moritz new

43
Eddy currents (in accelerator magnets) G. Moritz, GSI Darmstadt CAS Magnets, Bruges, June 1625 2009

Upload: constantin-dorinel

Post on 24-Dec-2015

23 views

Category:

Documents


0 download

DESCRIPTION

Moritz New

TRANSCRIPT

Page 1: Moritz New

Eddy currents (in accelerator magnets)

G. Moritz, GSI Darmstadt

CAS Magnets, Bruges, June 16‐25 2009

Page 2: Moritz New

Introduction

DefinitionAccording to Faraday‘s law a voltage is induced in a conductor loop, if it is subjected to a time-varying flux.As a result current flows in the conductor, if there exist a closed path.

‚Eddy currents‘ appear, if extended conducting media are subjected to time varying fields. They are now distributed in the conducting media.

Effects•

Field delay (Lenz ´s Law), field distortion•

Power loss•

Lorentz-forces

Beneficial in some applications (brakes, dampers, shielding, induction heating, levitated train etc.)

Mostly unwanted in accelerator magnets: appropriate design

to avoid them / to minimize the unwanted effects.

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Page 3: Moritz New

Outline

Introduction–

Definition, Effects (desired, undesired)

Basics–

Maxwell-equations–

Diffusion approach•

Analytical solutions: Examples •

Numerical solutions: Introduction of numerical codes–

Direct application of Maxwell-equations (small perturbation)

Eddy currents in accelerator magnets–

Yoke, mechanical structure, resistive coil, beam pipe

Design principles / Summary•

Appendix (references)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Page 4: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

00

BE

tBE

jH

EjHB r 0

0

0

A

A

A

A

dAB

dAE

dABt

dsE

dAjdsH

Faraday‘s Law

•Quasistationary approach•No excess charge

Ampere‘s Law

Basics Maxwell-equations

Material properties

Page 5: Moritz New

Lenz‘s law

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

"the emf induced in an electric circuit always 

acts in such a direction that the current it 

drives around a closed circuit produces a 

magnetic field which opposes the change in 

magnetic flux." 

Lenz‘s Law: Reason for field delay            slow diffusion process

Page 6: Moritz New

Field diffusion equation one way of eddy current calculation

jH

Ej

vanish

)( jH

tHH

2

tBE

1 Magnetic diffusivity

•Assumption: σ

uniform in space•Diffusion equation does also exist also for current density j, magnetic Induction B and magnet Vector Potential A !•Having solved the differential equation for H, the eddy current density j can be calculated by Ampere‘s Law and consequently the power loss P.

Page 7: Moritz New

Analytical solutions: Half-space conductor (1D-approach)(1) (following closely H.E. Knoepfel ‚Magnetic Fields‘)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

tH

xH zz

2

2

Boundary conditions:Hz

(0,t)=0          t<0Hz

(0,t)= Hz

(t)     t≥0Hz

(x,0)= 0         0<x<∞

1.

Step‐function field Hz

(t) =H0

=constant2.

Transient linear field Hz

(t) = H0

/t0

*t3.

Transient sinusoidal field Hz

(t) = H0

*sin (ωt)

Application of external field: Hz

(t)Solution Hz

(x,t)   = ?      

Page 8: Moritz New

Analytical solutions: Half-space conductor (1D-approach) (2)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

1.

Step‐function field Hz

(t) =H0

=constant

Hz(x,t)=H0

*S(x,t)

With response function S(x,t)and  S(x,0)=0 and S(x,t→∞)=1

Diffusion time constant

dttxSd

0

),(1

tx

2

)1(0),( erfHtxzH Similarity variable Special response function S(x,t)

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.0

0.2

0.4

0.6

0.8

1.0

0.5 cm 1 cm 2 cm

H0 (A

/m)

t (sec)

= 1109, 0

Page 9: Moritz New

Analytical solutions: Half-space conductor (1D-approach) (3)

2. Transient linear field Hz

(t) = H0

/t0

*t

),(0

0

0

0 txHtHxt

tH t

zd

)(xHed

0, if t >>τd

Field lag

),(),( txHtxH tz

sz

0,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007 excitation 0.1 cm 0.2 cm 0.3 cm

Hz (A

/m)

t (sec)

22erfc21, 2

0

0

ettHtxH z

Page 10: Moritz New

Analytical solutions: Half space conductor (1D-approach) (4)

3. Transient  sinusoidal field Hz

(t) = H0

*sin (ωt)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

)sin(),( 0 xteHtxH

xsz

),(),(),( txHtxHtxH tz

szz

stationary transient

2

Harmonic skin depth

Page 11: Moritz New

Skin depth as function of frequency and conductivity

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Refer: Knoepfel, fig. 4.2‐5

Page 12: Moritz New

Analytical solutions: Slab conductor (lamination)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Boundary conditions:for step function fieldHz

(±d,t)=0          t<0Hz

(±d,t)= H0

t≥0 Hz

(x,0)= 0         ‐d<x<+d

Step‐function field (1D)

Step‐function field (2D)

Refer to Knoepfel 4.2,  Table 4.2‐I

2

2

2

22

,1

21

0 /4).(2

cos2

cos41),,( ,

bm

an

mnfbym

axn

HtyxH mnn

t

mz e mn

2

221 2

104

)1(

2cos

41),( dn

n

dxn

HtxH nn

t

nz e n

n odd

n,m odd

LC iron, 1mm , µr

=1000

sec11 m

Page 13: Moritz New

Analytical solutions: Field in the gap of an iron-dominated C- dipole

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

x

y

z

g

tH

lg

lyH

xH

r

02

2

2

2

a

b

For this special 

case:

Case1 : g=0       Standard diffusion equationCase 2:               Special diffusion equationgl

r

tH

tH

gl

yH

xH i

102

2

2

2 1

lg

01

1

l

With this  diffusivity κ1

we can use the slab solutions!

G. Brianti et al., CERN SI/Int. DL/71‐3 (1971)

Page 14: Moritz New

Analytical vs. numerical methodspros cons

Analytical Methods physical understanding

•simple geometry (mainly1D/ 2D)•Homogeneous, isotropic and linear materials•simple excitation

Numerical Methods •complex geometry (3D)•inhomogeneous, anisotropic and nonlinear materials•complex excitation

long computing times

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Page 15: Moritz New

Vector Potential A -

the most common way of numerical eddy current calculation

tAA

JABtAEJ

tAA

ttBE

2

2Field calculation

Find vector potential

Sometimes the current  vector potential  T is used: Tj Refer: MULTIMAG

program for calculating and optimizing magnetic 2D and 

3D fields in accelerator magnets (Alexander Kalimov [[email protected]])

Diffusion equation for Vector potential A

AB

Page 16: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Widely used numerical codes for the calculation of eddy current in magnets

Opera

(Vector Fields Software, Cobham Techn. Services, Oxford) www.vectorfields.com–

FEM–

Opera 2d,AC and TR, Opera 3d, ELEKTRA

, (TEMPO-thermal and stress-analysis)

ROXIE

(Routine for the Optimization of Magnet X-Sections, Inverse Field Calculation and Coil End Design) (S. Russenschuck, CERN) https://espace.cern.ch/roxie/default.aspx–

BEM/FEM–

Optimization of cosnθ-magnets, coil coupling currents only•

ANSYS

(ANSYS Inc.)

www.ansys.com/–

Finite Element Method–

Direct and in-direct coupled analysis (Multiphysics)•

eddy current heat rising temperature change resistivity

change eddy current

“This feature is important especially in the region of cryogenic temperature. Because most of physical parameters depend highly on temperature in that region”

.

Page 17: Moritz New

• assumptions•Field Bz only, uniform•d,h<<l•d,h<<penetration depth s (magnetically thin!)•Steady state: t>>τd

xBxj zy

)(From Faraday´s law (integral form)

x

z

y

neglecting the resistance contribution of the ends,since 2d<<l

Direct application of maxwell equations -another

way of eddy current calculation

d

l

h

+d/2‐d/2 0

1. Eddy currents in a rectangular thin plate

Eddy Current effect handled as small perturbation: •geometrical dimension << skin depth (high resistivity!)•low field ramp rate

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

From Ampere‘s law:

42)(

22

2

dxBxH zeddyz Top/bottom of a

rectangular beam pipe!

B=(0,0, Bz

)

Page 18: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

After integration

22

232

0

22

121/

122

)()(

zz

d

yy

BdvolumePorBdlhdPP

dxhxjlAxjAldP

And then for the loss dPin an area A=hdx:

Same formula  as for a thin 

slab!

2. Eddy loss in a long,thin cylinder (radius r, length l, thickness d (r>>d))

0 1 2 3 4 5

0

2000

4000

6000

8000

formula FEM

Joul

e he

at (w

att/m

)

dB/dt (T/sec)

CU, = 5E-10 m

0 1 2 3 4 5

0

2

4

6

8

SST, = 5E-7 m

formula FEM

Joul

e he

at (w

att/m

)

dB/dt (T/sec)

For Copper: No small 

perturbationanymore!

22

23

2Br

VPordlBrP

3. Eddy loss of round plate/disk (radius r, thickness d , r>>d)

22

8Br

VP

Brjcos

(round thin beam pipe)

Page 19: Moritz New

300K 4K

LC steel (3% Silicon) 590 

10‐9 440 x 10‐9

Stainless steel 720 

10‐9 490 

10‐9

Copper 17.4 

10‐9 0.156 

10‐9

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Resistivity ρ

(Ohm*m) @300K/4K (typical)

Avoid copper!

Page 20: Moritz New

Eddy currents in magnets

Different Magnet types

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

WF

Iron‐dominatedmagnets

Coil dominated cos nθ‐

magnet

Eddy currents in all conductive elements, 

especially in:

•iron yoke (low carbon iron)•mechanical structure (low carbon iron• or stainless steel)•Coil (Copper, superconductor)• beam pipe (stainless steel

Page 21: Moritz New

For laminations tangential to the flux:μeff = fp

· (μr

-

1 ) + 1

FLUX 

DIRECTION

LAMINATION

FLUX 

DIRECTION

LAMINATION

For laminations

normal to the flux:μeff

= μr

/ (μr

fp

(μr

1))

z

z

Conductivity:

σz

=0   σxy

≠0 Rel. permeability of laminations μrEffective permeability: µz

,  µxy

Laminated yoke (no isotropy!!)

Recap: thin slab P~d2*σLaminated magnets with insulated 

laminations and low conductivity!!

Def.: Packing factor fp = Wi / (Wi + Wa )

Wi

thickness single laminationWa

thickness  of insulation 

Page 22: Moritz New

Laminated yoke : µxy

, µz

Electrical Yoke steel 3414 μr

~ 20

μr

→ 1

μr

~ 10

μr

~ 15

z  

for fp  = 0.95

μr

→ 1

μr

~ 4080

μr

~ 670

xy

• z , xy different for laminated

magnets (highly anisotropic!!)

xy = r

(H)–

z •

fp = 1 : z = r

(H) •

fp < 1: z = 1 / (1 -

fp)

z = 15 –

50

(Courtesy of E. Fischer)

Page 23: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Laminated yoke : choice of iron

Low carbon silicon steel reduces

Practical limit

Eddy current losses due to higher resistivity Hysteresis losses due to lower coercivity

P.  Shcherbakov et al.,  Design Report  SIS 

300 6T dipole (2004) 

but

Page 24: Moritz New

Iron losses (steel supplier)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Note: Steel suppliers give typically total losses at 50 Hz

Total losses = eddy losses (~ν2) + hysteresis losses (~ν)

+ anomalous losses (~ν1.5)

Eddy losses: 2222

3 6dBm

WP p

Hysteresis losses: from measurements wit a permeameter

Anomalous losses = rest

ν‐frequency (Hz)d ‐lamination thickness (m)ρ‐resistivity (Ohm*m)Bp

Induction amplitude (T)

P. Fabbriccatore, et al. Technical design Report SIS 300 

4.5T model dipole 

Page 25: Moritz New

Yoke design of pulsed magnets

2D‐design (ideal)–

Appropriate lamination thickness d (practical limit 

0.3 mm)–

Low steel conductivity

Low coercivity (to reduce the hysteresis losses)

3D‐design            exist Bz

eddy currents in  the lamination sheet surface

Yoke end region–

Areas with low packing factor

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

No Bz

, only Bx

, By

z

z

Page 26: Moritz New

Yoke end region

Large Bz

components  

(up to 2.5T depending on 

the magnet)

GSI: SIS18 

dipole

Source of  eddy currents 

near the magnet end

Courtesy of F. Klos

Page 27: Moritz New

Yoke end

Aperture field induced by the eddy currents

Eddy current lines on the yoke backside 

surface. 

A.Kalimov,

et al.,

IEEE Transactions on Applied 

Superconductivity., vol.12, No.1 pp. 98‐101, 

2002

(MT17)

. Current density distribution on the pole 

surface along the central line of the magnet

Results

0.05%En d of ramp

Field integral: difference between static and dynamic value. field integral max: 48000 Gs.m

0.0 0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

25

t = 0.3 s

t = 1.1 s

t = 1.5 s

t = 2.0 s

Cur

rent

den

sity

, A/c

m2

z, m

Page 28: Moritz New

SIS100 sc dipole model –

laminated yoke

eddy current power in laminated yoke (S. Koch, H. de Gersem, T. Weiland ( TU 

Darmstadt))

µr

(X,Y) ↔ original B(H) curveµr

(Z) = 15

Eddy current power  in 

the yoke along the yoke

Page 29: Moritz New

Vectors of BZ

in yoke vs time (µz

=25)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

R. Kurnyshov et al., Report 

on FE‐R&D, Contract No. 5, 

GSI, October 2008

Page 30: Moritz New

Vectors of eddy current density in yoke vs time (µz

=25)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

R. Kurnyshov et al., 

Report on FE‐R&D, 

Contract No. 5, GSI, 

Page 31: Moritz New

0.00 0.05 0.10 0.15 0.20 0.25

-2.0x10-4

-1.0x10-4

0.0

1.0x10-4

2.0x10-4

3.0x10-4

1.17 m

B

y (T)

time (sec)

0.00 0.05 0.10 0.15 0.20 0.250.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

0.689 m

B

y (T)

time (sec)

0.00 0.05 0.10 0.15 0.20 0.25

-7.0x10-3

-6.0x10-3

-5.0x10-3

-4.0x10-3

-3.0x10-3

-2.0x10-3

-1.0x10-3

1.319 m

B

y (T)

time (sec)0.00 0.05 0.10 0.15 0.20 0.25

0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

1.0x10-3

1.2x10-3

1.4x10-3

1.01 m

B

y (T)

time (sec)

SIS100 Yoke

SIS100 dipole•Linear ramp, up with 4 T/s, •1.9 T•All curves start at t=0 at the end of the ramp

Field relaxation at different longitudinal positions

SIS 100 dipole

Z=0 (Center of the magnet)

<0, max.60 G 

>0,  max. 1G

>0, max. 14 G

Around 0, 

S. Y. Shim, to be published

Page 32: Moritz New

Transient field behaviour after a linear ramp

Fitting function

/1 teBtB

y

Z

x

CNAO Scanning Dipole Magnet

max. center field: 0.3 T500 T/sLamination thickness: 0.3 mm

z= 0 magnet center,z=22.0 cm: end of yoke

Page 33: Moritz New

Field delay

By

_max

0.7 % of maximum operation fieldTime constant

some milliseconds

Diffusion time constant

Magnet center

Remark: In a medical accelerator like CNAO the beam energy  is 

varied in small time steps less then the diffusion time constant!

Courtesy of S. Y. Shim

Page 34: Moritz New

SIS 300 Dipole-

eddy currents(direction and current density in the magnet ends

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

M. Sorbi, et al., 

“Electromagnetic Design of the 

Coil‐Ends for the FAIR SIS300 

Model Dipole,”

in Proc. ASC’08, 

Chicago, 2008

3.0 T, 1T/s4.5 T, 1T/s

Page 35: Moritz New

Variation of the packing factor along the magnet (Synchrotron dipole of the HIT-facility Heidelberg)

Six block structure leads to

•Variation of the DC‐field•Field reduction  by eddy currents (induced by local Bz 

components) in the AC‐case

Courtesy of F. Klos

Page 36: Moritz New

LHC dipole cold mass

Eddy currents in mechanical structure

Brackets–

Endplates–

Collar pins, Collar keys, Rods–

Shield, shell,

Try to avoid closed flux loops ! (for example by 

welding seams at the pole)

Page 37: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

R&D magnet GSI001Bmod at 4T nominal field

Power density (W/m3) in the 

copper shield (resistivity: 2.5 

nm) at 4T nominal field and a 

ramp rate of 4T/s.Maximum power density: 270 kW/m3

Example: eddy curents in the copper shield of a sc dipole

Courtesy of H. Leibrock

Page 38: Moritz New

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Eddy currents in Pins, Rods and Keys (SIS 300 dipole)

M. Sorbi et al. Technical Design Report 

SIS 300 4.5T model 

dipole 

Flux‐loop 

minimized!!

If possible: insulate themto avoid closed flux looops!

Page 39: Moritz New

Eddy currents in resistive coil

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

A. Asner et al., SI/Int.DL/69-2 9.6.1969(Booster Bending Magnet)

Application of Biot‐Savart gives the eddy 

current contribution ito the field n the 

magnet gap

SIS 18 dipole

This case:Eddy currents improve field quality!! 

Page 40: Moritz New

simulation of the eddy current loss density in the beam pipeThickness 0.3 mmAverage loss: 4.9 W/m (0-2T, 4T/s)

Elliptical beam pipe (SIS 100 dipole)

For the use as cryopump: need to be cooled!)

R. Kurnyshov et al., 

Report on FE‐R&D, 

Contract No. 5, GSI, 

October 2008

Page 41: Moritz New

Elliptical beam pipe (SIS 100 dipole) --

complete 3D model with ribs and cooling pipe

4.9 pipe only8.1 with tubes8.7 with tubes and ribs

Current

density

(A/m2), end part

Current

density

(A/m2), central

part

Designed

to avoid

closed

flux

loops

Cycle:0 ‐2T, 4 T/s

Average loss (W/m):

Courtesy of S. Y. Shim

Page 42: Moritz New

Summary: Pulsed

magnet

design principles (to minimize

eddy

current

effects)

Insulated

laminations

Choice

of iron

Appropriate

magnet

design

Avoid

saturation

(µr

>>1)–

Rogowski‐profile

of the

magnet

pole ends–

Slits

in the

end laminations–

Non‐conductive

material at the

magnet

ends–

‚long‘

magnets

(also from

the

eddy

current

aspect!)•

Appropriate

design of the

mechanical

structure

Choice

of materials

(non‐conductive

wherever

possible)–

Avoid

‚bulky‘

components–

Avoid

magnetic

‚flux

loops‘•

Field

Control

(‚B‐Train‘)

G.Moritz,  'Eddy Currents',  CAS Bruges, 

June 16 ‐

25 2009

Page 43: Moritz New

References•Books

•Heinz E. Knoepfel, ‘Magnetic Fields’, John Wiley and Sons, INC. , New York…., 2000•Jack T. Tanabe, Iron dominated electromagnets: design, fabrication, assembly and measurements, WORLD Scientific 2005•Y. Iwasa, ‘Case studies in superconducting magnets’, Plenum Press, New York and London, 1994

•Reviews•K. Halbach, ‘Some eddy current effects in solid core magnets’, Nuclear Instruments and Methods, 107 (1973), 529-540•E.E. Kriezis

et al., 'Eddy Currents: Theory and Applications', Proceedings of the IEEE, Vol. 80, NO. 10. October 1992, p.1599-1589

Acknowledgement:I am greatly

indebted

to S.Y. Shim for his help during the preparation of this talk.