+−+−−−++−++−+

−+

2

1,,,,1,,33'

,,2

,1,,,,1,55'

,,

1,,11,,11,,11,,136'

,,2

,,1,,,,166'

,,

2

1,1,1,1,1,1,1,1,23'

,,

55'

,,

,1,1,1,1,1,1,1,126'

,,

45'

,,

2

2

1,,,,1,,36'

,,2

,1,,,,1,45'

,,

1,,11,,11,,11,,116'

,,

66'

,,2

,,1,,,,116'

,,

2

1

,,,,

1

,,

22

222

12

2

222

1

222

1

22

222

12

2

z

wwwc

y

wwwc

x

ww

x

ww

zc

x

wwwc

t

z

vv

z

vv

ycc

y

vv

y

vv

xcc

t

z

uuuc

y

uuuc

x

uu

x

uu

zcc

x

uuuc

t

www

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

l

kji

kjikji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

ρ

ρ

ρ

Page 61: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

61

Appendix 6. The fourth-order in time and second-order in space finite-difference schema for transversely isotropic media

( ) ( ) ( ) ( )

( ) ( )

( )

( )( )

( )( )

( )( )

( )[ ]( ) ( )

( )[ ]( ) ( )

( ) ( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆

+−+−+−+−+

+∆∆

+−+−+−+−+++

+∆∆

+−+−+−+−+++

+∆

+−+−+

+−+−+

+−+−

+

∆∆

+−−++

∆∆

+−−+

+∆

+−+

+−+

+−

∆+−=

−−−−−++−−+−+−−−++−++−+−−++++−+++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−−−+−+−−++−−−++−+++−−+−+++−+++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−+−−+−++++

−−−−+−++−+++

−−−−+−++−+++

−−++−−++−−++

−−+−−+++−−+−−+++

−+−+−+

−+

2

1,1,11,1,11,1,11,1,11,,11,,11,,11,,11,1,11,1,11,1,11,1,1

55

,,

23

,,

44

,,

12

,,

55

,,

44

,,

66

,,

13

,,

3

2,,12,,11,,11,,11,,11,,12,,12,,166

,,

33

,,

66

,,

13

,,

3

1,,21,,21,,11,,11,,11,,11,,21,,211

,,

66

,,

66

,,

13

,,

2

1,1,11,1,11,1,11,1,1,1,1,1,1,1,1,1,11,1,11,1,11,1,11,1,1

55

,,

23

,,

66

,,

13

,,

66

,,

55

,,

44

,,

12

,,

3

,2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,144

,,

22

,,

44

,,

12

,,

3

,1,2,1,2,1,1,1,1,1,1,1,1,1,2,1,244

,,

12

,,

44

,,

11

,,

22

1,1,,1,1,1,1,,,,1,,1,1,,1,1,1,66

,,

44

,,

22

1,,11,,1,,1,,1,,,,11,,11,,1,,1266

,,

13

,,

66

,,

11

,,

22

,1,1,1,,1,1,,1,,,,1,1,1,1,,1,1244

,,

12

,,

44

,,

11

,,

4

2,,1,,,,1,,2,,266

,,4

,2,,1,,,,1,,2,244

,,4

,,2,,1,,,,1,,2211

,,

2

4

1,,11,,11,,11,,166

,,

13

,,

,1,1,1,1,1,1,1,144

,,

12

,,

2

1,,,,1,,66

,,2

,1,,,,1,44

,,2

,,1,,,,111

,,2

1

,,,,

1

,,

4

2222*

*

4

2222

4

2222

4

2222*

*

4

2222

4

2222

224222

224222

224222

464464464

12

44

222

2

yzx

wwwwwwwwwwww

cccccccc

zx

wwwwwwwwcccc

xz

wwwwwwwwcccc

zyx

vvvvvvvvvvvv

cccccccc

yx

vvvvvvvvcccc

xy

vvvvvvvvcccc

yz

uuuuuuuuucc

zx

uuuuuuuuucccc

yx

uuuuuuuuucccc

z

uuuuuc

y

uuuuuc

x

uuuuuc

t

xz

wwwwcc

yx

vvvvcc

z

uuuc

y

uuuc

x

uuuc

tuuu

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kji

lkji

lkji

lkji

lkji

lkji

lkji

l

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

ρ

ρ

Page 62: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

62

( ) ( ) ( ) ( )

( ) ( )

( )

( )( )

( )( )

( )( )

( )[ ]( ) ( )

( )[ ]( ) ( )

( ) ( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆

+−+−+−+−+

+∆∆

+−+−+−+−+++

+∆∆

+−+−+−+−+++

+∆

+−+−+

+−+−+

+−+−

+

∆∆

+−−++

∆∆

+−−+

+∆

+−+

+−+

+−

∆+−=

−−−−+−+−−++−−−−++−++−−+−+++−++++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−−−+−+−−++−−−++−+++−−+−+++−+++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−−+−++−+++

−−−+−−+−++++

−−−−+−++−+++

−−++−−++−−++

−−+−−+++−−+−−+++

−+−+−+

−+

2

1,1,11,1,11,1,11,1,11,1,1,1,1,1,1,1,1,1,11,1,11,1,11,1,1

66

,,

13

,,

44

,,

12

,,

66

,,

44

,,

55

,,

23

,,

3

2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,1,55

,,

33

,,

55

,,

23

,,

3

1,2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,22

,,

55

,,

55

,,

23

,,

2

1,1,11,1,11,1,11,1,1,1,1,1,1,1,1,1,11,1,11,1,11,1,11,1,1

66

,,

13

,,

55

,,

23

,,

55

,,

66

,,

44

,,

12

,,

3

,2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,122

,,

44

,,

44

,,

12

,,

3

,1,2,1,2,1,1,1,1,1,1,1,1,1,2,1,244

,,

11

,,

44

,,

12

,,

22

1,,11,,1,,1,,1,,,,11,,11,,1,,155

,,

44

,,

22

1,1,,1,1,1,1,,,,1,,1,1,,1,1,1,255

,,

23

,,

55

,,

22

,,

22

,1,1,1,,1,1,,1,,,,1,1,1,1,,1,1244

,,

12

,,

22

,,

44

,,

4

2,,1,,,,1,,2,,255

,,4

,2,,1,,,,1,,2,222

,,4

,,2,,1,,,,1,,2244

,,

2

4

1,1,1,1,1,1,1,1,55

,,

23

,,

,1,1,1,1,1,1,1,144

,,

12

,,

2

1,,,,1,,55

,,2

,1,,,,1,22

,,2

,,1,,,,144

,,2

1

,,,,

1

,,

4

2222

*

4

2222

4

2222

4

2222*

*

4

2222

4

2222

224222

224222

224222

464464464

12

44

222

2

xzy

wwwwwwwwwwww

cccccccc

zy

wwwwwwwwcccc

yz

wwwwwwwwcccc

zyx

uuuuuuuuuuuu

cccccccc

yx

uuuuuuuucccc

xy

uuuuuuuucccc

zx

vvvvvvvvvcc

yz

vvvvvvvvvcccc

yx

vvvvvvvvvcccc

z

vvvvvc

y

vvvvvc

x

vvvvvc

t

yz

wwwwcc

yx

uuuucc

z

vvvc

y

vvvc

x

vvvc

tvvv

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kji

lkji

lkji

lkji

lkji

lkji

lkji

l

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

ρ

ρ

Page 63: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

63

( ) ( ) ( ) ( )

( ) ( )

( )

( )( )

( )( )

( )( )

( )[ ]( ) ( )

( )[ ]( ) ( )

( ) ( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

( )( )( )

( )( )( )

( )( ) ( )( )[ ]

( )

∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆∆

+−−+−++−+−−

++++++

+∆∆

+−−++−−+++

+∆∆

+−−++−−+++

+∆∆

+−+−+−+−+

+∆∆

+−+−+−+−+++

+∆∆

+−+−+−+−+++

+∆

+−+−+

+−+−+

+−+−

+

∆∆

+−−++

∆∆

+−−+

+∆

+−+

+−+

+−

∆+−=

−−−−+−+−−++−−−−++−++−−+−+++−++++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−−−++−−+−+−−−++−++−+−−++++−+++

−−−+−−−++−+++−++

−−+−−−+−−+++−+++

−−−−+−++−+++

−−−+−−+−++++

−−−−+−++−+++

−−++−−++−−++

−−+−−+++−−+−−+++

−+−+−+

−+

2

1,1,11,1,11,1,11,1,11,1,1,1,1,1,1,1,1,1,11,1,11,1,11,1,1

66

,,

13

,,

44

,,

12

,,

66

,,

44

,,

55

,,

23

,,

3

2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,1,33

,,

55

,,

55

,,

23

,,

3

1,2,1,2,1,1,1,1,1,1,1,1,1,2,1,2,55

,,

22

,,

55

,,

23

,,

2

1,1,11,1,11,1,11,1,11,,11,,11,,11,,11,1,11,1,11,1,11,1,1

44

,,

12

,,

55

,,

23

,,

44

,,

55

,,

66

,,

13

,,

3

2,,12,,11,,11,,11,,11,,12,,12,,166

,,

33

,,

66

,,

13

,,

3

1,,21,,21,,11,,11,,11,,11,,21,,211

,,

66

,,

66

,,

13

,,

22

,1,1,1,,1,1,,1,,,,1,1,1,1,,1,166

,,

55

,,

22

1,1,,1,1,1,1,,,,1,,1,1,,1,1,1,255

,,

23

,,

33

,,

55

,,

22

1,,11,,1,,1,,1,,,,11,,11,,1,,1266

,,

13

,,

33

,,

66

,,

4

2,,1,,,,1,,2,,233

,,4

,2,,1,,,,1,,2,255

,,4

,,2,,1,,,,1,,2266

,,

2

4

1,1,1,1,1,1,1,1,55

,,

23

,,

1,,11,,11,,11,,166

,,

13

,,

2

1,,,,1,,33

,,2

,1,,,,1,55

,,2

,,1,,,,166

,,2

1

,,,,

1

,,

4

2222*

*

4

2222

4

2222

4

2222*

*

4

2222

4

2222

224222

224222

224222

464464464

12

44

222

2

xzy

vvvvvvvvvvvv

cccccccc

zy

vvvvvvvvcccc

yz

vvvvvvvvcccc

yzx

uuuuuuuuuuuu

cccccccc

zx

uuuuuuuucccc

xz

uuuuuuuucccc

yx

wwwwwwwwwcc

yz

wwwwwwwwwcccc

zx

wwwwwwwwwcccc

z

wwwwwc

y

wwwwwc

x

wwwwwc

t

yz

vvvvcc

zx

uuuucc

z

wwwc

y

wwwc

x

wwwc

twww

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kji

lkji

lkji

lkji

lkji

lkji

lkji

l

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikjikjikjikjikji

kjil

kji

lkji

lkji

lkji

lkji

lkji

lkji

l

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjil

kjikjikjikji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

kjil

kjil

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

l

kji

kjikji

l

kji

l

kji

l

kji

kji

l

kji

l

kji

l

kji

kji

kjil

kjil

kjil

kji

l

kji

l

kji

l

kji

ρ

ρ

Page 64: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

64

Appendix 7. Main computational kernel loop

u[i][j][k]=2.0*pu[i][j][k]-ppu[i][j][k]+((dtr*dtr)/(rho[i][j][k]))*

(

c11[i][j][k]*((pu[i+1][j][k]-2.0*pu[i][j][k]+pu[i-1][j][k])/(ds*ds))

+c44[i][j][k]*

((pu[i][j+1][k]-2.0*pu[i][j][k]+pu[i][j-1][k])/(ds*ds))

+c66[i][j][k]*

((pu[i][j][k+1]-2.0*pu[i][j][k]+pu[i][j][k-1])/(ds*ds))

+((c12[i][j][k]+c44[i][j][k])/(4.0*ds*ds))*

((

pv[i+1][j+1][k]-pv[i+1][j-1][k]-pv[i-1][j+1][k]+pv[i-1][j-1][k]

))

+((c13[i][j][k]+c66[i][j][k])/(4.0*ds*ds))*

((

pw[i+1][j][k+1]-pw[i+1][j][k-1]-pw[i-1][j][k+1]+pw[i-1][j][k-1]

))

);

v[i][j][k]=2.0*pv[i][j][k]-ppv[i][j][k]+((dtr*dtr)/(rho[i][j][k]))*

(

c44[i][j][k]*((pv[i+1][j][k]-2.0*pv[i][j][k]+pv[i-1][j][k])/(ds*ds))

+c22[i][j][k]*

((pv[i][j+1][k]-2.0*pv[i][j][k]+pv[i][j-1][k])/(ds*ds))

+c55[i][j][k]*

((pv[i][j][k+1]-2.0*pv[i][j][k]+pv[i][j][k-1])/(ds*ds))

+((c12[i][j][k]+c44[i][j][k])/(4.0*(ds*ds)))*

((

pu[i+1][j+1][k]-pu[i+1][j-1][k]-pu[i-1][j+1][k]+pu[i-1][j-1][k]

))

Page 65: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

65

+((c23[i][j][k]+c55[i][j][k])/(4.0*(ds*ds)))*

((

pw[i][j+1][k+1]-pw[i][j+1][k-1]-pw[i][j-1][k+1]+pw[i][j-1][k-1]

))

);

w[i][j][k]=2.0*pw[i][j][k]-ppw[i][j][k]+((dtr*dtr)/(rho[i][j][k]))*

(

c66[i][j][k]*((pw[i+1][j][k]-2.0*pw[i][j][k]+pw[i-1][j][k])/(ds*ds))

+c55[i][j][k]*

((pw[i][j+1][k]-2.0*pw[i][j][k]+pw[i][j-1][k])/(ds*ds))

+c33[i][j][k]*

((pw[i][j][k+1]-2.0*pw[i][j][k]+pw[i][j][k-1])/(ds*ds))

+((c13[i][j][k]+c66[i][j][k])/(4.0*(ds*ds)))*

((

pu[i+1][j][k+1]-pu[i+1][j][k-1]-pu[i-1][j][k+1]+pu[i-1][j][k-1]

))

+((c23[i][j][k]+c55[i][j][k])/(4.0*(ds*ds)))*

((

pv[i][j+1][k+1]-pv[i][j+1][k-1]-pv[i][j-1][k+1]+pv[i][j-1][k-1]

))

);

Listing A7.1. Computational kernel; u, w, v denote displacements in two horizontal and vertical directions in time t+1;

prefixes p and pp mean time step t and t-1 respectively; c?? represents elastic constraints and rho is density; i, j, k are

discrete coordinates of computational cubes.

Wykaz A7.1. Główna pętla obliczeniowa: u, w, v oznacza przemieszczenie w kierunku pionowym i obu poziomych w

czasie t+1; przedrostki p i pp oznaczają odpowiednio t i t-1 krok czasowy; c?? oznacza składowe macierzy sztywności,

rho gęstość; i, j, k współrzędne dyskretne siatki obliczeniowej.

Page 66: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

66

Appendix 8. Modeling results

Fig A8.1. Results for exploding source and isotropic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are source crossing

Rys A8.1 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka izotropowego. DuŜe litery oznaczają

płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar źródłowy.

Fig A8.2 Results for exploding source and isotropic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are shifted 20 from the source.

Rys A8.2 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka izotropowego. DuŜe litery oznaczają

płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru źródłowego o 20 m.

Page 67: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

67

Fig A8.3 Results for exploding source and HTI medium. Capital letters denote planes; small letters denote directions

of motion. All planes are source crossing.

Rys A8.3 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka z anizotropią typu HTI. DuŜe litery

oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar źródłowy.

Fig A8.4 Results for exploding source and HTI medium. Capital letters denote planes; small letters denote directions

of motion. All planes are shifted 20 from the source.

Rys A8.4 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka z anizotropią typu HTI. DuŜe litery

oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.

Page 68: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

68

Fig A8.5. Results for exploding source and VTI medium. Capital letters denote planes; small letters denote directions

of motion. All planes are source crossing.

Rys A8.5 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka z anizotropią typu VTI. DuŜe litery

oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar źródłowy.

Fig A8.6 Results for exploding source and VTI medium. Capital letters denote planes; small letters denote directions

of motion. All planes are shifted 20 from the source.

Rys A8.6 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka z anizotropią typu VTI. DuŜe litery

oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.

Page 69: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

69

Fig A8.7. Results for exploding source and orthorhombic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are source crossing

Rys A8.7 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka ortorombowego. DuŜe litery oznaczają

płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar źródłowy.

Fig A8.8. Results for exploding source and orthorhombic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are shifted 20 from the source.

Rys A8.8 Wyniki modelowań uzyskane dla źródła wybuchowego dla ośrodka ortorombowego. DuŜe litery oznaczają

płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru źródłowego o 20 m.

Page 70: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

70

Fig A8.9. Results for double couple source and isotropic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are source crossing

Rys A8.9 Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka izotropowego. DuŜe

litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar

źródłowy.

Fig A8.10. Results for double couple source and isotropic medium. Capital letters denote planes; small letters denote

directions of motion. All planes are shifted 20 from the source.

Rys A8.10 Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka ortorombowego.

DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.

Page 71: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

71

Fig A8.11. Results for double couple source and HTI medium. Capital letters denote planes; small letters denote

directions of motion. All planes are source crossing

Rys A8.11 Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka z anizotropią typu

HTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez

obszar źródłowy.

Fig A8.12. Results for double couple source and HTI medium. Capital letters denote planes; small letters denote

directions of motion. All planes are shifted 20 from the source.

Rys A8.12 Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka z anizotropią typu

HTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od

obszaru źródłowego o 20 m.

Page 72: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

72

Fig A8.13. Results for double couple source and VTI medium. Capital letters denote planes; small letters denote

direction of motion. All planes are source crossing

Rys A8.13 Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka z anizotropią typu

VTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez

obszar źródłowy.

Fig A8.14. Results for double couple source and VTI medium. Capital letters denote planes; small letters denote

direction of motion. All planes are shifted 20 from the source.

Rys A8.14. Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka z anizotropią typu

VTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od

obszaru źródłowego o 20 m.

Page 73: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

73

Fig A8.15. Results for double couple source and orthorhombic medium. Capital letters denote planes; small letters

denote direction of motion. All planes are source crossing

Rys A8.15. Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka ortorombowego.

DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez

obszar źródłowy.

Fig A8.16. Results for double couple source and orthorhombic medium. Capital letters denote planes; small letters

denote direction of motion. All planes are shifted 20 from the source.

Rys A8.16. Wyniki modelowań uzyskane dla źródła przybliŜanego podwójną parą sił dla ośrodka ortorombowego.

DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.

Page 74: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

74

Fig A8.17.Results for single force source and isotropic medium. Capital letters denote planes; small letters denote

direction of motion. All planes are source crossing

Rys A8.17. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka izotropowego. DuŜe

litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar

źródłowy.

Fig A8.18. Results for singe force source and isotropic medium. Capital letters denote planes; small letters denote

direction of motion. All planes are shifted 20 from the source.

Rys A8.18. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka izotropowego. DuŜe

litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.

Page 75: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

75

Fig A8.19.Results for single force source and HTI medium. Capital letters denote planes; small letters denote

direction of motion. All planes are source crossing

Rys A8.19. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka z anizotropią typu

HTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez

obszar źródłowy.

Fig A8.20. Results for singe force source and HTI medium. Capital letters denote planes; small letters denote direction

of motion. All planes are shifted 20 from the source.

Rys A8.20. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka z anizotropią typu

HTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od

obszaru źródłowego o 20 m.

Page 76: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

76

Fig A8.21. Results for single force source and VTI medium. Capital letters denote planes; small letters denote

direction of motion. All planes are source crossing

Rys A8.21. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka z anizotropią typu

VTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez

obszar źródłowy.

Fig A8.22. Results for singe force source and VTI medium. Capital letters denote planes; small letters denote direction

of motion. All planes are shifted 20 from the source.

Rys A8.22. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka z anizotropią typu

VTI. DuŜe litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od

obszaru źródłowego o 20 m.

Page 77: Numerical modeling of seismic wave propagation in selected ...home.agh.edu.pl/~lesniak/papers/mono.pdf · Full-wave field modelling is a powerful tool of seismic exploration and seismology

77

Fig A8.23.Results for single force source and orthorhombic medium. Capital letters denote planes; small letters

denote direction of motion. All planes are source crossing

Rys A8.23. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ortorombowego. DuŜe litery

oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji przechodzą przez obszar źródłowy.

Fig A8.24. Results for singe force source and orthorhombic medium. Capital letters denote planes; small letters

denote direction of motion. All planes are shifted 20 from the source.

Rys A8.24. Wyniki modelowań uzyskane dla źródła przybliŜanego pojedynczą siłą dla ośrodka ortorombowego. DuŜe

litery oznaczają płaszczyzny obserwacji, małe – kierunek ruchu. Płaszczyzny obserwacji są odsunięte od obszaru

źródłowego o 20 m.