morten sommer, mit/harvard doe gtl center novozyme 30-jun-2006 cad for synthetic microbial biofuels

33
Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Post on 20-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Morten Sommer, MIT/Harvard DOE GtL CenterNovozyme 30-Jun-2006

CAD for Synthetic Microbial Biofuels

Page 2: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Our DOE GtL Center goals & strengths

1. Basic enabling technologies: omics, models,

genome synthesis, evolution, sequencing

2. Fermentative production of alcohols & biodiesel.

3. Improving photosynthetic and conversion efficiencies.

4. Harnessing new insights from ecosystems.

Page 3: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Genome & Metabolome Computer Aided Design (CAD)

4.7 Mbp new genetic codes new amino acids 7*7 * 4.7 Mbp mini-ecosystems biosensors, bioenergy, high secretors, DNA & metabolic isolation

•Top Design Utility, safety & scalability

CAD-PAM Synthesis (chip & error correction)

Combinatorics Evolution Sequence

Page 4: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

How? 10 Mbp of oligos / $1000 chip

8K Atactic/Xeotron/Invitrogen

Photo-Generated Acid

Sheng , Zhou, Gulari, Gao (Houston)

12K Combimatrix Electrolytic

44K Agilent Ink-jet standard reagents

380K Nimblegen Photolabile 5'protection

Tian et al. Nature. 432:1050; Carr & Jacobson 2004 NAR; Smith & Modrich 1997

PNAS

~1000X lower oligo costs

(= 2 E.coli genomes or 20 Mycoplasmas /chip)

Amplify pools of 50mers using flanking universal PCR primers and three paths to 10X error correction

Digital Micromirror Array

Page 5: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Martin VJ, et al. Nat. Biotech 2003

Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Ro DK, et al. Nature. 2006 8

Page 6: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Programmable ligand-controlled riboregulators to monitor metabolites.

Bayer & Smolke 2005 Nature Biotech.

ON

ON

OFF

Page 7: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Smart therapeutics example: Environmentally controlled invasion of cancer cells by engineered

bacteria. Anderson et al. J Mol Biol. 2006

Optical imaging: bacteria, viruses, and mammalian cells encoding light- emitting proteins reveal the locations of primary tumors & metastases in animals. Yu, et al. Anal. Bioanal. Chem. 2003.

accumulate in tumors at ratios in excess of 1000:1 compared with normal tissues. http://www.vionpharm.com/tapet_virulence.html

Metabolic constraintsRegulated Capsule

TonB, DapD& new genetic codes

for safety

Page 8: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

LPS- Capsule+ Dap- for safety

7

DapD

Page 9: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

rE.coli: new in vivo genetic codes

TTT

F

30362 TCT

S

11495 TAT

Y

21999 TGT

C

7048

TTC 22516 TCC 11720 TAC 16601 TGC 8816

TTA

L

18932 TCA 9783 TAASTOP

STOP

2703 TGA STOP 1256

TTG 18602 TCG 12166 TAG 326 TGG W 20683

CTT

L

15002 CCT

P

9559 CAT

H

17613 CGT

R

28382

CTC 15077 CCC 7485 CAC 13227 CGC 29898

CTA 5314 CCA 11471 CAA

Q

20888 CGA 4859

CTG 71553 CCG 31515 CAG 39188 CGG 7399

ATT

I

41309 ACT

T

12198 AAT

N

24159 AGT

S

11970

ATC 34178 ACC 31796 AAC 29385 AGC 21862

ATA 5967 ACA 9670 AAA

K

45687 AGA

R

2896

ATG M 37915 ACG 19624 AAG 14029 AGG 1692

GTT

V

24858 GCT

A

20762 GAT

D

43719 GGT

G

33622

GTC 20753 GCC 34695 GAC 25918 GGC 40285

GTA 14822 GCA 27418 GAA

E

53641 GGA 10893

GTG 35918 GCG 45741 GAG 24254 GGG 15090

Freeing 4 tRNAs, 7 codons: UAG, UUR, AGY, AGRe.g. PEG-pAcPhe-hGH (Ambrx, Schultz) high serum stability

IsaacsChurch

Forster

CarrJacobson

JahnzSchultz

1

2

3

4

Page 10: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Competition & cooperation

• Cooperation between two auxotrophs– Overall fitness depends on secretion– Over-production, increase of export

• Competition among each sub-population– The fastest growing one wins– Increase of uptake

• Coupling between evolution of import and export properties?– Amplified genes– Transporter & pore genes

Page 11: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Cross-feeding symbiotic systems:aphids & Buchnera

• obligate mutualism• nutritional interactions: amino acids and vitamine• established 200-250 million years ago• close relative of E. coli with tiny genome (618~641kb)

Aphids

Internal view of the aphid. (by T. Sasaki)

Bacteriocyte (Photo by T. Fukatsu)

Buchnera (Photo by M. Morioka)

http://buchnera.gsc.riken.go.jphttp://buchnera.gsc.riken.go.jp

Page 12: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Shigenobu et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp.APS. Nature 407, 81-86 (2000).

Page 13: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Shigenobu et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp.APS. Nature 407, 81-86 (2000).

Page 14: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

ODE based simulation of population dynamics of cross-feeding ∆Trp-∆TyrQuestions:

• When mixed in minimum medium, how do the cell population and the amino acid concentrations change over time?

• What happens when the strains evolve?– improve on amino acid

imports– improve on amino acid

synthesis and/or exports

Page 15: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Governing ODE system

density of ∆Trp (gBM/ml)

density of ∆Tyr (gBM/ml)

conc. of Trp (mmol/ml)

conc. of Tyr (mmol/ml)

growth rate constant of ∆Trp ([(mmol/ml Trp)-hr]-1)

growth rate constant of ∆Tyr ([(mmol/ml Tyr)-hr]-1)

Tyr excretion rate constant of ∆Trp (mmol/gBM-hr)

Trp excretion rate constant of ∆Tyr (mmol/gBM-hr)

=0.05 Trp requirement of ∆Trp (mmol/gBM)

=0.13 Tyr requirement of ∆Tyr (mmol/gBM)

Initial conditions:

Page 16: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

density of ∆Trp (gBM/ml)density of ∆Tyr (gBM/ml)conc. of Trp (mmol/ml)conc. of Tyr (mmol/ml)

growth rate constant of ∆Trp ([(mmol/ml

Trp)-hr]-1) growth rate constant of ∆Tyr ([(mmol/ml

Tyr)-hr]-1)

Tyr excretion rate constant of ∆Trp

(mmol/gBM-hr)

Trp excretion rate constant of ∆Tyr

(mmol/gBM-hr)

=0.05 Trp requirement of ∆Trp

(mmol/gBM)

=0.13 Tyr requirement of ∆Tyr

(mmol/gBM)

“Steady-state” solution:

Variables:

Parameters:

Page 17: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Invasion of advantageous mutants

Page 18: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng. 2005 91(5):643-8.

Rozen DE, Schneider D, Lenski RE Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J Mol Evol. 2005 61(2):171-80

Andries K, et al. (J&J) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005 307:223-7.

Shendure et al. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome Science 2005 309:1728 (Select for secretion & ‘altruism’).

Intelligent Design & Metabolic Evolution

Page 19: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

‘Next Generation’ Technology Development

Multi-molecule Our roleAffymetrix Software454 LifeSci Paired ends, emulsionSolexa/Lynx Multiplexing & polonyAB/APG Seq by Ligation (SbL)Complete Genomics SbLGorfinkel Polony to Capillary

Single molecules Helicos Biosci SAB, cleavable fluorsPacific Biosci Advisor KPCBAgilent Nanopores Visigen Biotech AB

Page 20: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

HPLC autosampler

(96 wells)syringe pump

Polony Sequencing EquipmentHMS/AB/APG

microscope

with xyz

controls

flow-cell

temperature

control

Page 21: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

trp/tyrA pair of genomes shows the best co-growth

Reppas, Lin & Church ; Shendure et al. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome(2005) Science 309:1728

SecondPassage

First Passage

Synthetic combinatorics & evolution of 7*7* 4.7 Mbp genomes

Page 22: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Consensus error rate Total errors (E.coli)

(Human)

1E-4 Bermuda/Hapmap 500

600,000

4E-5 454 @40X 200 240,000

3E-7 Polony-SbL @6X 0 1800

1E-8 Goal for 2006 0 60

Goal of genotyping & resequencing Discovery of variantsE.g. cancer somatic mutations ~1E-6 (or lab evolved cells)

Why low error rates?

Also, effectively reduce (sub)genome target size by enrichment for exons or common SNPs to reduce cost & # false positives.

Page 23: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Position Type Gene LocationABI

ConfirmComments

986,334 T > G ompFPromoter-

10 Only in evolved strain

985,797 T > G ompF Glu > Ala Only in evolved strain

931,960 ▲8 bp lrp frameshift Only in evolved strain

3,957,960 C > T ppiC 5' UTR MG1655 heterogeneity

-3274 T > C cI Glu > Glu red heterogeneity

-9846 T > CORF6

1Lys > Gly red heterogeneity

Mutation Discovery in Engineered/Evolved E.coli

Shendure, Porreca, et al. (2005) Science 309:1728

Page 24: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

• Glu-117 → Ala (in the pore)

• Charged residue known to affect pore size and selectivity

• Promoter mutation at position (-12)

• Makes -10 box more consensus-like

-12 -11 -10 -9 -8 -7 -6

AAAGAT

CAAGAT

Can increase import & export capability simultaneously

ompF - non-specific transport channel

Page 25: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

# of passages

Do

ub

lin

g t

ime

(h

r)

Q1

Q3

Q2-1

Q2-2

EcNR1

Sequence monitoring of evolution(optimize small molecule synthesis/transport)

Sequence trp-

Reppas, Lin & Church

Page 26: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

3 independent lines of Trp/Tyr co-culture frozen.

OmpF: 42R-> G, L, C, 113 D->V, 117 E->APromoter: -12A->C, -35 C->ALrp: 1bp deletion, 9bp deletion, 8bp

deletion, IS2 insertion, R->L in DBD.

Heterogeneity within each time-point reflecting colony heterogeneity.

Co-evolution of mutual biosensorssequenced across time & within each time-point

Page 27: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Prochlorococcus 40ºN - 40ºS

Ocean chl a (Aug 1997 –Sept 2000)Provided by the SeaWiFS Project, NASA

Page 28: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

-Glc-1P ADP-Glc -1,4-glucosyl-glucan glycogenCentralCarbonMetabol.

glgC

glgX

glgA glgB

glgP

Glycogen metabolism

Time (hours)

0 4 8 12 16 20 24 28 32 36 40 44 48

Nor

mal

ized

Exp

ress

ion

0.1

1

10

glgAglgBglgCglgXglgP

Zinser et al. unpublZinser et al. unpubl..

Light regulated Prochlorococcus metabolism

Page 29: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Photosynthetic Genes in Phage

Podovirus P-SSP7 46 kb

PC HLIPs Fd D1

12kb 24kb

PC HLIPs Fd D1

12kb 24kb

~500 bp

HLIPs D1 D2

6.4kb 2.8kb

~500 bp

Myovirus P-SSM4 181 kbHLIPs D1 D2

6.4kb 2.8kb

Lindell, Sullivan, Chisholm et al. 2004Lindell, Sullivan, Chisholm et al. 2004

HLIP D1

Myovirus P-SSM2 255 kb

Page 30: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

RNA Responses to Phage

MED4-0682 (60 aa Conserved URF)

Phage SSP7 psbA

MED4 host psbA

Lindell,Lindell, Sullivan, Zinser, ChisholmSullivan, Zinser, Chisholm

Page 31: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Our DOE GtL Center goals & strengths

1. Basic enabling technologies: omics, models,

genome synthesis, evolution, sequencing

2. Fermentative production of alcohols & biodiesel.

3. Improving photosynthetic and conversion efficiencies.

4. Harnessing new insights from ecosystems.

Page 32: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

Morten Sommer, MIT/Harvard DOE GtL CenterNovozyme 30-Jun-2006

CAD for Synthetic Microbial Biofuels

Page 33: Morten Sommer, MIT/Harvard DOE GtL Center Novozyme 30-Jun-2006 CAD for Synthetic Microbial Biofuels

.