nanocomposite quasi-solid-state electrolyte for high- …10.1007/s12274-017-1526... ·...

5
Nano Res. Electronic Supplementary Material Nanocomposite quasi-solid-state electrolyte for high- safety lithium batteries Hyunji Choi 1,§ , Hyun Woo Kim 1,§ , Jae-Kwang Kim 2 ( ), Young Jun Lim 1 , Youngsik Kim 1 ( ), and Jou-Hyeon Ahn 3 ( ) 1 School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea 2 Department of Solar & Energy Engineering, Cheongju University, Cheongju, Chungbuk 28503, Republic of Korea 3 School of Energy & Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701, Republic of Korea § Hyunji Choi and Hyun Woo Kim contributed equally to this work. Supporting information to DOI 10.1007/s12274-017-1526-2 Table 1 Comparison of the properties between this HSE and reported HSEs Solid electrolyte Ionic conductivity (S·cm 1 , RT) Lithium transference number (t Li +) Thermal stability ( ° C) Discharge capacity (mAh·g 1 , 0.1 C) Cycle property Reference Conventional liquid electrolyte 8.6 × 10 3 0.27 90 161 (LFP, RT) 148 (LCO, RT) 0% (80 ° C) Ionic liquid + BaTiO 3 1.3 × 10 3 0.35 400 145 (LFP, RT) 118 (LCO, RT) 92% (RT, 80 ° C) This work PEG + SiO 2 2.3 × 10 4 [S1] Ionic liquid + TiO 2 1.5 × 10 3 0.15 380 150 (LFP, RT) 89% (RT) [S2] Ionic liquid + PEO + LiAlO 2 1.6 × 10 3 2,400 (Si, 60 ° C) 10% (60 ° C) [S3] Oxide particle + ionic liquid 3.2 × 10 4 124 (LCO, 65 ° C) [S4] Ionic liquid + SBA-15 + PVdF + SiO 2 2.65 × 10 4 370 114 (LFP, RT) 100% [S5] Ionic liquid + PVdF + SiO 2 3.3 × 10 4 122 (LFP, RT) 88% [S6] Address correspondence to Jae-Kwang Kim, [email protected]; Youngsik Kim, [email protected]; Jou-Hyeon Ahn, [email protected]

Upload: vanthuan

Post on 19-Apr-2018

222 views

Category:

Documents


11 download

TRANSCRIPT

Nano Res.

Electronic Supplementary Material

Nanocomposite quasi-solid-state electrolyte for high- safety lithium batteries

Hyunji Choi1,§, Hyun Woo Kim1,§, Jae-Kwang Kim2 (), Young Jun Lim1, Youngsik Kim1 (), and

Jou-Hyeon Ahn3 ()

1 School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea2 Department of Solar & Energy Engineering, Cheongju University, Cheongju, Chungbuk 28503, Republic of Korea 3 School of Energy & Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang

National University, 900, Gajwa-dong, Jinju 660-701, Republic of Korea § Hyunji Choi and Hyun Woo Kim contributed equally to this work.

Supporting information to DOI 10.1007/s12274-017-1526-2

Table 1 Comparison of the properties between this HSE and reported HSEs

Solid electrolyte Ionic conductivity

(S·cm−1, RT)

Lithium transference

number (tLi+)

Thermal

stability ( °C)

Discharge capacity

(mAh·g−1, 0.1 C)

Cycle property Reference

Conventional liquid

electrolyte

8.6 × 10−3 0.27 90 161 (LFP, RT)

148 (LCO, RT)

0% (80 °C)

Ionic liquid + BaTiO3 1.3 × 10−3 0.35 400 145 (LFP, RT)

118 (LCO, RT)

92% (RT, 80 °C) This work

PEG + SiO2 2.3 × 10−4 [S1]

Ionic liquid + TiO2 1.5 × 10−3 0.15 380 150 (LFP, RT) 89% (RT) [S2]

Ionic liquid + PEO +

LiAlO2

1.6 × 10−3 2,400 (Si, 60 °C) 10% (60 °C) [S3]

Oxide particle + ionic

liquid

3.2 × 10−4 124 (LCO, 65 °C) [S4]

Ionic liquid + SBA-15 +

PVdF + SiO2

2.65 × 10−4 370 114 (LFP, RT) 100% [S5]

Ionic liquid + PVdF +

SiO2

3.3 × 10−4 122 (LFP, RT) 88% [S6]

Address correspondence to Jae-Kwang Kim, [email protected]; Youngsik Kim, [email protected]; Jou-Hyeon Ahn, [email protected]

| www.editorialmanager.com/nare/default.asp

Nano Res.

Figure S1 SEM image and SEM-EDX results for the hybrid solid electrolyte (HSE) with Ti and F atoms.

Figure S2 SEM-EDX phase contrast mode (a) and TEM image (b) of HSE.

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research

Nano Res.

Figure S3 Ionic conductivity and VTF plots of ILE and HSE as a function of temperature.

Figure S4 Interfacial resistance values in Li/LE/LiCoO2 and Li/solid electrolyte (SE)/LiCoO2 cells.

| www.editorialmanager.com/nare/default.asp

Nano Res.

Figure S5 Close-up of the strong Raman mode of pure Py14TFSI at 740 cm−1 corresponding to the expansion and contraction modes of the TFSI anion that produces a large polarizability change. The contributions of the two free TFSI conformers (C1 and C2) discussed in the text are indicated.

Figure S6 Charge–discharge curves (a) and rate capability (b) of Li/HSE/LiFePO4 solid-state cell at RT.

Figure S7 Charge–discharge curves for ionic liquid electrolyte (ILE) and hybrid solid electrolyte (HSE) at different current densities (0.1 and 1 C-rates).

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research

Nano Res.

Figure S8 Cycle performance of Li/HSE/LiCoO2 solid-state cell at RT and 80 °C.

References

[S1] Nugent, J. L.; Moganty, S. S.; Archer, L. A. Nanoscale organic hybrid electrolytes. Adv. Mater. 2010, 22, 3677–3680.

[S2] Kim, J. K.; Scheers, J.; Park, T. J.; Kim, Y. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. ChemSusChem

2015, 8, 636–641.

[S3] Blanga, R.; Golodnitsky, D.; Ardel, G.; Freedman, K.; Gladkich, A.; Rosenberg, Y.; Nathan M.; Peled, E. Quasi-solid polymer-

in-ceramic membrane for Li-ion batteries. Electrochim. Acta 2013, 114, 325–333.

[S4] Ito, S.; Unemoto, A.; Ogawa, H.; Tomai, T.; Honma, I. Application of quasi-solid-state silica nanoparticles–ionic liquid composite

electrolytes to all-solid-state lithium secondary battery. J. Power Sources 2012, 208, 271–275.

[S5] Li, X. W.; Zhang, Z. X.; Yin, K.; Yang, L.; Tachibana, K.; Hirano, S. I. Mesoporous silica/ionic liquid quasi-solid-state electrolytes

and their application in lithium metal batteries. J. Power Sources 2015, 278, 128–132.

[S6] Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Bideau, J. L. Hybrid silica-polymer ionogel solid

electrolyte with tunable properties. Adv. Energy Mater. 2014, 4, 1301570.