medical image analysis -

34
1 Medical Image Analysis Grégoire Malandain Application to 3D angiography 16/01/2003 Grégoire Malandain 2 2D Visualisation Adapted to large volumes

Upload: others

Post on 20-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Medical Image Analysis -

1

Medical Image Analysis

Grégoire Malandain

Application to 3D angiography

16/01/2003 Grégoire Malandain 2

2D Visualisation

Adapted to large volumes

Page 2: Medical Image Analysis -

2

16/01/2003 Grégoire Malandain 3

2D Visualisation

Adapted to large volumes

… but not to vessels

16/01/2003 Grégoire Malandain 4

Maximum Intensity Projection

+ Uses original intensity values

– Does not allow 3D perception

+ but allowed by animation

– does not allow quantification

Page 3: Medical Image Analysis -

3

16/01/2003 Grégoire Malandain 5

Isosurfaces+ It’s a segmentation

+ Allows quantification

– Effectiveness?

Threshold = 14

16/01/2003 Grégoire Malandain 6

Threshold = 29

Isosurfaces+ It’s a segmentation

+ Allows quantification

– Effectiveness?

Page 4: Medical Image Analysis -

4

16/01/2003 Grégoire Malandain 7

Threshold = 44

Isosurfaces+ It’s a segmentation

+ Allows quantification

– Effectiveness?

16/01/2003 Grégoire Malandain 8

Isosurfaces– Effectiveness of segmentation?

Topology changes

Page 5: Medical Image Analysis -

5

16/01/2003 Grégoire Malandain 9

Segmentation issues

• Geometrical correctnessMeasure of length, diameter, area, ...

• Topological correctnessExtraction of the central line

Retrieval of junctionsSeparation of adjacent structures

16/01/2003 Grégoire Malandain 10

Principles

• Vessel modelling

• Vessel characterisation

• Central line extraction

• Radius estimation

Page 6: Medical Image Analysis -

6

16/01/2003 Grégoire Malandain 11

3D vessels modelling

• Tubular-like structures• Shape of the section?

• Intensity distribution inside the section?

Gaussian Constant Gaussian * Constant

16/01/2003 Grégoire Malandain 12

Intensity profile: 1D derivatives)2/-(OM 22

e)( RCMI =

Page 7: Medical Image Analysis -

7

16/01/2003 Grégoire Malandain 13

Intensity profile: 1D derivatives)2/-(OM 22

e)( RCMI =

xI

∂∂

16/01/2003 Grégoire Malandain 14

Intensity profile: 1D derivatives)2/-(OM 22

e)( RCMI =

2

2

xI

∂∂

Page 8: Medical Image Analysis -

8

16/01/2003 Grégoire Malandain 15

Intensity profile: 1D derivatives)2/-(OM 22

e)( RCMI =

)()()( rMxIrM

xIMResp +

∂∂−−

∂∂=

Maximal response

)()( ε±>⇔ MRespMResp

16/01/2003 Grégoire Malandain 16

• Shape characterisation (white structure on dark background):

Intensity profile: 3D derivatives

• Matrix of second derivatives: Hessian

IH

=

zzyzxz

yzyyxy

xzxyxx

IIIIIIIII

[ ]

=

3

2

1

3

2

1

321

VVV

VVVT

T

T

λλ

λ

iivvIi =λ

Sheet-like structure: 0, 0 |||,||| 321321 ≈<>> λλλλλλ

0 0, |||||,| 321321 ≈<>> λλλλλλTubular structure:

Cylinder direction: 3Vr

Page 9: Medical Image Analysis -

9

16/01/2003 Grégoire Malandain 17

Intensity profile: 3D response

• Vector of first derivatives: gradient

=∇

z

y

x

III

I

( )∫ +∇−=π

α2

0

v).v()( drMIMRrrr

Cylinder direction: 3Vr

Directions in the orthogonal section: 21 V)sin(V)cos(Vrrr

αα +=

• 3D response

Maximal response 1,2i ),v()( i =±>⇔r

εMRMR

16/01/2003 Grégoire Malandain 18

Derivatives computation• Discrete signal: 3D lattice of voxels

M(i,j,k)=I(x,y,z)

),,( zyxIx∂

∂?

• Convolution with a low-pass filter( ) I

xGzyxIzyxG

xzyxI

x*),,(*),,(),,(

∂∂=

∂∂≈

∂∂

Page 10: Medical Image Analysis -

10

16/01/2003 Grégoire Malandain 19

Practical issues

• Vessel of unknown radius σ0Gaussian intensity profiles

• Derivatives computed with a Gaussian σResponse computed at a distance θσ

How to compare scales?

• Multi-scale extraction: several σ’s

16/01/2003 Grégoire Malandain 20

Multiscale issues

• Comparing scalesγ-derivatives:

• Response extrema in space and in scale

• Optimal value of θ

• Estimation of σ0

xx ∂=∂ γγ σ,

• The profile modelling by a Gaussian

invariance w.r.t. scaling: γ=1

Page 11: Medical Image Analysis -

11

16/01/2003 Grégoire Malandain 21

σ=1.0 σ=1.28 σ=1.65

σ=2.12 σ=2.72 σ=3.5

16/01/2003 Grégoire Malandain 22

Segmentation issues

Original image Multi-scale response Multi-scale extrema

• How to recognise curves in the extrema?

Page 12: Medical Image Analysis -

12

16/01/2003 Grégoire Malandain 23

3-D Digital Topology

16/01/2003 Grégoire Malandain 24

Number of (26-)connected components of the foreground

in the (26-)neighborhood

3-D Digital Topology

C

*C

Number of (6-)connected components of the background

in the (18-)neighborhood, (6-adjacent to the centre)

Page 13: Medical Image Analysis -

13

16/01/2003 Grégoire Malandain 25

3-D Digital Topology

• Thinning the extrema( )1* == CCIterative removal of simple points

• Removing small pieces of curve

( )1 , 2* == CC( )1 , 2* => CC

Simple curves

are ended either by curves junctions

or borders (i.e. simple points)

16/01/2003 Grégoire Malandain 26

Original image Multiscale response Multiscale extremaPruned extrema

Page 14: Medical Image Analysis -

14

16/01/2003 Grégoire Malandain 27

Reconstructions

• Simple curves smoothing

• ReconstructionRadius estimation from the maximal scale

Intensity profile from the vessel modelling

Advantages of both MIP and isosurfaces

16/01/2003 Grégoire Malandain 28

About radius estimation

LW = 2 mm E = 4 mm

SD = 2 mm LD = 4 mmVoxel = 0.267 mm3

Page 15: Medical Image Analysis -

15

16/01/2003 Grégoire Malandain 29

About radius estimation

• EstimationLW: 2.018 mm E: 3.884-3.968 mm

SD: 2.14 mm LD: 3.6 mm

• is disturbed by 3-D computation

16/01/2003 Grégoire Malandain 30

About radius estimation

• Estimation in 2D resampled sections

• Better but computationally more expensive

Page 16: Medical Image Analysis -

16

16/01/2003 Grégoire Malandain 31

2D orthogonal sections resampling

• Subvolume

16/01/2003 Grégoire Malandain 32

2D orthogonal sections resampling

• Subvolume (scanner)

Page 17: Medical Image Analysis -

17

16/01/2003 Grégoire Malandain 33

2D orthogonal sections resampling

• Subvolume (MRA)

16/01/2003 Grégoire Malandain 34

2-D cross-sections: MR image

Page 18: Medical Image Analysis -

18

16/01/2003 Grégoire Malandain 35

MR image: extrema computation

axial coronal sagittal

16/01/2003 Grégoire Malandain 36

MR image: 2-D cross-sectionsResampling withcubic splines

Travelling inside thevessel

Page 19: Medical Image Analysis -

19

16/01/2003 Grégoire Malandain 37

2-D cross-sections: segmentation3 Thresholding: iso-contours

3 Edges detection

å zero-crossings

3 Sub-pixel accuracy

0=∆I0.. =∇∇ IHII

16/01/2003 Grégoire Malandain 38

2-D cross-sections: segmentation

Page 20: Medical Image Analysis -

20

16/01/2003 Grégoire Malandain 39

2-D cross-sections: segmentation

3 allows to build a 3-D mesh

(computational geometry, Prismeteam)

3 numerical simulation

16/01/2003 Grégoire Malandain 40

Synthetical model

Retour menu

Known vessels radii

Page 21: Medical Image Analysis -

21

16/01/2003 Grégoire Malandain 41

2-D cross-sections: segmentation

Diameter = 2.0 mm

derivatives with gaussian ofσ = 0.5 voxel

0.. =∇∇ IHII

16/01/2003 Grégoire Malandain 42

2-D cross-sections: segmentation

Diameter < 1.0 mm

derivatives with gaussian ofσ = 0.5 voxel

0.. =∇∇ IHII

Page 22: Medical Image Analysis -

22

16/01/2003 Grégoire Malandain 43

2-D cross-sections: segmentation

Diameter = 2.7 mm

derivatives with gaussian ofσ = 0.5 voxel

0.. =∇∇ IHII

16/01/2003 Grégoire Malandain 44

2-D cross-sections: segmentation

Diameter = 2.7 mm

derivatives with gaussian ofσ = 1.0 voxel

0.. =∇∇ IHII

Page 23: Medical Image Analysis -

23

16/01/2003 Grégoire Malandain 45

2-D cross-sections: segmentation

Diameter < 1.0 mm

derivatives with gaussian ofσ = 0.5 voxel

0.. =∇∇ IHII

16/01/2003 Grégoire Malandain 46

2-D cross-sections: segmentation

1250 1400

Page 24: Medical Image Analysis -

24

16/01/2003 Grégoire Malandain 47

Pre-processing?

• Isotropic diffusion

( ) )0(*)( IGtIIdivItI

t=⇒∇=∆=∂∂

• Anisotropic diffusion

( )( )IIII IIfIf

IIgdivtI

∇∇∇∇ −∆+=

∇∇=∂∂

21

|)(|

16/01/2003 Grégoire Malandain 48

Pre-processing?

Page 25: Medical Image Analysis -

25

16/01/2003 Grégoire Malandain 49

Tomographie à transmission et mouvement :application à l’angiographie rayon X cardiaque

16/01/2003 Grégoire Malandain 50

Motivations

• Contexte diagnostique et interventionnelléger :détection / quantification 3D de sténoses

• Contexte interventionnel lourd :modèle patient pour la chirurgiemini-invasive robotisée

Page 26: Medical Image Analysis -

26

16/01/2003 Grégoire Malandain 51

Angiographie cardiaquerotationnelle

16/01/2003 Grégoire Malandain 52

Problème• Voxels vi

• Pixels pj

• Rj vecteur des contributions des voxels au pixel pj

Rj.v = pjR.v = p

Page 27: Medical Image Analysis -

27

16/01/2003 Grégoire Malandain 53

Résolution

• Système linéaire de grande taille,sous-déterminé (+bruit de mesure)

• Méthodes (R, p) → v :• analytiques (FBP)• algébriques (ART, SIRT)• stochastiques (EM)• optimisation (CG)

16/01/2003 Grégoire Malandain 54

Tomographie statique

• Observation en transparence (rayons-X)• Plusieurs angles de vues• Objet statique

La matrice des contributions des voxels aux pixels est modifiée par le mouvement de l'objet observé

Page 28: Medical Image Analysis -

28

16/01/2003 Grégoire Malandain 55

Tomographie dynamique

• Pour chaque vue :• Pour chaque voxel :

• on déforme son centre• on projette le centre déformé• on l'attribue au pixel dans lequel la projection arrive

16/01/2003 Grégoire Malandain 56

Tomographie dynamique

• Calcul de la déformation :

• segmentation (analyse multi-échelle, intensité)• appariement• ajustement de faisceau• calcul de déformation 4D paramétrique

Page 29: Medical Image Analysis -

29

16/01/2003 Grégoire Malandain 57

Results - Matched views

16/01/2003 Grégoire Malandain 58

Segmentation

Page 30: Medical Image Analysis -

30

16/01/2003 Grégoire Malandain 59

Principle of binocular stereovision

16/01/2003 Grégoire Malandain 60

Principle of binocular stereovision

Binocular matching may be ambiguous

Page 31: Medical Image Analysis -

31

16/01/2003 Grégoire Malandain 61

Principle of trinocular stereovision

The third view often desambiguates the matching

16/01/2003 Grégoire Malandain 62

Principle of trinocular stereovision

The third view often desambiguates the matching

Page 32: Medical Image Analysis -

32

16/01/2003 Grégoire Malandain 63

Appariement / Ajustement

16/01/2003 Grégoire Malandain 64

Results - 3D Model Reprojection

Page 33: Medical Image Analysis -

33

16/01/2003 Grégoire Malandain 65

Déformation 4D

16/01/2003 Grégoire Malandain 66

Formation de l'image

• Intégrales des atténuations le long desrayons : I'(x) = -µ I(x)

• On néglige :• l’incohérence du faisceau• le rayonnement diffusé primaire (collimation)• le rayonnement diffusé secondaire (détecteur)• le post-traitement sur les images

∫=Rµ-e I(0) I(x) ))0(log())(log( IxI

R

−=∫ µ

Page 34: Medical Image Analysis -

34

16/01/2003 Grégoire Malandain 67

Résultats : séquence 4D (3D+t)