marshall rachael 201301 masc

254
A Systems Approach to Community Engaged Solid Waste Management in Todos Santos Cuchumatán, Guatemala by Rachael Marshall A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Applied Science in Environmental Engineering and International Development Studies Guelph, Ontario, Canada © Rachael Marshall, January, 2013

Upload: others

Post on 30-Jan-2022

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Marshall Rachael 201301 MASc

 

A  Systems  Approach  to  Community  Engaged  Solid  Waste  Management  in  Todos  Santos  Cuchumatán,  Guatemala  

 by      

Rachael  Marshall  

 

 

 

 A  Thesis  

Presented  to  The  University  of  Guelph  

 

 

 

 In  partial  fulfilment  of  requirements  

for  the  degree  of  Master  of  Applied  Science    

in  Environmental  Engineering  and  International  Development  Studies  

 

 

 

 

 Guelph,  Ontario,  Canada  

 ©  Rachael  Marshall,  January,  2013  

 

Page 2: Marshall Rachael 201301 MASc

 

 ABSTRACT  

 

A  systems  approach  to  community  engaged  solid  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala  

 

 

Rachael  Marshall,           Advisor:  

University  of  Guelph,  2013         Professor  K.  Farahbakhsh  

 

Solid   waste   management   (SWM)   is   a   growing   problem   in   developing   countries  

around  the  world.  In  Guatemala,  indigenous  communities,  which  are  predominantly  

rural  and  remote,  are  particularly  hard  hit  by  a   lack  of  basic  SWM  services.  Todos  

Santos,  situated  in  the  Cuchumatanes  mountain  range  of  northwestern  Guatemala,  is  

one   such   community.   As   projects   developed,   planned,   and   implemented   from   'the  

top   down'   continue   to   be   ineffective,   the   literature   provides   little   insight   about  

remote  communities'  perspectives  on  exactly  what  issues  SWM  creates,   influences,  

and  exacerbates,  and  how  they  might  respond  to  these  concerns  themselves.  Using  a  

participatory  systems  approach,  this  study  investigated  the  systemic  structures  and  

behaviours   that   maintain   and   exacerbate   SWM   challenges   in   Todos   Santos,   and  

where  key  places  (leverage  points)  to  intervene  in  the  system  may  exist.  The  study  

presents   a   wide   selection   of   locally   appropriate   SWM   solutions   to   target   these  

leverage  points   in   the   form  of   four   future  scenarios  These  scenarios  act  as  a  step-­‐

wise   implementation   plan   for   gradual   implementation   in   the   community,   each  

building   upon   the   previous,   ultimately   reaching   a   community-­‐defined   vision   for  

SWM.    

Page 3: Marshall Rachael 201301 MASc

  iii  

Acknowledgements  This  work  would  not  have  come  about  without  the  generous  contributions  of  many  

people.  The  process  of  undertaking  this  thesis  has  been  more  than  a  journey  –  it  has  

been  a  learning  and  growing  experience  that  has  changed  how  I  see  the  world  and  

also  the  person  I  am.  I  am  very  grateful  for  and  indebted  to  a  number  of  wonderful  

people  that  I  would  like  to  thank  personally.    

First,  I  would  like  to  thank  my  advisor,  Khosrow  Farahbakhsh  for  the  guidance  and  

support  you  have  provided  me  with  over  the  last  two  years.  Thank  you  for  sharing  

many   long  talks  about  the  workings  of   the  world  –  your  profound  perspectives  on  

science,   society,   and   spirituality   have   left   a   lasting   impact   and   helped   me   in  

developing   the   skills   to   answer  messy  questions.  But  most   significantly,   I  want   to  

thank  you  for  the  important  life  lessons  you  helped  me  face;  I  never  imagined  how  

much   I   could   grow  over   just   two   years.   Thank   you   for   the   pushes,   for   your   great  

generosity,  and  for  your  invaluable  mentorship.  

I  also  want  to  thank  Karen  Morrison  for  your  strength,  wisdom,  inspiring  charisma  

and  moral  support.  You  are  an  incredible  mentor  and  a  truly  kind  and  caring  person.  

I  am  so  lucky  to  have  had  the  opportunity  to  take  in  a  small  piece  of  your  knowledge,  

wonderful   creativity,   and  kind  words.  Your  support   really  has  meant   the  world   to  

me.  Thank  you  so  much.    

I’d  like  to  extend  a  special  thanks  to  the  rest  of  the  CoPEH-­‐Canada  community,  from  

whom  I  gained  inspiration,  hope,  and  a  place  to  fit  in.  I  would  like  to  thank  Margot  

Parkes,  who   first   rescued  me   from  a  desire   to  divorce  my  profession,   showed  me  

that   I  myself,  and  my  aspirations  for  the  future  belonged  to  something  bigger,  and  

took  me   under   her  wing   –   all   over   a   cup   of   tea.   I  would   also   like   to   thank  Karen  

Houle,   Martin   Bunch,   David   Waltner-­‐Toews,   and   Rachel   Hirsch   for   sharing   your  

exceptional   insights   and   for   being   such   welcoming,   wonderful   people.   To   Chris  

Charles,  Phil  Chen,  Zee  Leung,  Lindsay  Beck,  Lindsay  Galway,  Gillian  Wigmore,  Anna  

Page 4: Marshall Rachael 201301 MASc

  iv  

Chudyk,   and   the   rest   of   the   gang,   thank   you   for   inspiration,   fun,   crazed   late   night  

talks  under  pine  trees  in  the  rain,  and  friendship.  

I  would   like  to  thank  my  family   for  the  unconditional  and  constant  moral  support,  

love,  advice,  long-­‐distance  hugs,  laughter,  ideas,  and  writing  rescues.  To  my  parents,  

thanks   for   the  many   long  hours   of   editing,   coaching,   and   reassuring.   To  my   sister  

and  brother,  you  are  both  hilarious,  fantastic  people  –  thank  you  for  reminding  me  

of  what   life   is   about.   I   love   each  one  of   you   so  dearly,   and   could  never   thank  you  

enough.    

This   research   would   have   been   impossible   without   the   help,   collaboration,   and  

support   of   the   people   of   Todos   Santos.   Thank   you   for   welcoming   me   into   your  

homes  and   lives,   and   for   sharing  your  hopes  and  your   fears;   your  anger  and  your  

pain;  your   laughter,   intuition,   and  knowledge;  and  your  passionate  aspirations   for  

the  future.  To  Ingrid,  my  Guatamalan  mother,  gracias  por  las  pláticas  junto  al  fuego,  

su  hospitalidad  inconmensurable,  y  por  ser  la  madre  amorosa  que  necesita  cuando  

estaba  lejos  de  la  mía.  

A  very,   very   special   thanks  must  go   to  Kelly   “Carolina”  Chauvin,  whose   friendship  

and  research  help  in  the  field  and  beyond  proved  to  be  utterly  invaluable.  Thank  you  

so  much   for   your   relentless   dedication;   for   sharing   your   home,   your   experiences,  

your  connections  and  friends,  and  your  passion  for  the  people  of  Todos  Santos;  and  

for  taking  such  good  care  of  me.  Your  kindness  got  me  through  this  research!    

This   research   also   could   not   have   come   about   without   the   countless   hours   and  

contributions   from   faculty   and   students   at   EARTH  University.   Specifically,   to   Alex  

Pacheco,   Jane   Yeomans,   Sofia   Montero   Vargas,   Carlos   Alvarez,   Karla   Cruz,   Raoul  

Botero,  and  Yanine  Chan  –  thank  you  for  your  guidance,   for  sharing  your  research  

findings   and   stories,   and   for   your   immeasurable   hospitality.   To   Piero,   gracias   por  

todas  las  risas  y  por  ser  un  gran  amigo.  Liz,  gracias  por  asegurar  el  tiempo  que  pasé  

en   Costa   Rica   fue   lo   mejor   que   podría   ser.   David,   gracias   por   las   conversaciones  

nocturnas  sobre  las  aspiraciones  y  esperanzas  para  el  mundo,  por  tu  pasión  por  el  

Page 5: Marshall Rachael 201301 MASc

  v  

medio  ambiente  y  los  movimientos  de  la  gente,  y  por  tu  cuidado.  Es  tan  bueno  saber  

que  tengo  casa,  finca,  familia,  y  calor  sincero  cuando  lo  necesito.  

I  would  like  to  thank  Margaret  Hundleby  for  the  wonderful  talks,  invaluable  writing  

help,  moral  support,  and  refuge.    

A  warm  thanks  must  go  out  to  many  other  colleagues  and  friends  for  your  support  

and   encouragement:   Matthew   De   Luca,   Renata   Stanaityte,   Jamie   Miller,   Graham  

Aikenhead,   Jonathan   VanderSteen,   Jason   McCullough,   Nymisha   Sridhara,   Alia  

Ziesman,  Megan  Thomas,  Cam  Harris,  and  Walter  Marshall.    

To  Steph-­‐Marie,  though  you’re  a  relatively  new  one,  I  have  to  thank  you  for  sing-­‐a-­‐

longs,  empowering  talks,  face  paint,  and  for  being  the  truly  caring,  thoughtful  person  

that  you  are.  You  have  supported  me  in  ways  that  will  forever  indebt  me  to  you.  You  

are  a  rare  friend,  and  I’m  so  glad  to  have  had  you  in  my  life.  

To   Megan   Mathieson,   thank   you   as   always   for   the   moral   support,   hilarity,   and  

endless  love  you  provided  me  with  over  the  past  two  years,   just  as  you  unfailingly  

have  over  the  last  20.  You  are  my  personal  gift  from  the  universe  and  I  plan  to  hang  

on  to  you  until  I  can’t  hang  on  to  anything  at  all.  May  we  always  meet  in  the  next  life.    

Finally,  to  Jeff,  thank  you  for  your  patient,  quiet  kindness;  for  always  lending  an  ear,  

a  helping  hand,  a   terrible  pun,  and  a  brilliant   idea.  Most  of  all,   thanks   for  being  so  

steadfast  and  grounding.    

 

 

 

 

 

 

 

Page 6: Marshall Rachael 201301 MASc

  vi  

Table  of  contents  Acknowledgements  ..................................................................................................................................................  iii  

Table  of  contents  .......................................................................................................................................................  vi  

List  of  tables  ..............................................................................................................................................................  xiv  

List  of  figures  ............................................................................................................................................................  xvi  

1   Introduction  .........................................................................................................................................................  1  

1.1   Solid  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala  .................................  2  

1.2   A  systems  approach  to  solid  waste  management  .......................................................................  3  

1.3   Problem  statement  ...................................................................................................................................  4  

1.4   Research  goal  and  objectives  ...............................................................................................................  4  

1.5   Interdisciplinary  approach  ...................................................................................................................  5  

1.6   Thesis  organization  ..................................................................................................................................  5  

1.6.1   Chapter  1:  Introduction  .................................................................................................................  5  

1.6.2   Chapter  2:  A  systems  approach  to  integrated  solid  waste  management  in  developing  countries  –  A  review  ...............................................................................................................  6  

1.6.3   Chapter  3:  Narrative-­‐based  participatory  model  building  as  a  systems  approach  to  integrated  solid  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala  .............  6  

1.6.4   Chapter  4:  Developing  locally  appropriate  leverage  for  change:  Integrated  solid  waste  management  in  rapidly  developing  rural  Guatemala  .........................................................  6  

1.6.5   Chapter  5:  Local  innovation,  ownership,  and  action:  Evaluating  the  systemic  impacts  of  four  future  scenarios  for  integrated  solid  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala  ................................................................................................................  6  

1.6.6   Chapter  6:  Conclusions  and  recommendations  ...................................................................  7  

1.7   References  ....................................................................................................................................................  8  

2   Literature  review  ...............................................................................................................................................  9  

2.1   Introduction  .................................................................................................................................................  9  

2.2   Solid  waste  management  in  high-­‐income  countries  ..................................................................  9  

2.2.1   Historical  origins  of  solid  waste  management  ..................................................................  10  

Page 7: Marshall Rachael 201301 MASc

  vii  

2.2.2   Driver  1:  Public  health  –  the  sanitary  revolution  ............................................................  12  

2.2.3   Driver  2:  Environment  –  The  ‘modernization’  of  SWM  .................................................  13  

2.2.4   Driver  3:  The  resource  scarcity  and  value  of  waste  .......................................................  15  

2.2.5   Driver  4:  Climate  change  ............................................................................................................  17  

2.2.6   Driver  5:  Public  Awareness  and  Participation  –  NIMBY  and  Behavioural  Change   17  

2.2.7   Integrated  solid  waste  management  –  the  current  paradigm  ....................................  18  

2.3   Solid  waste  management  in  developing  countries  ..................................................................  22  

2.3.1   Developing  country  contexts  ....................................................................................................  25  

2.3.1.1   Urbanization,  inequality,  and  economic  growth  .....................................................  25  

2.3.1.2   Cultural  and  socio-­‐economic  aspects  ...........................................................................  28  

2.3.1.3   Political  landscapes:  Policy,  governance,  institutional  issues  ...........................  30  

2.3.1.3.1   Policy  ..................................................................................................................................  30  

2.3.1.3.2   Governance  .....................................................................................................................  31  

2.3.1.3.3   Institutions  ......................................................................................................................  32  

2.3.1.3.4   International  influences  ............................................................................................  35  

2.4   The  need  for  a  systems  approach  ....................................................................................................  38  

2.4.1   Post-­‐Normal  Science  ....................................................................................................................  39  

2.4.1   Systems  thinking:  the  foundations  of  systems  approaches  ........................................  41  

2.4.2   Complex,  adaptive,  eco-­‐social  systems  .................................................................................  43  

2.5   Conclusion  .................................................................................................................................................  48  

2.6   References  .................................................................................................................................................  50  

3   Narrative-­‐based  participatory  model  building  as  a  systems  approach  to  solid  waste  management  in  Todos  Santos,  Guatemala  ...................................................................................................  56  

3.1   Introduction  ..............................................................................................................................................  56  

3.1.1   Solid  Waste  Management:  Developing  Country  Trends  ...............................................  57  

3.1.2   SWM  in  Guatemala  ........................................................................................................................  58  

Page 8: Marshall Rachael 201301 MASc

  viii  

3.1.2.1   National  and  international  attention  ............................................................................  63  

3.1.3   Area  of  Study:  Todos  Santos  Cuchumatán  ..........................................................................  66  

3.1.3.1   Solid  Waste  Management  in  Todos  Santos  ................................................................  68  

3.2   Methodology  .............................................................................................................................................  70  

3.2.1   Theoretical  approach  ...................................................................................................................  72  

3.2.2   Methodological  Approach  ..........................................................................................................  74  

3.2.2.1   Case  Study  Approach  ...........................................................................................................  74  

3.2.2.2   Qualitative  Methods:  Understanding  complexity  through  narrative  .............  74  

3.2.2.3   Blended  Assessment  Methods  and  Problem-­‐Solving  Approach  .......................  76  

3.2.3   Data  collection  ................................................................................................................................  76  

3.2.3.1   Snowball  and  random  purposeful  sampling  methods  ..........................................  76  

3.2.3.2   Causal  mapping  ......................................................................................................................  77  

3.2.3.3   Semi-­‐structured  interview  process  ...............................................................................  79  

3.2.4   Data  analysis  ....................................................................................................................................  80  

3.2.4.1   Group  maps  ..............................................................................................................................  80  

3.2.4.2   Leverage  point  analysis  ......................................................................................................  81  

3.2.4.2.1   Causal  Matrices  ..............................................................................................................  82  

3.2.4.2.2   Causal  Grid  .......................................................................................................................  83  

3.3   Results  .........................................................................................................................................................  84  

3.3.1   Group  map  1:  Men’s  perspectives  ..........................................................................................  85  

3.3.2   Men’s  Causal  Grid  ..........................................................................................................................  87  

3.3.3   Group  map  2:  Women’s  perspectives  ...................................................................................  89  

3.3.4   Women’s  Causal  Grid  ...................................................................................................................  90  

3.3.5   Group  map  3:  Youth’s  perspectives  .......................................................................................  92  

3.3.6   Youth’s  Causal  Grid  .......................................................................................................................  94  

3.3.7   Group  map  4:  Community  perspectives  ..............................................................................  95  

Page 9: Marshall Rachael 201301 MASc

  ix  

3.3.8   Community  Causal  Grid  ..............................................................................................................  96  

3.4   Discussion  ..................................................................................................................................................  99  

3.4.1   Men’s  causal  map  and  grid  ......................................................................................................  100  

3.4.2   Women’s  causal  map  and  grid  ...............................................................................................  102  

3.4.3   Youth’s  causal  map  and  grid  ...................................................................................................  104  

3.4.4   Community-­‐wide  causal  map  and  grid  ..............................................................................  105  

3.4.5   Successes  and  limitations  ........................................................................................................  109  

3.5   Conclusion  ...............................................................................................................................................  111  

3.6   References  ...............................................................................................................................................  113  

4   Developing  locally  appropriate  leverage  for  change:  Integrated  solid  waste  management  in  rapidly  developing  rural  Guatemala  ........................................................................................................  118  

4.1   Introduction  ............................................................................................................................................  118  

4.2   Appropriate  Technology  ...................................................................................................................  120  

4.2.1   Defining  and  redefining  appropriate  technology  ..........................................................  121  

4.2.2   Appropriate  technology  criteria  ...........................................................................................  122  

4.2.3   Appropriate  solid  waste  technologies  ................................................................................  125  

4.3   Methodology  ...........................................................................................................................................  127  

4.3.1   Defining  the  local  context  .........................................................................................................  127  

4.3.2   Solid  waste  audit  ..........................................................................................................................  127  

4.3.2.1   Snowball  and  random  purposeful  sampling  methods  ........................................  127  

4.3.2.2   Data  collection  ......................................................................................................................  127  

4.3.3   Building  a  ‘Bank  of  Ideas’  .........................................................................................................  128  

4.3.3.1   Data  collection  ......................................................................................................................  129  

4.3.4   Developing  criteria  for  locally  appropriate  system  levers  ........................................  129  

4.3.5   System  lever  assessment  ..........................................................................................................  129  

4.4   Results  .......................................................................................................................................................  130  

Page 10: Marshall Rachael 201301 MASc

  x  

4.4.1   Local  context:  Solid  waste  in  Todos  Santos  Cuchumatán  ..........................................  130  

4.4.1.1   Socio-­‐economic,  cultural,  environmental,  and  political  contexts  ...................  130  

4.4.1.2   Technical  context:  Waste  audit  results  ......................................................................  131  

4.4.2   A  ‘Bank  of  Ideas’  for  Solid  Waste  Management  ..............................................................  135  

4.4.3   Selection  criteria  for  Todos  Santos  Cuchumatán  ...........................................................  137  

4.4.4   Refining  the  ‘Bank  of  Ideas’:  System  lever  assessment  ...............................................  139  

4.4.4.1   The  Foundations  Scenario  ...............................................................................................  141  

4.4.4.2   The  Religious  Partnerships  Scenario  ..........................................................................  142  

4.4.4.3   The  Private  Sector  Involvement  Scenario  ................................................................  143  

4.4.4.4   The  Integrated  SWM  Vision  Scenario  .........................................................................  145  

4.5   Discussion  ................................................................................................................................................  146  

4.5.1   Residential  solid  waste  audit  ..................................................................................................  146  

4.5.2   Bank  of  Ideas  .................................................................................................................................  148  

4.5.3   System  lever  assessment  ..........................................................................................................  151  

4.5.3.1   Foundational  system  management  options  ............................................................  152  

4.5.3.2   Foundational  waste  characterization  options  ........................................................  152  

4.5.3.3   Foundational  waste  reduction  options  ......................................................................  153  

4.5.3.4   Foundational  collection,  transport,  and  financing  options  ...............................  153  

4.5.3.5   Foundational  resource  recovery  options  .................................................................  154  

4.5.3.6   Foundational  disposal  options  ......................................................................................  154  

4.5.4   The  Foundations  Scenario  .......................................................................................................  155  

4.5.5   The  Religious  Partnerships  Scenario  ..................................................................................  157  

4.5.6   The  Private  Sector  Involvement  Scenario  .........................................................................  158  

4.5.7   The  Integrated  SWM  Vision  Scenario  .................................................................................  160  

4.5.8   Scenario  selection  ........................................................................................................................  162  

4.5.9   Challenges  and  setbacks  ...........................................................................................................  163  

Page 11: Marshall Rachael 201301 MASc

  xi  

4.6   Conclusion  ...............................................................................................................................................  164  

4.7   References  ...............................................................................................................................................  166  

5   Local  innovation,  ownership,  and  action:  A  systems  approach  to  context-­‐specific  ‘best’  options  for  integrated  solid  waste  management  in  Todos  Santos,  Guatemala  ..........................  170  

5.1   Introduction  ............................................................................................................................................  170  

5.2   Methodology  ...........................................................................................................................................  171  

5.2.1   Scenario  implementation  .........................................................................................................  173  

5.2.2   Implementation  analysis  ..........................................................................................................  173  

5.3   Results  .......................................................................................................................................................  174  

5.3.1   The  Foundations  Scenario  .......................................................................................................  174  

5.3.1.1   Targeting  the  five  action  entry  points  ........................................................................  175  

5.3.2   The  Religious  Partnerships  Scenario  ..................................................................................  176  

5.3.2.1   Targeting  the  five  action  entry  points  ........................................................................  177  

5.3.3   The  Private  Sector  Involvement  Scenario  .........................................................................  178  

5.3.3.1   Targeting  the  five  action  entry  points  ........................................................................  179  

5.3.4   The  Integrated  SWM  Vision  Scenario  .................................................................................  180  

5.3.4.1   Targeting  the  five  action  entry  points  ........................................................................  181  

5.3.5   New  influential  relationships  .................................................................................................  182  

5.4   Discussion  ................................................................................................................................................  183  

5.4.1   The  Foundations  Scenario  .......................................................................................................  183  

5.4.1.1   Benefits  ....................................................................................................................................  183  

5.4.1.2   Drawbacks  ..............................................................................................................................  184  

5.4.2   The  Religious  Partnerships  Scenario  ..................................................................................  185  

5.4.2.1   Benefits  ....................................................................................................................................  185  

5.4.2.2   Drawbacks  ..............................................................................................................................  186  

5.4.3   The  Private  Sector  Involvement  Scenario  .........................................................................  187  

Page 12: Marshall Rachael 201301 MASc

  xii  

5.4.3.1   Benefits  ....................................................................................................................................  187  

5.4.3.2   Drawbacks  ..............................................................................................................................  187  

5.4.4   The  Integrated  SWM  Vision  Scenario  .................................................................................  188  

5.4.4.1   Benefits  ....................................................................................................................................  188  

5.4.4.2   Drawbacks  ..............................................................................................................................  189  

5.5   Recommendations  ...............................................................................................................................  190  

5.6   Conclusion  ...............................................................................................................................................  192  

5.7   References  ...............................................................................................................................................  193  

6   Conclusions  and  recommendations  ......................................................................................................  195  

6.1   Research  synthesis  ..............................................................................................................................  195  

6.1.1   Literature  review  key  findings  ..............................................................................................  195  

6.1.2   Key  study  findings  .......................................................................................................................  196  

6.2   Outstanding  issues  ...............................................................................................................................  198  

6.3   Recommendations  ...............................................................................................................................  199  

6.3.1   Building  action  momentum  .....................................................................................................  199  

6.3.1.1   Short-­‐term  stage:  Capacity  development  and  foundational  system  elements   201  

6.3.1.2   Long-­‐term  stage:  Transitioning  to  a  community-­‐owned  vision  of  SWM  ....  201  

6.4   “Situatedness”  and  local  ownership  .............................................................................................  202  

6.5   A  new  methodology  for  SWM  and  engineering  inquiry  ......................................................  203  

6.6   Final  remarks  .........................................................................................................................................  204  

6.7   References  ...............................................................................................................................................  206  

Complete  Reference  list  .....................................................................................................................................  208  

Appendix  A:  Interview  guide  ...........................................................................................................................  219  

Appendix  B:  Feedback  loop  descriptions  ...................................................................................................  223  

A.   Men’s  feedback  loops  ............................................................................................................................  223  

Page 13: Marshall Rachael 201301 MASc

  xiii  

B.   Women’s  feedback  loops  .....................................................................................................................  224  

C.   Youth’s  feedback  loops  .........................................................................................................................  225  

Appendix  C:  Bank  of  Ideas  ................................................................................................................................  227  

Appendix  D:  System  lever  assessment  ........................................................................................................  235  

 

   

Page 14: Marshall Rachael 201301 MASc

  xiv  

List  of  tables  Table  1.  Common  solid  waste  management  challenges  in  developing  countries,  categorized  

by  sector  ............................................................................................................................................................  57  

Table  2.  Example  of  a  causal  matrix  (adapted  from  Scholz  &  Tieje,  2002)  ...................................  83  

Table  3.  Men's  causal  grid  results  ....................................................................................................................  88  

Table  4.  Women's  causal  grid  results  .............................................................................................................  92  

Table  5.  Youth's  causal  grid  results  ................................................................................................................  94  

Table  6.  Community-­‐wide  causal  grid  results  ............................................................................................  99  

Table  7.  Common  Appropriate  Technology  criteria  ..............................................................................  124  

Table  8.  Weight  and  volume  of  residential  solid  waste  components  per  capita  per  day  ......  131  

Table  9.  Average  regional  waste  composition  in  Latin  America  and  the  Caribbean,  and  OECD  member  countries  (adapted  from  Hoornweg  and  Bhada-­‐Tata  (2012))  .............................  131  

Table  10.  Waste  practices  by  neighbourhood  ..........................................................................................  134  

Table  11.  Bank  of  Ideas  summary  of  options  ............................................................................................  135  

Table  12.  Constraints  for  locally  appropriate  system  levers  for  use  in  Todos  Santos  ............  137  

Table  13.  Criteria  for  locally  appropriate  system  levers  for  use  in  Todos  Santos  ....................  138  

Table  14.  Framework  criteria  ..........................................................................................................................  139  

Table  15.  Scenario  Summary  ...........................................................................................................................  140  

Table  16.  Sum  of  strengths  of  new  relationships  influencing  action  entry  points  ...................  182  

Table  17.  Implementation  Stage  1:  Momentum-­‐building  projects  .................................................  191  

Table  18.  Overall  system  management  options  .......................................................................................  227  

Table  19.  Waste  characterization  options  .................................................................................................  228  

Table  20.  Waste  Reduction  Options  ..............................................................................................................  228  

Table  21.  Collection  and  transport  options  ...............................................................................................  230  

Table  22.  Resource  recovery  options  ...........................................................................................................  232  

Table  23.  Waste  transformation  options  ....................................................................................................  234  

Table  24.  Disposal  options  ................................................................................................................................  234  

Page 15: Marshall Rachael 201301 MASc

  xv  

Table  25.  System  lever  assessment  ...............................................................................................................  235  

 

 

   

Page 16: Marshall Rachael 201301 MASc

  xvi  

List  of  figures  Figure  1.  SWM  Drivers  and  Progress  .............................................................................................................  12  

Figure  2.  Stages  in  the  development  of  modern  SWM  policy  (from  Wilson,  (2007))  ...............  14  

Figure  4.  Integrated  Solid  Waste  Management  ..........................................................................................  19  

Figure  5.  Developing  Country  SWM  Contexts  .............................................................................................  24  

Figure  6.  Population  Living  in  Slums  and  Proportion  of  Urban  Population  Living  in  Slums,  Developing  Regions,  1990-­‐2010  (UNFPA,  2011)  ............................................................................  26  

Figure  7.  Problem  Solving  Strategies  (Funtowicz  &  Ravetz,  1993)  ..................................................  40  

Figure  8.  Complex  Adaptive  Systems:  Nested  Sets  of  Four  Phase  Adaptive  Cycles  (adapted  from  Holling  (2001))  ...................................................................................................................................  44  

Figure  9.  Conceptual  Model  of  the  Dissipative  Nature  of  a  Self-­‐Organizing  System  (adapted  from  Kay  et  al.  (1999))  ...............................................................................................................................  46  

Figure  10.Guatemala's  SWM  Context  .............................................................................................................  59  

Figure  11.  Environmental  and  health  related  SWM  impacts  in  Guatemala  ...................................  62  

Figure  12.  Methodology  .......................................................................................................................................  72  

Figure  13.  Participatory  Model  Building  (adapted  from  Vennix,  1996)  .........................................  80  

Figure  14.  Example  of  a  causal  grid  (adapted  from  Scholz  &  Tietje,  2002)  ...................................  84  

Figure  15.  Group  map  1:  Men's  perspectives  .............................................................................................  86  

Figure  16.  Causal  Grid  1:  Men's  perspectives  .............................................................................................  88  

Figure  17.  Group  map  2:  Women's  perspectives  ......................................................................................  90  

Figure  18.  Causal  grid  2:  Women’s  perspectives  ......................................................................................  91  

Figure  19.  Group  map  3:  Youth's  perspectives  ..........................................................................................  93  

Figure  20.  Causal  grid  3:  Youth's  Perspectives  ..........................................................................................  94  

Figure  21.  Group  map  4:  Integrated  community  causal  map  ..............................................................  96  

Figure  22.  Causal  grid  4:  Integrated  community  perspectives  ...........................................................  98  

Figure  23.  Overlapping  perspectives  ...........................................................................................................  107  

Figure  24.  Residential  solid  waste  distribution  by  weight  in  Todos  Santos  ...............................  132  

Page 17: Marshall Rachael 201301 MASc

  xvii  

Figure  25.  Residential  solid  waste  distribution  by  volume  in  Todos  Santos  ..............................  133  

Figure  26.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Foundations  Scenario  ...........................................................................................................................................................  142  

Figure  27.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Religious  Partnerships  Scenario  ...............................................................................................................................  143  

Figure  28.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Private  Sector  Involvement  Scenario  ...............................................................................................................................  144  

Figure  29.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Integrated  SWM  Vision  Scenario  .................................................................................................................................  146  

Figure  30.  Conceptual  diagram  of  current  SWM  service  provision  in  Todos  Santos  ..............  162  

Figure  31.    Key  places  to  intervene  in  the  Todos  Santos  SWM  system  .........................................  172  

Figure  32.  Impacts  of  The  Foundations  Scenario  system  levers  on  the  community-­‐wide  causal  map  ......................................................................................................................................................  175  

Figure  33.  Impacts  of  The  Religious  Partnerships  Scenario  system  levers  on  the  community-­‐wide  causal  map  ..........................................................................................................................................  177  

Figure  34.  Impacts  of  The  Private  Sector  Involvement  Scenario  system  levers  on  the  community-­‐wide  causal  map  .................................................................................................................  179  

Figure  35.  Impacts  of  The  Integrated  SWM  Vision  Scenario  system  levers  on  the  community-­‐wide  causal  map  ..........................................................................................................................................  181  

Figure  36.  Waste  Education  causes  tree  .....................................................................................................  185  

Figure  37.  The  staged  implementation  process  ......................................................................................  200  

Figure  38.  Long-­‐term  stage:  Community-­‐wide  transition  through  the  scenarios  ....................  202  

 

 

   

Page 18: Marshall Rachael 201301 MASc

  1  

1   Introduction  Solid   waste  management   (SWM)   is   a   critical   service   for   the   protection   of   human  

health  and  the  natural  environment.  Dealing  with  society’s  solid  waste  is  a  growing  

problem   in   all   countries,   and   a   desperate   problem   in  many   developing   countries  

where  solid  waste  management  services  can  be  quite  rudimentary  (Schübeler,  1996;  

Wilson,   2007).   Solid   waste   is   inevitably   being   produced   at   a   rising   rate   as  

developing   countries   follow   the   historical,   unsustainable   Northern   model   that  

emphasizes  high  production,  high  consumption,  and  disposability  (Dijkema,  Reuter,  

&   Verhoef,   2000;   Duru,   1981;   UNEP,   2009).   As   the   North   moves   towards   the  

conservation  of  natural  resources  through  increased  recycling  and  environmentally  

conscious  production  and  consumption,  accumulating  waste  in  the  South  continues  

to   threaten   crucial   environmental   resources,   human  health,   and   the  quality   of   life  

(UNEP,  2009).  It  is  increasingly  evident  that  the  costs  of  rising  consumption  trends  

do   not   impact   everyone   equally;   unequal   distribution   of   solid   waste   services  

perpetuates   and   aggravates   inequalities   already   being   experienced   by   the   most  

vulnerable  populations   (Coffey  &  Coad,  2010;  Konteh,  2009).   Such   is   certainly   the  

case  in  Central  America,  which  contributes  to  Latin  America’s  number  one  ranking  

in  the  world  for  inequality  by  having  some  of  the  highest  rates  of  income,  health  and  

education   inequality,   as   measured   by   the   Gini   and   Human   Development   indexes  

(UNDP,  2010).    

In  recent  years,  a  variety  of  factors  have  caused  the  volume  of  household  solid  waste  

in   developing   countries   to   increase,   and   to   change   in   composition   from  primarily  

organics   to   a   mixture   of   organics   and   synthetic   materials   (Yousif   &   Scott,   2007).  

These   changes   have   contributed   significantly   to   the   technical   and   non-­‐technical  

SWM   difficulties   that   have   been   experienced   in   many   developing   countries;  

management  and  decision-­‐making,  in  particular,  have  become  increasingly  complex  

(Seadon,  2010).  

Page 19: Marshall Rachael 201301 MASc

  2  

1.1 Solid  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala  Guatemala  has  one  of  Central  America’s  largest  economies  (World  Bank,  2011),  and  

solid  waste  generation  per  capita  is  continuously  increasing  in  the  country  (Yousif  &  

Scott,   2007).   Extremely  weak   SWM   systems   have   lead   to   a   proliferation   of  waste  

burning   and   open,   unregulated   dumping,   often   near   or   in  water   bodies   (Mantilla,  

2007;  Yousif  &  Scott,  2007).  This  is  especially  true  in  small  cities  and  rural  regions,  

where   the   added   burdens   of   geographic   isolation,   poverty,   and   limited   local  

government   resources   hinder   the   ability   of   municipal   authorities   to   cope   with  

turbulent  SWM  challenges  (Stokoe  &  Teague,  1995).    

In  Guatemala,  poverty  is  greatest  among  the  mostly  rural  indigenous  communities,  

which  constitute  nearly  half  of   the  population  (Cook  et  al.,  2009;  Yousif  and  Scott,  

2007).   Accordingly,   waste   management   is   extremely   limited   in   many   of   these  

communities.   The   remote   Mayan   (Mam)   village   of   Todos   Santos,   tucked   in   the  

Cuchumatanes  mountain  range  in  northwestern  Guatemala,   is  no  exception.  Waste  

collection   occurs   only   in   the   center   of   town   where   the   wealthiest   residents   live.  

Waste   is  deposited   in  an  open,  unregulated  dump  that  sits  directly  on   the  bank  of  

the  Limon  River   in   the  center  of   town.  A  plethora  of  vectors   (including  household  

pets)  feed  at  the  dump  and  track  waste  and  contamination  through  the  streets,  the  

fresh  vegetable  and  meat  market,  and  residents’  homes.  Connections  between  solid  

waste  mismanagement  and  community  wellbeing  are  increasingly  being  recognized.  

In   2008,   Vets   Without   Borders   identified   a   need   to   further   investigate   waste  

management  issues  in  Todos  Santos  through  a  program  to  control  the  local  canine  

population  (VWB,  2009a).  This  program  brought  to  light  the  pivotal  need  for  proper  

waste  management  in  the  community  (VWB,  2009b).    

The   Guatemalan   government   has   recognized   the   severity   of   waste   management  

issues   in   the   country   at   large.   In   2006,   the   Guatemalan   government   signed   a  

trilateral  agreement  with  the  governments  of  Mexico  and  Germany  to  implement  an  

integrated  waste  management  program  in  the  country  (TTSSC,  2010).  The  program  

aimed   to   create   technical   capacity   in  waste  management  by   forming  a  network  of  

environmental   promoters  who   could   provide   technical   and   advisory   assistance   to  

Page 20: Marshall Rachael 201301 MASc

  3  

the  country’s  2,500  municipalities  (TTSSC,  2010).  While  the  program  supported  the  

training  and  recognition  of  70  “experts”  offering  advisory  services  to  municipalities  

by  2009  (TTSSC,  2010),  a  lack  of  integrated  waste  management  continues  to  plague  

less   fortunate   communities   throughout   the   country.  Project   funding   terminated   in  

2009  (TTSSC,  2010)  and  further  results  have  not  been  reported.  More  recently,  the  

Inter-­‐American   Development   Bank   (IDB)   signed   a   contract   to   finance   the  

development  of  a  national  plan  for  solid  waste  management  in  the  country.  The  plan  

aims   to   establish   concrete   goals   and   objectives   for   institutional,   regulatory,  

financing,  and  legal  change  in  the  short-­‐  and  long-­‐term  (IDB,  2012).    

It   becomes   rapidly   evident   that   SWM   has   been   recognized   as   a   critical   issue   of  

concern  in  Guatemala.  However,  remote  communities’  perspectives  on  the  systemic  

causes  and  consequences  of  waste  mismanagement  have  not  been  recognized;  nor  

have  means   for   the   community   to   respond   to   these   concerns   themselves.   To   this  

end,   this  study  aims  to  address  Todos  Santos’  waste  management  challenges   in  an  

integrated  manner.      

1.2 A  systems  approach  to  solid  waste  management  The   technical,   social,   economic,   and   environmental   elements   and   processes   that  

make  up  SWM  services  and  activities  are  part  of  an   interconnected,  complex  SWM  

system.   This   system   interacts   and   overlaps   with   several   larger   social,   cultural,  

economic,   political,   and   environmental   systems.   Managing   a   complex   system  

requires   an   understanding   of   how   the   system   works.   However,   many   SWM  

decisions   are   made   without   considering   the   system   as   an   interconnected   whole,  

increasing   the   risk   of   making   poor   managerial   choices   and   systemic   oversights  

(Kollikkathara,   Feng,   &   Yu,   2010).   Strategies   that   will   function   properly   within   a  

complex  socio-­‐ecological  system  must  be  locally  appropriate  and  therefore  tailored  

to  the  specific  contexts  that  frame  such  a  system.    This  necessitates  the  inclusion  of  

local  stakeholders  in  not  only  decision-­‐making  and  strategy  building  processes,  but  

also  in  defining  the  current  structure  and  functioning  of  the  system,  and  what  a  ‘best  

fit’  future  scenario  of  that  system  might  look  like.    

Page 21: Marshall Rachael 201301 MASc

  4  

In   Todos   Santos,   strategies   lacking   a   locally   appropriate   systems   approach   have  

failed   in   the   past.     In   2007,   the   European   Union   funded   a   project   to   construct   a  

wastewater   treatment   plant   in   one   of   the   neighbourhoods   of   Todos   Santos.   The  

plant   was   subsequently   built,   but   due   to   a   lack   of   cultural   acceptability   and  

community  ownership,  it  was  immediately  abandoned.    

Clearly,  new,   locally  appropriate  approaches   that  consider   the  SWM  system  as   the  

whole  that  it  is  are  needed.    

1.3 Problem  statement  The  largely   indigenous  community  of  Todos  Santos  Cuchumatán  faces  severe  solid  

waste   management   issues.   The   community’s   perspective   of   the   structure   and  

functioning   of   the   current   SWM   system   and   its   impact   on   the   wellbeing   of   the  

community  and   the  surrounding  ecosystems   is  unknown.  Standardized   ‘cookbook’  

solutions,   implemented   by   external   entities,   have   not   addressed   underlying   root  

causes   in   the   past.     Action-­‐oriented   change   is   needed,   and   thus   so   is   a   local  

understanding   of   the   structure   and   functioning   of   the   SWM   system   in   order   to  

identify  key  places   to   intervene   in   the  system.  The  community  needs  to  be  able   to  

move   itself   forward  with   realistic,   locally   appropriate   strategies   that   confront   the  

local  waste  crisis  that  threatens  human  health,  community  wellbeing,  and  the  fragile  

ecosystems  the  residents  depend  on.    

1.4 Research  goal  and  objectives  The   goal   of   this   study   was   to   use   a   participatory   systems   approach   to   stimulate  

‘ground-­‐level’   discussions   and   innovation   strategies   in   the   community   of   Todos  

Santos  Cuchumatán.  The  intent  was  to  aid  in  the  creation  of  an  inclusive  vision  for  

solid   waste   management   in   the   community,   and   to   provide   tangible   means   and  

examples  to  achieve  elements  of  this  vision.      

The  specific  objectives  of  this  study  were:    

1. To   identify,   from   the   perspective   of   the   community,   the   key   places   to  

intervene   in   the   SWM   system   for   long-­‐term,   successful,   and   systemically  

integrated  SWM  in  Todos  Santos.  

Page 22: Marshall Rachael 201301 MASc

  5  

2. To  match  the  perspective  of  the  community  to  known  engineering  solutions  

for  solid  waste  management  systems.    

3. To  develop  a  system  intervention  plan  to  assist  the  community  to  move  into  

self-­‐directed  action.    

1.5 Interdisciplinary  approach  The   complex   solid   waste   situation   in   which   Todos   Santos   sits   called   for   a  

methodology   strongly   considerate   of   context   and   capable   of   dealing   with  

complexity.  Such  a  methodology  must  consider  a  wide  variety  of  complex  contextual  

influences,   including   social,   cultural,   political,   economic,   and   ecological.   While  

conventional   SWM   approaches   tend   to   be   reductionist   in   nature   (Seadon,   2010),  

such   methods   were   deemed   unfit   for   this   study.   Purely   technical   solutions   have  

proven  to  be  locally  inappropriate  in  the  past.  An  approach  was  needed  that  could  

move  forward  despite  high  levels  of  uncertainty  and  high  decision  stakes.  Therefore,  

the   approach   that   was   chosen   blended   quantitative   and   qualitative   methods;  

traditional  engineering  inquiry  meets  the  open-­‐ended  subjectivity  of  narrative  and  

multiple   legitimate   perspectives.   An   engineering   approach   brought   a   traditional  

problem-­‐solving   mindset,   concrete   technical   solid   waste   data,   and   known  

engineering   solutions   to   the   table,  while   the   subjective   system   narratives   of   local  

stakeholders  brought  a  particular  depth  of  understanding  of  the  context,  structure,  

and   functioning  of   the   SWM  system   that   could  not  have  been  achieved  otherwise.  

The  legitimate  perspectives  of  participants  also  helped  the  researcher  shape  and  sift  

through  known  engineering  solutions  to  find  those  that  have  a  high  potential  to  be  

locally  appropriate  and  successful  in  positively  altering  the  SWM  system  in  the  long-­‐

term.    

1.6 Thesis  organization  This  thesis  follows  a  manuscript  style  format,  and  consists  of  6  chapters:  

1.6.1 Chapter  1:  Introduction  

The  first  chapter  introduces  the  rationale  and  structure  of  the  study.    

Page 23: Marshall Rachael 201301 MASc

  6  

1.6.2 Chapter  2:  A  systems  approach  to  integrated  solid  waste  management  in  

developing  countries  –  A  review  

The   second   chapter   provides   a   literature   review  on   the   historical   development   of  

SWM   in   industrialized   countries,   followed   by   a   review   of   the   current   SWM  

challenges   in   developing   countries.   Finally,   it   examines   the   need   for   a   systemic  

approach   by   exploring   the   beneficial   perspectives   of   post-­‐normal   science   and  

complex,  adaptive  systems  thinking.    

1.6.3 Chapter  3:  Narrative-­‐based  participatory  model  building  as  a  systems  

approach  to  integrated  solid  waste  management  in  Todos  Santos  Cuchumatán,  

Guatemala  

The   third   chapter   presents   the   findings   of   a   field   study   that   examines   the   SWM  

challenges   in   one   of   Guatemala’s   politically   and   geographically   disadvantaged  

communities   through   narrative-­‐based   participatory   model   building.   Specifically,  

local   stakeholders   conducted   causal  mapping   to   depict   the   system   structure   from  

their  perspectives.    

1.6.4 Chapter  4:  Developing  locally  appropriate  leverage  for  change:  Integrated  

solid  waste  management  in  rapidly  developing  rural  Guatemala  

The   fourth   chapter   presents   the   findings   of   a   study   that   explores   approaches   to  

SWM  used  by  a  wide  variety  of  communities  in  Central  America  and  elsewhere  that  

have   the   potential   to   be   locally   appropriate   in   rapidly   developing   rural   Todos  

Santos.   These   approaches   are   tested   for   local   appropriateness   with   specifically  

tailored   criteria   and   constraints   in   a   case   study   of   Todos   Santos   Cucuchumatán,  

Guatemala.   Chosen   approaches   are   then   assembled   into   four   SWM   scenarios   that  

represent  increasingly  integrated  and  effective  SWM  systems.    

1.6.5 Chapter  5:  Local  innovation,  ownership,  and  action:  Evaluating  the  systemic  

impacts  of  four  future  scenarios  for  integrated  solid  waste  management  in  

Todos  Santos  Cuchumatán,  Guatemala  

The  fifth  chapter  presents  the  findings  of  a  study  that  examines  the  impacts  of  the  

four  scenarios  established   in  Chapter  4  on  the  SWM  system.  Each  project  within  a  

given  scenario  is  introduced  into  the  community-­‐wide  causal  map,  and  the  resulting  

Page 24: Marshall Rachael 201301 MASc

  7  

structural  impacts  are  analysed.  Recommendations  are  given  about  scenario  choice  

and  the  initial  “momentum-­‐building”  implementation  phase.  

1.6.6 Chapter  6:  Conclusions  and  recommendations  

The   final   chapter   brings   together   the   findings   of   the   research   and   provides  

recommendations  for  building  action  momentum  and  for  future  research.  

   

Page 25: Marshall Rachael 201301 MASc

  8  

1.7 References  Coffey,   M.,   &   Coad,   A.   (2010).   Collection   of   Municipal   Solid   Waste   in   Developing  

Countries.  Malta:  UN-­‐HABITAT.  Dijkema,  G.  P.   J.,  Reuter,  M.  A.,  &  Verhoef,  E.  V.   (2000).  A  new  paradigm   for  waste  

management.  Waste  Management,  20(8),  633-­‐638.    Duru,  R.  C.  (1981).  Technological  growth  and  ecological  crisis:  the  Nigerian  example.  

The  Science  of  the  Total  Environment,  17(3),  243-­‐256.    IDB.   (2012).   GU-­‐T1177:   National   Plan   for   Solid  Waste  Management   in   Guatemala    

Retrieved   November   2,   2012,   from  http://www.iadb.org/en/projects/project-­‐description-­‐title,1303.html?id=GU-­‐T1177  

Kollikkathara,  N.,  Feng,  H.,  &  Yu,  D.  (2010).  A  system  dynamic  modeling  approach  for  evaluating   municipal   solid   waste   generation,   landfill   capacity   and   related  cost  management  issues.  Waste  Management,  30(11),  2194-­‐2203.    

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

Mantilla,   J.   E.   V.   (2007).   Proyecto   cuente   con   ambiente   primer   informe   sobre  desechos  solidos  (1  ed.):  MARN,  Universidad  Rafael  Landivar.  

Seadon,   J.   K.   (2010).   Sustainable   waste   management   systems.   Journal   of   Cleaner  Production,  18(16-­‐17),  1639-­‐1651.    

Stokoe,  J.,  &  Teague,  E.  (1995).  Integrated  solid  waste  management  for  rural  areas:  A  planning   tool   kit   for   solid   waste   managers.   Washington,   D.C.:   USDA   Rural  Utilities  Service.  

UNDP.   (2010).   Regional   Human   Development   Report   for   Latin   America   and   the  Caribbean  2010.  Costa  Rica:  United  Nations  Development  Programme.  

UNEP.   (2009).   Developing   Integrated   Solid   Waste   Management   Plan:   Training  Manual  (Vol.  1:  Waste  Characterization  and  Quantification  within  Projections  for  Future).  Osaka/Shiga,  Japan:  United  Nations  Environment  Programme.  

VWB.  (2009a).  Guatemala:  Companion  animals  and  community  health:  Veterinarians  Without  Borders.  

VWB.   (2009b).   Todos   Santos,   Guatemala   interim   report:   Implemenation   Phase   I,  January  2009:  Veterinarians  Without  Borders.  

World   Bank.   (2011).   Guatemala   Overview     Retrieved   April   6,   2011,   from  http://www.worldbank.org/en/country/guatemala/overview  

Yousif,  D.  F.,  &  Scott,  S.  (2007).  Governing  solid  waste  management  in  Mazatenango,  Guatemala.  International  Development  Planning  Review,  29(4),  433-­‐450.    

   

Page 26: Marshall Rachael 201301 MASc

  9  

2 Literature  review  

2.1 Introduction  The  primary  purposes  of  solid  waste  management  (SWM)  strategies  are  to  address  

the   health,   environmental,   aesthetic,   land-­‐use,   resource,   and   economic   concerns  

associated  with   the   improper  disposal   of  waste   (Henry,   Yongsheng,  &   Jun,   2006a;  

Nemerow,   2009;  Wilson,   2007).   These   issues   are   an   ongoing   concern   for   nations,  

municipalities,   corporations,   and   individuals   around   the  world   (Nemerow,   2009),  

and   the   global   community   at   large   (Wilson,   2007).   As  Wilson   (2007)   points   out,  

developing  an  understanding  about  what  has  driven  SWM   in   the  past   can  provide  

much  needed  context  and  insight  for  how  best  to  move  forward  in  the  future.  Thus,  

this  review  begins  by  examining  the  historical  development  of  SWM  in  high-­‐income  

countries.   It   then   explores   the   state   of   SWM   systems   in   developing   countries   by  

examining   the   challenges   presented   by   economic,   social,   cultural,   political,   and  

international   influences.   Finally,   it   explores   the   need   for   a   systemic   approach   by  

examining  the  beneficial  perspectives  of  post-­‐normal  science  and  complex,  adaptive  

systems  (CAS)  thinking.    

It  should  be  noted  that  the  author  recognizes  that  stark  situational  differences  exist  

at   all   levels:   between   nations,   regions,   cities,   communities,   households,   and   even  

individuals.   While   this   paper   makes   reference   to   categories   of   countries   (i.e.  

developing,   developed,   industrialized,   high-­‐,   medium-­‐,   and   low-­‐income),   by   no  

means  does  it  imply  that  the  problems  are  the  same  amongst  these  groups.  Indeed,  

“we   always   pay   for   generality   by   sacrificing   content,   and   all   we   can   say   about  

practically   everything   is   almost   nothing”   (Boulding,   1956,   p.   197);   it   is   for   this  

reason   that   systems   approaches,   which   are   founded   upon   specific,   locally  

appropriate  methodologies,  are  so  crucial  to  the  future  of  SWM  practices.      

2.2 Solid  waste  management  in  high-­‐income  countries  The  historical  forces  and  mechanisms  that  have  driven  the  evolution  of  solid  waste  

management  (SWM)  in  high-­‐income  countries  can  provide  insight  about  “how  best  

to  move  forward  in  developing  sustainable  waste  management  systems  around  the  

Page 27: Marshall Rachael 201301 MASc

  10  

world”   (Wilson,   2007,   p.   205).   The   following   sections   explore   the   origins   and  

principal   drivers   of   SWM   development   in   industrialized   countries   in   order   to  

provide  some  context  for  the  changes  that  are  currently  taking  place  in  developing  

countries.    

2.2.1 Historical  origins  of  solid  waste  management  

Humans  have  been  mass-­‐producing  solid  waste  since  they  first  formed  non-­‐nomadic  

societies   around   10,000   BC   (Worrell   &   Vesilind,   2012).   Historically,   public   health  

concerns,  security,  scarcity  of  resources,  and  aesthetics  acted  as  central  drivers  for  

waste   management   systems   (Louis,   2004;   Melosi,   1981;   Ponting,   1991;   Wilson,  

2007;  Worrell  &  Vesilind,  2012).   Small   communities  managed   to  bury   solid  waste  

just  outside  their  settlements  or  dispose  of  it  in  nearby  rivers  or  water  bodies,  but  as  

population   densities   increased,   these   practices   no   longer   prevented   the   spread   of  

foul   odours   or   disease   (Seadon,   2006).   As   waste   accumulated   in   these   growing  

communities,   people   simply   lived   amongst   the   filth.   There   were   exceptions:  

organized  SWM  processes  were  implemented  in  the  ancient  city  of  Mahenjo-­‐Daro  in  

the  Indus  Valley  by  2000  BC  (Worrell  &  Vesilind,  2012);  the  Greeks  had  both  issued  

a  decree  banning  waste  disposal   in   the  streets  and  organized  the  Western  world’s  

first  acknowledged  ‘municipal  dumps’  by  500  BC  (Melosi,  1981);  and  Chinese  cities  

had  “disposal  police”  responsible  for  enforcing  disposal  laws  by  200  BC.  However,  as  

Worrell   and   Vesilind   (2012,   p.   1)   so   aptly   describe,   “for   the  most   part,   people   in  

cities   lived  among  waste  and  squalor”  (p.  1).   In  both  Athens  and  Rome,  waste  was  

only  relocated  well  outside  city  boundaries  when  defenses  were  threatened  because  

opponents   could   scale   up   the   refuse   piles   and   over   the   city   walls   (Worrell   &  

Vesilind,  2012).    

City  streets  in  the  Middle  Ages  were  plastered  in  an  odorous  mud  composed  of  soil,  

stagnant  water,  household  waste,  and  animal  and  human  excrement  (Louis,  2004).  

This   created   very   favourable   conditions   for   vectors   of   disease.   Indeed,   the   Black  

Death,  which  struck  Europe  in  the  early  1300s,  may  have  been  partially  caused  by  

the  littering  of  organic  wastes  in  the  streets  (Louis,  2004;  Tchobanoglous,  Theisen,  &  

Eliassen,  1977;  Worrell  &  Vesilind,  2012).  In  colonial  America,  the  urban  population  

Page 28: Marshall Rachael 201301 MASc

  11  

lived  in  similar  putrid  conditions.  Indeed,  Melosi  (1981)  paints  an  odorous  portrait  

of  early  American  living  conditions:  

 In  Eastern  cities,  where  crowding  became  a  chronic  problem  as  early  

as  the  1770s,  the  streets  reeked  with  waste,  wells  were  polluted,  and  

deaths  from  epidemic  disease  mounted  rapidly...  As  late  as  the  1860s,  

Washingtonians  dumped  garbage  and  slop  into  alleys  and  streets,  pigs  

roamed   freely,   slaughterhouses   spewed   nauseating   fumes,   and   rats  

and  cockroaches  infested  most  dwellings  –  including  the  White  House.  

No  wonder  the   infant  mortality  rate  was  very  high   in   the  capital  city  

(p.  11).  

Many  initiatives  were  implemented  to  clean  up  the  streets,  but  all  were  short-­‐lived  

because  the  poor  were  focused  on  feeding  themselves  and  the  rich  were  opposed  to  

paying   to   clean   up   for   the   poor   (Wilson,   2007).   However,   scarcity   of   resources  

ensured   many   items   were   repaired   and   reused,   and   the   waste   stream   was  

thoroughly  scavenged  (Woodward,  1985).      

When   SWM   progress   finally   began,   it   was   driven   by   5   principal   factors:   public  

health,   the  environment,   resource  scarcity  and   the  value  of  waste,   climate  change,  

and  public  awareness  and  participation.  These  driving  forces  and  the  progress  they  

instigated  are  depicted  in  Figure  1.  

 

Page 29: Marshall Rachael 201301 MASc

  12  

 

Figure  1.  SWM  Drivers  and  Progress  

2.2.2 Driver  1:  Public  health  –  the  sanitary  revolution  

The  industrial  revolution  brought  rapid  expansion  to  both  European  and  American  

cities.   A   new   era   in   sanitation   began   to   take   shape   between   1790   and   1850   in  

London,   where   the   high   ash   content   of   household   waste   caused   by   heating   and  

Drivers

Relationships dfgdgfdgdfdgf

Progress

Legend

Events

Driver 1:Public Health

EpidemicDiseases

Quality of SWM DuringIndustrialization

Public HealthLegislation

Push forinstitutional

change Collection andRemoval fromMunicipality

++

+

+

+

Poor Sanitation+

+

World Wars

Driver 3:Resourcescarcity

Recycling andReuse

Post-WWIIIncrease in

Consumptionand Waste

Quantity ofMunicipal

Solid Waste

+

TechnologicalInnovation

+

++

-

IndustrialRevolution

Driver 2:EnvironmentalMovement on

Public and PoliticalAgendas

Quality of SWM Post-WWII

+

+

+

-

-

+

+

+

EnvironmentalPolicy andLegislation

+

WasteHierarchy+

+

Shift Awayfrom

Landfilling

+

Driver 4:ClimateChange

+

NIMBY

UnsustainableBehaviour

Driver 5:Public

Awareness andParticipation

+-

-

-

-

Density ofUrban Areas

+

-

Current Quality of SWM

Integrated SWMParadigm

+

+

-

+

Page 30: Marshall Rachael 201301 MASc

  13  

cooking  with  coal  created  a  flourishing  market  for  waste  collection  and  use  as  a  raw  

material  to  meet  the  excess  demand  for  bricks  (Wilson,  2007).  In  the  late  1830s  the  

sanitation   revolution   began   in   London   with   the   appointment   of   the   Sanitation  

Commission,   which   established   the   first   clear   linkages   between   disease   and   poor  

sanitary   conditions.   In   1848   and   1875   Public   Health   Acts   were   established,   the  

latter   of   which   required   households   to   dispose   of   their   waste   in   a   moveable  

receptacle,  which  local  authorities  were  responsible  for  emptying  weekly  (see  Figure  

1).  Similar  legislation  was  implemented  in  other  European  countries  (Wilson,  2007).  

In  American  cities,  population  density  and  the  reliance  on  imported  goods  increased  

dramatically  between  1790  and  1920  (Louis,  2004).  Likewise,  the  need  to  export  the  

waste  products  of  their  burgeoning  growth  beyond  immediate  city  limits  increased.  

Public   concern   about   sanitation   rose   as   epidemic   diseases   continued   to   sweep  

through  cities  regularly.  It  was  during  this  time  that  infrastructure  for  drinking  and  

wastewater  was  constructed  and  institutional  measures  for  public  health  and  solid  

waste  management  developed  (Louis,  2004).    

Public   health   legislation   continued   to   drive   waste   management   forward   in   the  

following  century.  Once  personal  health  issues  had  been  steadied,  the  proliferation  

of   landfills,   the   health-­‐impacting   air   emissions   from   domestic   and   industrial  

activities,  the  stench  of  wastewater  treatment  plants,  and  other  issues  impacting  the  

health  of  the  larger  community  gained  attention  (Seadon,  2006).  In  the  first  half  of  

the   century,   collection   and   removal   were   the   primary   focus   of   municipal   waste  

management   practices   (Wilson,   2007).   During   the   two   world   wars,   technological  

innovation  and  resource  scarcity,  which  generated  a  culture  of  recycling,   impacted  

waste   management   practices   (see   Figure   1).   However,   disposal   by   dumping   and  

burning   was   largely   unregulated   and   uncontrolled   (Wilson,   2007).   The   focus  

remained   on   waste   collection   and   transportation   out   of   the   city   (UN-­‐HABITAT,  

2010).  

2.2.3 Driver  2:  Environment  –  The  ‘modernization’  of  SWM    After   the   Second   World   War   landfilling   was   still   the   principal   waste   disposal  

method,  and  rapid  growth  in  consumption  from  1960  onwards  resulted  in  a  larger  

Page 31: Marshall Rachael 201301 MASc

  14  

municipal   waste   stream   with   a   higher   plastics   content   (Wolsink,   2010).   The  

environmental  movement  of   the  1960s  and  1970s  moved  waste  disposal  onto   the  

political   agenda   in   industrialized   countries   (Wilson,   2007;  Wolsink,   2010),   which  

created  a    significant  shift  in  policymakers’  perspectives  on  how  to  approach  waste  

management  (Wolsink,  2010).  New  legislation  addressing  water  pollution  and  solid  

waste   management   emerged,   initially   targeting   the   elimination   of   uncontrolled  

disposal   (see   Figure   1).   Subsequent   SWM   legislation   increasingly   raised  

environmental  standards   to  reduce   the  contamination  of   land,  air,  and  water  (UN-­‐

HABITAT,   2010;  Wilson,   2007).   The   environmental  movement   acted   as   a   primary  

driver  of  the  policy  stages  from  the  1970s  onwards,  depicted  in  Error!  Reference  

ource  not  found.  from  Wilson  (2007).    

 

Figure  2.  Stages  in  the  development  of  modern  SWM  policy  (from  Wilson,  (2007))  

The  ‘control’  stage  focused  on  phasing  out  uncontrolled  disposal,  and  was  therefore  

characterized  by  measures   such   as   the  daily   covering   and   compacting   of   landfills,  

retrofitting  incinerators  for  dust  control,  etc.  (Wilson,  2007).  The  ‘technical  fix’  stage  

that  emerged  in  the  1980s  and  continues  today  is  characterized  by  an  emphasis  on  

gradually  increasing  technical  standards,  which  began  with  landfill  gas  and  leachate  

control,   incinerator   gas   and  dioxin   reduction,   and  now  spans   to  odour   control   for  

composting  facilities  and  anaerobic  digesters  (Wilson,  2007).  The  ‘integrated  policy’  

stage   came   forth   in   the   1990s   when   it   became   evident   that   advocating   for   ever-­‐

Page 32: Marshall Rachael 201301 MASc

  15  

increasing   environmental   protection   was   not   enough;   an   integrative   regulatory  

approach  was  needed  that  encompassed  not  only   the  technical  and  environmental  

but  also  the  political,  social,  financial,  economic,  and  institutional  elements  of  waste  

management   if   environmental   protection   were   to   be   realized   (McDougall,   White,  

Franke,  &  Hindle,  2001;  van  de  Klundert  &  Anschutz,  2001;  Wilson,  2007).  The  final  

policy  stage  depicted   in  Figure  2   ‘targets/prevention’,  has  been  characterized  by  a  

series  of  preventative  policy  measures,  including  laws  and  targets  for  compost  and  

recycling   goals,   diversion   from   landfill,   extended   producer   responsibility,   and  

landfill  bans  for  recyclable  materials  (UN-­‐HABITAT,  2010;  Wilson,  2007).  

2.2.4 Driver  3:  The  resource  scarcity  and  value  of  waste    

In   pre-­‐industrial   times,   resources   were   relatively   scarce.   Anything   vendible   was  

scavenged  and  consumer  goods  were   reused  and  repaired  rather   than   tossed   into  

the  waste  stream  (UN-­‐HABITAT,  2010;  Wilson,  2007).  As  cities  grew  in  size  after  the  

industrial   revolution,   the   resource   value   of  waste   rose   again,   and   ‘rag   pickers’   or  

‘street  buyers’  collected,  used,  and  sold  materials  from  the  waste  stream;  an  activity  

that   continues   today   in  many  developing   (and  developed)   countries   (see  Figure  1)  

(UN-­‐HABITAT,  2010).  The  resource  value  of  waste  had  escalated   to  such   levels  by  

the  1970s   that   it   sparked   the  European  concept  

of  the  ‘waste  hierarchy’,  on  which  current  waste  

policy  in  the  EU  is  based  (Wilson,  2007;  Wolsink,  

2010).  First   introduced  in  the  European  Union’s  

Second  Environment  Action  Programme  in  1977  

(CEC,   1977),   the   waste   hierarchy   is   a   model   of  

waste   management   priorities   based   on   the  

“Ladder   of   Lansink”,   a   hierarchy   of   waste  

handling   techniques   going   in   order   from  

prevention  to  reuse,  reduction,  recycling,  energy  

recovery,   treatment   (such   as   incineration),   and  

finally   landfill   disposal   (see   Figure   3)   (Price   &  

Joseph,  2000;  Wilson,  2007;  Wolsink,  2010).  

   

Figure  3.  The  Waste  Hierarchy  (Zero  Waste  SA,  2011)  

 

Page 33: Marshall Rachael 201301 MASc

  16  

The  availability  of  land  and  its  value  as  a  resource  also  acted  as  a  driver  for  the  move  

away   from   landfilling.  The   concept   of   Landsink’s   Ladder  originally   emerged  when  

the  Dutch  government  faced  a  shortage  of  landfill  sites  in  the  1970s.  By  1981  it  had  

become   part   of   official   Dutch   policy   and   appeared   in   the   Environmental  

Management  Act  of  1989  (Wolsink,  2010).    

The  waste  hierarchy  sparked  a  massive  transition  from  end-­‐of-­‐pipe  to  preventative  

thinking,   which   emerged   with   a   multitude   of   new   terms   and   phrases   –   pollution  

prevention,   source   reduction,   waste   minimization,   waste   reduction,   toxics   use  

reduction,  clean  or  cleaner  technology,  etc.  –   to  replace  the  old  terms  that   focused  

on   reaction   and   control   instead   of   prevention  

(Hirschhorn,  Jackson,  &  Baas,  1993).  

This  policy  shift  away  from  landfilling  has  significantly  increased  the  use  of  medium  

priority  waste   handling  methods,  which  were   historically  more   prominent   due   to  

resource  scarcity  but  dropped  to  single  digit  percentages  in  Europe  during  the  first  

half   of   the   20th   century.   Recycling,   for   example,   has   risen   to   25%   or   higher   in  

Europe   (Wilson,   2007),   reaching   rates   as   high   as   60%   in   Austria   and   the  

Netherlands   (Kollikkathara,   Feng,   &   Stern,   2009).   However,  Wilson   (2007)   points  

out  that  this  is  “often  driven  by  statutory  targets  rather  than  by  the  resource  value  

per   se   ...   recycling   is   practiced  because   it   is   the   right   thing   to  do,   not   because   the  

value  of  the  recovered  materials  covers  the  costs”  (p.  200).    

Many   governments,   industry   members,   educators,   environment   groups,   and  

programs  have  adopted  and  endorsed  the  waste  management  hierarchy  (Gertsakis  

&  Lewis,  2003;  Seadon,  2006),  which,  along  with  what  Seadon  (2006)  describes  as  

“an   almost   mantra-­‐like   acceptance   among   waste   professionals”   (p.   1328),   has  

sparked   a   flurry   of   criticisms.   According   to   Gertsakis   and   Lewis   (2003),   the  

hierarchy   is   difficult   to   implement   because   solid  waste  managers   in   industry   and  

government   have   little   control   over   production   decisions   that   could   influence  

higher-­‐level   priorities,   such   as   waste   prevention   and   minimization.   Additionally,  

McDougall  et  al.  (2001)  point  out  that  the  waste  hierarchy  does  not  make  room  for  

 

Page 34: Marshall Rachael 201301 MASc

  17  

combinations  of  techniques,  account  for  costs  or  specific  constraints,  lacks  scientific  

or   technical   basis,   and   cannot   provide   what   is   fundamentally   needed   –   an  

assessment  of  the  context-­‐specific  system  as  a  whole.  

2.2.5 Driver  4:  Climate  change    

Climate  change  has  acted  as  an  environmental  driver  since  the  early  1990s,  leading  

to   a   shift   away   from   landfilling   biodegradable  wastes,  which   is   a  major   source   of  

methane  emissions,  and  a  strengthened   focus  on  energy  recovery   from  waste  (see  

Figure  1)  (UN-­‐HABITAT,  2010;  Wilson,  2007).  The  policy  stage  ‘targets/prevention’,  

was   driven   by   both   the   resource   value   of   waste   and   concern   for   climate   change  

(Wilson,   2007).   Policies   such   as   the   EU   Landfill   Directive   require   reductions   in  

levels   of   biodegradable   material   sent   to   landfill   as   a   method   to   recover   valuable  

materials  and  reduce  methane  emissions  (Wilson,  2007).  This  has  further  increased  

recycling  and  composting  rates,  which  have  been  on  the  rise   in  cities  modernizing  

their  waste  systems  (UN-­‐HABITAT,  2010).  

2.2.6 Driver  5:  Public  Awareness  and  Participation  –  NIMBY  and  Behavioural  

Change  

Public  awareness  and  participation  have  also  acted  as  SWM  drivers  in  high-­‐income  

countries   (see   Figure   1).   Poor   practices   in   the   past,   such   as   burning   dumps   and  

polluting   incinerators,  have   left   the  public  with  negative  perceptions  of  new  SWM  

strategies   (Wilson,   2007).   While   the   public   may   recognize   the   need   for   SWM  

facilities,  the  common  “Not  In  My  Backyard”,  or  NIMBY,  attitude  means  they  would  

rather   have   them   located   elsewhere   (Schübeler,   1996).   Wilson   (2007,   p.   201)  

describes   how   negative   perceptions   of   past   facilities   “have   led   to   the   almost  

inevitable  NIMBY  reaction  to  proposals  for  any  new  waste  management  facility,  no  

matter  how  clean  or  sustainable  that  may  be”.  Unsustainable  behaviour  also  inhibits  

movement   towards  better  SWM.  Therefore,   strategies   that   include  more  recycling,  

repair,   reuse,  home  composting,   sustainable  consumption,  etc.   require  behavioural  

change   (Wilson,   2007).   The   systems   that   shape   patterns   of   the   public’s   activities  

create   complex   barriers   to   sustainable   behaviour.   Many   people   are   unable   to  

exercise  deliberate   choice  because   they   find   themselves   locked   into  unsustainable  

Page 35: Marshall Rachael 201301 MASc

  18  

patterns   caused   by   habits,   routines,   a   lack   of   knowledge,   institutional   structures,  

inequalities   in   access,   social   expectations,   and   cultural   values   (Jackson,   2005;  

McKenzie-­‐Mohr   &   Smith,   1999).   Additionally,   each   form   of   sustainable   behaviour  

has   a   unique   and   complex   set   of   barriers   that   vary   amongst   social   groups  

(McKenzie-­‐Mohr   and   Smith,   2008).   Even   seemingly   closely   associated   sustainable  

behaviour,  such  as  composting  and  recycling,  can  be  prevented  by  different  sets  of  

obstacles    (McKenzie-­‐Mohr  and  Smith,  2008).  Therefore,  transferring  initiatives  that  

appear   successful   in   a   specific   context   is   unlikely   to   be   effective   (Southerton,  

McMeekin,   &   Evans,   2011).   (Overcoming   public   attitudes   and   unsustainable  

behaviour   requires   effective   communication,   a   broad   public   understanding   of   the  

requirements   of   SWM,   and   active   participation   of   all   relevant   stakeholders  

throughout   all   project   stages   (Schübeler,   1996).   Thus,   building   public   awareness  

and  participation  act  as  drivers  in  their  own  right.    

2.2.7 Integrated  solid  waste  management  –  the  current  paradigm  

Integrated   solid  waste  management   (ISWM),   the   current   SWM  paradigm   that   has  

been   widely   accepted   throughout   the   developed   world,   emerged   from   the   policy  

shift  away  from  landfilling  and  the  push  for  a  broader  perspective  that  began  in  the  

1990s.  While  the   ‘modern’  SWM  practices  that  began  in  the  1970s  were  defined  in  

engineering  terms  –  technical  problems  with  technical  solutions  (van  de  Klundert  &  

Anschutz,   2001),   the   concept   of   ISWM   strives   to   strike   a   balance   between   three  

dimensions  of  waste  management:  environmental  effectiveness,  social  acceptability,  

and   economic   affordability   (see   Figure   4)   (McDougall   et   al.,   2001;   Morrissey   &  

Browne,   2004;   Petts,   2000;   Thomas   &   McDougall,   2005;   van   de   Klundert   &  

Anschutz,   2001).   ISWM   also   focuses   on   the   integration   of   the   many   inter-­‐related  

processes  and  entities  that  make  up  a  waste  management  system  (McDougall  et  al.,  

2001).  To  reduce  environmental  impacts  and  drive  costs  down,  a  system  should  be  

integrated   (in  waste  materials,   sources  of  waste,   and   treatment  methods),  market  

oriented   (i.e.   energy   and   materials   have   end   uses),   and   flexible,   allowing   for  

continual   improvement   (McDougall   et   al.,   2001).   ISWM   systems   are   tailored   to  

specific   community   goals   by   incorporating   stakeholders’   perspectives   and   needs;  

Page 36: Marshall Rachael 201301 MASc

  19  

the   local  context  (from  the   technical,   such  as  waste  characteristics,   to   the  cultural,  

political,   social,   environmental,   economic   and   institutional);   and   the   optimal  

combination   of   available,   appropriate  methods   of   prevention,   reduction,   recovery  

and  disposal  (Kollikkathara  et  al.,  2009;  McDougall  et  al.,  2001;  van  de  Klundert  &  

Anschutz,  2001).    

 

Figure  4.  Integrated  Solid  Waste  Management  

It   has   been  widely   recognized   that  waste  management   systems   that   ignore   social  

components   and   priorities   are   doomed   to   failure   (Carabias,   Winistoerfer,   &  

Integrated Solid Waste Management Paradigm

SocialAcceptability

EnvironmentalEffectiveness

EconomicAffordability

Wastematerials

Sourcesof Waste

OverallContext

PreventionMethods

ReductionMethods

RecoveryMethods

DisposalMethods

SpecificStakeholder

GoalsExternalExpertise

-

Integrated Solid WasteManagement Strategy

Mon

itori

ng

Decisional Arena: Planning, Design, Implementation, Reassessment

EnvironmentalContext

PoliticalContext

InstitutionalContext

Social Context

CulturalContext

TechnicalContext

EconomicContext

Page 37: Marshall Rachael 201301 MASc

  20  

Stuecheli,   1999;   Dijkema   et   al.,   2000;   Henry   et   al.,   2006a;   Morrissey   &   Browne,  

2004;  Petts,  2000).  The  issues  of  public  acceptance,  changing  value  systems,  public  

participation   in  planning  and   implementation  stages,  and  consumer  behaviour  are  

equally  as   important  as   the   technical  and  economic  aspects  of  waste  management  

(Carabias  et  al.,  1999).  Effective  waste  management  must  be  fully  embraced  by  local  

authorities  and   the  public  sphere,  and  go  beyond  traditional  consultative  methods  

that  require  the  ‘expert’  to  outline  a  solution  prior  to  public  involvement  (Henry  et  

al.,   2006a;   Morrissey   &   Browne,   2004).   Key   elements   to   the   success   of   these  

programs   are   public   participation   and   empowerment,   decision   transparency,  

networking,  co-­‐operation  and  collective  action,  communication,  and  accessibility  of  

information  (Carabias  et  al.,  1999;  Zarate,  Slotnick,  &  Ramos,  2008).  

Traditionally,   the   term   ‘waste’   has   assumed   a   negative   connotation,   but   it   is   a  

subjective   concept   –   a   label   applied   to   something   unwanted   by   the   person  

discarding   it   (Dijkema   et   al.,   2000;   van   de   Klundert   &   Anschutz,   2001).     In   the  

context  of  ISWM,  ‘waste’  bears  a  negative  connotation  only  if  it  cannot  be  regarded  

as  a  resource  that  that  has  not  been  used  to  its  full  potential  and  can  subsequently  

be   processed   to   produce   useful   energy   or   goods   (Dijkema   et   al.,   2000;   van   de  

Klundert   &   Anschutz,   2001).     In   this   sense,   ISWM   incorporates   elements   of   the  

waste   hierarchy   “by   considering   direct   impacts   (transportation,   collection,  

treatment  and  disposal  of  waste)  and  indirect   impacts  (use  of  waste  materials  and  

energy  outside  the  waste  management  system)”  (Seadon,  2006,  p.  1328).  However,  

unlike  the  hierarchy,  ISWM  does  not  define  the  ‘best’  system,  as  there  is  no  universal  

best   system   (McDougall   et   al.,   2001).   In   reality,   ISWM   is   a   theoretical,   optimal  

outcome  –  a  framework  from  which  new  systems  can  be  designed  and  implemented  

and  existing  ones  can  be  optimized  (UNEP,  1996).  However,  the  integrated  nature  of  

ISWM   creates   a   host   of   variables   that   may   pull   a   system   in   different   directions.  

Clearly,   it   is  difficult   to  optimize  more  than  one  variable,  and  for  this  reason  there  

will   always   be   trade-­‐offs   (McDougall   et   al.,   2001).   No   ISWM   system   design   will  

achieve   either   environmental   or   economic   sustainability   because   “[t]his   is   a   total  

quality  objective  ...  it  can  never  be  reached,  since  it  will  always  be  possible  to  reduce  

Page 38: Marshall Rachael 201301 MASc

  21  

environmental   impacts   further,   but   it   will   lead   to   continual   improvements”  

(McDougall  et  al.,  2001,  p.  19).  

Despite  the  fact  that  ISWM  is  a  holistic  ideal,  it  has  become  somewhat  of  a  buzzword  

with  a  different  meaning  in  practice.  Often  much  of  what  is  termed  ‘integrated  waste  

management’  simply   incorporates  the  waste  hierarchy  and  may  attempt  to  engage  

with  stakeholders  early  on,  but   lacks  actual   integration.  Thornloe  et  al.   (1997),   for  

example,   observed   that   in   the   United   States   many   ‘ISWM’   programs   focused   on  

individual  components  making  up  the  system  instead  of  the  system  as  a  whole.  This  

kind  of  compartmentalization  is  prevalent  throughout  all  aspects  of  municipal  waste  

management.  Collection  and  disposal  may  be  the  duty  of  separate  local  authorities,  

and   may   be   contracted   out   to   different   private   waste   management   companies.  

Likewise,   different   operating   companies   may   control   recycling,   incineration,  

composting,  and  landfill  operations  (McDougall  et  al.,  2001).  Therefore,  no  one  has  

control  over  the  whole  system,  making  it  difficult  to  manage  on  a  more  holistic  level.  

Consequentially,   the   bulk   of   the   effort   remains   focused   on   lower-­‐level   priorities  

such  as  recycling,  which  are  important,  but  not  sufficient  (Gertsakis  &  Lewis,  2003;  

UNEP,  2010).    

Managing   waste   on   a   systemic   level   is   particularly   difficult   in   the   absence   of  

regulation   (Gertsakis   &   Lewis,   2003).   This   has   been   recognized   by   many  

governments   and   other   entities,   and   has   sparked   a   move   towards   programs   and  

regulations   that   encourage   closing   the   loop;   “moving   from   the   concept   of   ‘end-­‐of-­‐

pipe’  waste  management   towards   a   more   holistic   resource  management”   (Wilson,  

2007,  p.  205).  Examples  of  this  shift  in  focus  include:    

• the  push   for  more   ‘sustainable  consumption  and  production’   initiatives  and  

regulations   like   the  European  Ecolabel   and   the  Eco-­‐Management  and  Audit  

Scheme  (European  Commission,  2010);    

• European   National   Waste   Prevention   Programmes   through   the   Waste  

Framework   Directive,   which   extends   producer   responsibility   for   waste  

generation  (BIO  Intelligence  Service,  2011);    

Page 39: Marshall Rachael 201301 MASc

  22  

• Eco-­‐innovation  through  the  Environmental  Technologies  Action  Plan  and  the  

Innovation  Union  Flagship  Initiative  (European  Commission,  2010);  and  

• the  2004  Packaging  Directive,  which  requires  reductions  in  packaging  waste,  

sets   targets   on   recycling   and   recovery,   and   aims   to   prevent   and  minimize  

environmental  impacts  of  packaging  waste  (BIO  Intelligence  Service,  2011).  

Shifting   focus   upstream   to   product   design   and   to   ‘decoupling’  waste   growth   from  

economic  growth  are  a  step  in  the  right  direction,  but  waste  management  systems  in  

developed  countries  are  still  far  from  integrated  (Wilson,  2007).  Progress  is  slowed  

by  barriers  to  policy  and  program  implementation,  such  as  a   lack  of   infrastructure  

and/or  capacity   to   comply;  unequal  market  development   (costs,   levies,   incentives,  

etc.)   between   countries;   administrative   competency   and   capacity;   enforcement  

measures;   knowledge   barriers   (gaps,   knowledge-­‐sharing,   awareness-­‐raising);   lack  

of   quantitative   targets;   and   economic   ability   to   comply   with   targets   (BIO  

Intelligence  Service,  2011).  Although  considerable  efforts  are  being  made  by  many  

governments  and  entities  to  confront  waste-­‐related  problems  head-­‐on,  major  gaps  

still  exist  in  SWM  practices  in  high-­‐income  countries.  A  lack  of  ‘systems  thinking’  has  

been   pinpointed   as   a   major   contributor   to   the   inadequacy   of   these   approaches  

(McDougall  et  al.,  2001;  Seadon,  2010;  Turner  &  Powell,  1991).  

2.3 Solid  waste  management  in  developing  countries  For   a   variety   of   reasons,   poor  waste  management   practices   and   associated   public  

health   implications   remain   severely   problematic   in   many   developing   countries   a  

century   and   a   half   after   the   European   sanitary   revolution,   despite   increasing  

globalization   (Konteh,   2009).   In   industrialized   nations,   the   health   benefits   from  

solid  waste  and  sanitation  systems  are  largely  taken  for  granted,  and  the  focus  has  

moved   from   sanitation-­‐related   communicable   diseases   to   ‘diseases   of   affluence’  

(cancer,   cardiovascular   disease,   drug   and   alcohol   abuse)   and   “sustainability”  

(Konteh,  2009;  Langeweg,  Hilderink,  &  Maas,  2000;  McGranahan,  2001).  Meanwhile,  

many   low-­‐income   countries   are   currently   affected   by   the   ‘double   burden’   of   the  

combined   effects   of   the   diseases   of   affluence   and   communicable   diseases   (Boadi,  

Page 40: Marshall Rachael 201301 MASc

  23  

Kuitunen,  Raheem,  &  Hanninen,  2005;  Konteh,  2009).  Wilson  (2007,  p.  204)  points  

out   that   “[i]n   some  countries,   simple   survival   is   such  a  predominant   concern,   that  

waste  management  does  not  feature  strongly  on  the  list  of  public  concerns”.  When  

SWM  is  on  the  public  agenda  in  lower  income  countries,  it  tends  to  be  driven  most  

strongly   by   public   health;   the   key   priority   is   still   getting   the   waste   out   from  

underfoot,  as   it  was   for   the  Europe  and   the  US  up  until   the  1960s  (Coffey  &  Coad,  

2010;   Memon,   2010;   Rodic,   Scheinberg,   &   Wilson,   2010;   Wilson,   2007).  

Environmental  protection  is  still  relatively  low  on  the  political  and  public  agendas,  

although   this   is   starting   to   change   (Wilson,   2007).   Though   legislation   is   often   in  

place  requiring  closure  and  phasing  out  of  unregulated  disposal,  enforcement  tends  

to  be  weak   (Wilson,  2007).  The   resource  value  of  waste   is   an   important  driver   in  

many  developing   countries   today;   informal   recycling  provides   a   livelihood   for   the  

urban  poor  in  many  parts  of  the  world  (UN-­‐HABITAT,  2010;  Wilson,  2007).  Climate  

change  is  an  important  driver  worldwide  –  the  clean  development  mechanism  under  

the   Kyoto   protocol,   in   which   developed   countries   can   buy   ‘carbon   credits’   from  

developing   nations,   can   provide   a   key   source   of   income   to   encourage   cities   in  

developing  countries  to  improve  waste  management  systems  (Wilson,  2007).    

Many   similarities   exist   between   the   historical   SWM   development   trajectories   of  

industrialized  countries  and  the  current  trajectories  of  developing  countries.  Many  

cities   in   lower   income  nations   are   experiencing   similar   conditions   to   those   of   the  

19th   century   in   high   income   countries:   “high   levels   of   urbanization,   degrading  

sanitary   conditions   and   unprecedented   levels   of   morbidity   and   mortality,   which  

affected   mostly   the   working   class   population”   (Konteh,   2009,   p.   70).   Indeed,  

increasing   urbanization   and   socioeconomic   disparities,   inadequate   provision   of  

sanitary   and   environmental   amenities,   social   exclusion   and   inequalities   related   to  

existing   SWM   systems,   and   high   levels   of   morbidity   and   mortality   linked   to  

inadequate  sanitation,  waste  disposal,  and  water  supply  provision  were  as  common  

then   as   they   are   today,   particularly   in   poorer   urban   neighbourhoods   in   lower  

income  countries  (Konteh,  2009).    

In   spite   of   the   apparent   parallels,   the   contexts   in   which   developing   nations   are  

Page 41: Marshall Rachael 201301 MASc

  24  

situated   are   starkly   different   from   the   historical   contexts   of   developed   countries.  

Rapid   urbanization,   soaring   inequality,   and   the   struggle   for   economic   growth;  

varying   economic,   cultural,   socio-­‐economic,   and   political   landscapes;   governance,  

institutional,   and   responsibility   issues;   and   international   influences   have   created  

locally  specific,   technical  and  non-­‐technical  challenges  of   immense  complexity  (see  

Figure  5).  

 

 Figure  5.  Developing  Country  SWM  Contexts  

Urbanization

EconomicGrowth

Inequalities(Income and

Quality of Life)

Concentrationof Resources

Social andJob

OpportunitiesServices andAmenities

Higher LifeExpectancyand Literacy

Solid Waste,Water,

Sanitation,and OtherServices

EconomicActivity

+

High-Income

Low-Income

?

Lack of SWM

Lack ofBasic

Infrastructure

IncreasingFood Prices

Number ofUrban Poor

LandAvailability

Reliance onPurchased

Food-

EconomicCapacity

-

GlobalEconomic

Crisis

+

Vulnerabilityto Shocks

+

+

-

-

Inability toPay Taxes

- +

+

Quality ofSWM

+

+

Ability to Dealwith Waste(Compost,

Recycle, etc.)

Dumping inlanes and

waterways+

+

-

NegativeHealthImpacts

EnvironmentalDegradation

Tourism

+

-

+

+

UnsuitableRoads

-

+

HighConsumption

and WasteProduction

Willingnessto Pay for

SWMServices

+

+

+

Rural-UrbanMigration

NaturalIncrease

++ +

++

+

Civil Unrestand PoliticalInstability

Political Priorities

InadequatePolicy

Formulation andImplementation

+

PoliticalInfluence

+

+

+

PoliticalContext

Government

NGOs

Private Sector

Public Sector

Governance

InstitutionalCapacity

Policy

Degree ofDecentralization

Regulations andEnforcement

InstitutionalStructure

FundingAllocation

Cultural andSocio-Economic

Context

IFIs andMulti/Bi-Lateral

DevelopmentAgencies

-

InappropriateTechnology

DonorBiases

ApproachesLacking

Specificity

FundedProjects

Lack ofhuman

resources

Short-termFunding

--

--

+

-

Poverty ReductionStrategies

International Influence

GreenAgenda

Focu

s on

Gov

erna

nce,

In

stitu

tiona

l Cap

acity

and

Priv

ate

Sect

or

Page 42: Marshall Rachael 201301 MASc

  25  

The  following  sections  will  explore  these  contextual  aspects  and  the  challenges  they  

present  for  SWM  systems  in  the  developing  world.  

2.3.1 Developing  country  contexts  

2.3.1.1 Urbanization,  inequality,  and  economic  growth  

Urbanization  has  exploded  with  great  speed  and  scale  in  recent  decades  with  “more  

than  half  the  world’s  population  now  living  in  urban  centres”  (Tacoli,  2012,  p.  4),  as  

countries   and   even   individual   cities   struggle   to   be   competitive   in   the   global  

marketplace  (Cohen,  2004).  While  just  16  cities  contained  at   least  a  million  people  

at  the  start  of  the  20th  century  –  the  vast  majority  of  which  were  in  industrial  nations  

–   at   the   start   of   the   21st   century   400   cities   contained   over   a   million   people,   and  

approximately   three-­‐quarters   of   these   urban   centers   were   in   low-­‐   and   middle-­‐

income  countries  (Cohen,  2004).    

The   expanding   population   of   urbanites   often   reflects   transformations   in   national  

economies   as   the   city   environment   provides   a   disproportionate   concentration   of  

resources,   social  and   job  opportunities,   and  services  and  amenities,  propelling   the  

rural  population  to  migrate  from  agriculture  towards   industry  and  service  sectors,  

and   natural   population   increase   (see     Figure   5)   (Boadi   et   al.,   2005;   Cohen,   2004;  

Tacoli,  2012).  In  many  cases,  urbanization  is  associated  with  higher  life  expectancy  

and   levels   of   literacy,   better   provision   of  water,   sanitation,   and   essential   services,  

and   the   promotion   of   economic   activities   due   to   the   density   of   urban   settlements  

(Tacoli,   2012).   It   has   been   seen   to   go   hand   in   hand   with   economic   development  

(Konteh,  2009;  Tacoli,  2012).  Indeed,  in  the  past  half-­‐century  the  countries  in  which  

urbanization  has  increased  the  most  have  also  had  the  best  economic  performance  

(Tacoli,   2012).   However,   many   low-­‐income   countries   have   seen   an   increase   in  

urbanization  over  the  last  few  decades  with  little  economic  development  (Boadi  et  

al.,  2005;  Halla  &  Majani,  1999;  Konteh,  2009).  Urbanization  also  does  not  go  hand  

in  hand  with  equal  wealth  distribution;  inequalities  in  income  and  quality  of  life  are  

indeed   growing   (Tacoli,   2012).   Regions   like   Asia   and   Latin   America,   where   cities  

have  experienced  growth  in  gross  domestic  product  (GDP)  over  previous  years,  are  

Page 43: Marshall Rachael 201301 MASc

  26  

still   experiencing   an   increase   in   inequality   and   in   the   number   of   people   suffering  

from  a  lack  of  adequate  infrastructure  and  basic  sanitation  amenities  (Cohen,  2004;  

Konteh,   2009;   UNDP,   2010).   Urban   poverty   and   inequality   are   likely   to   be  

exacerbated  by  the  recent  economic  crisis,  as  the  urban  poor  have  little  opportunity  

to   produce   their   own   food,   and   therefore   rely   on   purchased   goods   (see     Figure   5)  

(Tacoli,   2012).   Additionally,   declines   in   food   prices   since   the   spikes   in   2007   and  

2008   are   unlikely   to   return   to   the   levels   of   the   early   2000s   due   to   competing  

demands  for  land  and  water  (Tacoli,  2012).  These  conditions  will  push  more  people  

into   slums,  where   sanitary   conditions   are   appalling   and  waste   amenities   are  non-­‐

existent;  the  number  of  people  living  in  slums  is  now  estimated  at  some  828  million  

and  growing  in  actual  numbers  even  though  200  million  slum-­‐dwellers  have  moved  

out  of  slum  quality  conditions  (see  Figure  6)  (UNFPA,  2011).    

 

Figure  6.  Population  Living  in  Slums  and  Proportion  of  Urban  Population  Living  in  Slums,  Developing  Regions,  1990-­‐2010  (UNFPA,  2011)  

Many   of   these   squatter   settlements   are   constructed   on   floodplains,   marshes,   or  

actual  dumpsites  at  city  peripheries  (Boadi  et  al.,  2005),  because  the  urban  centers  

are   becoming   increasingly   expensive   as   economic   growth   progresses.   The   ever-­‐

increasing   number   and   proportion   of   urbanites   living   in   abject   poverty   in   Latin  

Page 44: Marshall Rachael 201301 MASc

  27  

America,  South  and  East  Asia,  and  sub-­‐Saharan  Africa  suffer  the  most  in  the  areas  of  

sanitation  and  health  as  they  live  in  poorly  planned  expanding  settlements  without  

access   to   social,   sanitation,   and   health   services   (Boadi   et   al.,   2005;   Konteh,   2009;  

McGranahan,   2001;   Shimura,   Yokota,   &   Nitta,   2001;   UNFPA,   2011;   Zurbruegg,  

2003).  

The  level  of  economic  development  of  a  country,  city,  or  particular  neighbourhood  

greatly  influences  the  SWM  needs  and  resulting  SWM  systems.  Likewise,  the  quality  

of  waste  management  services  can  impact  the  productivity  and  development  of  the  

urban  economy  (Schübeler,  1996).  The  fact  that  nearly  all  of  the  world’s  population  

growth   is  projected   to  occur   in  urban  areas   (Cohen,  2004)   from  now  until  2050  –  

much  of  which  will  take  place  in  the  world’s  poorer  regions  –  has  raised  “concerns  

about  growing  urban  poverty  and  the  inability  of  national  and  city  governments  to  

provide  services  to  the  residents  of  their  burgeoning  cities”  (Tacoli,  2012,  p.  5).    

Almost   invariably,   the  SWM  demands  of  high-­‐density,   low-­‐income   settlements   are  

inadequately   served   or   neglected   altogether   even   though   these   areas   have   the  

greatest  need  for  these  services  since  there   is  no  space  among  the  densely  packed  

housing   for   waste   burial   or   composting   and   they   are   less   able   to  make   alternate  

arrangements   to   dispose   of   waste   (Coffey   &   Coad,   2010).   Therefore,   waste   is  

dumped  into  open  spaces,  on  access  roads  and  in  waterways  where  disease  vectors  

breed   (see     Figure   5)   (Coffey   &   Coad,   2010;   Konteh,   2009).   Waste   clogs   drains,  

creating   flooded,   stagnant   nurseries   for   mosquitos   carrying   malaria   and   dengue  

fever.  Animals  and  waste  pickers  scatter  the  waste,  and  leachate  from  garbage  heaps  

percolates   into   soil   and  waterways.   This   results   in   contaminated   food,  water,   and  

soil,   and   serious   environmental   and   health   implications,   particularly   for   the  most  

vulnerable,   such   as   children   and   the   elderly   (Coffey   &   Coad,   2010;   Tacoli,   2012).  

This  kind  of  environmental  degradation  can  also  negatively  impact  the  (sometimes  

fragile)   economies   of   those   countries   that   rely   heavily   on   tourism   (Henry   et   al.,  

2006a).  

Such   poor   levels   of   service   exist   in   high-­‐density,   low-­‐income   areas   because   the  

Page 45: Marshall Rachael 201301 MASc

  28  

majority   of   these   communities   do   not   pay   municipal   taxes,   and   municipal  

authorities   allocate   their   limited   resources   to   the  wealthier   areas  with   higher   tax  

yields   where   citizens   with   more   political   pressure   dwell   (Coffey   &   Coad,   2010;  

Henry  et  al.,  2006a;   Jha,  Singh,  Singh,  &  Gupta,  2011;  Zurbruegg,  2003).  Collection  

may  not   be   carried   out   in   these   unplanned   settlements   due   to   a   lack   of   space   for  

refuse   containers,   narrow   roadways,   steep   gradients,   and   unsurfaced   roads   that  

standard   collection   vehicles   cannot   manage   (see   Figure   5)   (Coffey   &   Coad,   2010;  

Henry   et   al.,   2006a).  While   wealthier   residents   use   part   of   their   income   to   avoid  

direct   exposure   to  wastes   close   to   home,   they   also   produce  more  waste,  meaning  

that   the   associated   environmental   problems   may   recede   at   the   household   or  

neighbourhood   level,   but   remain   present   or   increase   city-­‐wide   (Jha   et   al.,   2011;  

Zurbruegg,  2003).  

2.3.1.2 Cultural  and  socio-­‐economic  aspects  

The   structure   and   functioning   of   SWM   systems   are   founded   on   the   behaviour  

patterns  and  underlying  attitudes  of  the  population  –  factors  that  are  shaped  by  the  

local   cultural   and   social   context   (Schübeler,   1996).   The   substantial   diversity   of  

social   and   ethnic   groups   that   often   exists   within   rapidly   expanding   cities,   even  

within   individual   residential   communities,   greatly   influences   municipalities’  

capacities   to   implement   SWM   strategies   (Schübeler,   1996).   Public   awareness   and  

attitudes  towards  waste  can  impact  the  entire  SWM  system,  from  household  storage  

to  separation,  interest  in  waste  reduction,  recycling,  demand  for  collection  services,  

willingness   to   pay   for   SWM   services,   opposition   to   proposed   locations   of   waste  

facilities,  the  amount  of  waste  in  the  streets,  and  ultimately  the  success  or  failure  of  

a   SWM   system   (Henry   et   al.,   2006a;   Schübeler,   1996;   Yousif   &   Scott,   2007;  

Zurbruegg,   2003).   In   parts   of   the   Arab   world   and   Latin   America,   for   example,  

opportunities  to  strengthen  waste  institutions  may  be  limited  by  the  fact  that  SWM  

is  not  seen  as  an  honourable  profession,  because  waste  is  viewed  as  “dirty”  (Wilson,  

2007).  

The   cultural   and   socio-­‐economic   context   also   influences   the   waste   composition  

generated  by  a  population   (Coffey  &  Coad,  2010;  Schübeler,  1996).   In   some  cases,  

Page 46: Marshall Rachael 201301 MASc

  29  

shops   sell   food   that   is   largely   pre-­‐prepared,   while   in   others,   fresh   meat   or   large  

quantities   of   fresh   vegetables   and   fruit   drastically   alter   the   waste   composition.  

Cooking   and   heating  with   solid   fuel   affects   the  waste   composition   by   eliminating  

items   that   would   otherwise   be   discarded,   such   as   paper,   and   contributing   hot,  

abrasive  ashes  to  the  waste  stream  (Coffey  &  Coad,  2010).  Local  architecture,  such  

as  mud  brick  housing  and  unpaved  floors  can  mean  large  quantities  of  dust  and  soil  

enter   the   waste   stream,   while   sanitary   practices   can   influence   the   quantity   of  

excreta   in   the   waste   (Coffey   &   Coad,   2010).   Socio-­‐economic   status   at   the  

neighbourhood   and   household   level   affect   waste   composition:   higher   literacy  

increases  the  paper  content  of  waste,  and  wealthier  groups  often  choose  to  discard  

durable  items  instead  of  repairing  them  (Coffey  &  Coad,  2010).  Recycling  and  reuse  

is   affected   by   differences   in   how   social   groups   value   items   that   would   otherwise  

enter   the   waste   stream.   Often  much   of   the   organic   waste   is   fed   to   livestock,   and  

items   like   food   and  drink   containers   are   reused   in   the   household   (Coffey  &  Coad,  

2010).  Informal  recycling  is  carried  out  by  waste  pickers,  who  value  much  of  what  

might  otherwise  enter  the  waste  stream  (Coffey  &  Coad,  2010;  Schübeler,  1996;  UN-­‐

HABITAT,  2010;  Wilson,  2007).    

Social   expectations   of  waste   collection   are   also   dependent   on  waste   composition,  

and  therefore  on  cooking  and  eating  habits.   If   large  quantities  of  odour-­‐generating  

food   (e.g.   fish)   are   consumed,   waste   collection   rates   are   expected   to   be   more  

frequent,   particularly   in  warmer   climates   (Coffey   &   Coad,   2010;   Jha   et   al.,   2011).  

Disposal   is   also   greatly   influenced   by   social   attitudes.   Some   social   groups   always  

dispose  of  waste   in   the  appropriate  containers,  while  others  view   the  street  as  an  

appropriate   disposal   location.   Householders   and   city   officials   alike   may   have   no  

interest  in  whether  waste  is  dumped  illegally  or  sent  to  a  proper  disposal  facility,  as  

long   as   it   is   removed   from   the   urban   zone   (Coffey  &   Coad,   2010).   In   some  urban  

areas,  the  primary  focus  is  still  on  food,  shelter,  security  and  livelihoods;  waste  will  

become  a  priority  only  when  these  more  basic  needs  have  been  met  (Konteh,  2009),  

and   only   becomes   an   issue   when   public   health   or   environmental   damage   impact  

these  priorities  (Wilson,  2007).  

Page 47: Marshall Rachael 201301 MASc

  30  

2.3.1.3 Political  landscapes:  Policy,  governance,  institutional  issues  

Politics  inevitably  play  a  large  role  in  SWM  systems.  The  structure,  functioning,  and  

governance  of   SWM  systems  are   affected  by   the   relationship  between   central   and  

local  governments,  the  role  of  party  politics  in  local  government  administration,  and  

the   extent   that   citizens   participate   democratically   in   policy   making   processes  

(Schübeler,  1996).   In   low-­‐income  countries,   the  greatest  challenge  “is   to  strike  the  

right   balance   between   policy,   governance,   institutional  mechanisms   and   resource  

provision  and  allocation”  (Konteh,  2009,  p.  74).    

2.3.1.3.1 Policy    

A  democratic,  public  process  of  SWM  goal  formulation  is  essential  to  determine  the  

actual  needs  of  the  citizens,  and  therefore  to  be  able  to  prioritize  limited  municipal  

resources  in  a  just  manner.  Policy  weaknesses  are  consequently  some  of  the  critical  

causes   of   failed   SWM   systems   in   many   low-­‐income   countries,   as   inadequate  

formulation   and   implementation   of   realistic   policies   is   common   (see   Figure   5)  

(Konteh,  2009).  While  developed  countries  addressed  their  SWM  needs  by  putting  

in  place   effective,   functioning  policy  measures,   “[i]n  many   cities  of   the  developing  

world   remedial  measures   have   been   elusive;   efforts   are   uncoordinated   or   ad   hoc,  

and   the   resources   invested   in   the   sector   inadequate”   (Konteh,   2009,   p.   72).  

Additionally,   civil   unrest   and   political   instability   has   contributed   to   the   growing  

SWM  problem  in  low-­‐income  urban  areas  by  forcing  millions  of  displaced  people  to  

seek  refuge  in  major  cities  (Boadi  et  al.,  2005;  Konteh,  2009).    

SWM   is   also   not   always   a   high   priority   for   local   and   national   policy   makers   and  

planners.  Other  issues  with  more  social  and  political  urgency  may  take  precedence  

and   leave   little   budget   for   waste   issues   (Memon,   2010;   Yousif   &   Scott,   2007).   In  

some  countries,  such  as  Guatemala,  serious  SWM  project  continuity  problems  arise  

because  all  municipal  office  workers  –  including  those  not  involved  in  elections  –  are  

replaced  during  any  change  in  government  (Yousif  &  Scott,  2007).  This  lack  of  long-­‐

term  commitment  results  in  the  abandonment  of  work  completed  in  previous  terms  

(Zarate   et   al.,   2008).   Projects   can   also   be   shelved   due   to   political   fallout   between  

different  political  parties  and  local  authorities  (Henry  et  al.,  2006a).    

Page 48: Marshall Rachael 201301 MASc

  31  

2.3.1.3.2 Governance  

In  all  urban  centres  around  the  world,  any  form  of  environmental  management  “is  

an  intensely  political  task,  as  different  interests  (including  very  powerful  interests)  

compete  for  the  most  advantageous  locations,  for  the  ownership  or  use  of  resources  

and   waste   sinks,   and   for   publicly   provided   infrastructure   and   services”   (Hardoy,  

Mitlin,   Satterthwaite,   &   Hardoy,   2001,   p.   19).   Many   of   these   conflicting   interests  

contribute   to   the   degradation   of   essential   resources   and   urban   environmental  

health   if   good   environmental  management   is   absent   (Hardoy   et   al.,   2001;  Konteh,  

2009).  As  these  factors  have  gained  recognition,  there  has  been  a  shift  in  the  urban  

development   literature   from   ‘government’,   which   focuses   on   the   role,  

responsibilities   and   performance   of   government   bodies,   to   ‘governance’,   which  

additionally   considers   the   relationship   between   government   and   civil   society  

(Hardoy  et  al.,  2001).  Good  governance  requires  the  participation  and  collaboration  

of   all   relevant   parties,   including   government,   non-­‐governmental   organizations  

(NGOs),   community   groups   and   the   private   sector   (see   Figure   5)   (Konteh,   2009).  

According   to   the   Asian   Development   Bank,   the   four   principle   elements   of   good  

governance   are   accountability,   participation,   predictability,   and   transparency  

(Bhuiyan,   2010).   OECD   identifies   the   features   of   good   governance   as   follows  

(Bhuiyan,  2010):    

• The  promotion  of  democratic  and  open  pluralistic  societies;    

• The   strengthening   of   efficient,   accountable,   transparent,   and   effective  

national  government;    

• The  reinforcement  of   the   rule  of   law,  which   includes  an  accessible  and   just  

legal  and  judicial  system;    

• The   promotion   of   dissemination   of   information,   including   an   independent  

media;  and  

• The  promotion  of   anti-­‐corruption   initiatives   and   the   reduction  of   excessive  

military  expenditure.  

Good   governance   allows   low-­‐income   groups   to   influence   policy   and   resource  

allocation   (Hardoy   et   al.,   2001),   and   therefore   it   is   essential   for   equitable   and  

Page 49: Marshall Rachael 201301 MASc

  32  

effective  SWM.    Indeed,  “the  effectiveness  of  SWM  in  a  city  is  one  of  the  indices  for  

assessing  good  governance”  (Bhuiyan,  2010,  p.  126).  Low-­‐income  countries  tend  to  

lack  the  appropriate  governance  institutions  and  structures  typically  found  in  high-­‐

income   countries,   such   as   public   policy   research   institutions,   freedom   of  

information   laws,   judicial   autonomy,   auditors   general,   police   academies,   etc.  

(Bhuiyan,  2010).  This   lack  of  democratic  structures  and  competent,  representative  

local  government  creates  barriers  to  proper  SWM.  Political  jostling  for  power  means  

that   local  authorities  base  decision-­‐making  on  the   interests  of  their  parties  (Henry  

et   al.,   2006a;   Zurbruegg,   2003).   Henry   describes   how   “the   upgrading   of   Nairobi  

slums  has  not  been  implemented  because  some  councilors  incite  their  constituents  

to  reject  such  a  move  out  of  an  unfounded  fear  of  voters  who  might  be  moved  out  

once   slum   upgrading   efforts   get   underway.   There   are   instances   when   some  

councilors  hinder  particular  projects  for  political  reasons  only”  (Henry  et  al.,  2006a,  

p.  97).  Government  bodies  maintain  inflated  workforces  for  political  reasons,  which  

consume  much-­‐needed  funds  (Henry  et  al.,  2006a).  Petty  and  high  profile  corruption  

are   also   rampant   in   many   countries.   While   “it   has   been   widely   recognized   that  

corruption   retards   economic   growth,   distorts   the   political   system,   debilitates  

administration   and   undermines   the   interests   and   welfare   of   the   community”,  

corruption  remains  one  of  the  most  pervasive  and  least  confronted  challenges  facing  

public  institutions  in  developing  countries  (Bhuiyan,  2010,  p.  131).    

2.3.1.3.3 Institutions  

Effective   SWM   requires   the   definition   of   clear   roles   and   legal   responsibilities   of  

institutions  and  government  bodies  to  avoid  controversies,  ineffectiveness,  inaction,  

and   making   SWM   systems   politically   unstable   (Schübeler,   1996).   Even   when  

regulatory   and   legislative   frameworks   exist,   governments   with  weak   institutional  

structures   are   easily   overwhelmed   by   increasing   demands   for   SWM   as   urban  

populations  explode  (Halla  &  Majani,  1999;  Hardoy  et  al.,  2001;  Konteh,  2009).  

Institutional  aspects  of  SWM  include:  

Page 50: Marshall Rachael 201301 MASc

  33  

• the   degree   of   decentralization,   i.e.   distribution   of   authority,   functions,   and  

responsibilities  between  central  and  local  governmental  institutions;  

• the   structure   of   institutional   systems   responsible   for   SWM   and   how   they  

interact  with  other  urban  management  sectors;  

• organizational  procedures,  for  planning  and  management;  

• the  capacity  of  responsible  institutions;  and  

• involvement   of   other   sectors,   including   the   private   sector   and   community  

groups  (Schübeler,  1996).    

Institutional  aspects  also  include  the  current  and  future  legislation,  and  the  extent  to  

which   it   is   enforced   (Zurbruegg,   2003).   A   straightforward,   transparent,  

unambiguous  legal  and  regulatory  framework,  including  functioning  inspection  and  

enforcement  procedures  at   the  national,  provincial,   and   local   levels,   is  essential   to  

the  proper   functioning  of  a  SWM  strategy  (Coffey  &  Coad,  2010;  Schübeler,  1996).  

According  to  Wilson  (2007,  p.  203),  “there  seems  to  be  general  consensus  that  weak  

institutions  are  a  major  issue  in  emerging  and  developing  countries  (e.g.  Asia,  Africa,  

Latin   America,   Russia),   so   that   institutional   strengthening   and   capacity   building  

becomes   a  major   driver”   for   SWM   (see   Figure   5).   Enforcement   of   laws   governing  

regular  SWM  activities  and  new  project   implementation   is  often  poor,   resulting   in  

improperly   functioning   SWM   systems   (Coffey  &   Coad,   2010;   Henry   et   al.,   2006a).  

For  example,  the  “polluter  pays”  policy  is  inappropriate  for  many  countries  because  

the   lack   of   enforcement   causes   large   waste   generators   to   simply   dump   illegally  

(Coffey   &   Coad,   2010).   Developing   effective,   efficient   municipal   SWM   plans   is  

difficult  in  developing  countries  because  data  on  waste  generation  and  composition  

is   largely   unreliable   and   insufficient,   seldom   capturing   system   losses   or   informal  

activities  (Jha  et  al.,  2011;  Shimura  et  al.,  2001;  UN-­‐HABITAT,  2010).    

In   developing   countries,   SWM   is   often   under-­‐funded   due   to   a   combination   of  

inadequate   resources   from  municipal   tax   revenues,   insufficient   user   fees,   and   the  

mismanagement  of   funds   (Coffey  &  Coad,  2010;  Zurbruegg,  2003).  This  persistent  

lack   of   funds   prevents   capacity   building   and   the   improvement   and   expansion   of  

Page 51: Marshall Rachael 201301 MASc

  34  

SWM  handling   capacities   (Henry   et   al.,   2006a).   According   to   the  World   Bank   and  

USAID,   it   is   therefore  common   for  municipalities   in  developing  countries   to  spend  

20  to  50  per  cent  of  their  available  municipal  budget  on  SWM,  which  often  can  only  

stretch  to  serve  less  than  50  per  cent  of  the  population  (Henry  et  al.,  2006a;  Memon,  

2010).   In   low-­‐income   countries,   80   to   90   per   cent   of   this   budget   is   spent   on  

collection   while   in   in   high-­‐income   countries   less   than   10   per   cent   is   spent   on  

collection   services   (Memon,   2010).   As   the   price   of   land   increases,   it   becomes  

increasingly  difficult  to  for  municipalities  to  site  landfills  close  to  urban  areas,  while  

transportation  costs  become  a  major  constraint  to  constructing  landfills  at  a  distant  

location   (Memon,   2010),   exacerbating   the   problem.   Much-­‐needed   resources   are  

consumed  by  inefficiencies,  frequently  caused  by  inefficient  institutional  structures  

and  organizational  procedures,  and  poor  management  capacity  (Zurbruegg,  2003).  

Structural  problems  often  arise  when  revenue  collection  and   investment  decisions  

happen  at   the  central  government   level  while  operation  and  maintenance  occur  at  

the  local  level.  Capacity  issues  are  also  common.  Schübeler  (1996,  p.  32)  states  that  

“large   discrepancies   often   exist   between   the   job   requirements   and   the   actual  

qualification  of  the  staff  at  the  managerial  and  operational  levels”.  Overstaffed  local  

authorities   find   it   difficult   to   meet   the   large   wage   payments   of   poorly   trained  

workers  (Henry  et  al.,  2006a).    

One  substantial  way  that  funds  are  mismanaged  in  developing  countries  is  through  

the   use   of   techniques   from   the   “conventional”   SWM   approach   of   industrialized  

countries  (Henry  et  al.,  2006a).  Imported,  sophisticated  vehicles  and  equipment  for  

collection,   treatment,   and   disposal   are   expensive   and   difficult   to   maintain   and  

operate  (Coffey  &  Coad,  2010;  Zurbruegg,  2003).  Frequently,  the  waste  composition  

in   developing   countries   is   very   different   from   the   waste   characteristics   they   are  

designed  to  handle,  causing  them  to  break  down  rapidly  or  be  of  little  use  in  the  first  

place  (Memon,  2010;  Zurbruegg,  2003).  Typically,  within  a  short  period  of  time  only  

a  small  percentage  of  the  vehicle  fleet  remains  in  operation  (Coffey  &  Coad,  2010).    

These  managerial  challenges  are  compounded  by  the  fact  that  waste  quantities  are  

increasing  rapidly  in  most  cities  at  a  greater  rate  than  in  high-­‐income  countries  due  

Page 52: Marshall Rachael 201301 MASc

  35  

to  increases  in  wealth  and  in  quantities  of  waste  produced  per  person,  an  increase  in  

the  number  of  people  living  and  working  in  the  city,  and  rising  quantities  of  waste  

produced  by  businesses  (UN-­‐HABITAT,  2010).    

2.3.1.3.4 International  influences    

In   the   absence   of   strong   political   or   cultural   drivers,   international   financial  

institutions  (IFIs),  such  as  the  World  Bank,  act  as  key  drivers  for  SWM  development.  

IFIs  generally  have  a  strong  focus  on  environmental  policies  (including  those  related  

to   climate   change),   poverty   reduction,   institutional   capacity   building,   good  

governance,   and   private   sector   participation   (see   Figure   5)   (Wilson,   2007).  While  

most   of   these   focus   areas   are   indeed   crucial   to   properly   functioning   solid   waste  

systems,  the  approaches  used  by  IFIs  are  not  always  appropriate  for  the  particular  

context  of  their  clientele.  The  World  Bank  had  several  unsuccessful  SWM  projects  in  

the  1990s  (e.g.  Philippines,  Mexico,  Sri  Lanka)  due  in  part  to  weak  institutions  and  

governance   issues,   but   also   due   to   a   lack   of   financial   capacity   in   the   receiving  

country   to   sustain   the   expensive   facilities   when   Bank   funding   ran   out   (Wilson,  

2007).  Unequal  funding  opportunities  within  regions  but  pressure  to  meet  the  same  

high   environmental   standards   creates   affordability   issues   (Wilson,   2007).  

Investments   in   the   social   sectors   are   often  made   in   areas   of   global   concern   over  

local   environmental   health   problems   (Hardoy   et   al.,   2001;   Konteh,   2009;  

McGranahan,   2001).   At   the   global   arena,   preoccupation   with   the   ‘green   agenda’,  

which   focuses   on   reducing   human   impacts   on   ecosystems   and   their   natural  

resources,   is  thought  to  be  at  the  expense  of  the   ‘brown  agenda’,  which  focuses  on  

environmental  threats  to  health  in  poor  regions,  and  is  therefore  undermining  SWM  

efforts  in  low-­‐income  countries  (Konteh,  2009).  Konteh  (2009,  p.  72)  points  out  that  

“when  sanitation  and  communicable  diseases  were  a  serious  problem  in  Europe  and  

North  America,  the  public  health  focus  was  exclusively  on  those  same  issues  which  

today  fail  to  receive  adequate  attention  in  the  developing  world  in  spite  of  being  a  

major   threat   to  public  health;  green  environmental   issues  were  not  on   the  agenda  

then”.    

Page 53: Marshall Rachael 201301 MASc

  36  

The  rising  urgency  of  urban  environmental  problems  and  need  for  capacity  building  

at   the   municipal   level   has   directed   the   attention   of   numerous   bilateral   and  

multilateral  development  agencies  to  SWM  in  recent  years  (Schübeler,  1996;  Zarate  

et  al.,  2008).  However,  these  donors  may  be  motivated  by  bureaucratic  procedures  

or   goals   of   their   home  offices   rather   than   an  understanding   of   the   local   situation.  

van  de  Klundert  (1995)  makes  several  observations  about  this:  

•  Donor  biases  exist  towards  certain  technical  approaches  or  insistence  on  the  

use  of  equipment  that  supports  their  own  export  industries;    

• The  scale  at  which  donors  work   is  often   inappropriate   for   local   conditions;  

either  too  small,  without  sufficient  consideration  for  various  larger  contexts,  

or  too  large  for  a  particular  situation;    

• Coordination   issues   arise   between   donors   from   different   countries,   which  

may   be   competing   for   contracts,   and   within   countries   as   development  

agencies  work  at  cross-­‐purposes;  and    

• Donors   without   the   time   or   political   will   to   produce   locally   appropriate  

results  opt  for  large,  technical  interventions  rather  than  small-­‐scale,  context  

appropriate   approaches,   since   they   are   easier   to   understand,   finance,   and  

monitor.    

Coffey  and  Coad  (2010)  report  that  the  objective  of  many  foreign  aid  programs  for  

SWM   in   developing   countries   is   to   capture   markets   for   supplying   sophisticated  

machinery   and   related   spare   parts,   which   are   more   often   than   not   completely  

inappropriate   for   local   conditions.   Additionally,   municipal   SWM   is   often   a  

component   within   a   wider   development   program   aimed   at   improving   urban  

environmental   projection   and/or   urban   management   capacity,   meaning   many  

bilateral   and   multilateral   development   agencies   lack   the   considerable   expertise  

needed  to  implement  successful  SWM  programs  (Schübeler,  1996).  

Such   issues   have   a   detrimental   effect   on   the   evolution   of   SWM  practices   in  many  

developing   countries.   Zarate   et   al.   (2008,   p.   2543)   point   out   that   “in   spite   of   the  

million-­‐dollar  loans  and  grants  that  developing  countries  have  received  to  improve  

Page 54: Marshall Rachael 201301 MASc

  37  

the   basic   services   sector,   including   SWM,   the   lack   of   suitable   qualified   human  

resources   contributed   to   the   inability   of   municipalities   and   communities   to  

implement  new  projects”.  Grants  or   loans   for   sanitary   landfill   construction  do  not  

always   result   in   the   actual   use   of   this  method   of   disposal;  well-­‐trained   personnel  

and   sufficient   financial   support   for   a   reasonable   standard   of   operation   are   also  

necessary  (Zurbruegg,  2003).  Many  SWM  projects  initially  funded  through  grants  or  

loans   have   had   problems   obtaining   continued   external   funding   to   operate   and  

maintain   SWM   systems   (Coffey   &   Coad,   2010).   Overseas   consultants   often  

recommend   techniques   and   equipment   developed   in   counties   with   extremely  

different  social  and  economic  conditions,  and  entirely  different  waste  characteristics  

(Coffey   &   Coad,   2010).   For   example,   numerous   cases   have   been   documented   in  

which   expensive,   sophisticated   composting   and   recycling   plants   have   failed   for   a  

wide   range   of   reasons:   the   use   of   imported,   inappropriate   technology   that   is   too  

expensive  or  difficult   to  maintain;   limited  development   of   a  market   for   recyclable  

materials;   absence   of   technical   personnel   to   with   operational   or   management  

capacity;   failure   to  complete   the  necessary   financial  and  economic  appraisals;   and  

failure  to  adequately  consult  significant  stakeholders  and  the  public  (Yousif  &  Scott,  

2007).  

Researchers   are   calling   for   multifaceted   SWM  methods   that   are   considered   on   a  

case-­‐to-­‐case   basis   and   tailored   to   each   community’s   individual   needs   (Jha   et   al.,  

2011;  Yousif  &  Scott,  2007).  Schübeler  (1996,  p.  19)  aptly  summarizes  the  need  for  a  

different  approach:    

The   essential   condition   of   sustainability   implies   that   waste  

management  systems  must  be  absorbed  and  carried  by  the  society  and  

its   local   communities.   These   systems   must,   in   other   words,   be  

appropriate  to   the  particular   circumstances  and  problems  of   the   city  

and   locality,   employing   and   developing   the   capacities   of   all  

stakeholders,   including   the   households   and   communities   requiring  

service,   private   sector   enterprises   and   workers   (both   formal   and  

informal),  and  government  agencies  at  the  local,  regional  and  national  

Page 55: Marshall Rachael 201301 MASc

  38  

levels  [original  emphasis].  

2.4 The  need  for  a  systems  approach  Managing   waste   is   a   complex   task   that   requires   appropriate   technical   solutions,  

sufficient   organizational   capacity,   and   co-­‐operation   between   a   wide   range   of  

stakeholders  (Zarate  et  al.,  2008).  According  to  Seadon  (2010),    the  interdisciplinary  

and  multi-­‐sectoral  considerations  needed  for  the  proper  management  of  solid  waste  

–  manufacturing,  transportation,  urban  growth  and  development,  land  use  patterns,  

public  health,  etc.  –  highlights  “the  interaction  and  complexity  between  the  physical  

components   of   the   system  and   the   conceptual   components   that   include   the   social  

and   environmental   spheres.   When   waste   is   seen   as   part   of   a   ...   system,   the  

relationship  of  waste  to  other  parts  of  the  system  is  revealed  and  thus  the  potential  

for  greater  sustainability  of  the  operation  increases.  Conceptually,  this  broader  view  

increases   the   difficulty   of   managing   waste   requiring   an   approach   that   handles  

complexity”  (Seadon,  2010,  p.  1641).  However,   the  conventional  SWM  approach   is  

reductionist,   not   tailored   to   handle   complexity;   interacting   systems   and   their  

elements   are   divided   into   ever-­‐smaller   parts.   System   processes,   such   as   waste  

generation,   collection,   and   disposal   operations,   are   considered   independently,  

though   each   is   interlinked   and   influenced   by   the   others   (Seadon,   2010).   This  

reductionist  approach  is  even  applied  to  waste,  as  it  is  not  a  single  entity  that  can  be  

easily  managed   (Dijkema  et   al.,   2000).   It   is   typically   separated   into  many  primary  

and  many  more  secondary  classifications,  and  waste  streams  from  different  sectors,  

such  as  residential  and  commercial,  are  often  considered  separately  (Seadon,  2010).  

Techniques   therefore   tend   to   focus   on   dealing   with   one   type   of   waste   at   a   time,  

leading   to   a   focus   on   single   technologies   instead   of   waste   management   systems.  

Consequentially,   one  waste   problem   can   be   solved,   but   other  waste   problems   are  

often  generated  with  each  compartmentalized  ‘solution’  (Dijkema  et  al.,  2000).  This  

tendency   to  analyze   things   in  small,  understandable  pieces,   to   trace  straight  paths  

from  cause   to   effect,   and   to  problem  solve  by  attempting   to   control   the   system  of  

concern  is  increasingly  being  recognized  as  problematic  (Funtowicz  &  Ravetz,  1993;  

Meadows,  2008).  This   is  evidenced   in   the  SWM  sector  by   the  growing  demand   for  

Page 56: Marshall Rachael 201301 MASc

  39  

SWM   approaches   that   recognize   the   social,   cultural,   political,   and   environmental  

spheres;  that  engage  with  a  broad  community  of  stakeholders;  and  that  consider  the  

larger   system   through   a   holistic,   integrating   methodology   (Carabias   et   al.,   1999;  

Dijkema   et   al.,   2000;   Henry   et   al.,   2006a;   McDougall   et   al.,   2001;   Morrissey   &  

Browne,   2004;   Petts,   2000;   Seadon,   2006,   2010;   Turner   &   Powell,   1991;  Wilson,  

2007;   Zarate   et   al.,   2008).   Two   schools   of   thought   of   particular   relevance   to   the  

challenges  faced  in  the  SWM  sector  are  those  of  post-­‐normal  science,  and  complex,  

adaptive,   eco-­‐social   systems.   The   following   sections   will   explore   these   areas   and  

their  relevance  to  future  SWM  practices.    

2.4.1 Post-­‐Normal  Science  

By  the  mid-­‐1980s,  there  was  a  growing  community  of  scientists  and  social  scientists  interested  in  major  social  and  environmental  concerns  characterized  by  complexity,  uncertainty,  and  high  socio-­‐ecological  risks,  such  as  acid  rain,  ozone  depletion,  and  climate  change  (Turnpenny,  Jones,  &  Lorenzoni,  2011).  Frustrations  were  growing  with  the  “normal  science”  of  Kuhn  (1962),  described  by  Funtowicz  and  Ravetz  (1993,  p.  740)  to  be  the  “unexciting,  indeed  anti-­‐intellectual  routine  puzzle  solving  by  which  science  advances  steadily  between  its  conceptual  revolutions”.  In  response  to  the  increasing  challenges  at  the  intersection  of  policy,  risk,  and  environment,  Funtowicz  and  Ravetz  (1993)  developed  a  problem-­‐solving  framework  called  “post-­‐normal  science”  based  on  the  assumptions  of  incomplete  control,  unpredictability,  and  multiple  legitimate  perspectives.  The  post-­‐normal  science  paradigm  recognizes  the  relevance  of  both  process  and  location,  in  place  and  time,  and  is  ‘issue-­‐driven’  as  opposed  to  the  ‘curiosity-­‐motivated’,  ‘mission-­‐oriented’,  or  ‘client-­‐serving’  goals  of  core  science,  applied  science,  and  professional  consultancy,  respectively  (Funtowicz  &  Ravetz,  1993).  The  authors  viewed  this  emerging  science  as  a  platform  from  which  issues  that  traditional  scientific  methodologies  fail  to  handle  can  be  approached.  Such  issues  have  either  high  uncertainties  (i.e.  the  scientific,  technical,  and  managerial  complexities  of  the  system  being  considered,  and  the  array  of  potential  results)  or  high  decision-­‐making  stakes  (possible  costs,  benefits,  and  value  commitments  for  stakeholders)  (Funtowicz  &  Ravetz,  1991,  1993;  Turnpenny  et  al.,  

Page 57: Marshall Rachael 201301 MASc

  40  

2011).  This  is  demonstrated  in  the  authors’  iconic  diagram  (see  

 

Figure   7),   which   provides   a   zoning   system   to   identify   which   problem-­‐solving  

paradigm  is  appropriate  for  a  particular  issue,  depending  on  the  level  of  interaction  

of   knowledge   (uncertainties)   and   values   (decision-­‐making   stakes)   (Funtowicz   &  

Ravetz,  1993).      

 

Figure  7.  Problem  Solving  Strategies  (Funtowicz  &  Ravetz,  1993)  

Page 58: Marshall Rachael 201301 MASc

  41  

Post-­‐normal   science   explicitly   challenges   traditional   approaches   to   science,  

recognizing   its   limitations   and   the   need   for   unconventional   approaches   “when  

uncertainties  are  either  of  the  epistemological  or  the  ethical  kind,  or  when  decision  

stakes  reflect  conflicting  purposes  among  stakeholders”  (Funtowicz  &  Ravetz,  1993,  

p.   750).     It   calls   for   the   inclusion   of   extended   peer   communities   –   groups   of  

legitimate   participants   –   in   the   process   of   quality   assurance,   policy   debate,   and  

participation  in  research.    The  extension  of  legitimate  peers  is  not  only  founded  on  

ethical   or   political   reasons;   it   also   enriches   the   practice   of   scientific   investigation  

(Funtowicz   &   Ravetz,   1993).   Post-­‐normal   science   also   recognizes   the   value   of  

history  and  context  as  essential  elements  of  the  scientific  process.    

SWM  systems  could  benefit  from  a  post-­‐normal  scientific  approach;  highly  complex  

technical,   scientific,   and   especially   managerial   aspects   (and   therefore   high  

uncertainties),   and   conflicting,   often   immense   costs,   benefits,   and   value  

commitments   for   various   stakeholders   (i.e.   high   decision   stakes)   make   SWM  

systems  ideal  for  alternative,  post-­‐normal  problem-­‐solving  approaches.  “Indeed,  any  

of   the  problems  of  major   technological  hazards  or   large-­‐scale  pollution  belongs   to  

this  class”  (Funtowicz  &  Ravetz,  1993,  p.  750).  

2.4.1 Systems  thinking:  the  foundations  of  systems  approaches  

‘Systems  thinking’,  a  term  in  good  currency  in  research  across  many  fields,  has  only  

been   explicitly   recognized   since   the   1950s.   The   concept   was   borne   out   of   von  

Bertalanffy’s   mathematical   field   of   a   ‘general   theory   of   systems’,   which   was   first  

presented  in  Chicago  in  1937  and  published  in  a  German  journal  in  1949  (Drack  &  

Schwarz,  2010).  Von  Bertalanffy’s  General  System  Theory  (GST)  aimed  to  promote  

the   ‘Unity   of   Science’   by   providing   a   language   and   theory   for   systemic   problem  

solving   in   many   different   disciplines,   which   were   independently   stumbling   upon  

general  system  characteristics  and  principles  (von  Bertalanffy,  1950).  GST  struck  a  

strong   chord   with   researchers   ready   to   part   with   reductionism   across   the  

disciplines,   as   it  was   originally   intended   to   do.   In   1956,   Kenneth   Boulding  wrote,  

“General  System  Theory  is  the  skeleton  of  science  in  the  sense  that  it  aims  to  provide  

a   framework   or   structure   of   systems   on   which   to   hang   the   flesh   and   blood   of  

Page 59: Marshall Rachael 201301 MASc

  42  

particular   disciplines   and   particular   subject   matters   in   an   orderly   and   coherent  

corpus  of  knowledge.  It  is  also,  however,  something  of  a  skeleton  in  a  cupboard  –  the  

cupboard  in  this  case  being  the  unwillingness  of  science  to  admit  the  very  low  level  

of   its   successes   in  systematization,  and   its   tendency   to  shut   the  door  on  problems  

and   subject   matters   which   do   not   fit   easily   into   simple   mechanical   schemes”  

(Boulding,   1956,   p.   208).   While   interest   in   GST   peaked   during   the   two   decades  

before  von  Bertalanffy’s  death  in  1972  and  the  quest  for  a  general  theory  of  systems  

subsequently   subsided   (Drack   &   Schwarz,   2010),   it   spawned   a   plethora   of  

derivatives  and  sparked  a  widespread  interest  in  systemic  approaches.  New  systems  

concepts   have   emerged,   and   previously   existing   ones   have   since   been   applied   in  

many  subject  areas  (everything  from  health  care,  organizational  development,  and  

family  research  to  international  development,  physical  geography,  policy,  economic  

analysis,   and   management   science   (Chai   &   Yeo,   2012;   Checkland,   2000;   Patton,  

2002)).    

According   to   Checkland   (1981),   systems   thinking   is   an   attempt   to   escape   the  

reductionism   of   normal   science   (which   is,   however,   highly   successful   at  

investigating   natural   phenomena).   Indeed,   a   holistic   perspective   is   crucial   to  

systems   thinking   (Patton,   2002).   Checkland   (2000,   p.   S29)   describes   “the   core  

systems   image   [as]   that   of   the   whole   entity   which   can   adapt   and   survive   in   a  

changing  environment”.  The  function  and  meaning  of  both  a  system  and  its  parts  are  

lost   when   it   is   taken   apart.   A   disassembled   automobile   does   not   drive   and   a  

disassembled   person   does   not   live   (Patton,   2002),   nor   would   such   a   person   be  

“human”  in  the  usual  sense  if  they  were  truly  isolated  from  others  (Boulding,  1956).  

Any  system  is  dependent  on  its  own  internal  interdependencies.  Therefore,  systems  

thinking   is   intrinsically   focused   on   relationships   (Checkland,   2000),   along   with  

patterns,  processes  and  context  (Capra,  2005).    It  also  ensures  in  any  given  situation  

(at   least)   three   levels   are   considered:   the   system   (what?),   the   sub-­‐system   (how?),  

and  the  wider  system  (why?)  (Checkland,  2000).    

Several   perspectives   on   the   meaning   of   a   ‘systems   approach’   exist   among  

researchers.   While   a   vast   literature   about   systems   theory   and   applied   systems  

Page 60: Marshall Rachael 201301 MASc

  43  

research  has  developed  since  von  Bertalanffy’s  original  publication,  much  of   it  has  

been   highly   technical   and   quantitative,   involving   computer   simulations   of  

specifically   defined,   “engineered”   systems   whose   goals   and   objectives   have   been  

made   explicit   by   external   ‘experts’   (Checkland,   2000;   Patton,   2002).   However,  

according   to   Patton   (2002,   p.   120),   “(1)   a   systems   perspective   is   becoming  

increasingly   important   in  dealing  with  and  understanding  real-­‐world  complexities,  

viewing   things   as  whole   entities   embedded   in   context   and   still   larger  wholes;   (2)  

some   approaches   to   systems   research   lead   directly   to   and   depend   heavily   on  

qualitative   inquiry;   and   (3)   a   systems   orientation   can   be   very   helpful   in   framing  

questions  and,   later,  making  sense  out  of  qualitative  data”.  While  systems  thinking  

originated   from   the   ‘hard’   sciences   of   mathematics   and   engineering,   many  

researchers  felt  that  a   ‘hard’  systems  approach  was  insufficient  to  handle  complex,  

messy,   real   world   problems   (i.e.   not   the   technical   problems   for   which   it   was  

developed),  and  a  ‘soft’  systems  methodology  quickly  developed  (Checkland,  2000).  

This  initiated  a  debate  between  ‘hard’  and  ‘soft’  systems  methodologies.  Essentially,  

‘hard’  systems  thinking  assumes  the  world  is  a  set  of  systems  that  can  be  engineered  

to   reach   easy-­‐to-­‐define   goals   and   objectives,   and   performance   can   be   measured  

quantitatively   (Chai   &   Yeo,   2012;   Checkland,   2000).   On   the   other   hand,   ‘soft’  

systems   thinking   uses   systems   not   as   representations   of   the   real   world   but   as  

intellectual   devices,   based   on   declared   world-­‐views,   to   explore   problematic  

situations   and   desirable   changes   to   them;   the   entire   approach   is   used   as   an  

organized  ‘learning  system’  (Checkland,  2000).  Therefore,  ‘hard’  systems  thinking  is  

ideal  for  well-­‐defined,  technical  problems,  and  ‘soft’  systems  thinking  is  appropriate  

for   poorly   defined,   messy   situations   involving   social   and   cultural   considerations  

(Chai  &  Yeo,  2012;  Checkland,  2000).  

2.4.2 Complex,  adaptive,  eco-­‐social  systems  

Systems  theory  has  provided  a  baseline  from  which  other  innovative  perspectives  of  

the   world   have   drawn   upon,   including   cybernetics,   catastrophe   theory,   chaos  

theory,  non-­‐equilibrium  thermodynamics,  self-­‐organization,  and  complexity   theory  

(Kay,   Regier,   Boyle,   &   Francis,   1999).   Complexity   can   be   defined   as   the   domain  

Page 61: Marshall Rachael 201301 MASc

  44  

between   linearly   determined   order   and   indeterminate   chaos   (D.   S.   Byrne,   1998).  

Complexity   theory,   technically   known   as   nonlinear   dynamics,   is   concerned   with  

modeling   and   describing   complex,   non-­‐linear   systems   and   “developing   a   unified  

view  of  life  by  integrating  life’s  biological,  cognitive  and  social  dimensions”  (Capra,  

2005,  p.  33).  Reality   is  understood   to  be  composed  of  complex  open  systems  with  

emergent   properties   and   transformational   potential   (D.   Byrne,   2005).   These  

characteristics  are   typical  of   complex,   adaptive   systems   (CAS),  of  which  eco-­‐social  

systems  are  a  part.  Crucial   to   these  systems   is   the  concept  of  multiple  scales,  both  

spatially  and  temporally  (see  Figure  8).    

 

Figure  8.  Complex  Adaptive  Systems:  Nested  Sets  of  Four  Phase  Adaptive  Cycles  (adapted  from  Holling  (2001))  

Large, Slow Level

Intermediate Speed and Size (e.g. Forest System)

Small, Fast Level (e.g. Insect Colony in a Forest)

Reorganization Conservation

Exploitation Release

ConservationReorganization

Exploitation Release

ConservationReorganization

Exploitation Release

RE

VO

LT

RE

ME

MB

ER

Large, Slow Levels(e.g. Geological Scale)

Intermediate Levels(e.g. Forest Scale)

Small, Fast Levels(e.g. Insect Colony

Scale)

To a New Attractor...

To a New Attractor...

To a New Attractor...

Impact on NextLarger, Slower

Level...

Impact on Next Smaller,Faster Level...

Page 62: Marshall Rachael 201301 MASc

  45  

While   systems   are   composed   of   elements,   these   elements   are   themselves  wholes,  

composed  of  units  at   a   smaller   scale.  Arthur  Koestler   (1978)  defined   this  abstract  

concept  of  an  entity  which  is  both  a  whole  and  a  part  as  a  ‘holon’,  which  exists  in  a  

nested  network  of  other  holons  called  a   ‘holarchy’.  Holling  (2001)  described  these  

‘hierarchical’   structures   as   semi-­‐autonomous   levels   of   similar   variables   that  

communicate  information  or  material  to  the  next  higher,  slower,  and  coarser  level.  

Each   level   serves   two   functions:   (1)   preserving   and   stabilizing   conditions   for   the  

quicker,  smaller  levels;  and  (2)  functioning  as  an  “adaptive  cycle”  by  producing  and  

testing   innovations   (Holling,   2001).   Holling’s   representation   of   an   adaptive   cycle  

demonstrates   a   figure-­‐eight   movement   between   four   system   functions:   from  

exploitation   to   conservation,   release,   and   finally   reorganization.   There   are  

potentially   multiple   connections   between   nested   sets   of   adaptive   cycles.   The  

connection   Holling   labeled   ‘revolt’   occurs   when   a   smaller,   faster   level   causes   a  

larger,   slower   level   to   collapse,   demonstrating   that   changes   in   quicker,   smaller  

cycles   have   the   ability   to   influence   the   behaviour   of   slower,   larger   ones.   Holling  

labeled  another  key  connection  ‘remember’,  which  demonstrates  that  slower,  larger  

levels  can  buffer  smaller,  faster  ones  from  disturbances  (Holling,  2001).    

Self-­‐organization   is   another   key   attribute   of   CAS   (Kay   et   al.,   1999;   Patton,   2002).  

Such  systems  contain  a  web  of  positive  and  negative  feedback  loops  operating  over  

a   range   of   spatial   and   temporal   scales   that   “lead   both   to   stable   states   of   self-­‐

organization   and,   in   some   instances,   to   surprising   outcomes   from   apparently  

straightforward  interventions”  (Waltner-­‐Toews,  Kay,  Neudoerffer,  &  Gitau,  2003,  p.  

25).   Kay   et   al.   (1999)   describe   self-­‐organization   as   a   dissipative   process   that   CAS  

undergo  when  high  quality  energy,    known  as  “exergy”,  attempts  to  push  the  system  

beyond   a   critical   distance   from   equilibrium.   CAS   resist   the   push   away   from  

equilibrium  through  the  spontaneous  emergence  of  new  behaviour,  which  uses  the  

exergy  to  organize  and  maintain  the  system’s  new  structure  (see  Figure  9).    

Page 63: Marshall Rachael 201301 MASc

  46  

 

Figure  9.  Conceptual  Model  of  the  Dissipative  Nature  of  a  Self-­‐Organizing  System  (adapted  from  Kay  et  al.  (1999))  

Therefore,  the  more  exergy  put  into  the  system  to  shift  it  from  equilibrium,  the  more  

organized   structures   emerge,   in   a   step-­‐wise   manner   (Kay   et   al.,   1999).   The  

particular  manifestation  of  these  structures  is  dependent  upon  the  context  (i.e.  the  

history   and   environment   in  which   the   system   is   embedded),   the   available   exergy  

and  materials,  and   information  (i.e.   the   factors  within   the  system  that  restrict  and  

guide   its   self-­‐organization).   Newly   emerging   structures   provide   a   new   context,   in  

which  new  processes  manifest,  in  which  new  structures  emerge  yet  again  (Kay  et  al.,  

1999).  Therefore,   the   contents  of   the   system  are   the  product  of   the  history  of   the  

system   itself   (Checkland,   2000).   Kay   et   al.   (1999)   define   these   systems   as   self-­‐

organizing   holarchic   open   (SOHO)   systems:   “a   nested   constellation   of   self-­‐

organizing   dissipative   process/structures,   organized   about   a   particular   set   of  

sources  of  exergy,  materials,  and  information,  embedded  in  a  physical  environment,  

that  give  rise  to  coherent  self-­‐perpetuating  behaviours”  (Kay  et  al.,  1999,  p.  724).    

DissipativeProcess

DissipativeStructure

CONTEXT: History and Environment

ExergyMaterials

Information

COMPLEX,SELF-ORGANIZING

SYSTEM

Page 64: Marshall Rachael 201301 MASc

  47  

The   self-­‐organizing   tendencies   of   CAS   highlight   the   challenges   humans   face   in  

attempting  to   ‘manage’   them  (or  our  outright   inability  to  do  so).     It  also  highlights  

the  potential  for  surprising  outcomes  due  to  “time  lags,  cross-­‐scale  effects,  and  what  

might   have   been   left   out   [of   a   system  model].   These   types   of   feedback  mean   that  

prediction  of  individual  outcomes  is  limited;  prediction  of  overall  system  behavior  is  

only  possible  in  broad  outline,  and  then  only  if  we  have  historical  data  to  suggest  the  

canon  of  states  available  to  that  system...  Such  data  are  rarely  available”  (Waltner-­‐

Toews  et  al.,  2003,  p.  25).    

Both   ecological   and   human   systems   exhibit   strongly   developed   self-­‐organized  

patterns,   meaning   that   linear   policies   are   more   likely   to   produce   temporary  

solutions   and   many   worsening   problems   in   the   future   (Holling,   2001).   Waltner-­‐

Toews,   Neudoerffer,   Joshi,   and   Tamang   (2005)   hold   the   view   that   ecological   and  

social  systems  are  intertwined,  and  the  separation  of  these  systems  is  both  artificial  

and   arbitrary.   ‘Social   systems’   encompass   a   variety   of   knowledge   systems  

concerning   the   dynamics   of   resource   use   and   the   environment,   a   plethora   of  

perspectives  on  the  ethics  of  relationships  between  humans  and  the  natural  world,  

and   many   socio-­‐ecological   challenges   (e.g.   property   rights   and   resource   access).  

‘Ecological   systems’   consist   of   self-­‐regulating   communities   of   organisms   that  

interact  with  their  external  environment  and  with  each  other  (Waltner-­‐Toews  et  al.,  

2005);   humans   clearly   fall   within   this   definition.   The   term   ‘eco-­‐social   systems’  

acknowledges   these   connections.   Limits   for   the  possible   alternative   states  of   such  

systems  are  set  by  the  accumulated  social,  cultural,  ecological,  and  economic  capital,  

in  addition  to  chance  innovations  (Holling,  2001).  As  awareness  of  the  complexity  of  

eco-­‐social   systems  grows,   the   traditional   approach   to   environmental  management  

that   has   considered   humans   to   be   external   to   completely   untouched   ecological  

systems  is  increasingly  being  considered  unrealistic;  both  better  understanding  and  

decision-­‐making  can  be  achieved  by  recognizing  humans  have  been  and  still  are  an  

integral  part  of  the  evolution  of  ecological  systems  (Waltner-­‐Toews  et  al.,  2003).    

Central  to  a  systems  approach  is  the  essential  need  to  include  multiple  perspectives.    

Page 65: Marshall Rachael 201301 MASc

  48  

Kay  et  al.  (1999)  consider  human  values  and  a  diversity  of  views  to  be  crucial  to  the  

process  of   identifying  appropriate  methods  of   investigation  necessary  to  deal  with  

issues  in  a  systemic  context.  Issues  of  social  reality,  which  are  “continuously  socially  

constructed   and   reconstructed   by   individuals   and   groups”   (Checkland,   2000,   p.  

S24),   are   relevant,   as   are   issues  of   inclusiveness,  mutual   trust   in   the   investigation  

process,  and  relative  power  among  stakeholders  (Kay  et  al.,  1999).  Any  action  taken  

must   be   feasible   in   the   context   of   the   local   history,   relationships,   culture,   and  

aspirations  of  all  concerned  parties  (Checkland,  2000).  Waltner-­‐Toews  et  al.  (2005)  

consider  cultural  context  and  historical  narratives  to  be  strongly  influential  on  how  

public  decisions  about  environment  and  health  are  both  framed  and  managed.    

2.5 Conclusion  While  the  need  for  a  systems  approach  to  SWM  has  been  both  explicitly  recognized  

(e.g.   see   Seadon   (2010))   and   inexplicitly   recognized   through   the   many   calls   for  

‘integrated’   methodologies,   there   is   a   lack   of   literature   exploring   the   actual  

application   of   systems   thinking   to   SWM   systems   in   many   developing   country  

contexts.   While   not   a   cure-­‐all   ‘solution’,   systems   thinking   can   provide   some  

understanding  and  approaches  for  coping  with  complexity  (Waltner-­‐Toews,  Kay,  &  

Lister,   2008).     Above   all,   the   next   appropriate   steps   for   SWM   will   need   to   be  

determined   for   each   individual   context   (Wilson,   2007).   Investigation   and  

management   of   complex   systems   demands   specificity,  meaning   there   cannot   be   a  

straightforward,   standard   ‘cook-­‐book’   system   description   (Waltner-­‐Toews   et   al.,  

2008).     Holling   suggests   beginning   an   analysis   “of   a   specific   problem   with   a  

historical  reconstruction  of  the  events  that  have  occurred,  focusing  on  the  surprises  

and   crises   that   have   arisen   as   a   result   of   both   external   influences   and   internal  

instabilities”,   in   the   ecological,   social,   political,   and   economic   systems,   and   the  

management  institutions  (Holling,  2001,  p.  402).  The  need  for  this  kind  of  specificity  

certainly   applies   to   SWM   systems.   It   has   been   widely   recognized   that   it   is  

counterproductive  for  developing  countries  to  use  strategies  and  policies  developed  

for  high-­‐income  countries;  approaches  should  be  locally  sensitive,  critical,  creative,  

and  ‘owned’  by  the  community  of  concern  (Coffey  &  Coad,  2010;  Henry  et  al.,  2006a;  

Page 66: Marshall Rachael 201301 MASc

  49  

Konteh,  2009;  Schübeler,  1996;  UN-­‐HABITAT,  2010).    

It   should  be  noted   that  while   systems   thinking   is   concerned  with  how  patterns  of  

relationships  translate  into  emergent  behaviors  (Waltner-­‐Toews  et  al.,  2008),  these  

translations   take   time   and   so   will   any   system   alterations;   delays   are   inherent   in  

complex   systems   (Meadows,   2008).   It   has   taken   decades   for   the   management,  

efficiency,  and  reliability  of  SWM  systems  in  high-­‐income  countries  to  evolve  to  the  

far   from   ideal   states   they   are   currently   in   (Coffey  &   Coad,   2010).    Wilson   (2007)  

describes   the   impracticality   of   current   expectations   for   developing   country   SWM  

systems:      

If   there   is  one  key   lesson  that   I  have   learned   from  30  years   in  waste  

management,   it   is   that   there   are   no   ‘quick   fixes’.   All   developed  

countries   have   evolved   their   current   systems   in   a   series   of   steps;  

developing  countries  can  benefit  from  that  experience,  but  to  expect  to  

move   from   uncontrolled   dumping   to   a   ‘modern’   waste  management  

system  in  one  great  leap  is  just  not  realistic  (Wilson,  2007,  p.  205).  

There   is  a  need   for  a  different  approach  as   the  bleak  state  of  SWM  systems   in   the  

developing   world   continues   to   threaten   and   degrade   the   health   of   the   most  

vulnerable  human  populations  and  the  ecosystems  they  are  a  part  of.  While  systems  

thinking  is  currently  playing  a  major  role  in  approaches  for  computer  networks,  the  

organization   of   global   corporations,   and   some   environmental   issues   (Waltner-­‐

Toews  et  al.,  2008),  solid  waste  researchers  and  decision-­‐makers  will  need  to  adopt  

such  a  systemic  perspective  if  any  real  progress  is  to  be  made  in  the  SWM  practices  

of  the  developing  world.  

 

 

 

 

Page 67: Marshall Rachael 201301 MASc

  50  

2.6 References  Bhuiyan,   S.   H.   (2010).   A   crisis   in   governance:   Urban   solid   waste   management   in  

Bangladesh.  Habitat  international,  34(1),  125-­‐133.    

BIO   Intelligence   Service.   (2011).   Implementing   EU   Waste   Legislation   for   Green  Growth  Final  Report  prepared  for  European  Commission  DG  ENV.  

Boadi,   K.,   Kuitunen,  M.,   Raheem,   K.,   &  Hanninen,   K.   (2005).   Urbanisation  Without  Development:   Environmental   and   Health   Implications   in   African   Cities.  Environment,  Development  and  Sustainability,  7(4),  465-­‐500.    

Boulding,   K.   E.   (1956).   General   Systems   Theory   -­‐   The   Skeleton   of   Science.  Management  Science,  2(3),  197-­‐208.    

Byrne,   D.   (2005).   Complexity,   Configurations   and   Cases.  Theory,  Culture  &  Society,  22(5),  95-­‐111.    

Byrne,   D.   S.   (1998).   Complexity   theory   and   the   social   sciences   :   an   introduction.  London;  New  York:  Routledge.  

Capra,  F.  (2005).  Complexity  and  Life.  Theory,  Culture  &  Society,  22(5),  33-­‐44.    

Carabias,  W.   J.   V.,  Winistoerfer,   H.,   &   Stuecheli,   A.   (1999).   Social   aspects   of   public  waste  management  in  Switzerland.  Waste  Management,  19(6),  417-­‐425.    

CEC.   (1977).   Second  EC  Environment  Action  Programme.  Brussels:  Commission  of  the  European  Communities.  

Chai,  K.-­‐H.,  &  Yeo,  C.  (2012).  Overcoming  energy  efficiency  barriers  through  systems  approach—A  conceptual  framework.  Energy  Policy,  46,  460-­‐472.    

Checkland,   P.   (1981).   Systems   thinking,   systems   practice.   Chichester,   England;  Toronto:  J.  Wiley.  

Checkland,   P.   (2000).   Soft   Systems   Methodology:   A   Thirty   Year   Retrospective.  Systems  Research  and  Behavioral  Science,  17(S1),  S11-­‐S58.    

Coffey,   M.,   &   Coad,   A.   (2010).   Collection   of   Municipal   Solid   Waste   in   Developing  Countries.  Malta:  UN-­‐HABITAT.  

Cohen,   B.   (2004).   Urban   Growth   in   Developing   Countries:   A   Review   of   Current  Trends   and   a   Caution   Regarding   Existing   Forecasts.   World   Development,  32(1),  23-­‐51.    

Dijkema,  G.  P.   J.,  Reuter,  M.  A.,  &  Verhoef,  E.  V.   (2000).  A  new  paradigm   for  waste  management.  Waste  Management,  20(8),  633-­‐638.    

Drack,   M.,   &   Schwarz,   G.   (2010).   Recent   developments   in   general   system   theory.  Systems  Research  and  Behavioral  Science,  27(6),  601-­‐610.    

Page 68: Marshall Rachael 201301 MASc

  51  

European  Commission.  (2010).  2009  Environment  Policy  Review.  Brussels.  

Funtowicz,   S.   O.,   &   Ravetz,   J.   R.   (1993).   Science   for   the   post-­‐normal   age.   Futures,  25(7),  739-­‐755.    

Funtowicz,   S.   O.,   &   Ravetz,   J.   R.   (1991).   A   new   scientific   methodology   for   global  environmental   issues.   In  R.   Costanza   (Ed.),  Ecological  economics:  The  sience  and   management   of   sustainability   (pp.   137-­‐152).   New   York:   Columbia  University  Press.  

Gertsakis,   J.,   &   Lewis,   H.   (2003).   Sustainability   and   the   Waste   Management  Hierarchy:  A  discussion  paper   on   the  waste  management   hierarchy   and   its  relationship  to  sustainability  (pp.  1-­‐15).  Melbourne:  RMIT  University.  

Halla,  F.,  &  Majani,  B.  (1999).  Innovative  Ways  for  Solid  Waste  Management  in  Dar-­‐Es-­‐Salaam:   Toward   Stakeholder   Partnerships.   Habitat   international,   23(3),  351-­‐361.    

Hardoy,   J.   E.,   Mitlin,   D.,   Satterthwaite,   D.,   &   Hardoy,   J.   E.   (2001).   Environmental  problems  in  an  urbanizing  world  :  finding  solutions  for  cities  in  Africa,  Asia,  and  Latin  America.  London;  Sterling,  VA:  Earthscan  Publications.  

Henry,   R.   K.,   Yongsheng,   Z.,   &   Jun,   D.   (2006).   Municipal   solid   waste  management  challenges  in  developing  countries  -­‐  Kenyan  case  study.  Waste  Management,  26(1),  92-­‐100.    

Hirschhorn,   J.,   Jackson,   T.,   &   Baas,   L.   (1993).   Towards   Prevention:   the   emerging  environmental  management  paradigm.   In  T.   Jackson  (Ed.),  Clean  Production  Strategies:   developing   preventative   environmental   management   in   the  industrial  economy.  Chelsea,  MI:  Lewis.  

Holling,   C.   S.   (2001).   Understanding   the   Complexity   of   Economic,   Ecological,   and  Social  Systems.  Ecosystems,  4(5),  390-­‐405.    

Jha,  A.  K.,  Singh,  G.  P.,  Singh,  G.  P.,  &  Gupta,  P.  K.  (2011).  Sustainable  municipal  solid  waste  management  in  low  income  group  of  cities:  a  review.  Tropical  Ecology,  52(1),  123-­‐131.    

Kay,   J.   J.,   Regier,  H.  A.,   Boyle,  M.,  &  Francis,  G.   (1999).  An   ecosystem  approach   for  sustainability:   addressing   the   challenge   of   complexity.   Futures,   31(7),   721-­‐742.    

Koestler,  A.  (1978).  Janus:  a  Summing  Up  (1St  American  Ed  ed.).  New  York:  Random  House.  

Kollikkathara,   N.,   Feng,   H.,   &   Stern,   E.   (2009).   A   purview   of   waste   management  evolution:  special  emphasis  on  USA.  Waste  Management,  29(2),  974-­‐985.    

Page 69: Marshall Rachael 201301 MASc

  52  

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

Kuhn,   T.   S.   (1962).   The   structure   of   scientific   revolutions.   Chicago:   University   of  Chicago  Press.  

Langeweg,   F.,   Hilderink,  H.,   &  Maas,   R.   (2000).   Urbanisation,   industrialisation   and  sustainable  development  Globo  Report  Series  No.  27:  RIVM.  

Louis,  G.  E.  (2004).  A  Historical  Context  of  Municipal  Solid  Waste  Management  in  the  United  States.  Waste  Management  &  Research,  22(4),  306-­‐322.    

McDougall,   F.,  White,   P.   R.,   Franke,  M.,   &  Hindle,   P.   (2001).   Integrated   solid  waste  management:  a  lifecycle  inventory  (2nd  ed.).  Oxford,  UK:  Blackwell  Science.  

McGranahan,   G.   (2001).   The   citizens   at   risk:   from   urban   sanitation   to   sustainable  cities.  London;  Sterling,  VA:  Earthscan:  Stockholm  Environment  Institute.  

McKenzie-­‐Mohr,   D.,   &   Smith,   W.   (2008).   Fostering   Sustainable   Behavior:   An  Introduction   to   Community-­‐Based   Social   Marketing.   Gabriola   Island   (B.C.):  New  Society  Publishers.  

Meadows,  D.  H.,  &  Wright,  D.  (2008).  Thinking  in  systems:  A  primer.  London;  Sterling,  VA:  Earthscan.  

Melosi,  M.  V.  (1981).  Garbage  in  the  cities:  refuse,  reform,  and  the  environment,  1880-­‐1980  (1st  ed.).  College  Station,  Tex.:  Texas  A&M  University  Press.  

Memon,   M.   A.   (2010).   Integrated   solid   waste   management   based   on   the   3R  approach.  Journal  of  Material  Cycles  and  Waste  Management,  12(1),  30-­‐40.    

Morrissey,   A.   J.,   &   Browne,   J.   (2004).   Waste   management   models   and   their  application   to   sustainable   waste   management.  Waste   Management,   24(3),  297-­‐308.    

Nemerow,  N.  L.  (2009).  Environmental  engineering:  Environmental  health  and  safety  for   municipal   infrastructure,   land   use   and   planning,   and   industry   (6th   ed.).  Hoboken,  N.J.:  Wiley.  

Patton,   M.   Q.   (2002).   Qualitative   research   and   evaluation   methods   (3rd   ed.).  Thousand  Oaks,  Calif.:  Sage  Publications.  

Petts,   J.   (2000).   Municipal   waste   management:   inequities   and   the   role   of  deliberation.  Risk  Analysis,  20(6),  821-­‐832.    

Ponting,  C.   (1991).  A  green  history  of  the  world:  the  environment  and  the  collapse  of  great  civilizations.  New  York:  St.  Martin's  Press.  

Page 70: Marshall Rachael 201301 MASc

  53  

Price,  J.  L.,  &  Joseph,  J.  B.  (2000).  Demand  management  —  a  basis  for  waste  policy:  a  critical   review   of   the   applicability   of   the   waste   hierarchy   in   terms   of  achieving  sustainable  waste  management.  Sustainable  Development,  8(2),  96-­‐105.    

Rodic,  L.,  Scheinberg,  A.,  &  Wilson,  D.  C.  (2010).  Comparing  Solid  Waste  Management  in   the   World’s   Cities.   Paper   presented   at   the   ISWA   World   Congress   2010,  Urban   Development   and   Sustainability   -­‐   a   Major   Challenge   for   Waste  Management  in  the  21st  Century,  Hamburg,  Germany.    

Schübeler,  P.  (1996).  Conceptual  Framework  for  Municipal  Solid  Waste  Management.  In   Low-­‐Income   Countries.   In   K.   Wehrle   &   J.   Christen   (Eds.).   St.   Gallen  Switzerland:   UNDP/UNCHS/World   Bank/SDC   Collaborative   Programme   on  Municipal  Solid  Waste  Management  in  Low-­‐Income  Countries.  

Seadon,  J.  K.  (2006).  Integrated  waste  management  -­‐  looking  beyond  the  solid  waste  horizon.  [Review].  Waste  Management  26(12),  1327-­‐1336.    

Seadon,   J.   K.   (2010).   Sustainable   waste   management   systems.   Journal   of   Cleaner  Production,  18(16-­‐17),  1639-­‐1651.    

Shimura,   S.,   Yokota,   I.,   &   Nitta,   Y.   (2001).   Research   for   MSW   flow   analysis   in  developing  nations.   Journal  of  Material  Cycles  and  Waste  Management,  3(1),  48-­‐59.    

Southerton,  D.,  McMeekin,  A.,  &  Evans,  D.  (2011).  International  Review  of  Behaviour  Change  Initiatives:  Scottish  Government  Social  Research.  

Tacoli,   C.   (2012).   Urbanization,   gender   and   urban   poverty:   paid   work   and   unpaid  carework  in  the  city.  London,  UK:  International  Institute  for  Environment  and  Development,  United  Nations  Population  Fund.    

Tchobanoglous,   G.,   Theisen,   H.,   &   Eliassen,   R.   (1977).   Solid   Wastes:   Engineering  Principles  and  Management  Issues.  New  York;  Toronto:  Mcgraw-­‐Hill.  

Thomas,   B.,   &   McDougall,   F.   (2005).   International   expert   group   on   life   cycle  assessment  for  integrated  waste  management.  Journal  of  Cleaner  Production,  13(3),  321-­‐326.    

Thornloe,  S.  A.,  Weitz,  K.,  Nishtala,  S.,  Barlaz,  M.,  Ranjithan,  R.,  &  Ham,  R.  K.  (1997).  Update   on   the   US   study   applying   life-­‐cycle   management   to   compare  integrated  waste  management  strategies.  In  T.  H.  Christensen,  R.  Cossu  &  R.  Stegmann   (Eds.),   International   Landfill   Symposium.   Sardinia,   Italy:  Environmental  Sanitary  Engineering  Centre.  

Turner,   R.   K.,   &   Powell,   J.   (1991).   Towards   an   integrated   waste   management  strategy.  Environmental  Management  and  Health,  2(1),  6-­‐12.    

Page 71: Marshall Rachael 201301 MASc

  54  

Turnpenny,   J.,   Jones,   M.,   &   Lorenzoni,   I.   (2011).   Where   Now   for   Post-­‐Normal  Science?:  A  Critical  Review  of  its  Development,  Definitions,  and  Uses.  Science,  Technology  &  Human  Values,  36(3),  287-­‐306.    

UN-­‐HABITAT.   (2010).   Solid   Waste   Management   in   the   World’s   Cities:   Water   and  Sanitation  in  the  World's  Cities  2010.  In  Earthscan  (Series  Ed.)        

UNDP.   (2010).   Regional   Human   Development   Report   for   Latin   America   and   the  Caribbean  2010.  Costa  Rica:  United  Nations  Development  Programme.  

UNEP.   (1996).   International   Source  Book  on  Environmentally   Sound  Technologies  for   Municipal   Solid   Waste   Management.   International   Environmental  Technology   Centre   Technical   Publication   Series:   United   Nations  Environmental  Programme.  

UNEP.   (2010).  Waste   and   Climate   Change:   Global   Trends   and   Strategy   Framework.  Osaka;  Shiga:  United  Nations  Environmental  Programme.    

UNFPA.  (2011).  State  of  world  population  2011:  United  Nations  Population  Fund.  

van   de   Klundert,   A.   (1995).   Community   And   Private   (Formal   And   Informal)   Sector  Involvement   In  Municipal   Solid  Waste  Management   In   Developing   Countries.  Paper  presented  at  the  UMP  workshop,  Ittingen.    

van  de  Klundert,  A.,  &  Anschutz,  J.  (2001).  Integrated  Sustainable  Waste  Management  -­‐   the   Concept:   Tools   for   Decision-­‐makers.   Experiences   from   the   Urban  Waste  Expertise   Programme   (1995-­‐2001).   In   A.   Scheinberg   (Ed.).   Gouda,  Netherlands:  Urban  Waste  Expertise  Programme.  

von  Bertalanffy,  L.  (1950).  An  Outline  of  General  System  Theory.  British  Journal  for  the  Philosophy  of  Science,  1(2),  134-­‐165.    

Waltner-­‐Toews,   D.,   Kay,   J.,   &   Lister,   N.-­‐M.   E.   (2008).   The   ecosystem   approach:  complexity,  uncertainty,  and  managing  for  sustainability.  New  York:  Columbia  University  Press.  

Waltner-­‐Toews,  D.,  Kay,   J.,  Neudoerffer,  C.,  &  Gitau,  T.   (2003).  Perspective  changes  everything:   managing   ecosystems   from   the   inside   out.   Frontiers   in   Ecology  and  the  Environment,  1(1),  23-­‐30.    

Waltner-­‐Toews,  D.,  Neudoerffer,  C.,  Joshi,  D.  D.,  &  Tamang,  M.  S.  (2005).  Agro-­‐urban  Ecosystem  Health  Assessment  in  Kathmandu,  Nepal:  Epidemiology,  Systems,  Narratives.  EcoHealth,  2(2),  155-­‐164.    

Wilson,   D.   C.   (2007).   Development   drivers   for   waste   management.   Waste  Management  &  Research,  25(3),  198-­‐207.    

Page 72: Marshall Rachael 201301 MASc

  55  

Wolsink,  M.   (2010).   Contested   environmental   policy   infrastructure:   Socio-­‐political  acceptance   of   renewable   energy,  water,   and  waste   facilities.  Environmental  Impact  Assessment  Review,  30(5),  302-­‐311.    

Woodward,   D.   (1985).   Swords   into   ploughshares:   Recycling   in   Pre-­‐Industrial  England.  The  Economic  History  Review,  38(2),  175-­‐191.    

Worrell,  W.  A.,  &  Vesilind,  P.  A.  (2012).  Solid  waste  engineering  (2nd  ed.).  Stamford,  CT:  Cengage  Learning.  

Yousif,  D.  F.,  &  Scott,  S.  (2007).  Governing  solid  waste  management  in  Mazatenango,  Guatemala.  International  Development  Planning  Review,  29(4),  433-­‐450.    

Zarate,  M.  A.,  Slotnick,  J.,  &  Ramos,  M.  (2008).  Capacity  building  in  rural  Guatemala  by   implementing   a   solid   waste  management   program.  Waste  Management,  28(12),  2542-­‐2551.    

Zero  Waste  SA.  (2011).  Waste  Management  Hierarchy  Retrieved  May  18,  2012,  from  http://www.zerowaste.sa.gov.au/About-­‐Us/waste-­‐management-­‐hierarchy  

Zurbrugg,  C.   (2003).  Solid  waste  management  in  developing  countries:  A  sourcebook  for  policy  makers  and  practitioners:  EAWAG  /SANDEC.  

 

 

 

 

 

 

 

   

Page 73: Marshall Rachael 201301 MASc

  56  

3 Narrative-­‐based  participatory  model  building  as  a  systems  approach  to  solid  waste  management  in  Todos  Santos,  Guatemala  

3.1 Introduction    Solid  waste  management  (SWM)  is  critical  to  the  protection  of  public  health,  safety,  

and   the  environment   (Bhuiyan,  2010).   It   is   therefore  no  surprise   that   the   impacts  

SWM  has  on  health  and  the  environment  are  issues  of  global  concern:  from  climate  

change   to   illegal   dumping;   limiting   economic   potential;   environmental   injustice;  

inequalities;   and   health   effects   associated   with   mortality,   the   health   and  

environmental   implications   associated   with   SWM   are   mounting   in   urgency,  

particularly   in   the   context   of   developing   countries   (Ancona   et   al.,   2010;  Martuzzi,  

Mitis,  &  Forastiere,  2010;  Schübeler,  1996;  Wilson,  2007).  Rising  urbanization  levels  

are   leaving   national   and   regional   governments   unable   to   cope   with   the   waste  

demands  of  the  world’s  burgeoning  cities  (Tacoli,  2012).  As  developing  countries  in  

South  and  Central  America  follow  the  historical,  unsustainable  model  developed  by  

(and   for)   high-­‐income   countries   that   emphasizes   high   production   and   high  

consumption,   solid   waste   is   inevitably   produced   at   a   rising   rate   (Dijkema   et   al.,  

2000;  Duru,  1981;  UNEP,  2009).  Indeed,  severe  SWM  implications  are  most  common  

in   the   developing   world,   where   SWM   is   inadequate   in   most   cities,   and   outright  

lacking  in  rural  areas  (Schübeler,  1996;  Zarate  et  al.,  2008).  Only  a  small  fraction  of  

the  total  waste  generated  is  collected,  and  even  then  it  commonly  ends  up  in  open  

dumpsites  instead  of  in  technically  managed  sanitary  landfills  that  contain  leachate  

and   methane   gas   collection   systems   (Yousif   &   Scott,   2007;   Zarate   et   al.,   2008).  

Unrestrained   dumping   and   the   spread   of  waste   in  waterways   and   the   streets   has  

serious   health   implications,   often   propagated   by   pests   such   as   insects   and   rats  

(Bhuiyan,   2010;   Yousif   &   Scott,   2007).   It   is   increasingly   evident   that   the   costs   of  

poor   SWM   do   not   impact   everyone   equally;   they   are   borne   by   fragile   natural  

ecosystems  and  the  most  susceptible  of  their  dependent  communities.  The  poor,  the  

geographically  vulnerable,  the  politically  weak,  and  other  disadvantaged  groups  are  

most  affected  by  such  environmental  changes  (Parkes  et  al.,  2010).    

Page 74: Marshall Rachael 201301 MASc

  57  

3.1.1 Solid  Waste  Management:  Developing  Country  Trends  

Many  SWM  strategies  that  are  appropriate  in  developed  countries  are  unsuitable  in  

developing  regions  of  the  world.  Indeed,  a  plethora  of  reasons  why  traditional  SWM  

systems  fail   in   low-­‐  and  middle-­‐income  countries  are   identified   in  the   literature.  A  

compilation   of   such   challenges,   categorized   by   traditional   sector,   is   provided   in  

Table  1.    

Table  1.  Common  solid  waste  management  challenges  in  developing  countries,  categorized  by  sector  

Waste  Reduction  

 

• Regulatory  and  legislative  measures  are  low  priority1  • Lack  of  regulatory  and  legislative  enforcement5,6  • Users  unable/unwilling  to  pay  collection  fees2  • Lack  of  institutional  capacity  3  •  

Collection  and  Transport  

 

• Poorly  planned  (e.g.  narrow,  poorly  drained,  unpaved)  roads  4,5,6  • Poor  vehicle  access  to  homes,  especially  in  low-­‐income  areas4,5  • Large  distances  from  homes  to  communal  waste  storage7  • Use  of  expensive,  foreign  equipment  and  parts  5,8,9  • Frequent  truck  breakdowns,  parts  shortages  5,8,9    • Lowest  income  groups  receive  lowest  collection  priorities5,8,10    

Recycling  

 

• Difficulty  incorporating  informal  recyclers  into  SWM  plans8,11  • Lack  of  public  awareness  or  motivation12  • Lack  of  local  or  national  markets  for  recycled  materials12  • Lack  of  financial  capital/technical  know-­‐how  to  implement  large-­‐scale  centers13  • Unavailability  of  appropriate  land  3  • Lack  of  institutional  capacity  3  

 

Composting   • Financially  difficult  to  implement  at  a  centralized,  large-­‐scale  level13  • Lack  of  understanding  or  maintenance  of  biological  conditions14  • Poor  pre-­‐sorting  of  incoming  waste14  • Failure  to  understand  market  conditions  13,14  • Lack  of  institutional  capacity  3  

                                                                                                                         1  (UNEP,  1996)  2  (Shukla  et  al.,  2000)  3  (Da  Zhu,  Asnani,  Zurbrugg,  Anapolsky,  &  Mani,  2008)  4  (Konteh,  2009)  5  (Coffey  &  Coad,  2010)  6  (Henry,  Yongsheng,  &  Jun,  2006b)  7  (Pfammater  &  Schertenleib,  1996)  8  (Zurbruegg,  2003)  9  (Memon,  2010)  10  (Jha  et  al.,  2011)  11  (Schübeler,  1996)  12  (Wilson,  Velis,  &  Cheeseman,  2006)  13  (Yousif  &  Scott,  2007)  14  (Zerbock,  2003)  

Page 75: Marshall Rachael 201301 MASc

  58  

 

Waste  Transformation  (incineration  and  burning)  

 

• Most  mechanical,  thermal,  and  chemical  techniques  are  out  of  scope  2  • High  moisture  content  of  waste  prevents  self-­‐sustaining  combustion2  • High  financial  start-­‐up  and  operating  costs  for  incineration111  • Lack  of  technical  expertise  and  skilled  personnel1,3  • Slow  burning  is  common  in  the  home,  backyard,  open  spaces,  and  dumpsites15  

 

Disposal  

 

• Uncontrolled,  open  dumping  is  the  most  common  disposal  method16  • Dumps  use  precious  space  ineffectively  3  • Food  sources  for  vectors  of  disease4  • Dumps  are  unlined  and  have  no  leachate  collection  system1  • Waste  burial  leads  to  forgotten  dumpsites,  continually  leaching  toxins17  

 

Landfilling    

 

• Lack  of  technical  expertise  and  skilled  personnel  3  • Lack  of  long-­‐term  financial  and  physical  resources14  • Lack  of  institutional  capacity  3  • Unavailability  of  appropriate  land  3  • Lack  of  appropriate  guidelines  for  new  landfills  and  dump  upgrades8  

 

Environmental  and  human  health  risks  

 

• Dumps  contain  infectious  medical  and  other  hazardous  wastes11,16  • Toxic  decomposition  products  in  water,  soil,  and  air16  • Presence  of  human  and  animal  fecal  matter  at  dumpsites16  • Explosive  methane  gas  causes  toxic  smoke,  can  burn  for  years  at  dumpsites16    • Slow  burning  volatilizes  heavy  metals,  dioxins,  acid  gases,  nitrogen  oxides,  etc.  1  • High  health  risks  for  waste  workers  and  scavengers11,16  • Socio-­‐economic  damage,  threatened  livelihoods18  • Waste  in  streets  clogs  drains,  breeding  ground  for  malarial  mosquitos  16  

 

 

3.1.2 SWM  in  Guatemala  

Many   of   the   aforementioned   SWM   issues   are   prevalent   in   Guatemala.   Figure   10  

depicts   the   context   for   these   SWM   issues   in   the   country   and  more   specifically   in  

Todos  Santos,  the  area  of  study.    

                                                                                                                         15  (Simon,  2008)  16  (Cointreau,  1982)  17  (Halla  &  Majani,  1999)  18  (Muttamara  &  Leong,  1997)    

Page 76: Marshall Rachael 201301 MASc

  59  

 

Figure  10.Guatemala's  SWM  Context  

Guatemala's Socio-Economic Conditions: Lower-Middle Income Transitional Democracy

National and International Attention

Area of Study: Todos Santos Cuchumatán

Guatemala'sSWM

SWM in TodosSantos

TrilateralAgreement

withMexico andGermany

1990sNationalPolicies

Weak PoliticalParties

Weak Authorityof Law

Corruption

ExtremePoverty

IncomeDisparity

Racism

Naturaldisasters

Civil War

90%IllegalDumps

EnvironmentalDegradation

Danger toPublic Health

WasteBurning

Lack ofReporting

/ Data

Increase inSW

Generationper Capita

InappropriateLocation and

InefficientOperation of

LandfillsDistrust in

Institutions

LimitedSWM

Funding

Lack ofPublic

Awareness

Increasein

Littering

2011Integrated

SWMStrategy

PAHO Reports

90% IndigenousPopulation

Rural,RemoteLocation

HighPovertyRates

Wage-LabourMigration to

US

LowTechnicalExpertise

PoorEducation

System

Deeply Scarred byCivil War

Headwatersof Limon

River

HighIlliteracy

Low Confidence inPolitical Institutions

No LocalRecyclingFacilities

Open IllegalDump in

TownCenter

Wastein the

Streets

Dump onRiverbank

Weekly WasteCollection

HouseholdPets Eat at

Dump

EnvironmentalEducation has

Begun

UnsanitaryAbattoir in

TownCenter

NegativeImpacts on

Health

LowPoliticalPriority

CorruptionLimitsSWM

Funding

EnvironmentalDegradation

Invisible

Page 77: Marshall Rachael 201301 MASc

  60  

Guatemala  is  a  lower  middle  income  (World  Bank,  2011),  post-­‐conflict  independent  

republic   undergoing   democratic   transition   and   thus,   it   faces   many   difficulties  

common   to   Latin   American   transitional   democracies,   including   weak   political  

parties  and  authority  of   the   law,  corruption  and  organized  crime,  extreme  poverty  

and   severe   income   disparity   (Guinea,   2009).   In   1996,   the   government   and   the  

Guatemalan  National  Revolutionary  Unity   (URNG)   signed  Peace  Accords,   ending   a  

36-­‐year  period  of   internal  conflict   that  had  dramatically  affected  the  economy  and  

infrastructure  of  the  country  (Sundberg,  2002).    Guatamala  now  has  one  of  Central  

America’s  largest  economies,  and  has  maintained  relatively  stable  economic  growth  

over  the  last  few  decades  (World  Bank,  2011).  However,  despite  these  factors,  little  

progression  towards  the  elimination  of  inequality  has  been  made  (Sundberg,  2002).    

Indeed,  the  World  Bank  (2011)  states  that,  “Guatemala's  social  indicators  often  fall  

below   those   of   countries  with   lower  per   capita   incomes.  According   to   the  Human  

Development   Index   [a   combination   of   income,   education   and   health   indicators]  

(2010),  Guatemala  ranks  116  among  169  ranked  countries  and  in  Latin  America  is  

only  ahead  of  Haiti”.  The  population  has  grown  from  3  million  in  1950  to  14  million  

in   2010,   but   remained   poor,   young,   and   predominantly   rural   and   indigenous  

(Guinea,  2009).  Income  disparity  is  severe,  as  49%  of  the  2010  population  is  rural,  

70.5%  of   the   rural   population   is   below   the   poverty   line   (World   Bank,   2011),   and  

93%  of  the  country’s  extreme  poor  are  rural  (Cook  et  al.,  2009).  Indigenous  peoples,  

composed  of  Mayas,  Xincas,  and  Garífunas,  make  up  41%  of  the  population  (Guinea,  

2009).   This   percentage   varies   drastically   by   region,   as   indigenous   peoples   are  

predominantly  rural  (and  therefore  poor)  (Cook  et  al.,  2009).  Such  inequalities  have  

caused   Guatemala   to   be   fraught   with   corruption,   racism,   violence,   and   a   deeply  

rooted   mistrust   of   judicial   systems   and   political   institutions   (Sundberg,   2002).  

Additionally,  natural  disasters  have  recently  rocked   the  country;   in  2010,  Tropical  

Storm  Agatha  and  the  eruption  of  the  volcano  Pacaya,  caused  an  estimated  US$982  

million   in  damages  and   losses.  During   the  rainy  season  of  2010,  which  was  one  of  

the   heaviest   the   country   has   seen   in   six   decades,   landslides   and   flooding   caused  

serious   damage   to   the   country’s   productive   and   physical   infrastructure   (World  

Bank,  2011),  which  was  already  deficient  and  hindering  foreign  investment  (Guinea,  

Page 78: Marshall Rachael 201301 MASc

  61  

2009).  Many  of  these  issues  have  led  to  severely  weakened  solid  waste  management  

systems   throughout   the   country   (Zarate   et   al.,   2008),  which   has   in   turn   caused   a  

proliferation  of  illegal  dumping  and  burning  of  solid  wastes.  As  of  2005,  roughly  7.1  

million  Guatemalans,  or  68  percent  of  all  households,  bury,  burn,  or  dispose  of  their  

waste   inappropriately,   particularly   in   rivers   or   streams,   causing   serious  

environmental  degradation  and  threatening  public  health  (Yousif  and  Scott,  2007).    

Nearly  90  percent  of  the  country’s  landfills  are  illegal  dumps,  and  approximately  40  

percent  of  them  are  in  close  proximity  to  a  water  body  or  aquifer  (Mantilla,  2007).  

These  issues  are  difficult  to  address  for  a  variety  of  reasons,  including  a  lack  of  data  

and  reporting.  The  Ministry  of  Health  reports  on  very  few  diseases  related  to  water  

source  contamination  or  waste  simply  because  little  data  is  available,  and  what  data  

does  exist  is  often  outdated  (Mantilla,  2007).  Illegal  dumping  is  exacerbated  by  the  

fact  that  solid  waste  generation  per  capita,  and  particularly  the  percentage  of  non-­‐

biodegradable  solid  waste,  is  continually  increasing  (Yousif  and  Scott,  2007).  Waste  

generation  is  predicted  to  increase  dramatically  not  only  in  the  large  cities  but  also  

in   rural   areas,   as   decentralization   of   the   public   sector   and   growth   of   the   private  

sector  promote  the  development  of  the  country’s  interior.    

Where  officially   recognized   landfills  do  exist,   they  are   inappropriately   located  and  

inefficiently   operated.   SWM   employees   are   exposed   to   substandard   working  

conditions,   including   a   lack   of   adequate   safety   equipment   and   frequently   coming  

into   contact  with   hazardous  materials   such   as   sharp,  medical,   chemical,   and   toxic  

wastes  (Yousif  and  Scott,  2007).  These  working  conditions  expose  workers  to  a  host  

of  physical,  psychological,  and  social  hazards  (Yousif  and  Scott,  2007).    

As   in  many  other  developing  countries,  urban  planning   in  Guatemala   is  somewhat  

arbitrary,   leading   to   mazes   of   steep,   narrow   streets   that   are   inaccessible   for  

conventional  waste  collection  vehicles  (Yousif  and  Scott,  2007).  Many  residents  are  

unable  to  afford  collection  fees,  or  are  unwilling  to  pay  for  them  due  to  distrust   in  

the  quality  of  service  (Yousif  and  Scott,  2007).  This  encourages  illegal  dumping  and  

disposal   practices   in   waterways,   by   roadsides,   and   in   urban   areas.   Many  

neighbourhoods  house  bodies  of  stagnant  water,  especially  in  the  wet  season,  due  to  

Page 79: Marshall Rachael 201301 MASc

  62  

drains  clogged  with  municipal  refuse  (Yousif  and  Scott,  2007).  This  creates  breeding  

grounds   for   disease-­‐transimitting  mosquitos   (Cointreau,   1982).     These   issues   are  

depicted  in  a  conceptual  diagram  below  (see  Figure  11).    

 

 

Figure  11.  Environmental  and  health  related  SWM  impacts  in  Guatemala  

The  literature  has  identified  six  principal  SWM  challenges  that  plague  Guatemala:  

• Limited   funding   for  SWM  services  due   to  a   lack  of   authoritative   interest   and  

the  high  cost  of  such  services  (Yousif  and  Scott,  2007);  

• The  absence  of  large-­‐scale  formal  recycling  programmes  (Zarate  et  al.,  2008;  

Yousif   and   Scott,   2007),   as   the   only   recycling   facilities   in   the   country   are  

located  in  Xela  and  Guatemala  city  (Zarate  et  al.,  2008);    

• A  lack  of  proper  sanitary   landfills  and  the   inappropriate   location  of  current  

dumpsites,  which   are   often   too   close   to   residential   areas   or   a   considerable  

distance   from  municipal  boundaries  (Manilla,  2007;  Yousif  and  Scott,  2007;  

Environmental Impacts Health Impacts

Unwillingness to pay

Political andinstitutional issues

Weakened SWMsystems

Natural disasters

Steep, narrow streets

Rising solid wastegeneration per capita

Burning, burying,unregulated dumping

Rise innon-biodegradable

solid waste

Unregulated, opendumps near water

bodies

Standing water

Contaminated groundand surface water

Inappropriatelylocated landfills

Sub-standard workingconditions for waste

workers

Zoonoses fromrodents, mosquitos,

etc.

Gastrointestinal illness

Intoxification

Injury and infection

Respiratory illness

Infectious andchronic diseases

Waste inpublic/accessible areas

Contaminated air

Environmental Impacts

Lack of knowledgeabout hygiene

Page 80: Marshall Rachael 201301 MASc

  63  

Zarate  et  al,  2008);  

• A  lack  of  public  awareness  about  proper  SWM  (Yousif  and  Scott,  2007);  

• An  increase  in  illegal  dumping  (Manilla,  2007;  Yousif  and  Scott,  2007);  and    

• An   increase   in   littering,   which   is   causing   considerable   drainage   and   sewer  

problems  (Yousif  and  Scott,  2007).  

SWM   is   low   on   the   municipal   priority   list   due   to   its   inability   to   generate   ample  

public   and   private   approval  when   compared  with   other   projects   such   as   housing,  

business,  and  the  development  of  recreational  facilities  (Yousif  and  Scott,  2007).  In  

addition,   frequent  changes   in  municipal  government  and  technical  managers  are  a  

significant   barrier   to   improved   SWM   systems   in   Guatemala   (GTZ,   2009).  When   a  

political  term  comes  to  close  and  a  new  government  is  elected,  all  municipal  office  

workers,  even  those  not  involved  in  elections,  are  replaced,  which  generates  a  lack  

in  continuity.  Any  projects  started  during  the  tenure  of  one  office  that  require  time  

and  planning  run  the  risk  of  being  subsequently  abandoned  in  the  next  term  (Yousif  

and   Scott,   2007).   This   lack   of   long-­‐term   commitment   from   local   authorities,  

technical  experts  and   the  regional  and  national  government  are  central  challenges  

to  SMW  projects   throughout  the  country  (Zarate  et  al.,  2008).  Guatemala  has  been  

plagued   by   a   lack   of   coordination   between   environmental   authorities,   limited  

technical  knowledge,  and  a  lack  of  homogenous  and  reliable  information  on  proper  

SWM  (GTZ,  2009).    

3.1.2.1 National  and  international  attention    

The  Guatemalan   government  has   recognized   the   severity   of   SWM   issues   for   some  

time.  In  the  1990s,  the  government  implemented  a  series  of  new  policies  aimed  to  

promote  the  protection  of  the  environment  and  fund  natural  resource  management  

projects.   Projects   to   be   funded   were   to   focus   on   pollution   problems   and   on  

ameliorating   the  provision  of  basic   services,   including  environmental  education   in  

schools   and   solid   waste   management   (Zarate   et   al.,   2008).   The   government   also  

aimed  to  strengthen  institutions  and  increase  citizen  participation  by  decentralizing  

administrative,   economic   and   political   power   to   municipalities.   However,   many  

rural  municipalities   lacked   the   human   and   financial   resources   to   implement   such  

Page 81: Marshall Rachael 201301 MASc

  64  

policies,   and   the  policy   resulted   in   increased   illegal  dumping   and  burning  of   solid  

wastes   (Zarate   et   al.,   2008).   In   2004,   the  Ministry   of   Environmental   Protection   of  

Guatemala,   recognizing   the   need   for   decentralization   and   the   involvement   of  

municipal-­‐level  actors  in  SWM,  signed  a  trilateral  agreement  with  the  governments  

of  Mexico  and  Germany  to  implement  an  integrated  waste  management  program  in  

the  country  similar  to  that  of  Mexico’s  (UNDP,  2009).  The  program  aimed  to  create  

technical   capacity   in   waste   management   by   forming   a   network   of   environmental  

promoters  who  could  provide  technical  and  advisory  assistance  to  the  country’s  332  

municipalities   (TTSSC,   2010).   By   2008,   42   promoters   had   been   trained   through  

three   sessions   over   a   period   of   6   months.   These   promoters   then   trained   136  

department  delegates,  122  environmental  inspectors,  and  543  municipal  employees  

throughout   the   country   (GTZ,   2009).   However,   a   lack   of   integrated   waste  

management   continues   to   plague   less   fortunate   communities   throughout   the  

country.   Despite   million-­‐dollar   loans   and   grants   from   bilateral   and   multilateral  

development   agencies   to   build   capacity   at   the  municipal   level,  municipalities   lack  

the  human  and   financial  resources   to   implement  such  SWM  projects  (Zarate  et  al.,  

2008),   such   as   those   proposed   by  RED  GIRESOL  Guatemala.   Project   funding   from  

the  German  government  terminated  in  2009  (TTSSC,  2010),  and  further  results  have  

not  been  reported.  In  addition,  one  of  the  main  Guatemalan  organizations  involved  

in  RED  GIRESOL  Guatemala  has  been  known   for  non-­‐participatory  enforcement  of  

environmental   protection   that   has   caused   harm   to   poor,   politically   disadvantaged  

groups  in  the  past  (Sundberg,  2002).  Sundberg  (2002)  observes  that  environmental  

decision-­‐making   is  performed  at  a   centralized   level   in  Guatemala,  and  democratic,  

participatory   methods   are   rarely   implemented.   Authorities   feel   participatory  

methods  are  too  time  consuming,  or  that  stakeholders  would  not  agree  to  proposed  

projects.   Though   local   SWM   authorities   often   express   support   for   public   and  

stakeholder   participation,   projects   have   repeatedly   failed   to   allow   stakeholder  

involvement   in   decision-­‐making   processes.   If   stakeholders   do   become   involved,  

SWM  authorities   often   fail   to   incorporate   stakeholder   expertise   (Yousif   and   Scott,  

2007).  But  SWM  is  a  complex  task  that  requires  not  only  technical  solutions,  but  the  

participation  of  both  the  public  and  the  private  spheres  (Zarate  et  al.,  2008).  Indeed,  

Page 82: Marshall Rachael 201301 MASc

  65  

in  Guatemala,   “the  problems  of  appropriate  solid  waste  management  are   issues  of  

governance  rather  than  technical  problems”  (Yousif  and  Scott,  2007,  p.  441).  

More   recently,   the   Guatemalan   government   collaborated   with   academics,   waste  

management   businesses   and   civic   organizations   to   create   an   ‘integrated   waste  

management   strategy’   in   an   attempt   to   manage   the   14.5   million   tons   of   waste  

produced   annually   (BNAmericas,   2011).   While   only   12   of   the   332   municipalities  

across   the   country   currently   have   any   form   of   SWM   program   (Yousif   and   Scott,  

2007;   BNAmericas,   2011),   the   new   national   strategy   calls   for   SWM   service  

implementation  within  each  one  (BNAmericas,  2011).  

The  waste  crisis  has  also  been  recognized  by  the  international  community  for  some  

time.  In  1998,  the  Pan  American  Health  Organization  (1998,  pp.  299-­‐300)  reported  

that  “nowhere  in  Guatemala  is  there  a  system  for  the  final  disposal  of  solid  waste.  In  

the  urban  areas   it   is  estimated  that  47%  of   the  population  has   the  benefit  of  solid  

waste  collection.  The  rest  of  the  people  burn,  bury,  or  toss  out  their  trash.  In  rural  

areas   only   4%   of   the   population   has   the   benefit   of   trash   collection   services.   The  

waste  that  is  collected,  in  both  urban  and  rural  areas,  is  deposited  in  dumps  with  no  

further   treatment”.  By  2007,   these  numbers  had  only  changed   to  58.3%  and  4.5%  

for   urban   and   rural   collection   services,   respectively   (Pan   American   Health  

Organization,  2007).   In  2006,  a  documentary  short   film  produced  by  Leslie  Iwerks  

and   Mike   Glad   entitled   Recycled   Life   explored   Guatemala   City’s   40-­‐acre   garbage  

dump  –  the  largest  in  Central  America  –  and  the  community  living  within  it  (Iwerks,  

2006).   The   film   captured   the   dire   state   of   the   country’s   waste   crisis   and   drew  

international   attention   to   the   issue,   winning   several   international   film   festival  

awards  (Iwerks,  2006).  

It   becomes   rapidly   evident   that   SWM   has   been   recognized   by   the   national  

government   and   the   outside   world   as   a   critical   issue   of   concern   in   Guatemala,  

particularly  for  the  politically  and  geographically  disadvantaged,  yet  little  attention  

is  paid  to  these  communities’  perspectives  on  exactly  what  issues  poor  SWM  creates,  

influences,   and   exacerbates,   and   what   structures   prevent   change   within   the  

Page 83: Marshall Rachael 201301 MASc

  66  

communities.  To  this  end,  this  study  aims  to  examine  these  SWM  challenges  in  one  

of   the   country’s   politically   and   geographically   disadvantaged   communities   in   a  

systemic,  inclusive  manner  built  on  local  perspectives.    

This  chapter  is  organized  as  follows:  the  first  section  introduces  the  area  of  study  –  

Todos   Santos   Cuchumatán   –   emphasizing   the   complex   context   in  which   the   town  

sits,   and   why   it   was   chosen   for   the   study.   The   second   section   details   the  

methodology  used,  which  focuses  principally  on  causal  mapping  through  the  use  of  

narratives.  The  third  section  examines  the  resulting  causal  maps  and  grids,  looking  

in   particular   at   the   structural   elements   and   feedback   loops   that   arose   from   the  

mapping   process.   Finally,   the   fourth   section   discusses   the   significance   of   the  

findings   and   proposes   strategies   to   improve   the   solid   waste   situation   in   Todos  

Santos  and  elsewhere.  

3.1.3 Area  of  Study:  Todos  Santos  Cuchumatán  

In   Guatemala,   poverty   is   the   greatest   among   the   mostly   rural   indigenous  

communities,  which  constitute  nearly  half  of  the  population  (Cook,  Swanson,  Eggett,  

&   Booth,   2009;   World   Bank,   2005a;   Yousif   &   Scott,   2007).   Accordingly,   waste  

management   is   extremely   limited   in   many   of   these   communities   (Pan   American  

Health  Organization,  1998).  One  such  community  is  the  remote  Mam  Mayan  village  

of   Todos   Santos,   tucked   in   a   valley   of   northwestern   Guatemala’s   Cuchumatanes  

mountain  range  (Burrell,  2005;  Mcclatchie  Andrews,  1999).  Located  at  2,500  m.a.s.l.  

on  an  ancient   trade   route   connecting  Mexico   to   the   city  of  Huehuetenango,  Todos  

Santos  is  relatively  isolated(Mcclatchie  Andrews,  1999).  As  of  1999,  the  immediate  

population  in  the  village  center  was  only  3,000,  but  this  number  escalates  to  32,000  

if  the  populations  of  the  surrounding  aldeas  (hamlets)  that  line  the  mountain  slopes  

are   included   (Mcclatchie   Andrews,   1999).   A   recent   estimate   puts   the   center   at   a  

population   of   7,000,   and   the   greater   region   at   a   population   of   34,000   (Chauvin,  

2012).   Approximately   ninety   percent   of   the   population   is   of  Mam  Mayan   descent  

(Chauvin,  2012).    

The   majority   of   Todos   Santeros   are   farmers.   Poverty   is   high   in   this   indigenous  

community;  the  average  monthly  income  is  800  Quetzales  (approximately  100  USD),  

Page 84: Marshall Rachael 201301 MASc

  67  

and   alcoholism   and   violence   are   prevalent   (Mcclatchie   Andrews,   1999).   These  

modest  salaries,  in  combination  with  a  lack  of  jobs  and  increased  prices  for  land  and  

for   construction   of   new   houses,   have   led   to   a   staggering   increase   in  wage-­‐labour  

migration   to   the  United   States   in   recent   years   (Burrell,   2005).   Each   family   has   at  

least   one   member   living   in   the   United   States,   approximately   one   third   of   the  

population  (Burrell,  2005).  Young  men  and  increasingly,  young  women,  feel  the  only  

way   they  can  secure   their   family’s   future   is   through  work  abroad.  This   large-­‐scale  

migration   puts   several   socio-­‐economic   pressures   on   those   who   remain   in   the  

village:   Increased   social  differentiation  and   class   stratification  between   those  who  

remain  and  those  who  migrate;  increased  prices  for  land  and  new  houses;  increased  

local   crime;   and   less   technical   expertise   as   these   factors   encourage   the   best  

educated   and   most   productive   members   of   the   community   to   migrate   (Burrell,  

2005).   In   addition,   the   education   system   is   deteriorating   not   only   at   the   national  

level  due  to  excruciatingly  low  salaries,  a  lack  of  government  support,  and  massive  

teachers’  strikes,  but  also  at  the  local  level  as  the  majority  of  bilingual  Mam/Spanish  

teachers   have   gone   to   the   United   States   and   monolingual   teachers   from  

Huehuetenango   are   replacing   them   (Burrell,   2005).   Therefore,   illiteracy   rates   are  

high  (Chauvin,  2011).  

Todos   Santeros   were   caught   in   one   of   the   worst   locations   during   the   civil   war   –  

between   the   guerrillas   who   sought   refuge   in   the   mountains   and   the   army  

determined   to   eradicate   them   (Mcclatchie   Andrews,   1999).   By   1982,   each   Todos  

Santeros  family  had  been  impacted  by  the  war.  Those  remaining  took  up  arms  and  

created   civil   patrol   groups   to   police   and   protect   their   own   people   (Mcclatchie  

Andrews,   1999).   Clearly,   the   impacts   of   the   civil   war   on   human   resources,  

infrastructure  (Zarate  et  al,  2008),  and  confidence   in   judicial  systems  and  political  

institutions   experienced   in   other   parts   of   the   country   (Sundberg,   2002)   are  

prevalent   in  Todos   Santos.   These   issues   lead   to   severely  weakened   SWM  systems  

(Zarate   et   al.,   2008),   which   subsequently   impact   local   human   health   and  

environmental  wellbeing.    

Page 85: Marshall Rachael 201301 MASc

  68  

3.1.3.1 Solid  Waste  Management  in  Todos  Santos    

Connections   between   waste   mismanagement   and   community   wellbeing   are  

increasingly  being   recognized.   In  2008,  Vets  Without  Borders   identified   a  need   to  

further  investigate  waste  management  issues  in  Todos  Santos  through  a  program  to  

control  the  local  canine  population  and  prevent  the  spread  of  rabies  (VWB,  2009b).  

This   program   brought   to   light   the   pivotal   links   between  waste  management,   dog  

overpopulation,  and  the  wellbeing  of  the  community  (VWB,  2009a).    

A   field   trip   to  Todos  Santos  was  conducted   from  August  17,  2011  to  September  7,  

2011   to   further   investigate   local   SWM   practices.   Preliminary   field   observations  

brought  to  light  the  following:  

• Todos   Santos   is   one   of   the   municipalities   with   the   highest   altitude   in   the  

region   and   is   situated   on   the   banks   of   the   Limon   River.   Therefore,   any  

contamination   to   the   Rio   Limon   affects   many   communities   downstream,  

including:  

o Union   Cantinil,   Concepcion   Huista,   Jacaltenango,   Santa   Ana   Huista,  

San   Antonio   Huista,   La   Democracia   and   Nenton   in   the   province   of  

Huehuetenango;  and  

o The  south  of  the  Mexican  state  Chiapas  (Chauvin,  2011);  

• The  nearest  city  with  recycling  facilities  (Xela)  is  130km  away  but  due  to  the  

sinuous   route   through   the   Cuchamatanes  mountain   range,   the   trip   takes   a  

vehicle  approximately  5  hours;    

• In  the  town  center,  solid  waste  (including  animal  fecal  matter)  is  present  in  

the   streets,   and   final   disposal   takes   place   in   an   open   dumpsite   near   the  

centre  of  the  town;  

• The   unregulated   dumpsite   is   located   on   a   steep   embankment   of   the   Rio  

Limon,   directly   adjacent   to   a   residential   property   where   household   pigs  

graze  on  waste,  and  directly  above  a  field  of  corn  that  grows  on  the  bank  of  

the  river;  

• Two   street   sweepers   are   employed   by   the   municipality   to   collect   garbage  

thrown  in  the  streets  and  transport  it  to  the  dump;  

Page 86: Marshall Rachael 201301 MASc

  69  

•  Garbage  receptacles  exist   in   the  town  square  and  there  has  been  a  push  to  

educate   the   population   to   dispose   of   garbage   “where   it   belongs”   (in   these  

receptacles)  but  there  is  no  mechanism  in  place  to  empty  them;  

• During   the   spring   of   2011   the   municipality   hired   a   bulldozer   to   bury   the  

dump  site,  but  the  machinery  nearly  fell  into  the  river  and  the  task  could  not  

be  completed  (Chauvin,  2011);  

• Door-­‐to-­‐door  solid  waste  collection  occurs  weekly  in  the  town  centre,  where  

roads   are  wide   enough   for   trucks,   but   no   collection   occurs   in   communities  

outside  of  the  village  center;  

• Vectors   including   dogs,   cats   (some   of  which   are   household   pets),   vultures,  

flies,  cockroaches  and  other  insects  scavenge  at  the  dump;  

• Educational  programs   focusing  on  environmental   issues  and  recycling  have  

begun  to  take  place  in  the  local  schools;  

• Peace   Corps   has   had   several   volunteers   working   in   the   community   for   a  

number  of  years.  One  recently  initiated  the  construction  of  a  school  that  used  

water  bottles  stuffed  with  waste  as  bricks.  However,  no  further  construction  

of  this  type  has  occurred;  

• The  town’s  abattoir,  located  near  the  center  of  town,  consists  of  a  holding  pen  

with  a  dirt  floor  and  a  concrete  building  with  a  sink  and  running  water.  It  is  a  

very  unclean  facility:  garbage  and  waste  litters  the  pen,  and  animal  remains  

from   previous   slaughters   cover   the   sink,   doors,   walls,   and   floor.   Animal  

remains   are  disposed  of   in   the  drain,  which   leads  directly   to   the   river,   and  

other   scraps   are   thrown   to   a   large   crowd   of   dogs.   Animals   are   quartered  

directly  on  the  floor  and  meat  is  thrown  into  a  truck  for  sale  at  the  market;  

• A  health  survey  conducted  by  the  local  doctor,  identified  thousands  of  health  

cases  potentially   associated  with  poor   SWM.   Infections,   inflammations,   and  

gastrointestinal  issues  may  be  directly  related  to  contamination  brought  into  

the  home  and  workplace  by  vectors  of  disease  that  breed  and  live  in  the  town  

dump.   Certain   infections   may   be   related   to   poor   air   quality   due   to   waste  

burning  practices  and  fires  in  the  dump.  Such  cases  include:  

Page 87: Marshall Rachael 201301 MASc

  70  

o Intestinal  bacterial  infection:  1,272  cases  

o Intestinal  parasite:  1,221  

o Acute  respiratory  infection:  721  

o Urinary  tract  infection:  579  

o Amebic  dysentery:  574  

o Diarrhea:  524  

o Eye  inflammation:  422  

o General  skin  inflammation:  39  (Pablo,  2011);  

• Many  illnesses  go  unreported  or  cannot  be  properly  diagnosed  due  to  a  lack  

of  financial  and  human  medical  resources.  One  doctor  in  an  extremely  limited  

clinic   services   approximately   34,000   people   (Pablo,   2011),  many   of   whom  

live  a  considerable  distance  from  the  town  center;  

• Local  authorities  show  some  interest  in  waste  management  issues,  but  other  

projects,  such  as  education  or  road  construction  receive  priority;    

• The   national   push   for   SWM   in   every   municipality   has   resulted   in   the  

allocation   of   a   modest   amount   of   funds   for   2012,   expanding   somewhat   in  

2013,  for  SWM  in  Todos  Santos;  and  

• Corruption   limits   the   success   of   waste   projects   in   the   municipality.   Many  

projects  that  are  “funded”  by  the  local  authorities  receive  from  half  to  none  of  

the  funding  they  are  initially  allotted  (Chauvin,  2011).  

These   issues   illustrate   some   of   the   ‘symptoms’   that   have   arisen   as   a   result   of   the  

nature  of  the  SWM  system  in  Todos  Santos.  The  following  sections  explore  these  and  

other   ‘symptoms’,   and   –  more   importantly   –   the   structure   of   the   system   creating  

them   from   the   many   perspectives   of   the   local   community   in   order   to   develop   a  

better  understanding  of  how  best  to  move  forward.  

3.2 Methodology  Traditional   engineering   approaches   are   centered   on   quantitative   analysis   and  

technology.  The  ‘traditional  engineer’  has  been  said  to  hold  “a  belief  in  an  ability  to  

lead,  based  on  qualities  of  technical  expertise  and  rational  decision-­‐making  not  held  

by   the   public   at   large”   (Robbins,   2007,   p.   99).   This   elitist   perception   of   mental  

Page 88: Marshall Rachael 201301 MASc

  71  

superiority   has   lead   traditional   engineering   approaches   to   become   one-­‐way  

interactions  focused  on  information  transfer  to  the  ‘idealistic,  imprecise  thinkers’  of  

the   general   populace   (Robbins,   2007).   Such   ‘top-­‐down’   approaches,   from   the  

government  or  international  entities,  have  clearly  failed  to  address  the  SWM  issues  

in  Todos  Santos   in  the  past.   It  becomes   increasingly  evident  that  a  methodological  

approach   centered   on   inclusivity,   local   ownership,   and   multiple   legitimate  

perspectives   is   essential   to   initiate   change   in   the   community.  Qualitative  methods  

must  complement  traditional  problem-­‐solving,  and  expertise  must  be  recognized  as  

collective;  the  knowledge  of  the  engineer  or  scientist  “is  no  longer  the  sole  arbiter  of  

some  eternal  truth”  (Waltner-­‐Toews  et  al.,  2003,  p.  29).  It   is  for  these  reasons  that  

this   study  uses  a  methodology  grounded   in  complex,  adaptive  systems   theory  and  

post-­‐normal   science;   both   schools   of   thought   are   driven   by   the   need   to   deal  with  

complexity,   and   thus   require   the  merging   of   qualitative  methods  with   traditional  

problem  solving  (see  Figure  12  for  a  graphical  representation  of  the  methodology).    

Page 89: Marshall Rachael 201301 MASc

  72  

 

Figure  12.  Methodology  

3.2.1 Theoretical  approach  

This  study  is   first   framed  by  systems  thinking,  and  in  particular,  complex  adaptive  

systems   theory.   It   is   in   cases   like   that   of   the  waste   crisis   in   Todos   Santos   that   it  

becomes  so  evident   that  human  systems  –   including  political,   social,   financial,   and  

cultural  –  have  a  profound  influence  on  natural  systems.  In  turn,  the  degradation  of  

natural   resources,   which   threatens   human   health   and   wellbeing   in   a   number   of  

Theoretical Approach

Complex,AdaptiveSystems

Methodological Approach

Data Collection

SamplingMethods

Data Analysis

Community -Scale Maps

LeveragePoint

Analysis

Post-NormalScience

CausalMapping

Semi-StructuredInterviews

Quantitativeand

QualitativeAssessment

Case Study

QualitativeMethods

Page 90: Marshall Rachael 201301 MASc

  73  

ways,   makes   it   unmistakably   apparent   that   ecological   systems   have   enormous  

impacts   on   human   health.   It   is   through   such   observations   that   researchers   have  

recognized  human  and  ecological  systems  as  elements  of  the  same  system  (Berkes  &  

Folke,   1998;   Waltner-­‐Toews   et   al.,   2005);   any   “delineation   between   them   is  

arbitrary   and   artificial”   (Waltner-­‐Toews   et   al.,   2005,   p.   158).   It   has   also   been  

recognized   that   sustainable   management   of   these   complex,   adaptive   eco-­‐social  

systems  must   incorporate   a  wide   variety   of   information   from  multiple,   legitimate  

perspectives  (Checkland,  2000;  Funtowicz  &  Ravetz,  1993;  Kay  et  al.,  1999;  Waltner-­‐

Toews   et   al.,   2003).   The   resulting   data   multiple   perspectives   provide   are  

quantitative  and  qualitative,  subjective  and  complex.    

It   is   this  complexity,  generated  by  a  systems  perspective,   that  caused  this  study  to  

be   founded   in   the   broader   theory   of   ‘post-­‐normal’   science.   Post-­‐normal   science,  

developed   by   Funtowics   and   Ravetz,   is   a   new   approach   brought   about   by   the  

complexity   of   risk   and   environment   policy   issues   (Funtowicz   &   Ravetz,   1993).   It  

moves  away  from  the  reductionism  of  the  traditional  problem-­‐solving  strategies  of  

classical   science,   applied   science,   and   professional   consultancy,   which   fail   when  

systems   uncertainties   or   decision   stakes   are   high.   In   post-­‐normal   science,   an  

“extended  peer  community”  –  a  plurality  of   legitimate  perspectives  –  share  expert  

knowledge   (Funtowics   &   Ravets,   1993).     Management   is   conducted   collectively,  

through  anticipation,  action,  and  adaptation  (Waltner-­‐Toews  et  al.,  2003).   In  post-­‐

normal   science,   “the   criteria   for   good   quality   work   do   not   merely   reside   in   a  

particular  set  of  methods  and  tools,  or  even  in  particular  successes  or  failures,  but  in  

the  collective   learning  and  improved  management  that  results”  (Waltner-­‐Toews  et  

al.,  2003,  p.  29).  Post-­‐normal  approaches  thus  require  a  thorough  understanding  of  

the  context,  and  suggest   that   the  role  of   the  researcher   is  not   to  present  decision-­‐

makers  with  one  single  solution  but  a  set  of  probable  scenarios  or  narratives  about  

how   the   future  might  unfold.  The  SWM   issues   in  Todos  Santos   are   certainly  post-­‐

normal:  the  high  complexity  of  managerial  and  technical  aspects  make  uncertainties  

high,   and   conflicting   costs   and   benefits   for   a  wide   variety   of   stakeholders   elevate  

decision  stakes.    

Page 91: Marshall Rachael 201301 MASc

  74  

3.2.2 Methodological  Approach  

3.2.2.1 Case  Study  Approach  

Case  studies  have  been  used  for  decades  as  teaching  and  research  tools  in  a  variety  

of   disciplines.   The   more   complex   and   contextualized   the   subject   of   research,   the  

more   valuable   this   approach   can   be   (Scholz   &   Tietje,   2002).   Thus   it   has   gained  

ground   in   disciplines   that   must   consider   historic   dynamics   and   multiple  

perspectives   of   natural   and   social   systems,   such   as   management   studies,  

engineering,   community   sociology,   environmental   sciences   and   planning   sciences  

(Scholz   &   Tietje,   2002).   The   approach   is   an   empirical   enquiry   that   investigates   a  

problem  within  its  real-­‐life  context.  Multiple  mutually  dependent  variables  must  be  

synthesized   in  order   to  understand   the  problem  or   investigate  potential   solutions.    

(Scholz  &  Tietje,  2002).  The  approach  entails  three  principal  steps  (Patton,  2002):    

1. Assembling   the   raw   case   data,   which   consists   of   all   the   contextual  

information   specific   to   the   case   (interviews,   observations,   records   or   files,  

media  sources,  etc.);  

2. Constructing  a  case  record,  which  involves  condensing  the  raw  data  into  an  

organized,  manageable,  and  accessible  file;  and  

3. Composing  a  final  case  study  narrative,  which  is  a  holistic,  descriptive  picture  

or   story   that   ensures   all   the   information   necessary   to   develop   a   thorough  

understanding   of   the   uniqueness   of   the   case   is   accessible   to   the  

reader/viewer.      

A  case  study  approach  is  an  appropriate  method  to  examine  the  SWM  issues  faced  

by   rapidly   developing   communities   in   Guatemala   for   a   variety   of   reasons:   case  

studies   aid   in   understanding   real,   complex  problems   that   cannot   be   handled  with  

known  analytical  methods;  support  decision-­‐making;  and  help  to  organize  different  

types  of  knowledge  from  different  disciplinary  or  stakeholder  perspectives  (Scholz  

&  Tietje,  2002).    

3.2.2.2 Qualitative  Methods:  Understanding  complexity  through  narrative  

Due   to   the   complex  nature  of   systems   research,   systems  approaches  often   lead   to  

Page 92: Marshall Rachael 201301 MASc

  75  

and  rely  heavily  upon  qualitative  methods  of  inquiry.  Additionally,  having  a  systems  

perspective  can  aid   in  both   framing  qualitative  questions  and  making  sense  out  of  

qualitative   data   (Patton,   2002).  Waltner-­‐Toews   et   al.   (2008,   p.   38)   point   out   that  

“one   cannot   model   complexity,   but   one   can   approach   it   using   analogy   and  

narrative”.   In   the   post-­‐normal   paradigm   developed   by   Funtowicz   and   Ravetz  

(1993),   a   new   role   been   proposed   for   the   scientist   in   decision  making:   no   longer  

does   the   scientist  make   “objective”   predictions   as   the   basis   of   decisions;   the   new  

role  requires  the  scientist  to  provide  the  community  and  decision  makers  alike  with  

“an   appreciation,   through   narrative   descriptions,   of   how   the   future  might   unfold”  

(Kay   et   al.,   1999,   p.   728).   Thus,   researchers   using   systems   approaches   have  

synthesized   locally   relevant   information   into   context   specific,   coherent,   collective  

narratives,   which   are   better   able   to   capture   the   richness   of   possibilities   than  

traditional,   reductionist   approaches   (see,   for   example,   Kay   et   al.   (1999);  Waltner-­‐

Toews   et   al.   (2003);   Waltner-­‐Toews   et   al.   (2005);   Waltner-­‐Toews   et   al.   (2008)).  

According  to  Zellmer,  Allen,  and  Kesseboehmer  (2006,  p.  171),  “narrative  is  the  key  

to   dealing   with   complexity   without   compromise”.   Waltner-­‐Toews   et   al   (2008)  

believe   constructing   narratives   is   crucial   to   developing   a   “best   understanding”   of  

complex  systems.    

Narratives   are   not   concerned  with   identifying   the   objective   “truth”   of   a   situation.  

They   are   displays   of   subjectivity;   stories   that   explicitly   state   what   the   narrator  

views   as   important   (Zellmer   et   al.,   2006).    Narratives   can   provide   qualitative   and  

quantitative  understanding  of  many  systemic  aspects  including  the  human  context;  

the   structure   of   the   system;   feedback   and   autocatalytic   loops;   and   what   might  

enable  or  disable  such   loops  (Kay  et  al.,  1999).   In  turn,   this  knowledge  can   inform  

the   community   and   decision   makers   about   the   system’s   possible   future   states   of  

organization;   the   conditions   under   which   these   states   might   occur;   the   tradeoffs  

that   come  with   each   state;   suitable   approaches   that   will   allow   the   community   to  

adapt   to   new   situations;   and,   “perhaps  most   importantly,   the   appropriate   level   of  

confidence  that  the  narrative  deserves;  that  is  our  degree  of  uncertainty”  (Kay  et  al.,  

1999,   p.   729).   Essentially,   narrative   is   used   as   the   basis   of   management   and  

Page 93: Marshall Rachael 201301 MASc

  76  

governance   to   learn,   readjust,   and   adapt   human   activities   while   the   eco-­‐social  

system  evolves  as  one  self-­‐organizing  entity  (Waltner-­‐Toews  et  al.,  2008).    

The   complex   context   in   which   Todos   Santos   sits   demands   a   methodology   both  

capable  of  dealing  with  complexity  and  strongly  considerate  of  context  and  history  

in   all   forms:   social,   cultural,   political,   economic,   and   ecological.   The   beauty   of  

narrative  is  its  ability  to  capture  the  context  of  complex  situations,  often  overlooked  

in   reductionist   approaches,   through   an   exploration   of   history.   Many   systems  

thinkers  have  identified  the  importance  of  history  when  working  with  systems  (see  

Checkland  (2000);  Funtowicz  and  Ravetz  (1993);  Kay  et  al.  (1999);  Waltner-­‐Toews  

et  al.   (2005)).   Indeed,  Checkland  (2000)  has  noted  that  the  contents  of   the  system  

are  the  product  of  the  history  of  the  system  itself.    

The   methodology   used   in   this   study   takes   advantage   of   the   flexible   nature   of  

narratives   by   developing   them   in   semi-­‐structured   interviews   to   create   a   multi-­‐

perspective  system  ‘meta-­‐narrative’  rooted  in  local  context  and  history.  

3.2.2.3 Blended  Assessment  Methods  and  Problem-­‐Solving  Approach  

While  qualitative  data  is  collected  through  narrative,  this  study  employs  an  analysis  

technique  that  blends  quantitative  and  qualitative  assessment  and  is  founded  in  the  

problem-­‐solving   approach   of   classical   engineering.   Qualitative   analysis   is   used   in  

the  amalgamation  of   individual  participant  narratives,   and   relationships   identified  

through  qualitative  data  collection  are  quantified   in  order  to  determine  key  points  

to   intervene   in   the   overarching   system.   The   use   of   quantitative   analysis   was  

employed   to   ensure   leverage   points   that   may   be   counterintuitive   to   the   study  

participants  and  the  researcher  are  identified  (see  section  3.2.4.1  for  details).    

3.2.3 Data  collection  

3.2.3.1 Snowball  and  random  purposeful  sampling  methods  

A   field   trip   to  Todos  Santos  Cuchumatán  was  conducted   in   late  August,  2011.  The  

recruitment   of   community   members   and   waste   management   employees   was  

performed  through  a  combination  of  the  snowball  method  and  random  purposeful  

Page 94: Marshall Rachael 201301 MASc

  77  

sampling  on  an  open  invitation  and  volunteer  basis.  Recruitment  took  place  over  a  

period  of  one  month.  A  snowball  process  was   initiated  through  academic  and  civil  

society   contacts  with   existing   connections   to   the   community.   Random   purposeful  

sampling   recruitment  was   carried  out  over   the   local   radio  and   in   the   town  center  

through   conversation.   The   radio   announcement   and   verbal   open   invitations  

informed   all   potential   participants   of   the   purpose   of   the   study   and   the   roles   and  

responsibilities   involved   with   participation   (e.g.,   participants’   rights,   time  

commitment,   explanation   of   interview   process,   project   outline).   All   interested  

community   members   were   contacted   to   arrange   an   interview.   The   recruited  

participants   comprised   a   geographically   and   demographically   diverse   array   of  

community  members   working   in  many   areas,   including   waste  management,   local  

business,  municipal  government,  education,  and  homemaking.  Sixty  percent  of   the  

participants   were   male   and   forty   percent   were   female.   Twenty   percent   were  

considered   ‘youth’   (i.e.   age  sixteen   to  nineteen).   In   total,   twenty  participants  were  

recruited.    

3.2.3.2 Causal  mapping  

Waltner-­‐Toews   et   al.   (2003)   have   expanded   the   notion   of   narrative   to   include  

diagrams   and  models.   Each  narrative  must   have   a   context   in  which   it   is   told,   and  

such   a   context   is   provided  by  models   that   identify   human   systems   as   subsystems  

nested  within  ecological  systems  (Waltner-­‐Toews  et  al.,  2003).  Models  can  be  useful  

for   integrating   systemic  depictions  by   local  people  with  other  kinds  of  knowledge  

derived   in   other  ways   (Waltner-­‐Toews   et   al.,   2003).   Checkland   (2000)   has   found  

that   creating   systems   models   as   devices   to   explore   a   given   situation   has   lead   to  

insights  time  after  time.  This  study  follows  suit  by  exploring  systemic  SWM  issues  in  

Todos  Santos  through  narrative  model  building.  Specifically,  the  main  tools  used  in  

this  study  are  causal  maps  constructed  at  the  individual  and  community  levels.    

Causal  maps,  also  known  as  cognitive  maps,  are  qualitative  models  of  how  a  given  

system  functions  (Fairweather,  2010;  Özesmi  &  Özesmi,  2004).  These  maps  consist  

of  variables  defined  by  the  mapper  as  important,  which  can  be  physical  quantities  or  

abstract  ideas,  and  the  causal  relationships  between  them  (Özesmi  &  Özesmi,  2004).  

Page 95: Marshall Rachael 201301 MASc

  78  

Thus,   causal   maps   visually   explore   complex   cause-­‐effect   relationships   through  

discussion  of  principal  issues  of  concern,  in-­‐depth  brainstorming,  and  the  pursuit  of  

connections  between  issues  along  multiple  cause-­‐effect  chains.  The  outcome  results  

in  two  benefits:  the  complex  relationships  in  waste  management  are  demonstrated,  

and  root  causes  are  brought  to  light.  Once  identified,  root  causes  can  offer  potential  

leverage  points   that   can   act   as   local   action   entry  points.  Actions  based  on   a   fuller  

understanding  of  systemic  relationships  and  root  causes  increase  the  likelihood  of  a  

sustainable,  long-­‐term  systemic  improvement.    

The   flexible,   user-­‐defined   nature   of   the   causal   maps   also   prohibits   a   standard  

‘cookbook’  approach   from  developing.  Each  causal  map   is  a  unique  representation  

of   perspective;   information   is   presented   as   the   collaborator   prefers.   The   flexible  

nature   of   the   causal  map   is   critical,   as   no   single   tool   or   approach   can   adequately  

accommodate  the  large  diversity  of  perspectives  between  individuals  or  cases.  The  

causal   map   approach   provides   a   robust   initiating   framework   while   allowing   for  

adaptation  in  the  field  to  accommodate  ground-­‐level  realities.    

Participatory   causal   mapping   –   i.e.,   cognitive   mapping   that   shows   variables   and  

causal  relationships  as  defined  by  stakeholders,  not  the  researcher  –  was  first  used  

by   Axelrod   in   1976   (Axelrod,   1976).     A   wide   variety   of   studies   have   used   the  

technique   since   to   examine   decision-­‐making   and   perceptions   of   complex   social  

systems  (see  Özesmi  &  Özesmi,  (2004)  for  a  review  of  such  studies).  Two  categories  

of  causal  maps  exist:  the  first  depicts  relationships  in  an  entirely  qualitative  manner,  

and  the  second  numerically  assesses  the  strength  of  relationships  between  variables  

(Fairweather,  2010).  The  former  is  widely  used  in  group  mapping  exercises  where  

numerous  people  work   together   to   create   one   large  map   for  problem-­‐solving   and  

goal   achievement   purposes   (Fairweather,   2010).   The   latter   is   more   commonly  

employed   in   approaches   that   compare   or   amalgamate   multiple   individual   causal  

maps   for   decision-­‐making   purposes   and   to   ensure   solutions   are   acceptable   to   the  

public  (Fairweather,  2010;  Özesmi  &  Özesmi,  2004).  This  study  employs  the   latter  

form  in  order  to  identify  the  similarities  and  differences  among  the  perspectives  of  

different   stakeholder   groups,   and   to   obtain   the   insights   of   those   who   might   be  

Page 96: Marshall Rachael 201301 MASc

  79  

unable  to  attend  a  group  meeting  or  may  be  less  likely  to  voice  an  opinion  in  a  larger  

group  due  to  power  relationships  among  group  members.  

3.2.3.3 Semi-­‐structured  interview  process    

A  narrative  style,  semi-­‐structured  interview  process  was  used,  which  was  outlined  

in   an   interview   procedure   document   prior   to   data   collection   (see   Appendix   A).  

Interview   prompts   were   based   on   the   themes   presented   in   this   document,   but  

varied   in  order  and  wording.  The  semi-­‐structured,  narrative  style  of   the   interview  

targeted  SWM  issues   in  Todos  Santos,  but  allowed  conversation  to   flow  freely  and  

be   directed   by   participants   to   areas  within   their   own   comfort   zone   and   interests.  

During  the  interview  process,  participants  constructed  individual  causal  maps  from  

the  discussion.  Following  the  methodology  laid  out  by  Özesmi  &  Özesmi  (2004),  the  

causal  mapping  process  began  with  participants  describing  all   the  variables   in   the  

SWM  system,   and   then   identifying   the   causal   connections  between   variables.   This  

construction  process  was  conducted  roughly  according  to  the  methodology  laid  out  

by   Vennix   (1996)   (see   Figure   13).   Throughout   this   process,   the   strength   of  

relationships   between   variables  was  discussed   as   being  weak,  medium,   or   strong.  

These  qualitative  perspectives  were   then   translated   into  numerical   ratings  of  1,  2,  

and  3,  respectively.  Causal  maps  were  reviewed  with  each  participant  at  the  end  of  

the   interview   process   to   ensure   the   information   they   shared   was   graphically  

depicted   according   to   their   perspective.   Interviews   ranged   in   length   from   30  

minutes  to  2  hours.  With  the  consent  of  the  individual  participants,  each  interview  

was  audio-­‐recorded  for  reviewing  purposes.  

 

Page 97: Marshall Rachael 201301 MASc

  80  

 

Figure  13.  Participatory  Model  Building  (adapted  from  Vennix,  1996)  

3.2.4 Data  analysis  

3.2.4.1 Group  maps  

Individual   causal  maps   can   be   augmented   and   additively   superimposed   to   yield   a  

group   causal   map   that  may   be   a   better   representation   of   the   system   in   question  

(Kosko,   1988;   Özesmi   &   Özesmi,   2004).     Larger   groups   of   experts   provide   more  

reliable   and   accurate   information,   and   stakeholder  maps   can   provide   information  

not  captured  at  the  individual  scale  (Özesmi  &  Özesmi,  2004);  in  this  case  the  whole  

is  greater  than  the  sum  of  its  parts.  In  addition,  a  variety  of  multi-­‐stakeholder  maps,  

amalgamated   according   to   existing   social   groups,   can   provide   informative  

comparative   data.     Indeed,   Özesmi   &   Özesmi   (2004,   p.   50)   have   found   that   “by  

examining   the   structure   of   maps   we   can   determine   how   stakeholders   view   the  

Causes Problem Variable Consequences

Step 1: Identify Problem Variable

Step 2: Adding Causes

Step 3: Adding Consequences

Step 4: Identify feedback loops

X

X

X

OO

OO

OO

OO

O O

O O

O

O O

O O

O

X

OO

OO

O O

O O

O

O O

O O

O

Page 98: Marshall Rachael 201301 MASc

  81  

system,   for   example  whether   they  perceive   a   lot   of   forcing   functions   affecting   the  

system  which  are  out  of  their  control,  or  whether  they  see  the  system  as  hierarchical  

or  more   democratic...   If   some   groups   perceive  more   relationships,   they  will   have  

more   options   available   to   change   things.   Thus   these   groups  may   be   a   catalyst   for  

change”.  

In  Todos  Santos,  women  and  youth  generally  play   little-­‐to-­‐no   role   in  SWM  affairs,  

and   it   became   clear   throughout   the   interview   process   that   the   voices   of   these  

marginalized   groups   could   contribute   to   SWM   developments,   and   should   thus   be  

explicitly   heard.   Therefore,   four   synthesized   group   causal   maps   depicting   the  

perspectives  of  men,  women,  youth,  and  the  community  at   large  were  constructed  

after   all   individual   causal   maps   were   completed   and   reviewed   by   participants.  

These  group  maps  allow  for  a  broader,  synthesized  perspective  of  the  SWM  issues  in  

Todos   Santos,   and   for   differentiation   of   perceptions   of   SWM   problems,   causes,  

consequences,   system   structures,   and   community   needs   across   existing   social  

groups.    

3.2.4.2 Leverage  point  analysis  

Leverage  points  are  key  places   to   intervene   in  a  system  where  a  small  change  can  

lead   to   a   large   shift   in   system   behaviour   (Meadows,   2008).   The   complexity   of  

systems   leads   to   surprising   behaviour,   meaning   leverage   points   are   often  

counterintuitive.   Meadows   (2008)   compiled   a   ‘work-­‐in-­‐progress’   list   of   leverage  

points,  from  the  least  to  the  most  effective  at  instigating  systemic  change:  

• Constants  and  parameters  (e.g.  subsidies,  taxes)  

• Buffers    

• Stock-­‐and-­‐flow  structures  (i.e.  physical  arrangement  of  systems)  

• Delays  

• Balancing  feedback  loops    

• Reinforcing  feedback  loops  

• Information  flows  (i.e.  who  does  and  does  not  have  access  to  information)  

• System  rules  (e.g.  constraints,  incentives,  punishments)  

Page 99: Marshall Rachael 201301 MASc

  82  

• Self-­‐organization  (i.e.  the  power  to  add  or  change  system  structure)  

• Goals  (i.e.  the  purpose  or  function  of  the  system)  

• Paradigms    

• Transcending  paradigms  

From   first   to   last,   these   leverage   points   are   also   increasingly   difficult   to   access  

(Meadows,  2008).    

In   this   study,   the   system   structure   is   examined   in   order   to   identify   key   points   to  

intervene   in   the   system.   This   examination   is   carried   out   by   assessing   the   visual  

representation   of   the   system   structure   depicted   in   the   group   maps,   and   by  

numerically   categorizing   the   connectedness   of   variables   in   causal   matrices.  

Additionally,   relative   importance   of   variables,   identified   qualitatively   in   the  

interview   process,   is   quantified   in   the   four   group   maps   by   sizing   the   variables  

according   to   the   number   of   participants   that   expressed   them.   This   was   done   in  

order   to   provide   the   reader   with   a   visual   representation   of   dominant   themes   of  

concern  in  the  community,  and  in  order  to  aid  the  researcher  in  identifying  leverage  

points  that  may  be  able  to   impact   issues  affecting  a  broad  spectrum  of  community  

members.  

3.2.4.2.1 Causal  Matrices  

Building   a   causal  matrix,   also   known   as   an   impact  matrix,   is   a   technique   that   has  

been   used   by   a   variety   of   researchers   to   quantify   and   synthesize   causal  mapping  

data  (see  Fairweather,  2010;  Özesmi  &  Özesmi,  2004;  Scholz  &  Tietje,  2002).  In  this  

technique,   as   described   by   Scholz   and   Tietje   (2002),   the   strength   of   causal  

relationships  between  variables  is  coded  with  a  number  and  entered  into  a  variable  

matrix.   Only   direct   impacts   of   one   variable   on   another   are   considered;   indirect  

causes   are   excluded.   The   impact   of   each   variable   on   the   others   is   entered   and  

summed   in   the   last   column   and   row,   producing   a   number   that   represents   the  

variable’s  activity,  (i.e.  impact  on  all  other  variables),  and  passivity  or  sensitivity  (i.e.  

how  much  other  variables   impact   it)  (Scholz  &  Tietje,  2002).  Table  2  demonstrates  

this  concept.    

Page 100: Marshall Rachael 201301 MASc

  83  

Table  2.  Example  of  a  causal  matrix  (adapted  from  Scholz  &  Tieje,  2002)  

 Variable  A  

Variable  B  

Variable  C  

Variable  D  

Activity  

Variable  A  

 

0   3   0   3  

Variable  B   0  

 

2   2   4  

Variable  C   1   0  

 

0   1  

Variable  D   0   2   0  

 

2  

Passivity   1   2   5   2  

   

In   this   study,   the   strength   of   causal   relationships,   described   by   participants  

qualitatively  throughout  the  interview  process,  was  quantified  into  three  categories:  

1   =   low  strength,   2   =  medium  strength,   and   3   =  high  strength.   Fairweather   (2010)  

indicates  that  using  a  score  of  three  is  effective  at  demonstrating  the  importance  of  

variables   and   connections   without   overwhelming   the   reader.   Qualitative   analysis  

was   used   to   determine   the   strength   of   each   relationship   based   on   importance   as  

indicated   by   study   participants,   and   based   on   the   number   of   participants   that  

discussed  them.  Each  variable  was  entered  into  a  matrix  whereby  the  row  variable  

was   assigned   to   impact   the   column   variable.   Activity   and   passivity   values   were  

calculated  for  each  variable  in  each  of  the  four  group  maps.  

3.2.4.2.2 Causal  Grid  

These  activity  and  passivity  values  are  then  plotted  on  a  causal  grid,  which  identifies  

the   variables   as   active,   ambivalent,   buffering,   or   passive   (see   Figure   14)   (Scholz   &  

Tietje,  2002).    

Page 101: Marshall Rachael 201301 MASc

  84  

 

Figure  14.  Example  of  a  causal  grid  (adapted  from  Scholz  &  Tietje,  2002)  

Active  variables  have  a  strong  influence  on  the  system,  receive  a  low  influence  from  

the  system,  and  therefore  act  as  context  or  control  factors  (e.g.  Variable  A  in  Figure  

14).  Ambivalent   variables   have   a   strong   influence   on   the   system,   receive   a   strong  

influence   from   the   system,   and   are   therefore   highly   embedded   and   considered  

critical  or  sensitive  factors  (e.g.  Variable  B).  Buffering  variables  have  a  low  influence  

on   the   system,   receive  a   low   influence   from   the  system,  and   thus  are   insignificant  

factors   (e.g.   Variable   D).   Finally,   passive   variables   have   a   low   influence   on   the  

system,   receive   a   high   influence   from   the   system,   and   are   therefore   considered  

indicator   factors   (e.g.   Variable   C).   The   lines   separating   the   quadrants   fall   on   the  

mean  activity  and  passivity  values  (Scholz  &  Tietje,  2002).    

3.3 Results  The   group  maps   represent   the   SWM   system   from   the   perspectives   of   each   group  

sampled   (men,  women,   and  youth)   and   from   the  perspective  of   the   community   at  

large.  The  main  focus  was  on  the  importance  of  variables,  indicated  by  the  number  

Active Ambivalent

Buffer Passive

Activity

Sensitivity/Passivity

0 1 2 3 4 5 6

1

2

3

4

5

6

Variable A

Variable B

Variable CVariable D

0

Mean Activity

Mea

n Pa

ssiv

ity

Page 102: Marshall Rachael 201301 MASc

  85  

of  participants  considering  them  to  be  critical  and  by  the  sum  of  the  average  weights  

given   to   arrows   entering   and   leaving   the   variables,   and   the   balancing   and  

reinforcing   feedback   loops   that   make   up   the   system   structure.   A   group   map  

depicting  all  variables  discussed  would  be  difficult  to  display  and  interpret,  as  many  

variables   and   connections  would   have   a   very   low   importance   after   the   averaging  

process.   Therefore,   variables   with   very   low   importance   and   relationships   that  

received   very   low   average   scores   were   eliminated.   However,   some   variables   and  

relationships  on  the  group  maps  were  mentioned  by  only  one  participant,  yet  were  

not  eliminated  in  the  amalgamation  process  due  to  the  importance  of  the  variable  or  

relationship,  as  described  by  the  participant,  or  the  critical  insight  they  supplied,  as  

interpreted  by  the  researcher.   Inevitably,   these  system  components  do  not   feature  

strongly   in   the   system   structure,   but   provide   a   contextual   richness   that   would  

otherwise   be   lost.   Variables   depicted   on   participants’   maps   that   were   worded  

slightly  differently  but  represented  the  same  concept  were  amalgamated.  For  ease  

of   interpretation,   variables   were   organized   to   have   the   minimum   number   of  

crossing  arrows.  

3.3.1 Group  map  1:  Men’s  perspectives  

Figure   15   shows   the   SWM   system   from   the   perspective   of   the   adult   male  

participants.  This  causal  map  demonstrates  the  importance  of  each  variable  and  the  

strength  of  the  connections  between  variables  by  size.  At  the  core  of  the  map  is  the  

problem  variable:  the  adequacy  of  SWM.  This  variable  was  considered  critical  by  all  

participants,  and  has  the  strongest  connections  with  other  factors.    

Page 103: Marshall Rachael 201301 MASc

  86  

 

Figure  15.  Group  map  1:  Men's  perspectives  

Other   top   variables   include   health   and   illness,   economic   income   and   economic  

capital,   environmental   systems   and   degradation,   and   interest   or   understanding  

about   the   waste   issue.   Secondary   variables   include   population   growth,   land  

availability,   education,   funding   for   SWM,   municipal   interest   in   other   things,  

preoccupation   with   other   community   needs,   life   support   systems,   and   people  

throwing  waste  in  the  streets.  

Health

EnvironmentalSystems

Funding forSWM

Plastic Quantity

EconomicCapital

Waste Quantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Environment and Population Loop

Waste Quantity Loop

Mexican Contraband

Need to Rely onPre-Packaged GoodsDiabetes

Influx of JunkFood

Plastic is Cheap

Alcoholism andDomestic Violence

Preoccupation withOther Community

Needs

Generation Rate

Preservation ofCulture and Language

PopulationGrowth

Remittances

Tourism

Proximity ofDump andAbattoir to

Town Center

Locations for People toResponsibly Dispose of

Waste

Understanding of Howto Manage Waste

Time Passing withNo Change

Interest in Cultureand Language

Desire forModern Culture

Increase inConsumption

People ThrowWaste in the

Streets

Well-PreparedPolitical Figures

Municipal (andNational) Organization

Coordination withLocal Businesses

WidespreadParticipation

Accessibility ofEducation

Education

Valuing Womenand Youth

Inclusion of Youth inIdea or Solution

Generation

Generations ofSubsistenceFarmers withLittle Money

Projects that are"Owned" By the

Community

People areMaterialistic

Desire to GetAbove the

Poverty Line

Interest in Projects thatdo not Generate Money

Interest/ Understandingabout the Waste Issue

+

+

+

+

+

+

+

-

+

+

+

+

-

+

+

-

+

-

Municipal Interestin Other Things

-

-

+

+

+

+

+

+

+

LandAvailability

Market forRecyclable Material

Adequacy ofSWM

+

-

+

Expenditures

Degradation

Illness +

+

+

-

+

Life SupportSystems

+

-

Recycling

Proper Location toConstruct SWM

Facilities+

-

-

+

-

MunicipalExpenditures

Municipal BudgetContribution

+

+

+

-

-

+

Influx of Plastic

+

+ +

EconomicIncome

+

+

+

+

-

Reduction Rate

+

+

LEGEND

B

B

B

1 participant

2 participants

3-4 participants5-6 participants

Low

RelationshipStrengths:

Medium

High

Variable Sizing:

7-8 participants

9-10 participants

+

STOCKFlow Rate

Reinforcing Feedback Loop

Balancing Feedback Loop

Other Elements:

Page 104: Marshall Rachael 201301 MASc

  87  

The   structure   of   the   system   is   founded   upon   one   balancing   and   three   reinforcing  

feedback   loops.   The   Health   and   Interest   in   SWM   Loop   is   strong,   while   the   other  

three  loops  are  of  medium  strength.    

While   the   education   variable   does   not   participate   in   a   feedback   loop,   it   greatly  

influences   several   of   them.     Education   influences   the   variable  

‘Interest/Understanding  about  the  Waste  Issue’   through  a   lack  of  waste  education,  

and  a  lack  of  education  about  cleanliness  and  the  importance  of  focusing  on  health.  

It  also   influences  this  variable   through  a  string  of  other  variables   that   impact  how  

much   projects   are   “owned”   by   the   community.   Concerns   about   saving   for   an  

education  preoccupy  the  community  and  draw  away  from  the  waste  issue  through  

‘Preoccupations  with   Other   Community   Needs’.   Education   about   the   community’s  

traditions  impacts  the  level  of  interest  in  the  traditional  language  and  practices.  As  

knowledge  of  and  interest  in  traditions  decreases,  the  community,  and  particularly  

the   youth,   are  more   strongly   influenced   by   and   interested   in  modern   culture   and  

consumerism.   This   in   turn   decreases   the   community’s   interest   in   preserving  

traditions  and  culture,  which  are  large  attractions  for  tourists.  

3.3.2 Men’s  Causal  Grid  

Conducting  a  causal  grid  analysis  resulted  in  the  identification  of  four  variables  that  may  act  as  critical  leverage  points  or  depict  the  context  (active),  four  variables  that  may  act  as  indicators  (passive),  twenty  highly  sensitive  variables  (ambivalent),  and  eighteen  negligible  factors  (buffer)  (see    

Figure  16  and  Table  3).  

Page 105: Marshall Rachael 201301 MASc

  88  

 

Figure  16.  Causal  Grid  1:  Men's  perspectives  

Table  3.  Men's  causal  grid  results  

Active Ambivalent

Buffer Passive

Activity

Sensitivity/Passivity

0 1 2 3 4 5 6

1

2

3

4

5

6

7

7 8 9 10 16 17

8

9

10

11

12

Accessibility ofEducation

Adequacy of SWM

Alcoholism andDomestic Violence

Coordination withLocal Business

Degradation

Desire forModernCulture

Desire to Get AbovePoverty Line

Diabetes

EconomicCapital

Economic Income

Education

EnvironmentalSystems

Funding forSWM

Generations ofSubsistence Farmers

Health

Illness

Inclusion ofYouth

Influx ofJunk Food

Influx of Plastic

Interest in Culture/Language

Interest inProjects that

do no GenerateMoney

Interest/Understanding about the

Waste Issue

Life SupportSystems

Market forRecycled Goods

Mexican Contraband

MunicipalExpenditures

MunicipalOrganization

Need to Rely onPre-Packaged Goods

People are Materialistic

People Throw Wastein the Streets

Plastic is Cheap

Plastic Quantity

Population Growth

Preoccupationwith OtherCommunity

Needs

Preservation of Culture

Projects that are"Owned" by the

Community

Proper Location toConstruct SWM

Facilities Recycling

Remittances

Time Passing withNo Change

Tourism

UnderstandingHow to Manage

Waste

Valuing Womenand Youth

Waste Generation Rate

Waste Quantity

Waste Reduction Rate

Well-Prepared Leaders

WidespreadParticipation

\/\/\/\/

Page 106: Marshall Rachael 201301 MASc

  89  

Active  Variables   Passive  Variables   Ambivalent  Variables  

• Education  • Remittances  • Market  for  

Recyclable  Material  

• Projects  that  are  “Owned”  by  the  Community  

• Widespread  Participation  

• Desire  for  Modern  Culture  

• Tourism  • Plastic  Quantity  

• Adequacy  of  SWM  • Environmental  Systems  • Environmental  

Degradation  • Recycling  • Population  Growth  • Proper  Location  to  

Construct  SWM  Facilities  • Municipal  Expenditures  • Life  Support  Systems  • Economic  Income    • Waste  Generation  Rate  • Influx  of  Plastic    • People  Throw  Waste  in  the  

Streets  • Interest  in  Projects  that  Do  

Not  Generate  Money  • Illness  • Funding  for  SWM  • Economic  Capital  • Waste  Quantity  • Preoccupation  with  Other  

Community  Needs  • Health  • Interest/Understanding  

about  the  Waste  Issue    

3.3.3 Group  map  2:  Women’s  perspectives  

At   the   core   of   the   map   representing   the   adult   female   perspectives   of   the   SWM  

system  (see  Figure  17)  is  again  the  problem  variable,  adequacy  of  SWM.  This  variable  

was  also  considered  critical  by  all  participants,  and  has  the  strongest  relationships  

with  other  variables.  The  other   top  variables  on   the  women’s  map  are  health   and  

education,   followed   by   resource   access,   illness,   environmental   systems   and  

degradation,  and  proximity  of  the  dump  and  abattoir  to  the  town  center.  Secondary  

variables   include   other   decreases   in   wellbeing,   economic   income   and   capital,  

women’s   issues,  women’s  participation,  women  have   to  work  many   jobs  and  have  

little  time,  plastic  influx  and  quantity,  and  people  throw  waste  in  the  streets.    

Page 107: Marshall Rachael 201301 MASc

  90  

 

Figure  17.  Group  map  2:  Women's  perspectives  

3.3.4 Women’s  Causal  Grid  

Six  reinforcing  feedback  loops  make  up  the  foundation  of  the  system  structure,  all  of  

which   are   of  medium   strength   except   the   Environment   and   Health   Loop   and   the  

Contamination  and  Health  Loop.  Women’s  Causal  Grid  

The  results  of  the  women’s  causal  grid  analysis  identifies  variables  that  may  act  as  critical  leverage  points  or  depict  the  context  (active),  six  variables  that  may  act  as  indicators  (passive),  sixteen  variables  that  are  highly  sensitive  

EconomicCapital

PlasticQuantity

EnvironmentalSystems

Health

Quantity ofWaste

Youth and Tradition Loop

Education and Poverty Loop

Contamination and Health Loop

Waste in the Streets Loop Proximity ofDump to theTown Center Environment and Health Loop

Economic Income Loop

Adequacy ofSWM

+

-

Town Aesthetics

Tourism

Preoccupation withOther Issues

++

EconomicIncome

Expenditure

+

Illness

ResourceAccess

+

Other Decreases inWellbeing

-

-

Youth DiscussingAnything of Value

Youth are a DifferentGeneration: Interest in

Consumerism andModernization

Location for People toResponsibly Put Waste

People ThrowWaste in the

Streets

Educated Youth

Poverty

Education

MaintainingTraditions

-

+

-

Generation Rate

Influx ofPlastic

Recycling

-

+

-

+

-

-

Degradation+

+

+

Increasein JunkFood

+

Population Growth

Land Availability

Ability to Survive asSubsistence Farmers

Women Have to WorkMany Jobs and Have

Little Time

-

-

+

+

+

Female Leaders

Patriarchal Society

Women's Issues

Waste as aPolitical Priority

Women'sParticipation

Culture of WasteBurning

-

+

++

+

-

-

-

+

-

-

++

Men Leaving forOther Countries

+

+

+

Preserving Respect

+

-

Increasing Attitudesof "Disposable"

Self-Centeredness

+

+

Contaminationin Schools and

the Home

+

-

LocalBusinessSuccess

The Dumpis Full

+

-

+

+

-

+

LEGEND

B

B

B

1 participant

2 participants

3 participants

4 participants

Low

RelationshipStrengths:

Medium

High

Variable Sizing:

5 participants

6 participants

Corruption

-

STOCK

Reinforcing Feedback Loop

Balancing Feedback Loop

Other Elements:

Flow RateReduction Rate

+

Page 108: Marshall Rachael 201301 MASc

  91  

(ambivalent),  and  sixteen  variables  that  are  negligible  (buffer)  (see  Figure  18  and    

Table  4).    

 

Figure  18.  Causal  grid  2:  Women’s  perspectives  

Active Ambivalent

Buffer Passive

Activity

Sensitivity/Passivity

0 1 2 3 4 5 6

1

2

3

4

5

6

7

7 8 9 10 15 16

8

9

10

11

\/\/\/\/

11

Ability to Survive asSubsistence Farmers

Adequacy of SWM

Contamination inSchools and the Home

Culture ofBurning Waste

Degradation

Economic Capital

Economic Income

Educated Youth

Education

Environmental Systems

FemaleLeaders

Waste Generation Rate

Health

Illness

Increase in Junk Food

Increasing"Disposable" Attitude

Influx of Plastic

Land AvailabilityLocal Business Success

Location for People toResponsibly Put Waste

Maintaining TraditionsMen Leaving forOther Countries

Other Decreases inWellbeing

Patriarchal Society

People ThrowWaste in the

Streets

Plastic Quantity

Population Growth

Poverty

Preoccupationwith Other

Issues

Preserving Respect

Proximity of Dump andAbattoir to Town Center

Quantity ofWaste

Recycling

Resource Access

Self-Centeredness

The Dump is Full

Tourism

TownAesthetics

Waste as aPolitical Priority

Women Work ManyJobs, Have Little Time

Women's Issues

Women'sParticipation

Youth's Interest inConsumerism/ Modern

Culture

Youth DiscussingAnything of Value

Corruption

Page 109: Marshall Rachael 201301 MASc

  92  

 

Table  4.  Women's  causal  grid  results  

Active  Variables   Passive  Variables   Ambivalent  Variables  

• Patriarchal  Society  

• Educated  Youth  • Youth’s  Interest  

in  Consumerism/  Modern  Culture  

• Maintaining  traditions  

• Women’s  Issues    • Men  Leaving  for  

Other  Countries    

• Women’s  Participation  

• Female  Leaders  • Tourism  • Quantity  of  

Waste    • Influx  of  Plastic    • Plastic  Quantity  

• Adequacy  of  SWM  • Education  • Environmental  Systems  • Environmental  

Degradation  • Women  Work  Many  Jobs,  

Have  Little  Time  • Population  Growth  • Economic  Income    • Waste  Generation  Rate  • People  Throw  Waste  in  the  

Streets  • Illness  • Economic  Capital  • Preoccupation  with  Other  

Community  Needs  • Health  • Town  Aesthetics  • Resource  Access  • Contamination  in  Schools  

and  the  Home    

3.3.5 Group  map  3:  Youth’s  perspectives  

The  causal  map  depicting  the  perspectives  of  the  youth  participants  (see  Figure  19)  

is   centered  on   the  adequacy  of   SWM,  which  was  discussed  by  all  participants  and  

has   the   strongest   relationships  with   other   variables.   The   youth   identified   4   other  

top  variables:  environmental  systems,  degradation,  family  wellbeing,  and  education.  

Secondary   variables   include   health   and   illness;   issues   of   women   and   youth;  

contamination;  youth  involvement;  predominantly  youth  throw  waste  in  the  streets;  

an  appropriately  located  sanitary  landfill;  and  economic  income  and  capital.    

Page 110: Marshall Rachael 201301 MASc

  93  

 

Figure  19.  Group  map  3:  Youth's  perspectives  

The   SWM   system   as   depicted   from   the   perspectives   of   youth   contains   three  

reinforcing   feedback   loops   and   two   balancing   feedback   loops.   The   Youth   and  

Culture  Loop  and  Waste  Generation  Loop  are  of  low  strength,  while  all  other  loops  

are  of  medium  strength.    

Waste Quantity

Adequacy ofSWM

-

Generation

Preservation ofCulture and Language

Youth Valuingthe Town

+

+

-

Predominantly YouthThrow Waste in the

Streets

Youth that are Concernedwith Waste or Conscious of

their Impact

YouthInvolvement

Education

Town Aesthetics(Sight and Smell)

EnvironmentalSystems

Degradation

Tourism

FamilyWellbeing

Community Wellbeing

AuthoritiesRegulating Waste

Professional,Educated Leaders

Opportunities forChildren/Youth to Study

+

+

+

+

-

+

+

+

+

+

-

Youth and Culture Loop

+

+

+

Tourism Loop 1

Health and Education Loop

Waste Generation Loop

Contamination-

+

HealthResource Access

Illness+

+

AuthoritiesValuing Youth

+

Corruption

-

EconomicCapital

EconomicIncome

Expenditure

+

+

Youth/Women'sIssues

Alcoholism andDomestic Violence

+

-

Interest in OtherProjects

-

Distant, SanitaryLandfill

LandAvailability

+

+

RecyclingProgram

+

LEGEND

B

B

B

1 participant

2 participants

3 participants

4 participants

Low

RelationshipStrengths:

Medium

High

Variable Sizing:+

STOCK

Reinforcing Feedback Loop

Balancing Feedback Loop

Other Elements:

Flow Rate

Tourism Loop 2

Page 111: Marshall Rachael 201301 MASc

  94  

3.3.6 Youth’s  Causal  Grid  

The   results   of   the   leverage   point   analysis   produced   a   causal   grid   from   the  

perspective  of  youth.  This  grid  identifies  six  variables  the  youth  participants  believe  

may  act  as  critical   leverage  points  or  depict   the  context   (active),  one  variable   that  

may   act   as   an   indicator   (passive),   fourteen   that   are   highly   sensitive   (ambivalent),  

and  twelve  that  are  negligible  (buffer)  (see  Figure  20  and  Table  5).  

 

Figure  20.  Causal  grid  3:  Youth's  Perspectives  

 

Table  5.  Youth's  causal  grid  results  

Active Ambivalent

Buffer Passive

Activity

Sensitivity/Passivity

0 1 2 3 4 5 6

1

2

3

4

5

6

7

7

Town Aesthetics EnvironmentalSystems

Degradation

Tourism

Corruption

AuthoritiesRegulating

Waste

ProfessionalEducated Leaders

Predominantly YouthThrow Waste in the Streets

Youth That areConcerned with

Waste or Consciousof their Impact

YouthInvolvement

AuthoritiesValuing Youth

Waste QuantityWaste Generation

Contamination

Illness

Economic Income

Economic Capital

Expenditure

Education

Youth Valuing The Town

Health

Resource Access

FamilyWellbeing

CommunityWellbeing

Preservation ofCulture andLanguageOpportunities for

Children to Study

\/\/\/

13

Adequacy ofSWM

Interest in OtherProjects

Land Availability

RecyclingProgram

Distant Landfill

8 9 14

Issues of Youth/Women

Page 112: Marshall Rachael 201301 MASc

  95  

Active  Variables   Passive  Variables   Ambivalent  Variables  

• Education  • Issues  of  

Youth/Women  • Land  Availability  • Opportunities  for  

Children  to  Study  • Economic  Capital  

• Family  Wellbeing  

• Adequacy  of  SWM  • Environmental  Systems  • Environmental  

Degradation  • Contamination  • Youth  that  are  Concerned  

with  Waste  or  Conscious  of  their  Impact  

• Tourism  • Preservation  of  Culture  

and  Language  • Resource  Access  • Town  Aesthetics  • Waste  Quantity  • Youth  Involvement  • Authorities  Regulating  

Waste  • Illness  • Health  

 

3.3.7 Group  map  4:  Community  perspectives  

The   three   causal   maps   representing   the   perspectives   of   men,   women   and   youth  

were   amalgamated   into   an   integrated   community   causal   map   (see   Figure   21).  

Adequacy  of  SWM  falls  in  the  center  as  the  most  connected  variable.  The  other  top  

variables   are   health,   environmental   systems   and   degradation,   illness/other  

decreases   in   wellbeing,   and   education.   Secondary   variables   include   economic  

income  and  capital,  the  proximity  of  the  unregulated  dump  and  abattoir  to  the  town  

center,   interest/understanding   about   the   waste   issue,   land   availability,   plastic  

quantity,   recycling,   funding   for   SWM,   tourism,   and   resource   access.   The  

amalgamated   map   has   five   reinforcing   and   two   balancing   feedback   loops.   The  

strength   of   relationships   between   variables   was   determined   by   using   weighted  

averages   of   connections   depicted   by   the   three   perspective   groups.   Therefore,   the  

four  youth  participants  had  less  of  an  impact  on  relationship  strengths  than  the  six  

adult   female   or   ten   adult   male   participants.   However,   many   variables   mentioned  

specifically   in   discussions   with   youth   (and   women)   were   maintained   in   the  

amalgamated  community-­‐wide  map  to  maintain  a  full  spectrum  of  perspectives.    

Page 113: Marshall Rachael 201301 MASc

  96  

   

 

Figure  21.  Group  map  4:  Integrated  community  causal  map  

3.3.8 Community  Causal  Grid  

The   Tourism;   Education   and   Poverty;   Youth   and   Tradition;   and   Environment   and  

Population   loops   are   of   low   strength.   Targeting   these   loops  will   have   a   fairly   low  

Health

EnvironmentalSystems

Funding forSWM

PlasticQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Environment and Population Loop

Waste Quantity Loop

Reliance onPre-Packaged Goods

Influx of JunkFood

Alcoholism andDomestic Violence

Preoccupation withOther Community

Needs

Generation Rate

PopulationGrowth

Remittances

Tourism

Proximity ofUnregulatedDump andAbattoir to

Town Center

Locations for People toResponsibly Dispose of

WasteKnowledge of

How to ManageWaste

Interest in Cultureand Language

Desire forModern Culture

Increase inConsumption

People ThrowWaste in the

Streets

Well-PreparedLeaders

Municipal (andNational) Organization

Coordination withLocal Businesses

Education

Participation ofWomen and Youth

Projects that are"Owned" By the Whole

Community

Interest in Projects thatdo not Generate Money

Interest/ Understandingabout the Waste Issue

+

+

+

+

-

+

+

+

-

Municipal Interestin Other Things

-

-

+

+

LandAvailability

Market forRecyclable Material

Adequacy ofSWM

+

-

+

Expenditures

Degradation

Illness/Decrease inWellbeing

+

+

+

-

+

Life SupportSystems

+

Recycling

Proper Location toConstruct SWM

Facilities

+

-

-

+

-

MunicipalExpenditures

Municipal BudgetContribution

+

+

+

-

-

+

Influx of Plastic

+ +

EconomicIncome

+

+

+

+

Reduction Rate

+

Maintaining Traditions,Culture, and Language

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

Youth DiscussingAnything of Value

-

-

+

Youth and Tradition Loop

Educated Youth

Poverty

-Education and Poverty Loop

Women Have to WorkMany Jobs and Have

Little Time

Female Leaders

Issues of Womenand Youth

-

+

-

-

+

+

+

-

ResourceAccess +

Increasing Attitudesof "disposable"

+

+

+ +

Corruption

-

+

+ +

+

LEGEND

B

B

B

1-3 participants4-6 participants7-9 participants

10-12 participants

Low

RelationshipStrengths:

Medium

High

Variable Sizing:

13-15 participants16-18 participants19-20 participants

TownAesthetics

+-

+

Valuing Womenand Youth

-

+

+

+

+

STOCK

Reinforcing Feedback LoopBalancing Feedback Loop

Other Elements:

FlowRate

Tourism Loop

Page 114: Marshall Rachael 201301 MASc

  97  

impact  on  the  system.  On  the  other  hand,  the  Waste  Quantity;  Waste  in  the  Streets;  

and  Health  and  Interest  in  SWM  loops  are  of  medium  strength.  Targeting  variables  

within   these   loops   will   have   a   larger   impact   on   the   system.   The   leverage   point  

analysis   of   the   community-­‐wide   map   revealed   the   aggregated   community  

perspective   on   which   variables   can   act   as   context   or   critical   leverage   factors  

(active),   which   can   act   as   indicator   factors   (passive),   which   will   likely   act   as  

sensitive   factors   (ambivalent),   and   which   variables   are   negligible   (buffer)   (see  

Figure  22  and  Table  6).    

Page 115: Marshall Rachael 201301 MASc

  98  

 

Figure  22.  Causal  grid  4:  Integrated  community  perspectives  

 

 

 

 

Active Ambivalent

Buffer Passive

Activity

Sensitivity/Passivity

0 1 2 3 4 5 6

1

2

3

4

5

6

7

7 8 9 10 11

8

9

Adequacy of SWM

12 13

Plastic is Cheap

Female Leaders

Increasing Attitudesof "Disposable"

PovertyCorruption

Alcoholism andDomestic Violence

Increase inConsumption

Influx of Junk Food Interest in Cultureand Language

Knowledge of Howto Manage Waste

Need to Rely onPre-Packaged Goods

Waste Reduction Rate

Youth DiscussingAnything of Value

Interest in Projects thatdo not Generate Money

Life Support SystemsMunicipal Expenditures

Projects that are"Owned" By the

Community

Resource Access

Locations for People toResponsibly Dispose of Waste

Desire for Modern Culture

Economic Capital

Educated Youth

Funding forSWM

Market forRecyclable Material

Municipal Organization

PlasticQuantity

Preoccupation withOther Community

Needs

Remittances

Well-Prepared Leaders

Women have to WorkMany Jobs and Have

Little Time

Town Aesthetics

Tourism

Economic IncomeHealth

Issues of Womenand Youth Land Availability

Maintaining Traditions,Culture, and Language Municipal Budget Contribuiton

People ThrowWaste in the

Streets

Proper Location toConstruct SWM Facilities

Proximity of Dumpand Abattoir toTown Center

RecyclingWaste Quantity

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

Valuing Womenand Youth

Participation ofWomen and

Youth

Influx of Plastic

Interest/Understandingabout the Waste

IssueMunicipal Interest in

Other Things

Population Growth

EnvironmentalSystems

WasteGeneration Rate

Illness/ Decrease inWellbeing

EnvironmentalDegradation

Coordination withLocal Businesses

Education

10

Page 116: Marshall Rachael 201301 MASc

  99  

Table  6.  Community-­‐wide  causal  grid  results  

Active  Variables   Passive  Variables   Ambivalent  Variables  

• Education    • Population  

Growth  • Municipal  

Interest  in  Other  Things  

• Maintaining  Traditions,  Culture,  and  Language  

• Issues  of  Women  and  Youth  

• Youth  are  a  Different  Generation:  Interest  in  Consumerism  and  Modern  Culture  

• Valuing  Women  and  Youth  

• Youth  Discussing  Anything  of  Value  

• Tourism  • Funding  for  SWM  • Plastic  Quantity  • Preoccupation  

with  Other  Community  Needs    

• Adequacy  of  SWM  • Health    • Environmental  Systems  • Environmental  

Degradation  • Economic  Capital  • Interest/Understanding  

about  the  Waste  Issue  • Influx  of  Plastic  • Participation  of  Women  

and  Youth  • Proximity  of  Dump  and  

Abattoir  to  Town  Center  • Proper  Location  to  

Construct  SWM  Facilities  • Municipal  Budget  

Contribution  • Recycling  Land  Availability  • Economic  Income    • People  Throw  Waste  in  the  

Streets  • Waste  Quantity    

 

 

3.4 Discussion  The  group  causal  maps  are   local   representations  of  a  complex,  adaptive  eco-­‐social  

system   that   depict   a   variety   of   environmental,   economic,   and   social   factors.   It   is  

important   to  note   that   these   representations  do  no  depict  absolute  characteristics  

and   conditions,   but   rather   those   that   have   been   experienced   or   observed   by  

participants  at  some  point.  Therefore,  the  reader  should  be  aware  that  these  causal  

maps  act  as   tools   to  better  understand   the   functioning  of   the  SWM  system,  not  as  

representations  of  the  definitive,  “true”  structure  and  inner  workings  of  the  system.  

In  this   light,   the  following  sections  explore  the  significance  of  the  systemic  aspects  

identified   through   narrative-­‐based   causal   mapping,   including   the   human   context;  

the  functioning  of  balancing  and  reinforcing  feedback  loops;  the  overall  structure  of  

the   system;   and   what   might   dampen   or   disable   reinforcing   feedback   loops   and  

Page 117: Marshall Rachael 201301 MASc

  100  

therefore  encourage  change.  For  brevity’s  sake,  only  the  feedback  loops  of  particular  

importance  are  discussed;  see  Appendix  B  for  a  full  discussion  of  all  feedback  loops  

in  each  causal  map.    

3.4.1 Men’s  causal  map  and  grid  

The   adult   male   participants   were   primarily   focused   on   economic   aspects   of   the  

SWM   system,   and  much   less   focused   on   family  wellbeing   than   other   groups.   This  

result   is   fairly   unsurprising   as   traditional   gender   roles   that   place   men   in   the  

workplace  and  women  in  the  home  are  prevalent   in  Todos  Santos.  This  result  did,  

however,   provide   information   on   the   human   context   in   which   these   participants  

placed  themselves.    

In   the  men’s  causal  map,   the   feedback   loop  with   the  most  potential   for   instigating  

change   is   the   reinforcing  Health  and   Interest   in  SWM  Loop,  which   is   fairly   strong,  

containing   strength  3   relationships   all   along   its   length.   Leverage  points   impacting  

this   area   of   the   system  may   have   a   greater   impact   on   improving   the   adequacy   of  

SWM  than   leverage  points   targeting  other   feedback   loops.  This   loop  demonstrates  

the  reinforcing  effects  of  poor  health  on  poor  SWM.    Inadequate  SWM  has  caused  the  

dump  and  abattoir  to  be   located  in  close  proximity  to  the  center  of  town.  This  has  

created   a   contaminated   environment   in   which   vectors,   including   household   pets,  

can   live   in   the   dump   and   access   human   spaces.   These   spaces   include   not   only  

households  and  businesses  but  also  the  local  market  where  fresh  meat  and  produce  

are  sold  to  people  living  within  a  wide  radius  of  town.  Resulting  poor  health  causes  

inhabitants  to  be  too  preoccupied  to  deal  with  other  problems.  Due  to  a  poor  health  

system,  medical  attention  comes  at  a  cost.  Therefore,  obtaining  funds  to  pay  medical  

bills  becomes  a  greater  priority,  meaning  poor  health  decreases  people’s  interest  in  

projects   that  will  not  generate  a  source  of   income.  Since  dealing  with  waste   is  not  

seen   as   a   profitable   venture,   people   have   little   interest   in   the   issue.   Low  

understanding   of   what   causes   the   waste   issue   and   what   effects   it   has   on   the  

population  make  it  a  low  priority  for  inhabitants,  who  then  put  little  pressure  on  the  

municipality   to  deal  with   it   relative   to  other   issues   such  as  health,   education,   and  

Page 118: Marshall Rachael 201301 MASc

  101  

construction  projects  that  will  increase  income.  Therefore  the  municipality  has  little  

budget  left  to  contribute  to  SWM  funding,  which  decreases  the  adequacy  of  SWM.    

 The   adult   male   participants   constructed   a   system   structure   containing   only   one  

balancing   loop,   the   Environment   and   Population   Loop,   to   counteract   three  

reinforcing   ones.  While   this   loop   promisingly   appears   to   dampen   the   ill   effects   of  

population  growth  on  SWM  adequacy,   its  strength  is   fairly   low  due  to  the  medium  

strength  connection  between  tourism  and  economic  income.  In  reality,  regardless  of  

increasing   environmental   degradation,   the   population   has   been   increasing   as   a  

result   of   economic   income   from   other   sources,   such   as   remittances   from  migrant  

workers   in   the  United   States.   It   therefore   can   only   act   as   a   true   balancing   loop   if  

tourism  becomes  a  larger  source  of  local  economic  income.    

Since  the  only  balancing  loop  is  considerably  weak,  the  overall  structure  of  the  SWM  

system  as  depicted  by   the   adult  male  participants   is   dominated  by   self-­‐enhancing  

reinforcing   loops   that   are   leading   to   exponential   deterioration   and   could   lead   to  

runaway   collapse   over   time.  Missing   or   very  weak   information   flows,   such   as   the  

effects   of   throwing  waste   in   the   streets   or   low   concern   about   the  waste   issue   on  

commonly  shared  resources  and  human  health,  are  negatively  impacting  the  system.    

The   men’s   causal   grid   identified   four   active   variables   that   may   be   points   to  

intervene   or   simply   contextual   factors:   education,   remittances,   market   for  

recyclable   material,   and   projects   that   are   “owned”   by   the   community.   The   large  

economic   contribution   to   the   community   in   the   form  of   remittances   is   certainly   a  

context  factor  in  which  the  system  sits.  The  lack  of  a  market  for  recyclable  material  

is   also   considered  a   context   factor,   as   it  would  be  quite   challenging   to   target.  The  

remaining   two   active   variables,   education   and   projects   that   are   “owned”   by   the  

community,  were   regarded   as   “solution”   variables   by   participants,   indicating   they  

may  indeed  prove  to  be  excellent  areas  to  target  for  change.    

From  the  men’s  perspectives,  variables   that  are   likely   to  act  as   indicator  variables  

include  widespread  participation  (i.e.  women,  youth,  and  local  businesses)  in  SWM  

Page 119: Marshall Rachael 201301 MASc

  102  

strategies,   a   decreased   desire   for   modern   culture,   increased   tourism,   and   a  

decreased  plastic  quantity  entering  the  waste  stream.    

The  majority  of  variables  that  were  identified  as  highly  embedded  in  the  system  and  

therefore   difficult   to   target   directly   were   unsurprising,   such   as   environmental  

degradation,  health,  and  of  course  the  adequacy  of  SWM.  However,  a  few  variables  

that   many   male   participants   felt   should   be   targeted   directly   ended   up   being   too  

entwined   in   the   system   to   truly   act   as   active   variables   once   the   system   structure  

emerged.   These   variables   included   funding   for   SWM,   economic   capital,   and  

interest/understanding  about  the  SWM  issue.    

3.4.2 Women’s  causal  map  and  grid  

The   adult   female   participants   were   primarily   focused   on   health,   cleanliness,   and  

family  wellbeing.  Again,  traditional  gender  roles  likely  play  a  part  in  these  concerns.  

Women  are  expected  to  be  the  “cleaners”  of  their  realms  (homes,  workspaces,  etc.),  

and  were   therefore  more   concerned   about   contamination   in   the   community   than  

the  majority  of   the  male  participants.  Women  also  expressed  more   concern  about  

other   forms   of   wellbeing,   such   as   spirituality   and   positive   relationships,   than   the  

male  participants,  and  about  the  wellbeing  of  younger  generations.    

The   adult   female   participants   constructed   a   system   structure   containing   only  

reinforcing  loops,  indicating  they  also  perceive  the  overall  structure  of  the  system  to  

be  on  a  deteriorating  spiral  that  may  lead  to  runaway  collapse.    

Three   feedback   loops   can   potentially   be   targeted   for   interventions   from   the  

women’s   perspectives.   The   first   is   the   Environment   and   Health   Loop,   which   is   a  

reinforcing  feedback  loop  that  demonstrates  how  environmental  degradation,  such  

as   the   pollution   of   water,   soil,   and   air,   impacts   health   by   increasing   illness   and  

decreasing   other   forms   of   wellbeing.   This   includes   spiritual   wellbeing,   which   is  

founded  on  a  strong  connection  to  nature  for  many  Todos  Santeros,  and  a  sense  of  

community  wellbeing.  As  inhabitants  become  preoccupied  with  their  own  health  or  

the  health  of  their  families,  they  have  less  time  and  resources  to  tackle  the  adequacy  

of   SWM.  This   loop   is   connected  by  high-­‐strength   relationships  all   along   its   length.  

Page 120: Marshall Rachael 201301 MASc

  103  

However,  all  variables  within  this  feedback  loop  are  highly  embedded  in  the  system,  

and  would  be  difficult   to   target   directly.   This   loop   should   therefore  be  dampened  

indirectly  by  targeting  variables  that  are  not  in  the  loop  but  have  a  strong  influence  

on  it.    

The   second   loop   that   can   be   targeted   for   systemic   interventions   is   the  

Contamination  and  Health  Loop,  which  shows  how  the  proximity  of   the  dump  and  

abattoir  to  the  town  center  causes  contamination  in  the  home  and  in  schools,  which  

increases   illness,  and  has  a  similar  detracting  effect  on  the  adequacy  of  SWM.  This  

loop   shares   many   variables   with   the   Environment   and   Health   Loop,   and   must  

therefore  also  be  targeted  indirectly.  

The   medium   strength   Education   and   Poverty   Loop   is   the   third   loop   ideal   for  

interventions.  While  it  is  not  as  strong  as  the  others,  it  feeds  into  another  reinforcing  

loop  and  also  directly  impacts  the  adequacy  of  SWM  through  education.  

It   is   interesting   to   note   that   while   the  male   participants   saw   the   preservation   of  

culture   as   something   of   emotional   value   and   as   a   means   to   generate   income   via  

tourism,   the   female   participants   perceived   it   to   impact   the   consumption   of   items  

resulting  in  plastic  waste,  which  the  adult  female  participants  felt  was  a  variable  of  

relatively  high  concern.  Female  participants  may  have  identified  more  connections  

with   the   behaviour   of   youth   due   to   the   fact   that   women   act   as   caregivers   and  

therefore   interact   more   with   youth.   The   women’s   causal   grid   identified   two  

variables  that  are  distinctly  contextual  –  a  patriarchal  society,  and  men  leaving  for  

other  countries  for  work.  Youth’s  interest  in  consumerism  and  modern  culture  and  

women’s  issues  may  be  potential  leverage  points,  although  likely  difficult  to  target,  

and  may   be   contextual   elements   rather   than   action   entry   points.   Educated   youth  

and   maintaining   traditions,   however,   seem   easier   to   access   as   leverage   points.  

Interestingly  enough,  education  is  classified  as  an  ambivalent  variable,  yet  educated  

youth   falls   in   the   active   category.   Again,   female   participants   believe   youth   to   be  

more  strongly  connected  to  the  SWM  system  than  male  participants,  viewing  them  

as  agents  of  change.    

Page 121: Marshall Rachael 201301 MASc

  104  

It   is   also   interesting   that   women’s   participation,   along   with   female   leaders,   who  

women  believe  would  focus  more  on  SWM  due  to  their  concerns  about  cleanliness  

and  health,   fall   into   the   indicator   category   instead  of   the  active   category.  Tourism  

and  the  quantity  of  plastic  in  the  waste  stream  fall  into  the  passive  category,  as  they  

did  in  the  men’s  analysis.  Women  also  perceive  the  quantity  of  waste  overall  to  be  

an   indicator  variable.  Variables   identified  as  ambivalent  by  the   female  group  were  

similar   to   those   identified   as   such  by   the  male   group.  However,   plastic   influx  was  

seen  to  have  less  influence  on  the  system  in  the  women’s  causal  map  than  it  did  in  

the  men’s.    

3.4.3 Youth’s  causal  map  and  grid  

The  youth  perspective  differed  the  most  from  the  other  two  sampled  perspectives.  

The   youth   participants   were   primarily   focused   on   family   wellbeing.   Surprisingly,  

more   participants   identified   this   as   a   priority   than   health.   New   insights   were  

predominantly  about  youth  behaviour.  Particularly,  the  strong  connection  between  

education  and  youth  behaviour  was  of  particular  value.  Participants  expressed  that  

youth  without  education  act   in  ways  that  negatively  impact  the  system,  such  as  by  

throwing  waste  in  the  streets  or  being  strongly  focused  on  consumerism,  and  those  

with  education  positively  impact  the  system  by  avoiding  these  behaviours  and  often  

by   planning   for   higher   education   to   return   to   help   the   town.   However,   all   youth  

participants   had   been   fortunate   enough   to   attend   school,   and   therefore   this  

perspective  may  be  biased.    

The   loop  with  the  most  potential   for   instigating  changes   in  the  SWM  system  is  the  

reinforcing   Health   and   Education   Loop,   which   depicts   how   decreases   in   health  

caused   by   poor   SWM   decrease   education   rates,   which   negatively   impacts   SWM.  

Contamination  caused  by  poor  SWM  increases  illness,  which  prevents  children  from  

going  to  school  due  to  their  own  illness  or  because  more  economic  resources  must  

be   spent   on   health.   This   decreases   the   number   of   educated   children   and   youth,  

preventing   them   from   learning   about   the   waste   issue,   and   therefore   developing  

concern   about   it   and   realizing   the   impacts   of   their   actions.     This   decreases   youth  

involvement  in  the  waste  issue  and  increases  the  number  of  people,  predominantly  

Page 122: Marshall Rachael 201301 MASc

  105  

youth,   who   throw  waste   in   the   streets,   further   decreasing   the   adequacy   of   SWM.  

This   loop   is   of   medium   strength   due   to   the   connections   between   health,  

opportunities  for  children  to  study,  and  education.  However,  not  all  variables  within  

the   loop   are   ambivalent,   and   therefore   it   has   some   promising   places   for  

intervention.  The  focus  of  this  loop  is  on  the  role  of  youth  in  SWM  practices,  which  

indicates   that   the   youth  participant   group,   just   like   the  women  participant   group,  

views  youth  as  agents  of  change.  Youth  similarly  believe  the  preservation  of  culture  

and   language   has   an   impact   on  waste   generation   rates,   just   like   the   adult   female  

participants.    

While   the   overall   system   structure   as   depicted   by   the   youth   participant   group  

contains  two  balancing  loops  and  three  reinforcing  loops,  both  balancing  loops  have  

less  strength  and  therefore  the  system  is  perceived  to  be  dominated  by  reinforcing  

feedback  loops  that  are  causing  system  deterioration,  as  perceived  by  the  other  two  

participant  groups.  

The   causal   grid   analysis   identified   land   availability   as   a   distinct   contextual   factor.  

Economic   capital   within   the   community   and   issues   of   women   and   youth  may   be  

action   entry   points   but   are   most   likely   too   difficult   to   access.   Education   and  

opportunities   for   children   to   study   are   more   likely   to   be   potential   action   entry  

points.  Interestingly,  the  only  indicator  variable  identified  by  the  youth  participants  

was   family   wellbeing.   Youth   may   have   identified   less   variables,   found   more  

variables  to  be  negligible,  or  found  variables  identified  as  passive  by  other  groups  to  

have   a   stronger   impact   on   the   system.   Variables   identified   as   passive   by   other  

groups   yet   ambivalent   by   youth   include:   widespread   participation   (of   youth,  

women,   etc.),   tourism,   and   waste   quantity   (this   variable   was   only   identified   as  

passive  by  the  female  participants).    

3.4.4 Community-­‐wide  causal  map  and  grid  

The   overall   structure   of   the   community-­‐wide   map   is   dominated   by   reinforcing  

feedback   loops   that   cause   the  SWM  system   to  deteriorate.    While   the   community-­‐

wide  map  identified  the  weighted  average  perspectives  on  system  structure  and  on  

Page 123: Marshall Rachael 201301 MASc

  106  

which   variables   can   be   considered   active,   passive,   ambivalent,   and   buffering,   it   is  

important   to   note   that   common   ground   can   be   a   good   starting   place   for   action.  

Conflicting  perspectives  on  aggregated  potential  leverage  points  may  cause  them  to  

fail  at  intervening  in  the  system  successfully.  Therefore,  it   is  important  to  consider  

the  leverage  points  that  are  common  amongst  at  least  two  groups.  A  Venn  Diagram  

representing   the   overlapping   group   perspectives   is   depicted   in   Figure   23.   Active  

variables   are   represented   in   yellow,   passive   in   green,   and   ambivalent   in   blue.  

Variables   that   are   considered   context   factors   or   fall   in   conflicting   causal   grid  

quadrants  amongst  all  three  perspectives  are  not  included.      

 

 

Page 124: Marshall Rachael 201301 MASc

  107  

 

Figure  23.  Overlapping  perspectives  

It  appears  that  education  may  be  a  readily  targetable  leverage  point  with  potential  

to  make  significant  changes  in  the  system.    

Returning   to   the   twelve   places   to   intervene   in   a   system   outlined   by   Meadows  

(2008),  leverage  points  that  can  have  a  fairly  significant  impact  on  a  system  yet  are  

more  accessible  than  some  of  the  upper  level  leverage  points  include:    

• Balancing  feedback  loops    

• Reinforcing  feedback  loops  

Women Youth

Men

Education

Issues of Womenand Youth

Opportunities forChildren to Study

Family Wellbeing

Adequacy of SWM

AuthoritiesRegulating Waste

EnvironmentalDegradation

EnvironmentalSystems

Health

Illness

ResourceAccess

Town Aesthetics

Waste Quantity

Youth's Interest inConsumerism andModern Culture

Female Leaders

PlasticQuantity Widespread

Participation

Youth Participation

Youth Interested inWaste/Concerned with

Impact

Contaminationin Schools and

the Home

EconomicCapital

EconomicIncome

PopulationGrowth

Preoccupation withOther Issues

WasteGeneration Rate

Women Work ManyJobs, Have Little Time

Projects that are"Owned' by the

Community

Market forRecyclable Material

Desire forModern Culture Funding for SWM

Interest in Projects thatDo Not Generate Money

Interest/Understandingabout the Waste IssueMunicipal

Expenditures

People ThrowWaste in the

Streets

Recycling

Tourism

Active Variables

Passive variables

Ambivalent variables

Legend

Page 125: Marshall Rachael 201301 MASc

  108  

• Information  flows    

It  is  clear  that  interfering  in  the  balancing  feedback  loops  of  the  SWM  system,  which  

are  relatively  weak  as   it   is,  will  have   less   impact   than  attempting  to  slow  down  or  

alter  the  reinforcing  feedback  loops  that  dominate  the  system.  Education,  the  least  

conflicting   active   variable,   is   part   of   a   medium-­‐strength   reinforcing   loop   in   the  

community-­‐wide   map.   However,   it   also   directly   influences   factors   in   two   other  

reinforcing   loops,  and   influences  one  other  reinforcing   loop   indirectly   through   the  

variable   Educated   Youth.   Solid   waste   education   can   also   strengthen   weak  

information  flows.    In  particular,  targeting  the  education  of  youth  may  address  other  

issues  raised  in  the  causal  mapping  process,  as  two  groups  identified  this  group  to  

be  agents  of  change.    Other  active  variables  identified  in  the  mapping  process  should  

also  be  further  investigated  as  potential  points  of  entry  for  local  action.    

Campaigns   focused  on  educational  measures  have  often  been  criticized   for   raising  

awareness   but   triggering   little   or   no   action   (Galli   et   al.,   2011;   Mayo   et   al.,   2006;  

McKenzie-­‐Mohr  &  Smith,  1999).  SWM  projects  have  specifically  been  criticized   for  

lacking  educational  measures  before  and  during  the  operation  of  the  service,  and  for  

lacking   educational   material   that   is   suited   to   the   interests   or   priorities   of   the  

community  (Anschütz,  1996).  Even  when  public  education  is  properly  targeted  and  

conducted,   on   its   own   it   is   not   enough;   in  many   cases   the   larger   system  does  not  

support   the   application   of   knowledge   taught   in   public   education   programs.  While  

public  education  can  play  a  critical  role  in  facilitating  action,  it  cannot  spark  change  

unless  the  barriers  to  applying  new  knowledge  are  removed  and  the  benefits  of  its  

application   outweigh   the   benefits   of   other   activities   (McKenzie-­‐Mohr   &   Smith,  

1999).   It   is   in   such   instances   that   a   systemic   perspective   is   critical;   perceived  

barriers   to   successful   waste   management   may   lead   to   projects   that   exacerbate  

current   problems   or   create   new   ones   if   the   structure   of   the   wider   system   is   not  

taken   into  account.  This  has  already  been  experienced   in  Todos  Santos,  where   the  

European  Union   funded  the  construction  of  a  wastewater   treatment  plant   in  2007  

because  households  had  begun  installing  flush  toilets  with  tubing  leading  directly  to  

the   Limon  River   over   the  previous   five   years.  However,   the   established   system  of  

Page 126: Marshall Rachael 201301 MASc

  109  

wastewater  management  in  the  community  (and  likely  others)  did  not  support  the  

use  of  such  a  plant,  and  it  was  never  used.  Additionally,  the  construction  of  the  plant  

encouraged   further   installation   of   flush   toilets,   exacerbating   the   current   situation  

and   contributing   to   the   creation   of   a   public   health   issue.   Without   a   systemic  

approach,   the   European   Union’s   wastewater   project   failed   to   address   the   root  

causes  of  poor  wastewater  management  in  the  community.    

It   is   for  such  reasons   that  education,  which  has  been   identified   through  a  systems  

analysis  as  the  most  readily  targetable  leverage  point,  should  still  be  a  strong  focus  

in  potential  SWM  solutions  despite  its  inability  to  foster  action  on  its  own.  However,  

while  solid  waste   education   is  a  necessary  element  of  all  SWM  programs,   the  poor  

state  of  the  local  public  education  system  plays  a  strong  role  in  the  SWM  system  and  

is  a  central  concern  for  the  community.  Indeed,  education  is  a  much  higher  priority  

than   waste   management   for   the   municipal   authorities   and   the   majority   of   the  

community.   Therefore,   solutions   targeting   education  must   not   only   focus   on   solid  

waste  awareness,  but  on   long-­‐term   improvements   to   the  public  education  system.  

Solutions  should  also  take  on  a  ‘learning  by  doing’  approach,  targeting  other  aspects  

of  the  solid  waste  system  as  a  means  for  learning,  and  ensuring  that  the  capacity  of  

the  system  to  support  new  SWM  activities   is  developed  as   they  are   learned.  Other  

leverage   points   identified   in   this   study   must   also   be   targeted   directly   to   further  

ensure   that   the   application   of   solid   waste   knowledge   is   supported   by   the   larger  

system.    

3.4.5 Successes  and  limitations  

On  the  whole,  the  causal  mapping  approach  was  successful.  Participants  were  open-­‐

minded   to   the  mapping   format  of   the   interviews,   even   though  none  were   familiar  

with  it.  Even  illiterate  participants,  while  not  able  to  write  down  their  own  variables,  

still   generated   them   and   actively   participated   in   organizing   and   structuring   the  

system,   and   drawing   in   relationships   between   variables.   The   technique   was   also  

successful  because  of  the  flexible  nature  of  the  causal  mapping  concept.  While  some  

participants   wished   to   arrange   their   maps   according   to   the   general   guidelines  

suggested  by  the  researcher,  most  preferred  to  arrange  them  in  their  own  individual  

Page 127: Marshall Rachael 201301 MASc

  110  

manners.   These   arrangements   included   groupings   according   to   themes,   placing  

variables  vertically   from  most  to   least   important,  structuring  them  into  categories,  

such  as   ‘problems’,   ‘solutions’,   ‘desired  outcomes’,  etc.  This  allowed  participants  to  

explore  ideas  and  display  information  in  a  way  that  made  sense  to  them.  While  this  

meant   that   virtually   no   individual   maps   resembled   one   another,   the   information  

they  provided  allowed  them  to  be  merged  easily.    

The   limitations   of   the   technique   were   predominantly   related   to   time.   Additional  

information  would   surely   have   surfaced   if   the   participants   had   had  more   time   to  

develop  their  models.  Additionally,  the  remoteness  of  the  community  meant  it  was  

essentially   impossible   to   re-­‐contact   these   individuals   to   further   explore   certain  

elements  without  returning  to  Todos  Santos  and  knocking  on  their  doors.      The  fact  

that   the   majority   of   participants   were   illiterate   was   a   minor   limitation,   but   the  

flexible,  visual  nature  of  the  causal  map  allowed  this  challenge  to  be  overcome  quite  

readily.  Due  to  the  fact  that  this  is  an  indigenous  community  that  has  had  plenty  of  

exposure   to   racism   and   has   developed   a   general   mistrust   in   outsiders   due   to   its  

tumultuous   past,  working   as   a   researcher   from   another   country,   particularly   as   a  

Caucasian  researcher,  was  certainly  a  limitation.  While  the  causal  mapping  process  

did  indeed  produce  some  insightful  results,  having  time  to  develop  as  much  of  sense  

of  trust  as  would  be  possible  with  the  participants  could  have  improved  the  results  

and  exposed  new  insights  about  the  SWM  system.    

It  should  be  noted  that  while  other  researchers  have  identified  a  lack  of  accuracy  in  

“lay   person”   causal   maps   (e.g.   see   Fairweather   (2010)),   this   is   not   considered   a  

limitation  here.  The  purpose  of  the  narrative-­‐based  participatory  mapping  approach  

was  as  much  about  the  process  as  the  results;  it  was  not  simply  to  glean  information  

from  the  participants  in  a  one-­‐way  interaction.  Indeed,  the  mapping  approach  was  a  

process  of  two-­‐way  learning  and  sharing  in  which  the  participant  was  encouraged  to  

explore   connections   they   already   knew   but   hadn’t   yet   mentally   solidified   or  

synthesized,   and   the   researcher   developed   new   perspectives   and   a   better  

understanding   of   the   local   SWM   system.   This   exploration   process   initiated   new  

thinking  and  discussion  among  community  members.  While  the  analyses  have  led  to  

Page 128: Marshall Rachael 201301 MASc

  111  

insights  that  may  not  have  been  evident  at  the  individual  mapping  scale,  engaging  a  

wide   range   of   participants,   particularly   those  who   do   not   currently   participate   in  

SWM  decision-­‐making,  acted  as  a  first-­‐step  in  initiating  inclusive  local  action.    

This   study   demonstrated   how   a   narrative-­‐based   participatory   mapping   approach  

can   lay   the  groundwork   for   the  exploration  of   locally  appropriate  solutions.  While  

the  literature  previously  identified  limited  SWM  funding,  a  lack  of  sanitary  landfills,  

a   lack   of   public   awareness,   an   increase   in   illegal   dumping,   and   an   increase   in  

littering  as  the  principal  SWM  challenges  in  Guatemala,  the  causal  mapping  process  

in   Todos   Santos   identified   these   factors   as   ambivalent   or   negligible   outputs   of  

system  behaviour,  not  as  root  causes  or  key  points  to   intervene  in  the  system.  For  

example,   simply   pumping  more   funding   into   SWM,   an   idea   that  was   considered   a  

‘solution’  even  by  study  participants  prior  to  the  emergence  of  the  system  structure,  

cannot  address  the  plethora  of  social  and  environmental  factors  that  deeply  impact  

the  system.  Therefore,  it  is  easy  to  see  how  ‘solutions’  are  more  likely  to  fail  without  

an  assessment  of  the  system  structure  and  behaviour,  and  the  careful  identification  

of   indicators   and   goals.   Indeed,   Meadows   (2008,   p.   193)   points   out   that   “if   the  

goals...  are  defined  inaccurately  or  incompletely,  the  system  may  obediently  work  to  

produce  a  result  that  is  not  really  intended  or  wanted...  Specify  indicators  and  goals  

that  reflect  the  real  welfare  of  the  system.  Be  especially  careful  not  to  confuse  effort  

with  result  or  you  will  end  up  with  a  system  that  is  producing  effort,  not  result.”  The  

methodology   used   in   this   study   can   also   provide   insight   about   potential   areas   in  

conflict,  an  important  element  to  consider  in  any  management  process.    

3.5 Conclusion  SWM   in   Guatemala   is   an   issue   of   critical   concern,   threatening   everything   from  

fragile   environmental   systems,   essential   natural   resources   and   human   health   to  

economic   potential.   In   Todos   Santos   Cuchumatán,   poor   SWM   has   put   complex  

strains  on   the   community   that   call   for   a   context-­‐specific   approach   that   sits  within  

the   jurisdiction   of   post-­‐normal   science   and   is   founded   upon   systems   thinking.  

Narrative-­‐based  participatory  mapping  identified  principal  areas  of  concern  within  

the   community   from   the   perspectives   of   men,   women,   and   youth.   The   causal  

Page 129: Marshall Rachael 201301 MASc

  112  

mapping   approach  provided   information   on   the   system   structure,   feedback   loops,  

potential  leverage  points  at  which  to  intervene  in  the  system,  potential  indicators  of  

success,   and   critically   sensitive   factors   to   be   aware   of.   This   laid   the   groundwork  

needed  to  identify  ‘best’  solutions  that  are  locally  appropriate.  This  narrative-­‐based  

participatory  mapping  approach  has  the  potential  to  make  important  contributions  

to   approaches   addressing   the   challenges   of   implementing   and   organizing   SWM  

processes,  and  their  long-­‐term  success.    

 

   

Page 130: Marshall Rachael 201301 MASc

  113  

3.6 References  Ancona,   C.   et   al.   (2010).   Integrated  environmental  and  health   impact  assessment  of  

waste  management  in  Lazio  (Italy):  INTARESE.  

Axelrod.   (1976).   Structure   of   Decision:   The   Cognitive   Maps   of   Political   Elites.  Princeton,  NJ:  Princeton  University  Press.  

Berkes,   F.,   &   Folke,   C.   (1998).   Linking   social   and   ecological   systems:   Management  practices   and   social   mechanisms   for   building   resilience.   Cambridge,   U.K.:  Cambridge  University  Press.  

Bhuiyan,   S.   H.   (2010).   A   crisis   in   governance:   Urban   solid   waste   management   in  Bangladesh.  Habitat  international,  34(1),  125-­‐133.    

BNAmericas.   (2011).   Govt   creates   national   waste   management   strategy,   Online  report,  Business  News  Americas.    

Checkland,   P.   (2000).   Soft   Systems   Methodology:   A   Thirty   Year   Retrospective.  Systems  Research  and  Behavioral  Science,  17(S1),  S11-­‐S58.    

Coffey,   M.,   &   Coad,   A.   (2010).   Collection   of   Municipal   Solid   Waste   in   Developing  Countries.  Malta:  UN-­‐HABITAT.  

Cointreau,   S.   (1982).   Environmental   management   of   urban   solid   wastes   in  developing   countries:   A   project   guide   Urban   Development   Technical   Paper  Number  5.  Washington,  DC:  World  Bank.  

Cook,   D.   M.,   Swanson,   R.   C.,   Eggett,   D.   L.,   &   Booth,   G.   M.   (2009).   A   retrospective  analysis  of  prevalence  of  gastrointestinal  parasites  among  school  children  in  the  Palajunoj  Valley  of  Guatemala.  Journal  of  Health,  Population  and  Nutrition,  27(1),  31-­‐40.    

Da   Zhu,   P.,   Asnani,   H.,   Zurbrugg,   C.,   Anapolsky,   S.,   &   Mani,   S.   (2008).   Improving  municipal  solid  waste  management  in  India:  A  source  book  for  Policy  Makers  and  Practitioners.  Washington,  DC:  World  Bank.  

Dijkema,  G.  P.   J.,  Reuter,  M.  A.,  &  Verhoef,  E.  V.   (2000).  A  new  paradigm   for  waste  management.  Waste  Management,  20(8),  633-­‐638.    

Duru,  R.  C.  (1981).  Technological  growth  and  ecological  crisis:  the  Nigerian  example.  The  Science  of  the  Total  Environment,  17(3),  243-­‐256.    

Fairweather,   J.   (2010).   Farmer   models   of   socio-­‐ecologic   systems:   Application   of  causal  mapping  across  multiple   locations.  Ecological  Modelling,  221(3),  555-­‐562.    

Funtowics,   S.   O.,   &   Ravetz,   J.   R.   (1993).   Science   for   the   post-­‐normal   age.   Futures,  25(7),  739-­‐755.    

Page 131: Marshall Rachael 201301 MASc

  114  

Galli,   A.,   Wiedmann,   T.,   Ercin,   E.,   Knoblauch,   D.,   Ewing,   B.,   &   Giljum,   S.   (2011).  Integrating   ecological,   carbon,   and   water   footprint:   Defining   the   "Footprint  Family"   and   its   application   in   tracking   human   pressure   on   the   planet:   One  Planet  Economy  Network.  

Halla,  F.,  &  Majani,  B.  (1999).  Innovative  Ways  for  Solid  Waste  Management  in  Dar-­‐Es-­‐Salaam:   Toward   Stakeholder   Partnerships.   Habitat   international,   23(3),  351-­‐361.    

Henry,   R.   K.,   Yongsheng,   Z.,   &   Jun,   D.   (2006).   Municipal   solid   waste  management  challenges   in  developing  countries-­‐-­‐Kenyan  case  study.  Waste  Management,  26(1),  92-­‐100.  doi:  10.1016/j.wasman.2005.03.007  

Iwerks,  L.  (Writer).  (2006).  Recycled  Life.  In  M.  Glad  (Producer):  Leslie-­‐Glad.  

Jha,  A.  K.,  Singh,  G.  P.,  Singh,  G.  P.,  &  Gupta,  P.  K.  (2011).  Sustainable  municipal  solid  waste  management  in  low  income  group  of  cities:  a  review.  Tropical  Ecology,  52(1),  123-­‐131.    

Kay,   J.   J.,   Regier,  H.  A.,   Boyle,  M.,  &  Francis,  G.   (1999).  An   ecosystem  approach   for  sustainability:   addressing   the   challenge   of   complexity.   Futures,   31(7),   721-­‐742.    

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

Kosko,  B.  (1988).  Hidden  patterns  in  combined  and  adaptive  knowledge  networks.  International  Journal  of  Approximate  Reasoning,  2(4),  377-­‐393.    

Mantilla,  J.  E.  V.  (2007).  Proyecto  cuente  con  ambiente  primer  informe  sobre  desechos  solidos  (1  ed.):  MARN,  Universidad  Rafael  Landivar.  

Martuzzi,  M.,  Mitis,  F.,  &  Forastiere,  F.  (2010).  Inequalities,  inequities,  environmental  justice   in  waste  management  and  health.  European  Journal  of  Public  Health,  20(1),  21-­‐26.    

Mayo,  E.  et  al.  (2006).  I  will  if  you  will:  Towards  sustainable  consumption.:  National  Consumption  Roundtable  Sustainable  Development  Commission.  

McKenzie-­‐Mohr,   D.,   &   Smith,   W.   (1999).   Fostering   Sustainable   Behavior:   An  Introduction   to   Community-­‐Based   Social   Marketing.   Gabriola   Island   (B.C.):  New  Society  Publishers.  

Meadows,   D.   H.   (2008).   Thinking   in   systems:   A   primer.   London;   Sterling,   VA:  Earthscan.  

Memon,   M.   A.   (2010).   Integrated   solid   waste   management   based   on   the   3R  approach.  Journal  of  Material  Cycles  and  Waste  Management,  12(1),  30-­‐40.    

Page 132: Marshall Rachael 201301 MASc

  115  

Muttamara,   S.,   &   Leong,   S.   T.   (1997).   Environmental   Monitoring   and   Impact  Assessment   of   a   Solid   Waste   Disposal   Site.   Environmental   Monitoring   and  Assessment,  48(1),  1-­‐24.    

Özesmi,  U.,  &  Özesmi,  S.  L.  (2004).  Ecological  models  based  on  people’s  knowledge:  a  multi-­‐step  fuzzy  cognitive  mapping  approach.  Ecological  Modelling,  176(1-­‐2),  43-­‐64.    

Pan  American  Health  Organization.   (1998).  Health   in   the  Americas   (Vol.  2):  World  Health  Organization.  

Pan  American  Health  Organization.   (2007).  Health   in   the  Americas   (Vol.  2):  World  Health  Organization.  

Parkes,  M.  W.,  Morrison,  K.  E.,  Bunch,  M.  J.,  Hallström,  L.  K.,  Neudoerffer,  C.,  Venema,  H.  D.,  &  Waltner-­‐Toews,  D.  (2010).  Towards  integrated  governance  for  water,  health   and   social-­‐ecological   systems:   The   watershed   governance   prism.  Global  Environmental  Change,  20,  693-­‐704.    

Patton,   M.   Q.   (2002).   Qualitative   research   and   evaluation   methods   (3rd   ed.).  Thousand  Oaks,  Calif.:  Sage  Publications.  

Pfammater,   R.,   &   Schertenleib,   R.   (1996).   Non-­‐Governmental   Refuse   Collection   in  Low-­‐  Income  Urban  Areas:  Lessons  Learned  from  Selected  Schemes  in  Asia,  Africa  and  Latin  America.  Duebendorf,  Switzerland.  

Robbins,   P.   T.   (2007).   The   reflexive   engineer:   perceptions   of   integrated  development.  Journal  of  International  Development,  19(1),  99-­‐110.    

Scholz,   R.   W.,   &   Tietje,   O.   (2002).   Embedded   case   study   methods   :   integrating  quantitative   and   qualitative   knowledge.   Thousand   Oaks,   Calif.:   Sage  Publications.  

Schübeler,   P.   (1996).   Conceptual   Framework   for   Municipal   Solid   Waste  Management   in  Low-­‐Income  Countries.   In  K.  Wehrle  &  J.  Christen  (Eds.).  St.  Gallen   Switzerland:   UNDP/UNCHS/World   Bank/SDC   Collaborative  Programme   on   Municipal   Solid   Waste   Management   in   Low-­‐Income  Countries.  

Shukla,  S.  R.,  Akolkar,  A.  B.,  Bhide,  A.  D.,  Dhussa,  A.  K.,  Varshney,  A.  K.,  Acharya,  D.  B.,  .  .   .   Mazumdar,   N.   B.   (2000).   Solid   Waste   Management   Manual.   New   Delhi:  Government  of  India.  

Simon,   A.   M.   (2008).   Analysis   Of   Activities   Of   Community   Based   Organizations  Involved   in   Solid   Waste   Management,   Investigating   Modernized   Mixtures  Approach:  The  case  of  Kinondoni  Municipality,  Dar  es  Salaam,  Tanzania.  (MSc),  Wageningen  University.        

Page 133: Marshall Rachael 201301 MASc

  116  

Tacoli,   C.   (2012).   Urbanization,   gender   and   urban   poverty:   paid  work   and   unpaid  carework   in   the   city.   London,   UK:   International   Institute   for   Environment  and  Development  

United  Nations  Population  Fund.  

TTSSC.  (2010).  SSC  in  the  context  of  aid  effectiveness:  Telling  the  story  of  partners  in   south-­‐south   and   triangular   cooperation:   Task   Team   on   South-­‐South  Cooperation.  

UNEP.   (1996).   International   Source  Book  on  Environmentally   Sound  Technologies  for  Municipal  

Solid  Waste  Management   International  Environmental  Technology  Centre  Technical  Publication  Series:  United  Nations  Environmental  Programme.  

UNEP.   (2009).   Developing   Integrated   Solid   Waste   Management   Plan:   Training  Manual  (Vol.  1:  Waste  Characterization  and  Quantification  within  Projections  for  Future).  Osaka/Shiga,  Japan:  United  Nations  Environment  Programme.  

Vennix,  J.  A.  M.  (1996).  Group  model  building:  facilitating  team  learning  using  system  dynamics.  Chichester:  Wiley.  

VWB.  (2009a).  Guatemala:  Companion  animals  and  community  health:  Veterinarians  Without  Borders.  

VWB.   (2009b).   Todos   Santos,   Guatemala   interim   report:   Implemenation   Phase   I,  January  2009:  Veterinarians  Without  Borders.  

Waltner-­‐Toews,   D.,   Kay,   J.,   &   Lister,   N.-­‐M.   E.   (2008).   The   ecosystem   approach:  complexity,  uncertainty,  and  managing  for  sustainability.  New  York:  Columbia  University  Press.  

Waltner-­‐Toews,  D.,  Kay,   J.,  Neudoerffer,  C.,  &  Gitau,  T.   (2003).  Perspective  changes  everything:   managing   ecosystems   from   the   inside   out.   Frontiers   in   Ecology  and  the  Environment,  1(1),  23-­‐30.    

Waltner-­‐Toews,  D.,  Neudoerffer,  C.,  Joshi,  D.  D.,  &  Tamang,  M.  S.  (2005).  Agro-­‐urban  Ecosystem  Health  Assessment  in  Kathmandu,  Nepal:  Epidemiology,  Systems,  Narratives.  EcoHealth,  2(2),  155-­‐164.    

Wilson,   D.   C.   (2007).   Development   drivers   for   waste   management.   Waste  Management  &  Research,  25(3),  198-­‐207.    

Wilson,  D.  C.,  Velis,  C.,  &  Cheeseman,  C.  (2006).  Role  of  informal  sector  recycling  in  waste   management   in   developing   countries.   Habitat   international,   30(4),  797-­‐808.  doi:  10.1016/j.habitatint.2005.09.005  

World   Bank.   (2005).   Guatemala:   Country   Economic   Memorandum.   (Report   No.  29145-­‐GT).  Washington,  DC:  World  Bank.  

Page 134: Marshall Rachael 201301 MASc

  117  

World   Bank.   (2011).   Guatemala   Overview.     Retrieved   April   6,   2011,   from  http://www.worldbank.org/en/country/guatemala/overview  

Yousif,  D.  F.,  &  Scott,  S.  (2007).  Governing  solid  waste  management  in  Mazatenango,  Guatemala.  International  Development  Planning  Review,  29(4),  433-­‐450.    

Zarate,  M.  A.,  Slotnick,  J.,  &  Ramos,  M.  (2008).  Capacity  building  in  rural  Guatemala  by   implementing   a   solid   waste  management   program.  Waste  Management,  28(12),  2542-­‐2551.    

Zellmer,   A.   J.,   Allen,   T.   F.   H.,   &   Kesseboehmer,   K.   (2006).   The   nature   of   ecological  complexity:  A  protocol  for  building  the  narrative.  Ecological  Complexity,  3(3),  171-­‐182.    

Zerbock,  O.  (2003).  Urban  Solid  Waste  Management:  Waste  Reduction  in  Developing  Nations  Written   for   the   Requirements   of   CE   5993     Field   Engineering   in   the  Developing  World:  Michigan  Technological  University.  

Zurbruegg,  C.  (2003).  Solid  waste  management  in  developing  countries:  A  sourcebook  for   policy   makers   and   practitioners:   EAWAG   /SANDEC.   Retrieved   from  http://www.eawag.ch/forschung/sandec/publikationen/swm/dl/Zurbruegg_2002_SWM_DC.pdf.    

 

   

Page 135: Marshall Rachael 201301 MASc

  118  

4 Developing  locally  appropriate  leverage  for  change:  Integrated  

solid  waste  management  in  rapidly  developing  rural  Guatemala    

4.1 Introduction  Solid   waste   management   (SWM)   is   gaining   an   increasing   amount   of   attention  

globally  as  environmental  degradation,  climate  change,  population  growth,  and  poor  

human  health  continue  to  cause  international  concern.  In  developing  countries,  the  

waste   produced   by   burgeoning   cities   and   rapidly   developing   rural   areas   is  

overwhelming  local  authorities  and  national  governments  alike  (Tacoli,  2012;  Yousif  

&   Scott,   2007).   Limited   resources   result   in   the   perpetuation   and   aggravation   of  

inequalities  already  being  experienced  by  the  most  vulnerable  populations  (Konteh,  

2009;  UNDP,  2010).  Such  is  the  case  in  Latin  America,  which  ranks  first  in  the  world  

for  inequality  (UNDP,  2010).  Within  Latin  America,  Central  America  contains  some  

of  the  highest  rates  of  inequality  as  measured  by  the  Gini  Index  (income  inequality),  

and   even   higher   rates   in   terms   of   the   Human   Development   Index   (health   and  

education   inequality)   (UNDP,  2010).   Inadequate  SWM  practices  plague   the   region,  

severely  impacting  ecosystems  and  human  health.    

Recently,   there   have   been   two  major   changes   in   the   structure   of   household   solid  

waste  in  developing  countries:  the  volume  of  waste  has  increased  significantly,  and  

the  composition  has  changed  from  primarily  organics  to  a  mix  of  both  organic  and  

synthetic  materials   (Yousif   and   Scott,   2007).   These   changes  may   be   attributed   to  

any  number  of   the  following  factors:  rapid  population  and  economic  growth  and  a  

subsequent   lack   of   infrastructure   capable   of   supporting   it;   a   lack   of   community  

participation   and/or   communication;   limited   resources   for   proper   planning   and  

operation;   a   lack   of   political   will   and   legal   framework   for   implementation   and  

enforcement;   and   a   lack   of   education   and/or   technical   expertise   to   manage   or  

prevent  these  changes  (Yousif  and  Scott,  2007).    These  changes,  and  the  often  non-­‐

technical   factors   they  are   associated  with,  play   an   important   role   in   current   SWM  

difficulties   in   many   developing   regions.   Decision-­‐making   and   management   are  

Page 136: Marshall Rachael 201301 MASc

  119  

becoming  increasingly  complex  due  to  these  kinds  of  factors,  coupled  with  the  rising  

internationality  of  waste  (Seadon,  2010).    

Though  addressing  SWM  issues   in  major  city  centers   is  a   critical   issue  of   concern,  

particularly  as  the  number  and  size  of  major  urban  centers  is  rapidly  growing.  Most  

urban  growth  over  the  next  25  years  will  occur  not  in  mega  cities  but  in  small  cities  

and  towns  (Cohen,  2004).   Indeed,  as  of  2009,  small   to  medium  sized  cities  housed  

over   60   percent   of   the   world’s   population   (Matuschke,   2009).   In   developing  

countries,  these  smaller  urban  centers  often  lack  basic  infrastructure  and  services  to  

absorb  the  increasing  number  of  people  they  house  (Matuschke,  2009).  While  urban  

areas   receive   some   SWM   services,   in   smaller   rural   communities,   SWM   is   outright  

lacking,   limited   to   collection   and   deposition   in   open   dumps   at   best   (Schübeler,  

1996).   Rapid   growth   and   development   leaves   smaller   urban   centers   easily  

overwhelmed  in  the  areas  of  waste  management,  health  services,  water,  electricity,  

and  sanitation  (Matuschke,  2009).  Small  cities  and   towns  are   less   likely   to  receive  

economic   support,   as   mega-­‐cities   and   large   urban   areas   are   primary   investment  

targets.  Added  burdens  of  geographic   isolation,  poverty,   limited   finances  and   local  

government   resources,   and  other   constraints   limit   the   capacity  of   small   cities   and  

towns  to  cope  with  turbulent  SWM  challenges  (Stokoe  &  Teague,  1995).    

While  poor  Central  American  SWM  practices  have  been  widely  recognized  (see,  for  

example,  Mantilla  (2007);  VWB  (2009b);  Yousif  &  Scott  (2007);  Zarate  et  al.  (2008)),  

the   literature   lacks   examples   of   successful   approaches   for   dealing   with   the   solid  

waste   crisis   currently   experienced   by   rapidly   developing   rural   Central   American  

communities.  In  this  light,  this  study  explores  approaches  used  by  a  wide  variety  of  

communities  in  Central  America  and  elsewhere  that  demonstrate  the  potential  to  be  

successful   and   locally   appropriate   in   a   rapidly   developing   rural   Central   American  

town.   Considering   the   extremely   context-­‐specific   nature   of   a   given   community’s  

SWM  challenges  and  needs,  these  approaches  can  only  be  deemed  appropriate  on  a  

case-­‐by-­‐case  basis.  Thus,  these  approaches  are  tested  for  local  appropriateness  with  

specifically  tailored  criteria  in  a  case  study  of  the  Guatemalan  community  of  Todos  

Santos  Cuchumatán.    

Page 137: Marshall Rachael 201301 MASc

  120  

4.2 Appropriate  Technology  The   concept   of   appropriate   technology   (AT)   was   borne   out   of   Schumacher’s  

influential   book,   Small   is   Beautiful:   A   Study   of   Economics   as   if   People  Mattered,   in  

which   he   stressed   that   large-­‐scale   industry   has   detrimental   effects   on   rural  

unemployment   rates   in   low-­‐income   countries.   Schumacher   suggested   low-­‐income  

countries   employ   what   he   called   an   ‘intermediate   technology’   –   one   that   lies  

between  the  traditional  and  the  sophisticated,  highly  capital-­‐intensive  technologies  

designed   for   use   in   high-­‐income   countries   –   in   order   to   provide   jobs,   relieve  

poverty,   and  be   successfully   adopted   (Schumacher,  1973).  The   term   ‘intermediate  

technology’  was  later  replaced  with  the  expression  ‘appropriate  technology’  in  order  

to  include  the  social  and  cultural  dimensions  of  innovation  (Pellegrini,  1979),  and  to  

avoid  the  suggestions  of  inferiority  associated  with  the  former  term.  The  concept  of  

AT   created   division   among   economists   and   practitioners;   many   argued   AT   are  

inefficient,  do  not  create  growth,  and  do  not  improve  the  standards  of  living  of  the  

poor  (Rybczynski,  1980).  It  was  not  until  the  1980s  and  1990s  with  the  rise  of  non-­‐

governmental  organizations  (NGOs)  that  AT  truly  took  off;  indeed,  Smillie  (2000,  p.  

48)   reports   that   “the   concepts   of   intermediate   and   appropriate   technology   grew  

entirely  from  the  non-­‐governmental  sector”.    

While   the  concept  of  AT  created  dichotomy  between   those  who   firmly  believed   in  

the  necessity  of  large-­‐scale  industry  and  those  who  called  for  a  new  approach,  it  also  

became  part  of  the  division  between  those  who  see  technology  as  the  solution,  and  

those  who  see  it  as  a  problem.  The  latter  argue  that  the  benefits  of  technology  are  

exaggerated,  and  the  focus  on  technology  is  diverting  much  needed  attention  away  

from  very  real  social,  economic,  and  cultural  inequalities  (Moodley,  2005).  Wajcman  

(2002,  p.  348)  argues  that  “governments  everywhere  legitimize  much  of  their  policy  

in   terms   of   a   technological   imperative”.   However,   at   large,   technology   is   still  

considered   to  play  a   strong  role   in  development.  Dr.  Laksiri  Fernando,  Director  of  

the   Sri   Lankan   National   Centre   for   Advanced   Studies   in   Humanities   and   Social  

Sciences  summarized  this  well  in  his  address  at  the  6th  Diploma  Award  Ceremony  of  

the  Sri  Lanka  Institute  of  Advanced  Technological  Education  (Asian  Tribune,  2009):    

Page 138: Marshall Rachael 201301 MASc

  121  

Whatever  the  development  theory  one  is  employing,  neo-­‐classical,  

Marxist,  neo-­‐liberal,  exogenous  or  endogenous,  there  is  almost  an  

agreement  that  the  level  of  development  of  a  country  is  related  to  

the   level   of   technological   use...   Even   for   an   average   person,   “the  

importance   of   technology   for   development”   might   be   common  

sense  today.  We  acquire  this  common  sense  through  experience.  If  

groundwater   is   not   easily   accessible,  we   know   the   benefit   of   an  

Artesian-­‐Well.    

4.2.1 Defining  and  redefining  appropriate  technology  

While  technology  remains  a  strong  focus  of  development  strategies,  it  is  agreed  that  

AT  must  function  within  social,  cultural,  and  economic  spheres.  AT  has  evolved  to  be  

defined  not  simply  as  small-­‐scale,  low-­‐tech  devices,  but  as  a  body  of  knowledge  and  

set   of   techniques   for   coping  with   community   development   issues.   It   incorporates  

“hard”  and  “soft”  technologies;  not  only  physical  tools  but  also  capacity  building  and  

communication  methods,  knowledge  transfer  mechanisms,  and  cultural,  social,  and  

gender  considerations  (Murphy  et  al.,  2009).  Pellegrini  (1979,  p.  2)  defined  AT  as  a  

technique  that  when  introduced  to  a  community,  “creates  a  self-­‐reinforcing  process  

internal   to   the   same  community,  which   supports   the  growth  of   the   local   activities  

and  the  development  of  indigenous  capabilities  as  decided  by  the  community  itself".  

This  adaptable,  dynamic  nature  of  AT  has  been  recognized  by  other  AT  supporters.  

Indeed,  Peter  Dunn,   in  his  book  Appropriate  Technology:  Technology  with  a  Human  

Face,  went   so   far   as   to   call   AT   “a   complete   systems   approach   to   development”  

(Dunn,   1978,   p.   4).   While   Dunn’s   perception   of   AT’s   self-­‐adaptive   and   dynamic  

nature   is   focused   on   increasing   wealth   for   the   eventual   use   of   more   expensive  

equipment,   this  study  focuses  on  the  philosophy  of  AT  as  a  catalyst   for   initiating  a  

process  of  development  of  the  capabilities,  as  defined  by  a  community,  that  the  same  

community  wishes  to  develop.    In  this  light,  the  ‘appropriateness’  of  AT  is  defined  by  

its  ability  to   impact  the  structure  of   local  systems    (social,  cultural,  environmental,  

political,   economic,   etc.)   in   a  manner   that   creates   a   ‘best   fit’   future   scenario   for   a  

community,  as  judged  by  that  community.  Thus,  a  more  fitting  term  for  the  body  of  

Page 139: Marshall Rachael 201301 MASc

  122  

knowledge  and  techniques  that  might  accomplish  these  goals  is  ‘appropriate  system  

lever’  (ASL).    

When  it  comes  to  SWM  issues,  longtime  practitioners  in  the  field  have  made  it  clear  

that  the  selection  of  appropriate  techniques  and  the  design  of  sustainable  systems  is  

not   only   a   technical   issue   (van   de  Klundert  &  Anschutz,   1999).  However,   SWM   is  

often  considered  to  be  a  technical  issue,  which  has  resulted  in  many  unsustainable,  

failed   techniques.   Examples   range   from   crippling   debt   incurred   by   the   use   of  

expensive,   imported,   poorly   suited   equipment   to   locals   valuing   garbage   bins   too  

much   to   use   them   for  waste   (van   de  Klundert  &  Anschutz,   1999).   Other   systemic  

aspects,   including   social,   political,   cultural,   and   financial   components,   should   be  

considered  in  order  to  ensure  the  ‘best-­‐fit’  SWM  scenario  can  be  implemented.  This  

is  particularly  true  in  Central  American  countries,  such  as  Guatemala,  where  Yousif  

and   Scott   (2007)   observe   SWM   problems   are   issues   of   governance   rather   than  

technological  choice.    

4.2.2 Appropriate  technology  criteria  

Just  as  the  definition  of  AT  has  transformed  many  times  since  its  emergence  in  the  1960s,  the  criteria  that  deem  a  given  technology  or  technique  as  “appropriate”  have  evolved  significantly  over  time.  Many  criteria  have  been  extensively  criticized  for  being  unachievable,  contradictory,  and  locally  inapplicable,  including  such  requirements  as  low  investment  cost  per  workplace,  low  capital  investment  per  unit  of  output,  use  of  locally  available  resources,  very  low  cost  of  final  product,  and  small-­‐scale  operations  (Ntim,  1988).  Criteria  have  thus  ranged  from  net  output  maximization  or  cost  minimization  (Eckaus,  1977)  to  cultural  and  social  acceptability  (Murphy  et  al.,  2009).  A  summary  of  common  AT  criteria  found  in  the  literature  is  presented  in      

Page 140: Marshall Rachael 201301 MASc

  123  

Table  7,  which   lists   these   criteria   vertically   according   to   economic,   cultural/social,  

sustainability,  and  technical  considerations.      

 

   

Page 141: Marshall Rachael 201301 MASc

  124  

Table  7.  Common  Appropriate  Technology  criteria    Economic  considerations   Cultural/Social  considerations   Sustainability  considerations   Technical  considerations  

Criteria   Description   Criteria   Description   Criteria   Description   Criteria   Description  

Affordability19  20  21  22  

 

Costs  match  users’  ability  and  willingness  to  pay1  2  3  4    

   

Social  and  cultural  viability1  2    

Tailored  to  social  and  cultural  practices  and  needs1  2    

Environmentally  sustainable1  3  

Innovations  do  not  cause  significant  harm  to  long-­‐  and  short-­‐term  ecological  processes1  3  

Soundness  of  design  3  

Functions  properly  in  local  conditions,  meets  local  technical  needs1  3  

Use  of  local  materials/  resources1  3  4  

Reduces  external  economic  dependence,  locally  repairable1  3  4  

Meets  users’  basic  needs1  3  

User-­‐  identified  needs  are  met1  3  

Locally  sustainable1  3  

Maintenance,  reproduction  and  repair  can  be  conducted  at  the  local  level1  3  

Risk  factor2  

Reasonable  level  of  risk  of  failure  within  the  local  system2  

Systems  independence2  

Ability  to  stand  alone  without  multiple  supporting  devices2  

Appropriate  technology  transfer  mechanisms1  

Two-­‐way  process  structured  on  input  of  local  users  in  all  project  stages1  

Local  participation  and  ownership1  3  

Active  involvement  of  stakeholders  in  all  stages  of  project1  3    

   

Relatively  labour-­‐intensive3  4  

Extends  human  labour  and  skills  instead  of  replacing  them3  4  

Gender  considerations1  

Incorporation  of  women  in  technology  development  processes1  

Flexibility1  2  3  23   Ability  to  adapt  across  scales,  locales,  and  changing  circumstances1  2  3  5  

   

Small-­‐scale3   Affordable  to  families  or  small  groups  of  families3  

Single-­‐  vs.  multi-­‐  purpose2    

Single  or  multiple  specific  purposes  and  abilities,  depending  on  local  needs2  

Evolutionary  capacity2  

Capability  to  expand  in  sophistication  and  ability  to  accomplish  a  higher  volume  of  work2  

 

   

                                                                                                                         19  Murphy,  McBean,  and  Farahbakhsh  (2009)  20  Wicklein  (1998)  21  Darrow  and  Saxenian  (1993)  22  Conteh  (2003)  23  Vanek  (2003)  

Page 142: Marshall Rachael 201301 MASc

  125  

Economic  considerations   Cultural/Social  considerations   Sustainability  considerations   Technical  considerations  

Not  capital-­‐intensive3  4  

Requires  only  small  amounts  of  capital  to  develop,  employ,  and  maintain3  4  

Image  of  modernity2  

Socially  appealing  image,  positively  impacts  social  status  2  

Capacity  building3  

Builds  on  local  skills  to  establish  self-­‐sustaining/  expanding  community  capacity3  

   

        Economic  sustainability3  

Has  the  potential  to  cushion  against  external  economic  change3  

   

 

While   many   criteria   have   been   suggested   for   ensuring   technological  

appropriateness,  they  are  often  competitive  as  well  as  complementary,  meaning  the  

pursuit   of   any   one   will   not   necessarily   satisfy   any   of   the   others   (Eckaus,   1977).    

Therefore,   there   is   no   straightforward   means   for   identifying   AT   (Murphy   et   al.,  

2009);   determining   which   criteria   are   appropriate   for   a   given   community   is  

dependent  upon  that  community’s  objectives,  capabilities,  and  context.  Additionally,  

technological  choices  are  made  by  a  host  of  decision  makers  with  unique  objectives  

and   perspectives   on   what   classifies   a   technology   or   technique   as   ‘appropriate’  

(Eckaus,  1977).  Decisions  must  be  made  under  a  variety  of  sources  of  influence  that  

often   act   at   cross-­‐purposes.   It   is   particularly   difficult   to   establish   consistent   goals  

when  considering  AT,  because  the  knowledge,   interests,  and  operating  methods  of  

stakeholders   is   often   conflicting   (Eckaus,   1977).   Therefore,   it   is   important   to  

establish  a  baseline  of   stakeholder  concerns,  needs,  and  goals  before  developing  a  

set  of  criteria  that  will  function  for  a  given  community.    

4.2.3 Appropriate  solid  waste  technologies  

Most  appropriate  solid  waste  technologies  discussed  in  the  literature  are  focused  on  

larger   cities   in   developing   countries.  Many  of   these   cities   have   extensive   informal  

“waste  economies”  comprised  of  waste  pickers,  dealers,  buyers,  transporters,  shops,  

second-­‐hand  markets,  and  recycling  industries  (Furedy,  1992).  As  cities  develop  and  

Page 143: Marshall Rachael 201301 MASc

  126  

waste   practices   become   better   regulated,   these   informal   recovery   and   recycling  

systems  suffer.  Tensions  grow  as  modern  consumption  by  more  affluent  households  

and   increased   quantities   of   recyclables   in   the  waste   stream  makes  waste   picking  

more  profitable,  but  waste  picking  becomes  increasingly  hazardous  and  regulations  

discourage   informal   activities   (Furedy,   1992).   Therefore,   many   non-­‐conventional  

approaches   to   SWM   focus  on   informal  waste   economies  by,   for   example,   assisting  

people  whose   livelihoods   depend   on  waste   to   do   safer,  more   acceptable  work   or  

accommodating   informal   activities   in   formal  waste   recovery   or   recycling   systems  

(Furedy,   1992;   IDB,   2011).   Other   non-­‐conventional   technologies   and   techniques  

have   ranged   from   capacity   building   and   education   to   developing   partnerships  

between   communities,   municipalities,   and   the   private   sector   for   waste-­‐to-­‐energy  

plants,  waste  removal,  and  methane  gas  recovery  (Furedy,  1992;  Joseph,  Rajendiran,  

Senthilnathan,  &  Rakesh,   2012;  Kojima,   2011).   Alternative   instruments   have   been  

used  to   improve  formal  solid  waste  systems  such  as  collection  and  disposal   levies,  

deposit   refund   schemes,   and   product   levies   (Kgathi   &   Bolaane,   2001).  

Vermicomposting,  industrial  symbiosis,  and  community-­‐led  collection  services  have  

also   been   employed   in   larger   urban   centers   (Geng,   Tsuyoshi,   &   Chen,   2010;   R.   P.  

Singh,  Singh,  &  Ibrahim,  2011).    

Solid  waste  AT  for  use  in  small  urban  centers  has  included  such  projects  as  poorly-­‐

employed   composting   facilities   funded   through   carbon   credit   sales,   small-­‐scale  

anaerobic   digesters,   community   engagement   and   education,   and   partnerships  

between   municipal   authorities   and   representatives   of   national   and   international  

organizations   (R.   Singh,   Tyagi,   Allen,   Ibrahim,   &   Kothari,   2011;   United   Nations  

ESCAP,  2010;  Yousif  &  Scott,  2007;  Zarate  et  al.,  2008).  While  alternative  approaches  

and   technologies   have   been   employed   in   smaller   urban   settings,   the   literature  

provides  few  successful  approaches  for  dealing  with  the  solid  waste  crisis  in  rapidly  

developing  rural  Central  American  communities.  With  few  known  options  suited  to  

small,   rapidly   developing   Central   American   towns   and   cities,   communities   are   far  

less  likely  to  implement  appropriate  technologies  or  system  levers  for  far-­‐reaching,  

positive  long-­‐term  change  in  SWM  practices.    

Page 144: Marshall Rachael 201301 MASc

  127  

4.3 Methodology  

4.3.1 Defining  the  local  context  

The   local   context   of   a   community   must   be   explored,   particularly   from   the  

perspective  of  that  community,  in  order  to  define  criteria  that  can  specify  local  SWM  

system  levers  that  are  likely  to  be  accepted  by  the  community  as  appropriate.  This  

study   bases   criteria   on   the   socioeconomic,   environmental,   political,   and   cultural  

SWM  contexts  of  Todos  Santos  by  drawing  on  key  contextual  elements  identified  in  

the  previous  chapter.    

4.3.2 Solid  waste  audit  

Certain   technical   requirements   and   needs   were   also   identified   in   the   previous  

chapter.   This   chapter   supplements   these   findings   with   a   residential   solid   waste  

audit,  which  was  conducted  in  the  six  neighbourhoods  of  Todos  Santos.  

4.3.2.1 Snowball  and  random  purposeful  sampling  methods  

A  residential  solid  waste  audit  was  conducted  in  Todos  Santos  Cuchumatán  during  

the  month   of  March,   2012.   Participants  were   recruited   through   a   combination   of  

snowball  sampling  method  and  random  purposeful  sampling  on  an  open  invitation  

and  volunteer  basis.  Recruitment  took  place  over  a  period  of  one  and  a  half  months.  

A   snowball   process   was   initiated   through   civil   society   contacts   with   existing  

connections   in   the   community.   Recruitment   through   random  purposeful   sampling  

was   carried   out   over   the   local   radio   and   through   presentations   given   at  

neighbourhood   community   meetings.   The   radio   announcement   and   verbal   open  

invitations   informed  all  potential  participants  of   the  purpose  of   the   study  and   the  

roles   and   responsibilities   participants   would   have   (e.g.,   participants’   rights,   time  

commitment,  explanation  of  waste  audit  process,  etc.).   In  total,  137  geographically  

and  demographically  diverse  community  members  were  recruited.    

4.3.2.2 Data  collection  

A  meeting  was  set  up  with  each  participating  home  to  carefully  review  the  auditing  

process.  Six  potato  bags  were  given  to  each  family  for  waste  separation,  which  were  

carefully   labeled  with   the   following   categories:   bathroom   paper,   organics,   plastic,  

Page 145: Marshall Rachael 201301 MASc

  128  

paper,  metal,  and  other.  While  most  organics  are  generally   fed   to  a  household  pig,  

participants   were   instructed   to   put   any   remaining   scraps   in   the   organics   bag.  

Families  were  informed  that  they  must  continue  with  their  regular  waste  practices,  

and  no  changes  whatsoever  should  be  made  to  their  regular  routine.  This  was  done  

to  ensure  the  samples  were  representative  of  regular  activity  and  waste  production  

in  town.  Additionally,  it  was  emphasized  that  all  waste  must  be  collected,  including  

all  the  paper  in  the  bathroom  and  waste  that  is  usually  burned,  buried,  or  thrown  in  

the  street.  This  was  made  very  clear  to  avoid  any  misunderstandings  about  what  the  

auditor  wanted  to  collect,  and  what  was  classified  as  ‘waste’.    

Empty  sample  bags  were  weighed   in  order   to   subtract   their  weight   from   the   final  

sample  weight.  Families  were  instructed  to  place  all  waste  in  the  separate  bags  for  a  

period  of  one  week.  The  auditor  returned  to  collect  and  measure  the  samples  at  that  

time.  Between  five  to  eight  audits  were  initiated  each  day  for  a  period  of  one  month.    

The  potato  bags  were  compressed  as  much  as  possible  into  rough  cylinders,  and  the  

height,  circumference  and  diameter  of  each  one  were  measured.  Sample  bags  were  

weighed  using  a  local  scale.  Observations  about  waste  practices  were  made  at  each  

visit.   Participants   were   allowed   to   keep   the   sample   bags   as   payment   for  

participating  in  the  audit.    

4.3.3 Building  a  ‘Bank  of  Ideas’  

The  researcher  compiled  a  bank  of  potentially   locally  appropriate  SWM  ideas   that  

provides  useful  examples  of  SWM  techniques  that  have  been  implemented  in  other  

rural  or  rapidly  developing  communities  in  Latin  America  and  elsewhere.  This  ‘Bank  

of  Ideas’  acts  as  a  regional  knowledge  base,  while  the  community-­‐wide  causal  maps  

from  the  previous  chapter  act  as  a  local  knowledge  base,  and  each  can  contribute  to  

and  build  upon  the  other.  The  dynamic  relationship  between  these  components  will  

allow  the  community  to  act  as  knowledge  generator,  as  the  causal  maps  and  bank  of  

ideas  provide  a  solid  base  for  local  innovation.  

Page 146: Marshall Rachael 201301 MASc

  129  

4.3.3.1 Data  collection    

The  ‘Bank  of  Ideas’  was  generated  and  validated  using  the  triangulation  method.  A  

literature  review,  case  study  review  (including  literature,  unpublished,  civil  society,  

and  media  sources)  and  interviews  with  experts  were  conducted.    

Expert  interviews  took  place  during  the  months  of  January  to  May,  2012.  A  snowball  

recruitment  process  was  initiated  through  existing  connections  with  academic  and  

civil   society   contacts.   Experts   ranged   from   academic   researchers,   students,   and  

members  of  local  NGOs  to  Central  American  community  members.  Nineteen  experts  

were  interviewed  in  total.    

4.3.4 Developing  criteria  for  locally  appropriate  system  levers  

While  the  ‘Bank  of  Ideas’  provides  useful  examples  for  fostering  local  innovation  and  

change,   the   cultural   context   must   act   as   a   filter   in   order   for   locally   acceptable,  

functioning  strategies  to  be  generated.  The  ‘Bank  of  Ideas’  must  therefore  be  filtered  

with   locally   tailored   criteria,   resulting   in   a   set   of   potentially   successful,   locally  

appropriate   system   levers.   These   criteria   were   developed   by   triangulating   the  

contextual   results   from   the   previous   chapter  with   data   from   the  waste   audit   and  

criteria  cited  as  important  in  the  literature.  Criteria  from  the  literature  were  cross-­‐

examined   using   results   from   the   causal   maps   and   only   included   if   they   matched  

local   perspectives.   This   process   corroborated   findings   and   developed   a   set   of  

criteria  tailored  specifically  to  the  community  of  Todos  Santos  in  order  to  eliminate  

SWM   examples   that   are   simply   not   feasible   from   a   technical   or   economic  

perspective,  or  are  environmentally,  socially,  or  culturally  inappropriate.    

4.3.5 System  lever  assessment    

The  criteria  were  applied  to  the  ‘Bank  of  Ideas’  in  order  to  generate  a  set  of  system  

levers   that  are  both   locally  appropriate  and  have  a   strong  potential   for   success   in  

the   community.   Each   criterion   was   applied   independently   of   the   others,   and  

examples   meeting   all   or   nearly   all   criteria   were   included   for   community  

consideration.   Three   potential   SWM   ‘scenarios’   were   compiled,   which   contain   a  

Page 147: Marshall Rachael 201301 MASc

  130  

system   of   locally   appropriate   SWM   system   levers   that   act   together   to   meet   all  

critical  criteria.    

4.4 Results  

4.4.1 Local  context:  Solid  waste  in  Todos  Santos  Cuchumatán  

The  remote  Guatemalan  Mam  Mayan  village  of  Todos  Santos   is  experiencing  rapid  

development  and  population  growth  and  cannot  cope  with  burgeoning  demands  for  

SWM   services.   Thus,   the   town   faces   serious   environmental   and   health   related  

consequences.   The   previous   chapter   investigated   the   community’s   perspective   on  

what   issues  poor  SWM  creates,   influences,  and  exacerbates   in   the  community,  and  

what  system  structures  perpetuate  this  behaviour  and  prevent  change.  The  results  

of   that   study   provide   significant   insight   into   the   socio-­‐economic,   cultural,  

environmental  and  political  SWM  contexts  of  Todos  Santos.  The  following  sections  

summarize   these   findings,   and   supplement   them  with   the   results   of   a   solid  waste  

audit,  which  helps  to  define  the  technical  context.    

4.4.1.1 Socio-­‐economic,  cultural,  environmental,  and  political  contexts  

The  primary   issues   caused  by  poor   SWM  practices  were   found   to   be:   poor  health  

(including   death,   illness,   and   decreased   overall   wellbeing),   environmental  

degradation   (including   degradation   and   contamination   of   essential   common  

resources),   and  negative  economic   impacts   (including  decreased  opportunities   for  

tourism).   These   problems   stem   predominantly   from   changes   in   waste  

characteristics,   increasing   waste   quantities   due   to   population   growth   and   the  

influence   of   foreign   consumer   cultures,   a   lack   of   land,   behavioural   issues,   limited  

resources,  and  a  poor  education  system.  However,   the  majority  of   these   issues  are  

structurally   connected   through   reinforcing   feedback   loops   that   exponentially  

degrade  the  adequacy  of  SWM  and  also  exponentially  decrease  the  local  authorities’  

ability   to   improve   the   SWM   system   –   an   issue   of   critical   importance.   A   systemic  

analysis  of  the  narrative-­‐based  causal  maps  produced  by  the  community  identified  

the  following  potential  action  entry  points:    

• Education,  particularly  that  of  youth;    

Page 148: Marshall Rachael 201301 MASc

  131  

• Municipal  interest  in  SWM;  

• Youth’s  interest  in  consumerism  and  modern  culture;  

•  Recognizing  the  value  of  women  and  youth,  thus  ensuring  their  participation  

in  the  SWM  process;  and    

• Projects  that  are  “owned”  by  the  community.    

Establishing   the   systemic   context   in   which   a   community   sits   provides   a   crucial  

foundation   for   the  exploration  of   locally  appropriate,   successful  approaches.  Thus,  

these   findings   should   inform   and   act   as   the   basis   for   any   approach   to   SWM  

improvement  employed  in  this  community.    

4.4.1.2 Technical  context:  Waste  audit  results  

The  results  of  the  residential  solid  waste  audit  can  be  seen  in  Table  8,  Figure  24,  and  

Figure  25.  Recyclable  materials  including  plastic,  metal,  paper,  and  glass  make  up  the  

largest  portion  by  weight  and  volume  of  solid  waste  sent  to  landfill.  For  comparison  

purposes,   Table   9   displays   the   waste   generation   averages   in   the   whole   region   of  

Latin  America  and  the  Caribbean,  and  in  the  OECD  member  countries24.    

Table  8.  Weight  and  volume  of  residential  solid  waste  components  per  capita  per  day  

Category   Weight  (kg/capita/day)  

Volume  (cm3/capita/day)  

Paper   0.02   1,540  

Plastic   0.03   3,290  

Metal   0.04   1,750  

Organic   0.01   110  

Glass   0.03   530  

Other   0.01   220  

TOTAL   0.14   7,430  

 

Table  9.  Average  regional  waste  composition  in  Latin  America  and  the  Caribbean,  and  OECD  member  countries  (adapted  from  Hoornweg  and  Bhada-­‐Tata  (2012))  

Page 149: Marshall Rachael 201301 MASc

  132  

Category  

Waste  Composition  in  Other  Countries  

Latin  America  and  the  Caribbean  average  waste  weight  (kg/capita/day)  

OECD  member  countries24  average  waste  weight  (kg/capita/day)  

Paper   0.18   0.70  

Plastic   0.13   0.24  

Metal   0.02   0.13  

Organic   0.59   0.59  

Glass   0.04   0.15  

Other   0.13   0.37  

TOTAL   1.1   2.2  

 

The  per  capita  values  range  from  0.1  to  14  kg/capita/day  in  Latin  America  and  the  

Caribbean,  and  1.1  to  3.7  kg/capita/day  in  the  OECD  member  countries  (Hoornweg  

&  Bhada-­‐Tata,  2012).    

 

Figure  24.  Residential  solid  waste  distribution  by  weight  in  Todos  Santos                                                                                                                            24  OECD  refers  to  the  countries  that  are  members  of  the  Organization  for  Economic  Co-­‐0peration  and  Development,  which  includes  Canada  and  the  United  States,  many  European  countries,  Australia,  New  Zealand,  Japan,  Korea,  and  others.  For  a  full  list  of  the  34  member  countries  refer  to  OECD  (2012).  

Paper  

Plastic  

Metal  

Organic  

Glass  

Other  

Page 150: Marshall Rachael 201301 MASc

  133  

 

 

Figure  25.  Residential  solid  waste  distribution  by  volume  in  Todos  Santos  

The   ‘paper’   category   included   notebooks,   school   papers,   magazines,   newspapers,  

and  cardboard.  The   ‘plastic’  category  was  predominantly  composed  of  plastic  bags  

and   bottles.   ‘Metal’   included   predominantly   aluminum   drink   cans,   rusted   metal  

parts,  and  paint  cans.  The   ‘organic’   category  was  composed  of  kitchen  scraps.  The  

‘glass’   category  was   predominantly   composed   of   alcohol   bottles,   and   the   category  

labeled  as  ‘other’  included  broken  household  items,  such  as  old  appliances,  brooms,  

accessories,  fabric  items,  etc.  While  organic  materials  do  not  make  up  a  large  portion  

of   the   residential   waste   sent   to   landfill,   the   previous   chapter   identified   several  

health   and   environmental   concerns   instigated   by   organic   material   in   the   dump.  

Therefore,  in  addition  to  targeting  the  recyclable  materials  that  make  up  the  largest  

percentage   of   the   waste   composition,   targeting   organic   material   is   considered   a  

technical  priority.    

The   waste   practices   of   different   neighbourhoods   were   brought   to   light   through  

discussions  with  the  participants  during  the  waste  audit  process  (see  Table  10).      

 

 

Paper  

Plastic  

Metal  

Organic  

Glass  

Other  

Page 151: Marshall Rachael 201301 MASc

  134  

Table  10.  Waste  practices  by  neighbourhood  

Neighbourhood  Number  of  participants  

Frequency  of  collection  

Waste  practices  

Los  Pablo   25   Every  week,  or  participants  bring  waste  to  the  dump  every  two  weeks  or  monthly  (no  fee  is  associated  with  this  activity  –  dumping  is  open  and  unregulated)  

• Participants  burn  what  will  burn;  • Metal  is  sold;  • One  participant  buries  paper  but  others  do  

not  bury  any  waste;  • Everything  else  goes  to  the  dump;  and  • Three  participants  compost  organics.    

Los  Mendoza   13   Every  week   • Participants  burn  what  will  burn;  • Metal  is  sold;  • No  waste  is  buried;  and  • Everything  else  goes  to  the  dump.  

Anglé   23   Every  week,  every  two  weeks,  or  participants  bring  it  to  the  dump  every  3  months,  every  6  months,  or  once  a  year  

• Participants  burn  what  will  burn;  • Metal  is  sold;  • One  participant  composts  organics;  • No  waste  is  buried;  and  • Everything  else  goes  to  the  dump.  

Che  Cruz   32   Every  week,  or  participants  bring  it  to  the  dump  every  two  weeks  to  once  every  6  months  

• Participants  burn  what  will  burn;  • Metal  is  sold;  • No  waste  is  buried;    • Three  participants  compost  organics;  • Two  participants  bury  waste  that  will  not  

burn;  • Everything  else  goes  to  the  dump;  and  • One  participant  sells  metal  and  sends  

everything  else  to  the  dump.  El  Centro   33   Every  week  or  

every  two  weeks  • Participants  burn  what  will  burn;  • Five  participants  do  not  burn  waste;  • Two  participants  send  everything  to  the  

dump;  • Metal  is  sold;  • No  waste  is  buried;  and  • Everything  else  goes  to  the  dump.  

Tuj  Manchun   11   Participants  bring  waste  to  the  dump  once  a  week  to  once  a  month  

• Participants  burn  what  will  burn;  • Metal  is  sold;  • Three  participants  compost  organics;  • One  participant  buries  organic  waste;  • One  participant  buries  what  will  not  burn,  

but  all  others  do  not  bury  waste;  and  • Everything  else  goes  to  the  dump.  

 

Page 152: Marshall Rachael 201301 MASc

  135  

4.4.2 A  ‘Bank  of  Ideas’  for  Solid  Waste  Management  

The   SWM   ‘Bank   of   Ideas’   for   use   in   rapidly   developing   rural   Central   American  

communities   is  composed  of  55  example  projects.    There  are  6  options   for  overall  

system  management;  3  options  for  waste  characterization;  14  for  waste  reduction;  

10   for   collection,   transportation,   and   financing;   17   for   resource   recovery;   1   for  

waste   transformation;   and   4   for   disposal.   These   projects   are   listed   vertically  

according  to  waste  management  categories  in  Table  11.    

Table  11.  Bank  of  Ideas  summary  of  options  

Overall  system  management  options  

Waste  characterization  options  

Waste  reduction  options  

Collection,  transport,  and  financing  options  

Resource  recovery  options  

Waste  transformation  options  

Disposal  options  

Public-­‐private  partnerships25,  26    

Further  waste  auditing27  

Community-­‐wide  waste  education  program28,  29,  30,  31  

Mini  collection  centers34,  35    

Women's  vermiculture  initiative32,  33  

Small-­‐scale  incinerator34  

Manual  landfill35  

Creation  of  a  non-­‐profit  community-­‐based  organization:  Clean  Todos  Santos  Foundation36,  37  

Determine  energy  potential  of  solid  waste27  

Waste  separation28   Separate  collection  days38  

Women's  recycled  craft  initiative32  

  Hazardous  waste  disposal  pit29  

Development  of  SWM  micro-­‐enterprises39,  40,  26  

Hands-­‐on  waste  characterization  workshops41  

 Youth  waste  education  program  42,  28  

Secondary  and  tertiary  sorting  at  Recycling  center35  

Recycled  materials  as  construction  materials28  ,35  

  Transporting  hazardous  waste  to  Huehuetenango  

                                                                                                                         25  Gonzalez  and  Taborga  (2001)  26  Hoornweg  and  Giannelli  (2007)  27  Dubey,  B.  Personal  Communication,  February  7,  2012  28  Pacheco,  A.  Personal  Communication,  April  19,2012  29  Arguedas,  M.  Personal  Communication,  April  24,  2012  30  Kruz,  C.  Personal  Communication,  April  27,  2012  31  Coc  and  Zonso  (2011)  32  Rodriguez,  M.  Personal  Communication,  May  4,  2012  33  Nesbitt,  C.  Personal  Communication,  January  28,  2012  34  Jimenez  (2000)  35  Yeomans,  J.  Personal  Communication,  April  18,  2012  36  Mendonca  (2007)  37  Anschütz  (1996)  38  Carmona  and  Giraldo  (1997)  39  Badilla  and  Suarez  (2002)  40  Yousif  and  Scott  (2007)  41  Zarate  et  al.  (2008)  42  Montoya  Álvarez,  C.  Personal  Communication,  April  26,  2012  

Page 153: Marshall Rachael 201301 MASc

  136  

Overall  system  management  options  

Waste  characterization  options  

Waste  reduction  options  

Collection,  transport,  and  financing  options  

Resource  recovery  options  

Waste  transformation  options  

Disposal  options  

Coordination  with  local  NGOs  for  capacity  building40  

  ‘Teach  the  teachers’  program28  30  

Tax-­‐based  collection  fee  system40,  43  

Agricultural  uses  for  recycled  materials  (substrate,  etc.)28  

   

Integrating  informal  waste  pickers26  ,44,  45  

  Community  clean  streets  initiative35  

Collection  fee  community  education  program43  

Biodigesters  for  methane  use  as  a  cooking  fuel28,  46  

   

Motivational  training  and/or  exchange  visits  for  managers  and  operators37  

  Youth  waste  entrepreneurship  program35  

User  pays  fee  system37  

Waste-­‐to-­‐electricity28,  47  

   

    Community  SWM  committees35  

Change  in  method  of  payment37  

Sustainable  alliances  between  agroindustry,  communities,  and  ecological  schools47  

   

    SWM  planning  workshops  for  local  businesses48  

Relate  operator  salaries  to  performance  37  

Organics  to  paper  production28  

   

    Pre-­‐cycle  campaign49  

Door-­‐to-­‐door  collection  with  smaller  vehicles  in  hard-­‐to-­‐reach  neighbourhoods50  

Roofing  from  recycled  materials35  

   

    Fostering  constructive  neighbourhood/  household  competition37  

Installation  of  waste  bins  in  public  areas  and  incorporation  into  collection  route  

Waste  crops  for  livestock  production  during  flooded  market51  

   

                                                                                                                         43  World  Bank  (2005b)  44  Furedy  (1992)  45  World  Bank  (2009)  46  Echeverria  (2009)  47  Sierra  and  Matute  (2010)  48  Calderon  and  Ventura  (2008)  49  UMA  Environmental  (1995)  50  UN  Habitat  (1989)  51  Moyaz  and  Reyes  (2002)  

Page 154: Marshall Rachael 201301 MASc

  137  

Overall  system  management  options  

Waste  characterization  options  

Waste  reduction  options  

Collection,  transport,  and  financing  options  

Resource  recovery  options  

Waste  transformation  options  

Disposal  options  

    Compensation  for  proper  separation/  system  compliance37  

  Small-­‐scale  composting28,  35,  52  

   

    Increasing  respect  for  public  spaces  to  keep  them  clean37  

  Substrate  and  fertilizer  produced  from  soap  and  sugar  cane  waste53  

   

    Religious  partnerships54  

  Waste  food  products55  

   

    Ecotourism     Compost  pile  with  aeration  tube  and  fan56  

   

        Town  beautification  project49  

   

        Return  to  point  of  sale  program49  

   

        Medium-­‐scale  composting26  

   

 

See  Appendix  C   for  complete  descriptions  of  each  option   in   the  bank.  The  bank  of  

ideas  will  be  used  to  generate  four  improved  SWM  scenarios  that  target  key  places  

to  intervene  in  the  current  SWM  system.  

4.4.3 Selection  criteria  for  Todos  Santos  Cuchumatán  

The  selection  criteria  specific  to  Todos  Santos  are  primarily  founded  upon  results  from  the  

previous  chapter,  and  supplemented  with  technical  data  from  the  waste  audit  and  literature  

findings.  The  complete  list  of  locally  sensitive  constraints  and  criteria  can  be  found  in  Table  

12  and  Table  13.    

Table  12.  Constraints  for  locally  appropriate  system  levers  for  use  in  Todos  Santos  

                                                                                                                         52  Bigoth  (2001)  53  Jacome  and  Romero  (2003)  54  Mohamad,  Idris,  and  Mamat  (2012)  55  Chan  Blanco,  Y.  Personal  Communication,  April  19,  2012  56  Robles  and  Orejuela  (2002)  

Page 155: Marshall Rachael 201301 MASc

  138  

Economic  considerations   Sustainability  considerations   Technical  considerations  

Criteria   Description   Criteria   Description   Criteria   Description  

Affordability19  20  21  22  

 

Costs  match  users’  ability  and  willingness  to  pay19  20  21  22  

 

   

Environmentally  sustainable19  21  

Innovations  do  not  cause  significant  harm  to  long-­‐  and  short-­‐term  ecological  processes19  21  

Soundness  of  conceptual/  technological  design19  21  

Functions  properly  in  local  conditions,  meets  local  technical  needs  19  21  

Low  capital  cost21  22  

Requires  only  small  amounts  of  capital  to  develop,  employ,  and  maintain21  22  

Locally  sustainable19  21  

Maintenance,  reproduction  and  repair  can  be  conducted  at  the  local  level19  21  

   

           

 

 

Table  13.  Criteria  for  locally  appropriate  system  levers  for  use  in  Todos  Santos  

Economic  considerations  Cultural/Social/Political  

considerations  Sustainability  considerations   Technical  considerations  

Criteria   Description   Criteria   Description   Criteria   Description   Criteria   Description  

Use  of  local  materials/  resources19  21  22  

Reduces  external  economic  dependence,  locally  repairable19  21  22  

Education-­‐centered  

Targets  education,  particularly  for  youth  

Flexibility19  20  21  57  

Ability  to  adapt  across  scales,  users,  sites,  and  changing  circumstances19  20  21  57  

Targets  recyclables  

Targets  materials  that  make  up  the  majority  of  the  waste  composition:  plastic,  metal,  and  paper  

Relatively  labour-­‐intensive21  22  

Extends  human  labour  and  skills  instead  of  replacing  them21  22  

Targets  youth  culture  

Targets  youth’s  interest  in  consumerism  and  modern  culture  

Capacity  building21  

Builds  on  local  skills  to  establish  self-­‐sustaining/  expanding  community  capacity21  

Targets  organics  

Targets  organic  material  to  alleviate  community  health  issues  

    Socially  appealing20  

Socially  appealing  image,  

    Targets  waste  reduction  

Options  considerably  reduce  waste  

                                                                                                                         57  Vanek  (2003)  

Page 156: Marshall Rachael 201301 MASc

  139  

positively  impacts  social  status20  

being  sent  to  landfill  

            Targets  remaining  waste  

Options  deal  with  remaining  waste  that  must  be  sent  to  landfill  

 

Certain  criteria  identified  in  the  literature  and  by  the  community  can  be  met  

by   a  wide   variety   of   project   options   if   projects   are   structured   specifically   to  meet  

these  goals.  Therefore,   these  project   framework  criteria  will  not  greatly   refine   the  

‘Bank   of   Ideas’,   but   must   play   a   strong   role   in   project   planning,   development,  

implementation  and  upkeep.  These  criteria  are  equally  as  important  as  those  listed  

in  Table  13;  indeed,  the  community  has  considered  some  as  crucial  to  the  functioning  

of  the  SWM  system  (see  Table  14).  Each  system  lever  can  and  should  be  framed  by  

such  measures.  

Table  14.  Framework  criteria  

Cultural/Social/Political  considerations   Sustainability  considerations  

Criteria   Description   Criteria   Description  

Inclusive  of  women  and  youth19  

Recognizing  the  value  of  women  and  youth,  incorporating  them  in  SWM  processes19  

Project  ownership19  21  

Ensuring  SWM  projects  are  “owned”  by  the  community,  involvement  of  stakeholders  in  all  project  stages19  21  

Appropriate  technology  and  information  transfer  mechanisms19  

Information  and  technology  transfer  is  two-­‐way  process  structured  on  the  input  of  local  users  in  all  project  stages19  

   

Municipal  buy-­‐in   Interests/benefits  municipal  authorities  

   

 

4.4.4 Refining  the  ‘Bank  of  Ideas’:  System  lever  assessment  

Each  system  lever  option  was  assessed  with  each  criterion  from  Table  13  (see      

Page 157: Marshall Rachael 201301 MASc

  140  

Appendix  D   for   the   full   analysis).   Selected   options  were   assembled   into   four   SWM  

scenarios,   each   complete  with   several   system   levers   that   act   together   to  meet   the  

locally   tailored   criteria   (see   Figure   26,   Figure   27,   Figure   28,   and   Figure   29).   These  

scenarios   represent   a   step-­‐wise   gradient   of   improving   SWM   practices.   The  

Foundations  Scenario  represents  the  most  basic  SWM  scenario,  meeting  all  criteria  

but   some   only   to   a   small   degree.   The   Integrated   SWM  Vision   Scenario   lies   at   the  

other  end  of  the  spectrum,  representing  the  most  integrated  SWM  scenario  in  which  

all  criteria  are  thoroughly  met.  The  Religious  Partnerships  Scenario  and  the  Private  

Sector  Involvement  Scenario  lie  between  these  extremes.  Eighteen  system  levers  are  

considered  critical   to   the  success  of  each  scenario,   and   therefore   form   the  base  of  

each   one.   Options   that   are   unique   to   or   introduced   in   a   particular   scenario   are  

highlighted   in   a   yellow   border.   The   benefits   and   drawbacks   of   each   scenario   are  

summarized  below  in  Table  15.  

Table  15.  Scenario  Summary  

The  Foundations  Scenario   The  Religious  Partnerships  Scenario  

The  Private  Sector  Involvement  Scenario  

The  Integrated  SWM  Vision  Scenario  

Benefits   Drawbacks   Benefits   Drawbacks   Benefits   Drawbacks   Benefits   Drawbacks  

• All  leverage  points  are  targeted  

• Easy  to  implement  

• Builds  upon  current  waste  practices  

• Many  “learn-­‐by-­‐doing”  approaches  

• “End-­‐of-­‐pipe”  fixes  

• Unsustainable  in  the  long-­‐term  

• Minimal  influence  on  most  system  levers  

• Minimal  reuse  and  recycling  

 

• Further  targets  youth’s  interest  in  consumerism  and  modern  culture  and  project  ownership  

• Easy  to  implement  

• Private  sector  involvement  

• Support  from  religious  partnerships  

• Predominantly  “end-­‐of-­‐pipe”  fixes  

• Minimal  influence  on  most  system  levers  

• Decreased  likelihood  of  success  due  to  lack  of  compensation  for  waste  practices    

• Increased  private  sector  involvement  

• Increased  project  ownership  

• Increased  reuse  and  recycling  

• Biodigester  provides  methane  as  cooking  fuel  and  decreases  organics  sent  to  landfill  

• More  costly  to  implement  

• Decreased  organics  available  for  animal  consumption  

• High  level  of  reuse,  recycling,  waste  prevention  

• System  is  highly  integrated  

• Innovation  and  micro-­‐enterprise  are  strongly  supported  

 

• Most  costly  to  implement  

• Difficult/time  consuming  to  implement  

• Too  much  eco-­‐tourism  and  population  growth  can  damage  local  systems  

 

 

Page 158: Marshall Rachael 201301 MASc

  141  

4.4.4.1 The  Foundations  Scenario  

Figure   26   is   a   conceptual   representation   of   the   SWM   system   in   The   Foundations  

Scenario.  The  stakeholder  groups  involved  in  SWM  practices  in  this  scenario  include  

a   community   SWM   committee;   women’s   groups;   one   or   more   NGOs;   the  

municipality;  and  the  private  sector  in  the  form  of  micro-­‐enterprises.  These  groups  

are  responsible  for  the  implementation  and  upkeep  of  several  system  levers,  which  

are   grouped   according   to   type   (education   and   training   programs,   entrepreneurial  

activities,   municipal   projects,   etc.).   The   category   labeled   ‘municipal   projects   OR  

micro-­‐enterprise   business   development’   spans   across   the   municipal   and   private  

sector   groups   because   local   micro-­‐enterprises   can   begin   to   take   on   a   few   of   the  

projects   in   this  area  and  those  that  remain  can  be  carried  out  by  the  municipality.  

While   the   municipality   would   have   to   oversee   and   coordinate   these   micro-­‐

enterprises,   forming   some  private   sector  partnerships  would   remove   a   significant  

financial  burden  from  the  municipal  SWM  budget.    

Page 159: Marshall Rachael 201301 MASc

  142  

 

Figure  26.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Foundations  Scenario  

System   levers   that   are  newly   introduced   in  The  Foundations   Scenario   include   the  

formation   of   a   SWM   committee;   small-­‐scale   composting;   organics-­‐to-­‐paper  

production;  a  small-­‐scale  incinerator;  and  user  compensation  (monetary  or  in-­‐kind)  

for   proper   waste   practices,   such   as   separation,   waste  minimization,   and   cleaning  

recycled  materials  before  setting  them  out  to  be  collected.  

4.4.4.2 The  Religious  Partnerships  Scenario  

Figure  27   is  a  conceptual  model  of   the  SWM  system  in  The  Religious  Partnerships  

Scenario.   This   scenario   also   includes   a   community   SWM   committee;   women’s  

groups;  one  or  more  NGOs;   the  municipality;  and  the  private  sector   in   the   form  of  

micro-­‐enterprises,  but  additionally  includes  religious  groups  as  stakeholders.  These  

groups   would   be   brought   on   to   initiate   and   manage   a   community   clean   streets  

initiative,   and   to   increase   community   respect   for   public   places.   Newly   introduced  

Community Solid Waste Management Committee(s)Education and training programs Community-wide planning

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioncommunityeducationprogram

'Teach theteachers'program

NGOpartnerships

Municipal government solid waste division Private sector

Developmentof an overallSWM plan

Education and training programsMunicipal Projects OR Micro-Enterprise Business DevelopmentEducation and training programs

Manual Landfill

Motivationaltraining/exchange

visits formanagers and

operators Wasteseparationprogram

Tax-basedcollection fee

system

Collection bysmall vehicles in

outerneighbourhoods

Installation andemptying ofwaste bins inpublic areas

Hazardouswaste

transportationto

Huehuetanango

Women's groups

Community-wide wasteeducationprogram

Youth wasteentrepreneurship

program

Entrepreneurship

Women'srecycled crafts

initiative

Women'svermiculture

initiative

Compensationfor proper

waste practices

Organics topaper

production

Small-scalecomposting

sds

Small-scaleincinerator

sssss

Page 160: Marshall Rachael 201301 MASc

  143  

system   levers   in   this   scenario   include   a   town   beautification   project;   agricultural  

uses   for   recycled   materials;   and   SWM   planning   workshops   for   local   businesses.  

These  workshops   can   allow   the   private   sector   to   play   a   stronger   role   in   SWM  by  

identifying  ways  to  minimize  and  properly  dispose  of  waste,  recover  resources,  and  

share  waste  materials  that  could  be  used  as  resources  by  other  businesses.    

 

Figure  27.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Religious  Partnerships  Scenario  

4.4.4.3 The  Private  Sector  Involvement  Scenario  

Figure   28   is   a   conceptual   model   of   the   SWM   system   in   The   Private   Sector  

Involvement   Scenario.   The   stakeholder   groups   involved   in   SWM   practices   in   this  

scenario  are   the   same  as   those   involved   in  The  Religious  Partnerships  Scenario:   a  

Community Solid Waste Management Committee(s)Education and training programs Community-wide planning

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioncommunityeducationprogram

'Teach theteachers'program

NGOpartnerships

Municipal government solid waste division Private sector

Development ofan overall SWM

plan

Education and training programsMunicipal Projects OR Micro-Enterprise Business DevelopmentEducation and training programs

SWM planningworkshops for

local businesses

ManualLandfill

Motivationaltraining/exchange

visits formanagers and

operators Wasteseparationprogram

Tax-basedcollection fee

system

Collection bysmall vehicles

in outerneighbourhoods

Installation andemptying ofwaste bins inpublic areas

Hazardous wastetransportation toHuehuetanango

Women's groups

Youth wasteentrepreneurship

program

Entrepreneurship

Women'srecycled crafts

initiative

Women'svermiculture

initiative

Townbeautification

project

Small-scalecomposting

Community-wide wasteeducationprogram

Agriculturaluse for recycled

materials

Organics topaper

production

sdfsd

Religious partnershipsEducation and training programs

Communityclean streets

initiative

Increasingrespect for

public places tokeep them clean

dsdsd

Page 161: Marshall Rachael 201301 MASc

  144  

community  SWM  committee;  women’s  groups;  one  or  more  NGOs;  the  municipality;  

the  private  sector  in  the  form  of  micro-­‐enterprises;  and  religious  groups.    

 

Figure  28.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Private  Sector  Involvement  Scenario  

Newly   introduced  system  levers   in  this  scenario   include  an  education  program  for  

youth   that   are   not   attending   school;   fostering   constructive   neighbourhood   or  

household  competition;  using  recycled  materials  as  construction  materials;  creating  

roofing   from   recycled   materials;   initiating   a   return   to   point   of   sale   program;  

conducting  secondary  and  tertiary  separation  at  a  centralized  recycling  center;  and  

installing   a   biodigester   for   methane   use   as   a   cooking   fuel   in   homes   and/or  

restaurants.  

NGOPartnerships

Municipal government solid waste division Private sectorEducation and training programsMunicipal Projects OR Micro-Enterprise Business DevelopmentEducation and training programs

SWM planningworkshops for

local businesses

Manual Landfill

Motivationaltraining/exchange

visits formanagers and

operators

Wasteseparationprogram

Tax-basedcollection fee

system

Collection bysmall vehicles

in outerneighbourhoods

Installation andemptying ofwaste bins inpublic areas

Hazardouswaste

transportationto

Huehuetanango

Women's groups

Youth wasteentrepreneurship

program

Entrepreneurship

Women'srecycled crafts

initiative

Women'svermiculture

initiative

Fosteringneighbourhood/

householdcompetition

Biodigester formethane use as a

cooking fuel

Secondary andtertiary

separation atrecycling center

Roofing fromrecycledmaterials

d

Religious partnershipsEducation and training programs

Communityclean streets

initiative

Increasingrespect for

public places tokeep them clean

Community Solid Waste Management Committee(s)Education and training programs Community-wide planning

Wastecharacterization

workshops Solid wasteauditing

Fee collectioncommunityeducationprogram

'Teach theteachers'program Development of

an overall SWMplan

Townbeautification

projectCommunity-wide wasteeducationprogram

Agriculturaluse for recycled

materials

sdfsd

Youth wasteeducationprogram

Recycledmaterials asconstruction

materials

Return to pointof sale program

dfdfdf

Page 162: Marshall Rachael 201301 MASc

  145  

4.4.4.4 The  Integrated  SWM  Vision  Scenario  

Figure  29   is  a  conceptual  model  of   the  SWM  system   in  The   Integrated  SWM  Vision  

Scenario.   The   stakeholder   groups   involved   in   this   scenario   also   include   women’s  

groups;  one  or  more  NGOs;  the  municipality;  the  private  sector  in  the  form  of  micro-­‐

enterprises;  and  religious  groups;  however,  a  non-­‐profit  SWM  organization  labeled  

here   as   the   Clean   Todos   Santos   Foundation   replaces   the   community   SWM  

committee   present   in   the   previous   scenarios.   This   organization   would   take   on  

similar  roles  to  that  of   the  SWM  committee,  but  would  additionally  be  responsible  

for   securing   national   and/or   international   support   for   SWM   activities,   integrating  

the   small   number   of   informal   waste   workers   in   the   community,   and   managing  

ecotourism  activities.  

Page 163: Marshall Rachael 201301 MASc

  146  

 

 Figure  29.  Conceptual  diagram  of  SWM  tasks  and  stakeholder  groups  in  The  Integrated  SWM  Vision  Scenario  

The  private  sector  continues  to  be  more  involved  in  SWM  activities  through  a  pre-­‐

cycle   campaign   and   the   development   of   value-­‐added   food   products   from   food  

wastes.  The  Integrated  SWM  Vision  Scenario  also  includes  separate  collection  days  

for  waste  and  recyclable  materials  in  order  to  promote  waste  

4.5 Discussion  

4.5.1 Residential  solid  waste  audit  

The  level  of  participation  in  the  residential  solid  waste  audit  in  each  neighbourhood  

was  dependent  on   the  amount  of   time  each  community   leader  gave   the  auditor   to  

Non-profit Clean Todos Santos FoundationEducation and training programs Community-wide planning

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioncommunityeducationprogram

'Teach theteachers'program

NGOPartnerships

Municipal government solid waste division Private sector

Developmentof an overallSWM plan

Ongoingprogram

monitoring

Education and training programsMunicipal Projects OR Micro-Enterprise Business DevelopmentEducation and training programs

SWM planningworkshops for

local businesses

Manual Landfill

Motivationaltraining/exchange

visits formanagers and

operators

Wasteseparationprogram

Tax-basedcollection fee

system

Collection bysmall vehicles

in outerneighbourhoods

Installation andemptying ofwaste bins inpublic areas

Hazardouswaste

transportationto

Huehuetanango

Women's groups

Youth wasteeducationprogram

Youth wasteentrepreneurship

program

Entrepreneurship

Women'srecycled crafts

initiative

Women'svermiculture

initiative

Fosteringneighbourhood/

householdcompetition

Pre-cyclecampaign

Biodigester formethane use asa cooking fuel

Secondary andtertiary

separation atrecycling center

Roofing fromrecycledmaterials

d

d

Securingnational/

internationalsupport

Religious partnershipsEducation and training programs

Communityclean streets

initiative

Increasingrespect for

public places tokeep them clean

Integratinginformal waste

workers

Community-wide wasteeducationprogram

Separatecollection days

Recycledmaterials asconstruction

materials

Agriculturaluse for recycled

materials

Sustainablealliances betweencommunities and

ecologicaluniversities

Return to pointof sale program

Waste foodproducts

dfdfdfd

Ecotourism

Page 164: Marshall Rachael 201301 MASc

  147  

present  to  the  community,  which  ranged  from  five  minutes  to  half  an  hour,  and  how  

much   support   each   community   leader   gave   the   project.   The   women   were   more  

supportive   of   and   interested   in   the   project   on   the   whole.   Proper   separation   and  

participation   was   inversely   proportional   to   the   socio-­‐economic   status   of   the  

participants.  Wealthier  households  generated  more  waste  than  poorer  households,  

yet  tended  to  do  a  poorer  job  at  separation,  or  did  not  separate  their  waste  at  all.  No  

participants   admitted   to   throwing   waste   in   the   streets,   which   at   a   minimum  

indicates  that  those  who  do  are  aware  that  it  is  frowned  upon,  or  those  who  chose  to  

participate  in  the  audit  are  already  somewhat  waste-­‐conscious.    

The   previous   municipal   administration   issued   a   solid   waste   policy   to   all  

neighboorhoods  outside  of  El  Centro  that  required  them  to  burn  everything  that  will  

burn,   sell   anything   that   will   sell,   compost   organic   materials,   and   to   send   any  

remaining   items  to  the  dump.  The  municipality  has  also   lit   fires  within  the   landfill  

itself   to  make   room   for  more  waste.  Waste   collection   is   sparse   and   in   some  cases  

unreliable.   Due   to   the   fact   that   the   dump   is   situated   in   the   center   of   town   and   is  

completely   unregulated,   community   members   can   access   it   themselves.   Clearly,  

collection  areas  need  to  expand  to  include  the  whole  community,  and  pick  up  should  

be  conducted  on  a  more  reliable  schedule.  

The   results   of   the   residential   solid   waste   audit   demonstrated   the   community’s  

strong  need  of  waste  reduction  and  resource  recovery  strategies.  Large  quantities  of  

recyclable   materials,   including   plastic,   metal,   and   paper,   are   found   in   the   waste  

stream.  The  residents  of  Todos  Santos  produce  far  less  waste  than  the  average  value  

for  Latin  America  and  the  Caribbean  (LAC)  or  the  OECD  member  countries.  This  is  

largely   due   to   the   fact   that   the   waste   audit   only   represents   residential   waste  

generated,  which  typically  makes  up  between  50  to  70%  of  municipal  solid  waste.  

However,  even  if  the  waste  audit  figures  were  doubled,  waste  generation  would  be  

much  lower  than  the  average  value  for  the  LAC  region.  This  is  particularly  true  for  

the  organic  waste  values;  however,  much  of  this  waste  is  fed  to  household  pigs,  and  

the   actual   amount  of   organic  waste  produced   is  much  higher   that   reported   in   the  

waste   audit.   Although   organics   make   up   a   fairly   small   portion   of   the   residential  

Page 165: Marshall Rachael 201301 MASc

  148  

waste  sent  to  the  dump,  they  are  a  concern  in  the  community  as  they  attract  vectors  

of   disease   and   propagate   the   local   dog   overpopulation   problem.   Waste   audits   of  

other   sources   that   contribute   organic   waste   to   the   dump   should   be   investigated,  

such  as  local  restaurants,  schools,  and  businesses.    

The  waste  audit  also  highlighted  waste  practices  that  are  habitual  in  the  community,  

such  as  waste  burning.  All  neighbourhoods  audited  demonstrated  a  strong  culture  

of  waste  burning;   therefore,  a  small-­‐scale   incinerator  to  generate  electricity  or  hot  

water   is   likely   to   have   a   good   chance   of   adoption.   Similarly,   several   community  

members   in  various  neighbourhoods  have  already  adopted  composting.  Therefore,  

small-­‐scale  composting  or  vermiculture  projects  have  a  better  chance  of  adoption.  

These  community  members  can  act  as  ‘technology  ambassadors’  in  their  respective  

neighbourhoods,  helping  other  families  and  small  businesses  to  set  up  and  manage  

their  composting  piles.      

4.5.2 Bank  of  Ideas  

The   ‘Bank  of   Ideas’  was  assembled  with  several  community-­‐identified  priorities   in  

mind.   Targeting   the   inclusion   of  women   and   youth   and   the   improvement   of   local  

education  were   community  priorities,   so  a  variety  of   examples   for   targeting   these  

areas   were   sought.   Several   successful   projects   targeting   women   were   identified,  

because  women’s   cooperation   has   been   recognized   as   essential   for   the   long-­‐term  

success   of   any   urban   service   project.  Women   are   the   first   and   foremost   users   of  

urban  services,  including  waste  collection.  Waste  disposal  is  often  part  of  their  daily  

routine  because  they  tend  to  be  responsible  for  keeping  the  home  and  its  immediate  

environment  clean  (Anschütz,  1996).  Women  are  also  the  first  educators  of  children,  

and   their   involvement   can   indirectly   facilitate   better   education   for   children   and  

youth.  Women  tend  to  consider  the  improvement  of  urban  services  a  higher  priority  

than   men,   yet   their   participation   in   SWM   decision-­‐making   is   marginal   and   their  

‘voice’  is  rarely  heard.  However,  several  projects  demonstrated  women’s  crucial  role  

in  SWM  (Anschütz,  1996):  

• Women  act  as  SWM  project  initiators;  

Page 166: Marshall Rachael 201301 MASc

  149  

• Women   are   skilled   at   carrying   out   education   campaigns   on   such   topics   as  

preventative  health,  environmental  issues,  and  sanitation  behaviour;  

• Women  have  worked  together  to  put  political  pressure  on  local  governments  

for  the  implementation  of  services  in  their  neighbourhood;  

• They  have  acted  as  managers  and  operators  of  solid  waste  micro-­‐enterprises;  

and    

• Women   often   act   as   watchdogs   in   the   community,   ensuring   that   other  

households  keep  to  the  agreed  rules  of  behaviour.    

Therefore,   while   many   projects   listed   in   the   bank   may   not   explicitly   call   for   the  

participation  of  women,   they   should  be   targeted   as   ideal   candidates   for   initiation,  

management,   and   operation   of   solid   waste   system   levers.   However,   special  

consideration   should   be   given   to   the   challenges   that  women   face,   such   as   lacking  

time   to   take   on   external   projects   when   they   must   also   manage   the   home   and  

sometimes   also   work   the   farm,   or   hostility   and/or   lack   of   support   from   male  

community  members.  These  issues  can  lower  women’s  participation  rates,  and  limit  

project  funding  because  monthly  fees  are  often  too  high  to  be  paid  by  women  alone.    

Youth  can  be  included  in  many  similar  ways;  however,  they  lack  the  same  interest  in  

health  and  sanitation,  and  tend  to  be  only  interested  in  participating  if  it  will  yield  a  

material   reward   (Anschütz,   1996).   Therefore,   examples   targeting   the   inclusion   of  

youth   generally   consist   of   micro-­‐enterprises   in   which   youth   act   as   operators,  

managers,   collectors,   or   environmental   educators,   and   receive  direct  pay   for   their  

work.    

Campaigns   focused  on  educational  measures  have  often  been  criticized   for   raising  

awareness   but   triggering   little   or   no   action   (Galli   et   al.,   2011;   Mayo   et   al.,   2006;  

McKenzie-­‐Mohr   &   Smith,   1999).   SWM   projects   often   lack   educational   measures  

before  and  during  the  operation  of  the  service,  or  the  educational  material  provided  

is  not  suited  to  the  interests  or  priorities  of  the  community,  and  therefore  does  not  

trigger  action  (Anschütz,  1996).  However,  education  plays  a  critical  role   in  project  

initiation.  The  benefits  of  behavioural  change  must  first  be  advertised  for  action  to  

Page 167: Marshall Rachael 201301 MASc

  150  

occur.  The  barriers  to  its  use  must  then  be  removed  and  the  benefits  of  its  use  must  

outweigh   the   benefits   of   its   non-­‐use   (McKenzie-­‐Mohr   &   Smith,   2008).   Education,  

coupled   with   appropriate   incentives,   can   therefore   lead   to   much-­‐needed  

behavioural   change.   Anschütz   (1996)   reports   that   in   a   Guatemalan   case   study,  

educational   campaigns   helped   to   establish   a   ‘spirit   of   responsibility’   towards  

environmental  problems  and  the  most  appropriate  ways  of  confronting  them.    

While   informing  households  about   their  solid  waste   tasks  and  responsibilities  and  

the  benefits  of  proper  SWM  practices  is  a  necessary  element  of  all  SWM  programs,  

focusing   on   improving   the   local   education   system   and   targeting   the   education   of  

youth   and   the   community   at   large   is   a   central   concern   in   the   community.   Indeed,  

education   is   a   much   higher   priority   than   waste   management   for   the   municipal  

authorities   and   the   majority   of   the   community.   Therefore,   example   projects  

targeting   long-­‐term   educational   improvements  were   sought   after   and   included   in  

the  bank.  Projects  that  target  the  education  system,  such  as  the  ‘teach  the  teachers’  

campaign,  are  particularly  critical.    

It  should  also  be  noted  that  willingness  to  pay  for  SWM  services  is  a  crucial  issue  in  

Todos  Santos.  The  municipality  cannot  get  the  community  to  pay  for  SWM  services;  

community   members   believe   it   is   the   duty   of   the   government   to   provide   these  

services  for  free.  However,  the  municipal  budget  cannot  support  a  proper  collection  

and  disposal  service  without  incoming  funds  in  the  form  of  taxes  or  fees.  Willingness  

to   pay   is   related   to   the   success   of  many   elements   of   the   SWM   system   (Anschütz,  

1996):   the  motivation  of   operators   and  households;   the   reliability   of   the   services;  

the   breadth   of   collection   areas;   the   quality   of   services;   and   the   ability   to   conduct  

environmental   monitoring   and   environmentally   conscious   SWM   practices.   It   is  

essential  to  establish  appropriate  cost  recovery  mechanisms,  as  the  economic  costs  

of   SWM   tend   to   be   concentrated   in   the   maintenance,   not   the   construction,   of  

disposal  sites  (World  Bank,  2009).  Therefore,  projects  that  tackle  willingness  to  pay  

were  targeted  for  inclusion  in  the  bank.    

Page 168: Marshall Rachael 201301 MASc

  151  

4.5.3 System  lever  assessment  

Several  considerations  were  made  during  the  system  lever  assessment  that  should  

be  noted,  including  the  lack  of  markets  for  recyclable  materials;  the  participation  of  

women  and  youth;  and  public  distrust  of  the  private  sector.  

• One   of   the   principal   barriers   to   conducting   thorough   resource   recovery   in  

Todos  Santos  is  the  lack  of  markets  for  recycled  materials.  The  only  recycling  

facilities  in  the  country  are  in  Xela  and  Guatemala  City  (Zarate  et  al.,  2008),  

which  are  both  a  considerable  distance  from  Todos  Santos;   it  would  not  be  

cost   effective   to   transport   recyclable   material   to   these   locations.   While  

looking   for  and  establishing  new  markets   is   an  activity   that  must  be  done,  

the   community   requires   resource   recovery   and   waste   reduction   methods  

that   do   not   depend   on   these   markets   in   the   mean   time.   Therefore,   each  

scenario  presents  resource  recovery  options  that  can  function  in  the  absence  

of  recycling  markets;    

• It  should  be  noted  that  while  certain  system  levers  are  directly  assigned  to  

women’s  groups  or  directly  concern  youth  in  the  conceptual  SWM  scenario  

diagrams,  other  groups,  such  as  the  SWM  committee,  the  Clean  Todos  Santos  

Foundation,   and   micro-­‐enterprises   are   assumed   to   be   inclusive   of   female  

community  members  and  youth;  and  

• Public   skepticism   about   privatization   and   its   association   with   lack   of  

transparency  and  corruption  are  common  in  Latin  America  (Hoornweg  and  

Giannelli,   2007);   Todos   Santos   is   no   exception.   Therefore,   privatization  

options,  other  than  locally  based  micro-­‐enterprises,  were  eliminated  due  to  

the  longstanding  community  distrust  of  the  private  sector.  

Several  options  in  the  ‘Bank  of  Ideas’  were  considered  critical  to  the  success  of  any  

SWM  plan   in  Todos  Santos,   and   therefore   they   form   the  base  of   each  of   the   three  

scenarios.   The   subsequent   sections   explore   these   foundational   system   levers,  

followed  by  a  discussion  of  each  of  the  four  SWM  system  scenarios.    

Page 169: Marshall Rachael 201301 MASc

  152  

4.5.3.1 Foundational  system  management  options  

In   the   overall   system  management   options,   partnerships   with   local   NGOs,   micro-­‐

enterprise  development,  and  motivational  training  and  exchange  visits  for  managers  

and   operators   are   considered   foundational   for   each   scenario.   The   community   is  

already   familiar  with  civil  society  projects,  as  several  NGOs  have  worked   in  Todos  

Santos  in  the  past,  and  some  have  already  expressed  interest  in  working  with  waste  

management   issues   in   the   community.   Micro-­‐enterprises   are   considered  

foundational   because   they   can   accomplish   smaller   scale   tasks   within   the   SWM  

system   that   the  municipality   cannot  manage;   they   require   low  capital   investment,  

are   relatively   labour   intensive,   and   contribute   to   the   local   economy;   and   they   are  

“owned”   by   community   members,   which   may   encourage   better   waste   practices.  

Training   workshops,   or   charlas,   are   considered   foundational   for   several   reasons.  

They  are  favoured  by  community  members  in  Todos  Santos;  those  who  are  invited  

take   pride   in   their   training   and   consider   the   invitation   a   special   occasion.  

Workshops  can  be  organized  to  fit  a  range  of  budgets,  are  education-­‐centered,  and  

can   foster   a   strong   sense   of   project   ownership   among   SWM  employees.   They   can  

foster  a  sense  of  pride   in  waste  work,  and  help  waste  workers  gain  respect   in   the  

community.   Workshops   can   be   tailored   to   changing   circumstances,   can   build  

capacity,  and  can  increase  the  environmental  sustainability  of  projects  and  worker  

practices.   Workshops   and   visits   to   other   locations   with   successful   waste  

management  practices  can  be  organized  through  local  NGOs.    

4.5.3.2 Foundational  waste  characterization  options  

In   the  waste   characterization   options,   further  waste   auditing   and  hands-­‐on  waste  

characterization   workshops   are   considered   essential.   While   the   residential   waste  

audit   provided   important   information   on   residential  waste   disposal   practices   and  

waste  types  and  quantities,  more  information  is  needed  to  design  a  manual  landfill  

that  will  have  the  capacity  to  remain  open  for  a  minimum  of  15  years.  Waste  audits  

of  local  businesses,  municipal  offices,  schools,  and  restaurants  should  be  conducted  

to   gain   a   fuller   understanding   of   the   solid   waste   situation   in   Todos   Santos.   An  

estimation   of   the   overall   waste   produced   each   week   should   also   be   carried   out.  

Page 170: Marshall Rachael 201301 MASc

  153  

Conducting   hands-­‐on   waste   characterization   workshops   will   allow   community  

members   and   waste   workers   to   take   ownership   of   waste   characterization   and  

landfill   design.   Zarate   et   al.   (2008)   discuss   how   these   workshops   can   provide  

participants  with  an  understanding  of  the   importance  of  volume  minimization  and  

waste  reduction  schemes.      

4.5.3.3 Foundational  waste  reduction  options  

In  the  waste  reduction  options,  waste  separation;  community-­‐wide  waste  education  

programs;   ‘teach   the   teachers’   programs;   and   youth   waste   entrepreneurship  

programs;   are   considered   foundational.   Waste   separation   targets   recyclable  

materials   that   make   up   the   largest   portion   of   waste   sent   to   the   dump,   and   also  

targets   organics,   which   contribute   to   serious   health   issues   in   the   community.  

Community   education   programs   are   necessary   to   inform   households   about   their  

solid  waste  tasks  and  responsibilities,  the  benefits  and  tasks  associated  with  waste  

separation,   collection   schedules,   and   payment   methods.   These   programs   should  

target   women,   as   they   are   the   main   handlers   of   waste   in   the   home.   ‘Teach   the  

teachers’  programs  can  act  as  the  foundation  of  an  education  system  improvement  

initiative.  These  workshops   can   foster   local   capacity,   and  allow   the   teachers   to  be  

able   to   pass   down   important   technical,   social,   economic,   and   entrepreneurial  

information  to  students.  Teacher  training  can  be  orchestrated  in  coordination  with  a  

local  NGO.  Youth  waste  entrepreneurship  programs  can  target  youth   in  and  out  of  

school   who   are   interested   in   starting   their   own   businesses.   Teaching  

entrepreneurial   skills   and   innovative   reuse   and   resource   recovery   projects   can  

foster  capacity,  environmental  and  local  sustainability,  and  can  provide  youth  with  a  

means  to  gain  material  rewards  for  SWM  work.    

4.5.3.4 Foundational  collection,  transport,  and  financing  options  

In  the  collection,  transport,  and  financing  options,  a  tax-­‐based  collection  fee  system;  

collection   fee   community   education   programs;   collection   by   small   vehicles   or  

pushcarts  in  outer  neighbourhoods;  and  the  installation  and  emptying  of  waste  bins  

in   public   areas   are   considered   essential   to   the   proper   functioning   of   the   SWM  

system.   Implementing   a   tax-­‐based   collection   fee   system   is   crucial   to   the  

Page 171: Marshall Rachael 201301 MASc

  154  

performance  of  the  overall  SWM  system.  The  alternative,  which  is  based  on  the  user  

pays  principle,  would   likely   lead   to   illegal  dumping  and  waste  burning.  A   taxation  

system   should   therefore   be   implemented   that   charges   based   on   income   bracket.  

Community   collection   fee   education   programs  will   be   essential   to   get   community  

members  on  board  for  the  taxation  system.  The  value  and  importance  of  paying  for  

SWM  services  and  therefore  having  a  functioning  SWM  system,  such  as  the  financial  

benefits   derived   from   reductions   in   expenses   associated   with   health   and  

environmental   services,   can   be   relayed   to   community   members   during   these  

programs.   It   is   essential   that   the   collection   area   be   expanded   to   include  

neighbourhoods   outside   of   El   Centro.   Smaller   motorized   vehicles   or   manual  

pushcarts  should  be  used   to  access  steep  and  narrow  streets.  The  collection  route  

should  also   include  waste  bins   in  public  places,   and  more  of   these  bins   should  be  

installed  to  discourage  littering.    

4.5.3.5 Foundational  resource  recovery  options  

In   resource   recovery   options,   women’s   recycled   craft   initiatives   and   a   women’s  

vermiculture   initiative   are   recommended  as   foundational   elements.  These  options  

directly   target   resource   reduction   and   the   inclusion   of   women.   They   also   build  

capacity  and   foster  entrepreneurial  skills  among  women  who  may  otherwise  have  

no  available  source  of  income.  While  the  largest  setback  with  composting  initiatives  

is   often   a   lack   of   markets,   a   partnership   with   an   NGO,   such   as   Byoearth   whose  

founder   participated   in   the   expert   interview   process,   would   ensure   that   markets  

could  be  reached  for  the  compost  produced  by  the  women.    

4.5.3.6 Foundational  disposal  options  

Finally,   in  disposal  options,  a  manual   landfill  and  transporting  hazardous  waste   to  

the  city  of  Huehuetenango  are  considered  essential  to  meet  all  the  technical  needs  of  

the  community.  Although  waste  reduction  and  resource  recovery  options  are  highly  

emphasized,   the   construction   of   a   landfill   for   items   that   cannot   be   recovered  

remains   necessary.   This   particular   landfill   design   is   relatively   labour   intensive,  

inexpensive   to   build   and   maintain,   and   will   greatly   minimize   many   of   the   main  

community   concerns   about   the   current  open  dump   (odor,   aesthetics,   attraction  of  

Page 172: Marshall Rachael 201301 MASc

  155  

vectors  of  disease,  and  environmental  contamination).  One  of  the  primary  barriers  

to   constructing   a  new   landfill   for   the   community  has  been   a   lack  of   suitable   land.  

The  mountainous  terrain  that  surrounds  the  town  leaves  few  locations  flat  enough  

for  a  standard  landfill  design,  particularly  since  such  land  is  prized  for  agricultural  

use.  However,  this  particular  landfill  design  is  flexible  in  that  it  consists  of  a  series  of  

long,   narrow   trenches   that   can   curve   to   fit   the   local   shape   of   the   land.   Therefore,  

locations   that  were  previously  deemed   inappropriate   for   landfill  construction  may  

be  suitable  for  this  trench  style,  manual  design.  Transporting  hazardous  waste  to  a  

facility   in   the   city   of   Huehuetenango   is   an   appropriate   disposal   method   because  

medical   waste   is   already   transported   to   Huehuetenango;   other   hazardous  wastes  

could  be  included  on  the  truck,  minimizing  extra  transportation  costs.      

4.5.4 The  Foundations  Scenario  

The  Foundations  Scenario  is  the  most  basic  of  the  four  SWM  scenarios  and  requires  

the   least   number   of   changes   to   the   current   system.   Organic   material   is   targeted  

through:  

• Small-­‐scale  composting;  

• A  women’s  vermiculture  initiative;  and    

• Organics  to  paper  production:  Paper  made  from  fruit  peels  (e.g.  banana)  and  

other   fibrous   material   can   be   used   locally   or   sold   to   tourists.   Women’s  

groups   already   make   and   sell   woven   and   other   crafted   items   to   tourists;  

paper   production   could   easily   be   added   to   their   established   crafting  

activities.    

Recyclable  materials  are  diverted  from  landfill  through:  

• A  women’s  recycled  craft  initiative;  and    

• A   small-­‐scale   incinerator.  While   incineration   is   not   ideal,   particularly   since  

the   suggested   small-­‐scale,   affordable   incinerator   cannot   reach   high   enough  

temperatures  for  full  combustion  to  occur,  a  strong  culture  of  waste  burning  

exists   in   the   community.   Therefore,   incineration   is   an   easy   first   step   for  

volume  reduction.  Depending  on  the  community’s  preference,  either  a   filter  

Page 173: Marshall Rachael 201301 MASc

  156  

can  be  installed,  or  plastics  and  bleached  items  should  not  be  incinerated  to  

avoid  dioxin  production.      

The   formation  of  a  community  SWM  committee  supports   the   initiation  of  many  of  

the  proposed  projects   in  this  scenario.    A  community  SWM  committee  can  act  as  a  

space   for   the   development   of   an   overall   SWM   plan,   motivational   workshops,  

training,   project   initiation,   and   progress   assessment.   The   committee   should   be  

composed  of  a  wide  range  of  community  members,  including  citizens;  workers  from  

the  ministries  of  health,   environment,   and  agriculture;  municipal  authorities;   local  

businesses;   restaurants;   local   schools;   members   of   the   police   force,   etc.   In   The  

Foundations  Scenario,  the  SWM  committee  is  responsible  for  carrying  out  four  SWM  

education  and  training  programs:    

• Waste  characterization  workshops;    

• A  ‘teach  the  teachers’  program;    

• A  fee  collection  education  program;  and    

• A  general  SWM  education  program  for  the  community  at  large.    

The   committee   will   also   be   responsible   for   conducting   solid   waste   auditing   and  

initiating   small-­‐scale   composting   with   families   or   groups   of   families   in   the  

community.  

The  municipality  is  responsible  for  implementing  a  tax-­‐based  fee  collection  system,  

a   waste   separation   program,   and   for   conducting   motivational   training   for   waste  

managers   and   operators.   If   feasible,   low-­‐cost   exchange   visits  may   be   coordinated  

with   a   local   NGO   (such   as   Byoearth)   to   spark   local   innovation.   The   municipality  

should  also  provide  compensation  or  incentives  for  proper  waste  practices,  such  as  

separation,  waste  minimization,  and  cleaning  recycled  materials  before  setting  them  

out  to  be  collected.  Incentives  that  will  be  effective  may  vary  from  neighbourhood  to  

neighbourhood,  and  should  be  chosen  on  a  context-­‐specific  basis.    

The   private   sector   is   responsible   for   taking   on   a   few   basic   SWM   tasks   for   the  

municipality,   and   for   implementing   a   youth   waste   entrepreneurship   program   in  

conjunction  with  a  local  NGO.      

Page 174: Marshall Rachael 201301 MASc

  157  

4.5.5 The  Religious  Partnerships  Scenario  

The  Religious  Partnerships   Scenario   is   a   step   further   towards   an   integrated   SWM  

system  due  to  the  addition  of  several  SWM  tasks  and  the  development  partnerships  

with   religious   groups.     Religion   plays   a   strong   role   in   the   lives   of   most   Todos  

Santeros,   and   religious   groups   are   very   active   in   the   community.  While   a   distinct  

divide   exists   between   the   evangelical   Protestants   and   the   Costumbre,   a   religious  

assimilation   of   Catholicism   and   ancient  Mayan   customs   into   syncretic   beliefs   and  

associated   rituals   (Wall,   1993),     religious   respect   for   the   environment   is   deeply  

rooted   in   the  history  of   the  community.  Nature  and   the  environment  are  a  part  of  

spirituality   and   religion   for  many   Todos   Santeros,   and   several   study   participants  

expressed   that   the   environmental   damage   caused   by   poor   SWM   is   a   spiritual  

concern.   Therefore,   involving   religious   groups   through   projects   such   as   a  

community   clean   streets   program   and   an   initiative   to   increase   respect   for   public  

spaces  would  be  an  acceptable  way  to  increase  community  waste  involvement  and  

education.  A  clean  streets  program  can  encourage  community  members  to  dispose  

of   waste   in   bins   instead   of   throwing   it   in   the   streets   by   fostering   a   sense   of  

commitment   to   the   communal   good.   It   can   also   focus   on   informing   community  

members   of   their   buying   power,   and   encouraging   them   to   make   purchases   that  

come   with   less   packaging.   An   initiative   to   increase   respect   for   public   places   can  

entail   a   campaign   about   the   financial,   health,   and   environmental   repercussions   of  

littering   (less   municipal   resources   for   education,   health,   etc.   and   unclean   spaces  

cause   health   and   environmental   issues).   Such   an   initiative   can   also   include   the  

installation   of   religious   shrines   or   other   symbols   of   respect   in   public   spaces,   for  

which  public  inaugurations  are  held.  This  should  decrease  the  likelihood  of  littering  

in  public  spaces.  

The  newly  introduced  system  levers  that  target  recyclable  materials  include:  

• Using  recycled  materials   in  agriculture:  The  SWM  committee   is   responsible  

for   coordinating   with   local   farmers   to   include   recyclable   materials   as  

barriers  around  beds,  as  other  structures,  and  as  substrate  in  the  soil.  When  

Page 175: Marshall Rachael 201301 MASc

  158  

these  materials  are  used  as  substrate  they  must  be  accompanied  by  activated  

charcoal  or  biochar  to  prevent  contamination;  and  

• A   town   beautification   project   that   uses   recycled   materials   to   create  

structures   (fountains,   sculptures,   garden   walls,   etc.)   that   represent   the  

culture  and  identity  of  the  community.  It  is  to  be  initiated  by  the  community  

SWM   committee,   but   can   be   undertaken   in   partnerships  with   local   schools  

and   community   groups.   While   the   town   beautification   project   is   not   a  

permanent  resource  recovery  strategy  in  itself,  it  can  act  as  a  demonstration  

project   for   the   youth  waste   entrepreneurship   program  and   the   community  

waste   education  programs.   If   properly   partnered  with   civil   society   and   the  

private  sector,  it  can  act  as  an  instrument  for  launching  several  longer-­‐term  

resource  recovery  micro-­‐enterprises  in  the  community.    

The   Religious   Partnerships   Scenario   targets   organic   material   through   the   same  

means  as  The  Foundations  Scenario:  a  women’s  vermiculture  initiative;  organics  to  

paper  production;  and  small-­‐scale  composting.    

The  private   sector  plays  a   larger   role   in  SWM  tasks   in  The  Religious  Partnerships  

Scenario.   Workshops   for   SWM   planning   for   local   businesses   can   provide   specific  

SWM   training   tailored   to   the   waste   types   each   business   or   group   of   businesses  

produce.   These  workshops   can   increase   environmentally   friendly   practices,   foster  

local   ownership,   and   in  many   cases  have   the  potential   to   save  money  or   generate  

new  forms  of  income  for  the  business  of  concern.    These  workshops  can  also  allow  

businesses  to  develop  partnerships   for  sharing  waste  resources.  Micro-­‐enterprises  

focused   specifically   on   solid   waste   are   encouraged   to   take   on   some   of   the   SWM  

projects  for  the  municipality,  just  as  they  are  in  The  Foundations  Scenario.  

4.5.6 The  Private  Sector  Involvement  Scenario  

In  this  scenario,  the  structure  of  participating  stakeholder  groups  is  the  same  as  in  

The  Religious   Partnerships   Scenario,   but   some  of   these   groups   take   on   additional  

system   levers   to   create   a   more   integrated   SWM   system.   The   SWM   committee   is  

responsible  for  implementing  an  additional  waste  education  program  for  youth  that  

cannot  benefit  from  in-­‐school  programs.  The  growing  interest  in  consumerism  and  

Page 176: Marshall Rachael 201301 MASc

  159  

modern   culture   among   youth   is   a   community   concern;   these  workshops   can   help  

youth  to  make  smarter  consumer  choices  and  preserve  local  culture  by  focusing  on  

fostering  ethical   values,   ecological   awareness,   entrepreneurial   thinking,   and   social  

responsibility.   The   municipality   is   responsible   for   fostering   constructive  

neighbourhood  or  household  competition  about  having  the  best  waste  practices  and  

maintaining   the   cleanest   streets.   Competition   can   be   based   on   the   most   reuse  

around   the   house,   waste   reduction   by   volume,   or   simply   on   following   the   waste  

separation  guidelines.  An  appropriate  incentive  can  be  used  to  start  this  competition  

(e.g.  a  prize,  ‘clean  street  of  the  month’  award,  etc.),  and  a  celebration  or  competition  

day  can  be  held  to  encourage  families  and  neighbourhoods  to  participate.  

Other  newly  introduced  system  levers  are  to  be  taken  on  by  either  the  municipality  

or  the  private  sector,  which  has  the  opportunity  to  play  a  larger  role  in  SWM  tasks  

than  it  did  in  The  Religious  Partnerships  Scenario.  Newly  introduced  system  levers  

that  target  recyclable  material  include:  

• Making  roofing  out  of  recycled  materials;    

• Through   the   implementation   of   a   return   to   point   of   sale   program,   which  

enlists   local   businesses   to   accept   broken   products   or   empty   containers   for  

repair,  reuse,  and  re-­‐sale;    

• The  construction  of  a  centralized  recycling  center,  where  re-­‐sorting  of  waste  

that   was   previously   separated   in   the   home   can   occur.   Materials   can   be  

organized  for  sale  or  free  pick-­‐up,  depending  on  demand;  and  

• Using   recycled   materials   in   construction:   Community   members   are   quite  

familiar  with  using  recyclable  material   for  construction,  as  an  NGO  recently  

built   a   school   in   the   community   using   plastic   bottles   stuffed  with  waste   as  

bricks.  Therefore,  other  similar  uses  for  recyclable  materials  are  likely  to  be  

well  accepted  in  the  community.  

The   newly   introduced   system   lever   that   targets   organic   material   is   a   biodigester  

that   captures   methane   for   use   as   a   cooking   fuel   in   homes   and   restaurants.   The  

biodigester   is   simple   and   inexpensive   to   construct.   If   successfully   adopted   by   the  

Page 177: Marshall Rachael 201301 MASc

  160  

community,  these  biodigesters  can  be  used  to  digest  wastewater  in  the  future,  which  

is   currently   untreated   and   released   directly   into   the   Limon   River.   Thus,   the  

biodigesters  have  evolutionary  capacity;  they  can  act  as  a  stepping-­‐stone  to  further  

system   integration   and   have   the   capacity   to   accomplish   more   work   as   the  

community  progresses.      

4.5.7 The  Integrated  SWM  Vision  Scenario  

The   Integrated  SWM  Vision  Scenario   represents   the  most   integrated  SWM  system  

option.   Recyclable   materials   are   targeted   through   a   women’s   recycled   crafts  

initiative,   a   pre-­‐cycle   campaign,   using   recyclable   materials   in   agriculture   and  

construction,  a   return   to  point  of   sale  program,  and  making  roofing   from  recycled  

materials.  Organics   are   targeted   through  a  women’s   vermiculture   initiative,  waste  

food   products,   and   a   biodigester   for   methane   use   as   a   cooking   fuel   in   homes   or  

restaurants.    

The  most  fundamental  change  to  the  system’s  structure  is  the  introduction  of  a  non-­‐

profit  organization,  labeled  in  Figure  29  as  the  ‘Clean  Todos  Santos  Foundation’.  The  

organization  should  be  founded  on  the  vision  of  the  community  at  large,  and  should  

include  a  broad  range  of  stakeholders.  An  agreement  should  be  signed  between  the  

organization   and   the   municipality   on   solid   waste   objectives,   targets,   and   a  

comprehensive  SWM  plan  for  the  town  of  Todos  Santos.  The  organization  conducts  

certain   SWM   tasks   (e.g.   conducts   a   thorough   waste   audit,   conducting   ongoing  

monitoring,  etc.)  and  oversees  and  manages  certain  SWM  aspects  in  the  community  

in   conjunction   with   the   municipality   (e.g.   coordinates   with/oversees   micro-­‐

enterprises).   It   is  responsible  for  all  of  the  educational  and  planning  tasks  that  the  

SWM   committee   conducts   in   the   other   scenarios,   but   is   also   responsible   for   the  

following:    

• Searching  for  and  securing  national  and  potentially  international  support.  

• Integrating  informal  waste  workers  in  to  SWM  tasks:  While  Todos  Santos  is  

too   small   to   have   a   booming   waste   economy   with   many   informal   waste  

workers   or   pickers,   a   small   handful   of   community   members   do   resort   to  

Page 178: Marshall Rachael 201301 MASc

  161  

scavenging   at   the   dump.   This   activity   is   likely   to   increase   as   the   town  

expands  and  the  population  grows.  Therefore,  including  waste  scavengers  in  

formal  SWM  activities  at  this  early  stage  is  important.  

• Increasing  ecotourism   in   the  community:  Encouraging  ecotourism  activities  

will   provide   a   local   drive   to   shift   to   more   ecological   practices.   It   will   also  

bring  in  revenue  that  will  directly  benefit  community  members  and  can  also  

be  used  to  fund  SWM  services.  Innovative  waste  practices  in  the  community  

can  act  as  one  of  the  central  pulls  for  ecotourism.  As  waste  practices  improve,  

Todos  Santos  can  represent  a  community  on  the  path  to  sustainability.  

• Developing   sustainable   alliances   between   the   community   and   ecological  

universities:   Creating   a   three-­‐way   alliance   between   the   community,   a  

university   and   agroindustry   was   originally   considered   as   a   potential  

resource   recovery   option,   but   there   is   little   agroindustry   in   the   immediate  

area.   However,   an   alliance  with   a   university,   such   as   Universidad  Rural   de  

Guatemala   or   Universidad   EARTH   in   Costa   Rica,   is   still   recommended  

because   it   can   greatly   help   the   community   to   improve   its   waste   practices,  

foster  local  innovation,  and  achieve  long-­‐term  project  success.  

The  private   sector   is   expected   to  play   an   even   larger   role   in  The   Integrated   SWM  

Vision   Scenario.   More   opportunities   exist   for   micro-­‐enterprises   to   participate   in  

waste   reduction   and   recycling,   including   making   value-­‐added   products   from  

unwanted   food   waste   (e.g.   whey   can   be   made   into   a   cream-­‐free   “cream   cheese”;  

burnt  coffee  can  be  used  to  make  iced  coffees  or  coffee  ice-­‐cream;  etc.).  Existing  local  

businesses   can   also   encourage   waste   reduction   through   the   ‘pre-­‐cycle’   campaign,  

which   proactively   reduces   waste   by   reducing   the   initial   sale   of   heavily   packaged  

products.  Either  the  private  sector  or  the  municipality  is  recommended  to  carry  out  

separate  collection  days   for  waste  and  recyclable  material   in  The   Integrated  SWM  

Vision   Scenario.   This   strategy   aims   to   reduce  waste   production   or   the   amount   of  

recyclable   material   found   in   the   waste   stream   by   increasing   the   frequency   of  

collection  for  recyclable  materials  or  decreasing  the  frequency  of  waste  collection.    

Page 179: Marshall Rachael 201301 MASc

  162  

4.5.8 Scenario  selection  

The  scenarios  represent  an  incremental  gradient  of  integration  in  the  SWM  system.  

While  each  scenario  can  stand  on  its  own,  one  scenario  may  not  be  appropriate  for  

the   entire   town.   Different   neighbourhoods  may   require   different,   context-­‐specific  

scenarios.   Currently,   SWM   services   are   not   provided   uniformly   to   all  

neighbourhoods.   For   example,   El   Centro   is   the   only   neighbourhood   that   receives  

consistent  waste  collection;  it  is  also  the  wealthiest  neighbourhood  with  the  greatest  

access   to   education   and   health   services.   The   study   participants   from   El   Centro  

showed   less   interest   in  waste   separation,   and   the  majority   did   not   separate   their  

waste   during   the   waste   audit.   This   contrasted   with   the   avid   cooperation   of  

participants   living   in   the   surrounding   neighbourhoods.   Even   within   each  

surrounding   neighbourhood,   current   waste   practices   and   services   differ  

considerably.  Residents  living  closer  to  the  center  of  town  are  more  likely  to  receive  

waste   collection   services   and   demonstrate   similar   interests   and   needs   to   those  

living   in   El   Centro   (see   Figure   30   for   a   conceptual   representation   of   SWM   service  

provision).    

 

   

 

 

 

 

 

 

 

 

     =  SWM  service  coverage  

Figure  30.  Conceptual  diagram  of  current  SWM  service  provision  in  Todos  Santos  

Therefore,  it  is  recommended  that  at  a  minimum,  the  surrounding  neighbourhoods  

implement   a   different   scenario   from   that   implemented   in   El   Centro.   Due   to   the  

Page 180: Marshall Rachael 201301 MASc

  163  

lower  socio-­‐economic  status  of  the  residents  and  the  lack  of  current  SWM  services  

in  the  surrounding  neighbourhoods,  Scenarios  1  or  2  may  be  better  starting  points  

for   these   areas,   while   The   Private   Sector   Involvement   Scenario   would   be   better  

tailored  to  El  Centro.    Of  course,   the  researcher  cannot  make  such  a  decision;  only  

the  community  can  make  these  choices.  

It   should   be   noted   that   the   incremental   nature   of   the   scenarios   allows   for   easy  

transition  from  one  to  the  next;  this  evolutionary  capacity  will  allow  the  community  

to   continually   adjust   and   improve   its   solid   waste   practices,   achieving   higher   and  

higher   levels   of   system   integration.   A   strong   focus   on   project   ownership   and   on  

developing   entrepreneurial   skills   within   the   community   will   help   build   local  

capacity  and  foster  local  innovation  in  the  long-­‐term.    

4.5.9 Challenges  and  setbacks  

Several  setbacks  and  challenges  were  experienced  over  the  course  of  the  solid  waste  

audit.  Multiple  schools  were  approached   to  participate   in   the  waste  audit  process,  

but   none  were   interested,   and   all   refused   to   participate.   Additionally,   the   overall  

quantity   of   waste   sent   to   the   dump   each   week   could   not   be   estimated   due   to  

operator  coordination  issues.  The  auditor  attempted  to  assess  the  average  quantity  

of  waste  coming  in  on  each  truck  and  the  number  of  trucks  entering  the  site,  but  was  

told   to   leave   the   site  by   the   truck  operators  halfway   through   the  process.  Limited  

time  and  resources  prohibited  this  task  from  being  conducted  at  a  later  date.  Clearly,  

communication,   trust,   and   understanding   were   not   successfully   established   with  

these   individuals.   A   third   challenge   of   this   nature   was   encountered   during   the  

participant   recruitment   phase.   Initial   recruitment   through   radio   advertisement  

brought   in   very   few   participants,   so   the   auditor   requested   to   attend   the  monthly  

community  meetings  of  each  neighbourhood  to  ask  for  study  volunteers.  Initially,  it  

was   difficult   to   gain   the   understanding   and   cooperation   with   the   community  

leaders,  and  the  auditor  was  generally  rejected.  However,  the  auditor  responded  by  

hiring   a   local   translator   so   the   information   could   be   relayed   in   Mam,   the   native  

tongue  of  the  community  at   large.  The  interpreter  was  carefully  briefed  before  the  

leaders  were   approached   for   a   second   time.   The   presentation  was  made   again   in  

Page 181: Marshall Rachael 201301 MASc

  164  

Mam,   this   time   emphasizing   the   negative   health   effects   that   poor   waste  

management   has   caused   in   Todos   Santos.   The  Mam   rendition   proved   to   be  much  

more   successful,   and   the   auditor   was   permitted   to   present,   with   the   aid   of   the  

translator,  at  each  neighbourhood’s  community  meeting.    

These   issues  demonstrate  the  pivotal   importance  of  project  ownership,  which  was  

previously   identified   as   a   key   factor   for   instigating   positive   changes   in   the   SWM  

system.   Clearly,   communication,   trust,   and  understanding   are   extremely   pertinent  

to  project  ownership  success.  These  factors  form  the  foundation  of  what  Murphy  et  

al.   (2009)  refer   to  as  appropriate   technology   transfer  mechanisms.  The  challenges  

faced   in   the   field   demonstrate   the   absolutely   critical   nature   of   appropriate  

information   and   technology   transfer   mechanisms   for   any   community   project.  

Identifying  and  developing  local  solutions  must  be  a  two-­‐way  process,  structured  on  

the   input   of   local   users   in   all   project   stages.   While   time   and   resource   barriers  

prevented  the  auditor  from  pursuing  the  participation  of  schools  or  the  assessment  

of   the   weekly   quantity   of   waste   sent   to   the   dump,   future   work   can   target   these  

elements  with   approaches   that   focus  on   clear   communication,   understanding,   and  

community  project  ownership.  This  study  provides  the  community  of  Todos  Santos  

with  a  strong  platform  from  which  context-­‐specific  SWM  choices  can  be  made  that  

have   the  potential   to  build   capacity  and  help   the   community  progress   towards  an  

integrated,  appropriate  SWM  system.    

4.6 Conclusion  Community  identified  concerns  formed  the  base  of  this  study.  Education;  municipal  

interest   in   SWM;   youth’s   interest   in   consumerism   and   modern   culture;   the  

participation   of   women   and   youth   in   the   SWM   process;   and   community   project  

ownership  were  previously   identified  as  key  areas   to   intervene   in   the   solid  waste  

system.    These  targets,  supplemented  with  technical  data  from  the  residential  waste  

audit,   helped   guide   the   compilation   of   55   potential   system   levers   in   the   ‘Bank   of  

Ideas’.   Sixteen   criteria   spanning   economic;   social,   cultural,   and   political;  

sustainability;   and   technical   considerations   were   used   to   produce   four   scenarios,  

ranging   from   low   to   high   SWM   system   integration.   It   is   recommended   that   The  

Page 182: Marshall Rachael 201301 MASc

  165  

Private   Sector   Involvement   Scenario   be   implemented   in   the   neighbourhood   of   El  

Centro,   and   The   Foundations   Scenario   or   2   be   implemented   in   the   surrounding  

neighbourhoods.   However,   the   community   must   judge   which   SWM   scenarios   are  

most   appropriate   for   local   use.   This   study   can   aid   in   guiding   this   process   and   in  

ensuring   the   community   is   able   to   choose   from   a   broad   selection   of   innovative  

approaches  with  high  potential  to  be  locally  appropriate.  

 

 

 

 

 

 

 

 

   

Page 183: Marshall Rachael 201301 MASc

  166  

4.7 References  Anschütz,   J.   (1996).   Community-­‐based   solid   waste   management   and   water   supply  

projects:  Problems  and  solutions  compared:  A  survey  of  the   literature.   Gouda,  The  Netherlands:  WASTE    

Asian  Tribune.   (2009).   The   importance  of   technology   for  development:  A  political  economy  perspective,  Asian  Tribune.    

Badilla,  R.  A.,  &  Suarez,  A.  S.  (2002).  Viabilidad  de  implementar  un  sistema  integrado  de  manejo   de   desechos   para   pequenas   comunidades   de   la   zona   Atlantica   de  Costa   Rica   a   traves   de   microempresas.   Undergraduate   thesis.   Universidad  EARTH.  Guacimo,  Costa  Rica.    

Bigoth,  K.  S.   (2001).  Auditoria  del  manejo  de  los  desechos  en  la  empresa  Linda  Vista,  Cartago,   Costa   Rica.   Undergraduate   thesis.   Universidad   EARTH.   Guacimo,  Costa  Rica.    

Calderon,   J.   C.   S.,   &   Ventura,   J.   F.   Q.   (2008).  Plan  de   gestion  para   el  manejo   de   los  residuos   solidos   en   empresas   del   distrito   de   guapiles.   Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Carmona,   C.,   &   Giraldo,   E.   (1997).   Analysis   del   sistema   de   recoleccion   de   desechos  solidos  municipales  con  previa  separacion  en  al  fuente.  Bogota,  Colombia.  

Coc,   E.  M.,   &   Zonso,   J.   J.   (2011).  Elaboracion  de  una  guia  basica  para   la  manejo  de  desechos  solidos  en  una  comunidad  rural.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Cohen,   B.   (2004).   Urban   Growth   in   Developing   Countries:   A   Review   of   Current  Trends   and   a   Caution   Regarding   Existing   Forecasts.   World   Development,  32(1),  23-­‐51.    

Conteh,  A.   (2003).  Culture  and  the  transfer  of   technology.   In  B.  Hazeltine  &  C.  Bull  (Eds.),  Field  guide  of  appropriate  technology.  San  Diego,  CA:  Elsevier  Science.  

Darrow,   K.,   &   Saxenian,   M.   (1993).  Appropriate   technology   sourcebook:   A   guide   to  practical   books   for   village   and   small   community   technology.   Stanford,   CA:  Village  Earth.  

Dunn,   P.   (1978).   Appropriate   technology:   Technology   with   a   human   face.   London:  Macmillan.  

Echeverria,   F.  O.   (2009).  Evaluacion  del  sistema  de  tratamiento  de  aguas  residuales  del   sector   central   de   la   Universidad   EARTH.   Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Eckaus,  R.  S.  (1977).  Appropriate  technologies  for  developing  countries.  Washington,  D.C.:  National  Academy  of  Sciences.  

Page 184: Marshall Rachael 201301 MASc

  167  

Furedy,   C.   (1992).   Garbage:   Exploring   non-­‐conventional   options   in   Asian   cities.  Environment  and  Urbanization,  4(2),  42-­‐61.    

Galli,   A.,   Wiedmann,   T.,   Ercin,   E.,   Knoblauch,   D.,   Ewing,   B.,   &   Giljum,   S.   (2011).  Integrating   ecological,   carbon,   and   water   footprint:   Defining   the   “Footprint  Family"   and   its   application   in   tracking   human   pressure   on   the   planet:   One  Planet  Economy  Network.  

Geng,   Y.,   Tsuyoshi,   F.,   &   Chen,   X.   (2010).   Evaluation   of   innovative  municipal   solid  waste   management   through   urban   symbiosis:   A   case   study   of   Kawasaki.  Journal  of  Cleaner  Production,  18(10-­‐11),  993-­‐1000.    

Gonzalez,   G.   P.   B.,   &   Taborga,   S.   A.   T.   (2001).   Evaluacion   economica   de   la  contaminacion   por   desechos   en   la   zona   urbana   de   Guapiles.   Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Hoornweg,  D.,  &  Bhada-­‐Tata,  P.  (2012).  What  a  waste:  A  global  review  of  solid  waste  management.  Washington,  DC:  World  Bank.  

Hoornweg,   D.,   &   Giannelli,   N.   (2007).   Managing   municipal   solid   waste   in   Latin  America   and   the   Caribbean:   Integrating   the   private   sector,   harnessing  incentives:  PPIAF  World  Bank.  

IDB.   (2011).   Strategic  guidelines   for   the  municipal   solid  waste   sector   (MSW).   Paper  presented  at  the  CSD  intersessional  conference  on  building  partnerships  for  moving  towards  zero  waste,  Tokyo,  Japan.  

Jacome,   A.   C.,   &   Romero,   F.   F.   V.   (2003).   Elaboracion   de   sustratos   y   enmiendas  agricolas  a  partir  de  desechos  de  la  agroindustria  azucarera  y  la  industria  del  jabon.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Jimenez,  E.  D.  S.  (2000).  Analysis  del  sistem  a  de  manejo  integrado  de  desechos  solidos  domesticos   de   EARTH   y   su   evaluacion   desde   el   punto   de   vista   social   interno.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Joseph,   K.,   Rajendiran,   S.,   Senthilnathan,   R.,   &   Rakesh,   M.   (2012).   Integrated  approach   to   solid   waste   management   in   Chennai:   an   Indian   metro   city.  Journal  of  Material  Cycles  and  Waste  Management,  14(2),  75-­‐84.    

Kgathi,   D.,   &   Bolaane,   B.   (2001).   Instruments   for   sustainable   solid   waste  management  in  Botswana.  Waste  Management  and  Research,  19(4),  342-­‐353.    

Kojima,  M.  (2011,  February  16-­‐18,  2011).  Case  from  Asia:  Expanding  role  of  private  sectors   in  waste  management  and  recycling  business   towards  realizing  sound  material  cycle  society.  Paper  presented  at   the  CSD   intersessional  conference  on  building  partnerships  for  moving  towards  zero  waste,  Tokyo,  Japan.  

Page 185: Marshall Rachael 201301 MASc

  168  

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

Mantilla,  J.  E.  V.  (2007).  Proyecto  cuente  con  ambiente  primer  informe  sobre  desechos  solidos  (1  ed.):  MARN,  Universidad  Rafael  Landivar.  

Matuschke,   I.   (2009).  Rapid  urbanization  and  food  security:  Using  food  density  maps  to  identify  future  food  security  hotspots.  Paper  presented  at  the  International  Association  of  Agricultural  Economists  Conference,  Beijing,  China.    

Mayo,  E.,   et  al.   (2006).   I  will   if  you  will:  Towards  sustainable  consumption:  National  Consumption  Roundtable  Sustainable  Development  Commission.  

McKenzie-­‐Mohr,   D.,   &   Smith,   W.   (1999).   Fostering   Sustainable   Behavior:   An  Introduction   to   Community-­‐Based   Social   Marketing.   Gabriola   Island   (B.C.):  New  Society  Publishers.  

Mendonca,  A.  E.  A.  (2007).  Propuesta  de  modelo  para  la  gestion  de  los  residuos  solidos  en  el  canton  de  Pococi.  Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Mohamad,   Z.   F.,   Idris,   N.,   &   Mamat,   Z.   (2012).   Role   of   religious   communities   in  enhancing   transition   experiments:   a   localised   strategy   for   sustainable   solid  waste  management  in  Malaysia.  Sustainability  Science,  7(2),  237-­‐251.    

Moodley,   S.   (2005).   Deconstructing   the   South   African   Government's   ICT   for  Development  Discourse.  Africa  Insight,  35(3),  3-­‐11.    

Moyaz,  M.  V.,  &  Reyes,  M.   F.   (2002).  Analisis  de   factibilidad  technico-­‐economica  del  engorde   de   bovinos   en   semiconfinamiento   suplementados   con   desechos   de  palmito.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Murphy,  H.  M.,  McBean,  E.  A.,  &  Farahbakhsh,  K.  (2009).  Appropriate  technology  –  A  comprehensive  approach   for  water   and   sanitation   in   the  developing  world.  Technology  in  Society,  31(2),  158-­‐167.    

Ntim,   B.   (1988).   Introduction.   In   S.   Buatsi   (Ed.),   Technology   Transfer   -­‐   nine   case  studies.  London,  UK:  IT  Publications.  

OECD.   (2012).   Members   and   partners     Retrieved   October   2,   2012,   from  http://www.oecd.org/about/membersandpartners/  

Pellegrini,  U.  (1979).  The  problem  of  appropriate  technology.  .  In  A.  De  Giorgio  &  C.  Roveda   (Eds.),  Criteria   for   selecting  appropriate   technologies  under  different  cultural,  technical,  and  social  conditions  (pp.  1-­‐5).  New  York:  Pergamon  Press.  

Page 186: Marshall Rachael 201301 MASc

  169  

Robles,  M.   B.,   &  Orejuela,   F.   S.   (2002).  Evaluacion  de  manejo  dedesechos  organicos  domesticos  en  la  EARTH.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Rybczynski,  W.  (1980).  Paper  Tigers.  Charlmington:  Prism.  

Schübeler,  P.  (1996).  Conceptual  Framework  for  Municipal  Solid  Waste  Management  in   Low-­‐Income   Countries.   In   K.   Wehrle   &   J.   Christen   (Eds.).   St.   Gallen  Switzerland:   UNDP/UNCHS/World   Bank/SDC   Collaborative   Programme   on  Municipal  Solid  Waste  Management  in  Low-­‐Income  Countries.  

Schumacher,   E.   F.   (1973).   Small   is   beautiful:   A   study   of   economics   as   if   people  mattered.  London:  Blond  and  Briggs,  1974.  

Seadon,   J.   K.   (2010).   Sustainable   waste   management   systems.   Journal   of   Cleaner  Production,  18(16-­‐17),  1639-­‐1651.    

Sierra,   J.   A.   P.,   &   Matute,   T.   D.   S.   P.   (2010).   La   biodigestion   como   estrategia   en   el  manejo  sostenible  de  desechos  organicos,  y  para  el  fomento  de  alianzas  entre  la  agroindustria,  las  comunidaded,  y  redes  de  escuelas  ecologicas.  Undergraduate  thesis.  Universidad  EARTH.      

Singh,  R.,  Tyagi,  V.  V.,  Allen,  T.,  Ibrahim,  M.  H.,  &  Kothari,  R.  (2011).  An  overview  for  exploring   the  possibilities  of   energy  generation   from  municipal   solid  waste  (MSW)  in  Indian  scenario.  Renewable  and  Sustainable  Energy  Reviews,  15(9),  4797-­‐4808.    

Singh,  R.  P.,  Singh,  P.,  Araujo,  A.  S.  F.,  &  Ibrahim,  M.  H.  (2011).  Management  of  urban  solid  waste:  Vermicomposting  a   sustainable  option.  Resources,  Conservation  &  Recycling,  55(7),  719-­‐729.    

Smillie,   I.   (2000).   Mastering   the   Machine   Revisited:   Poverty,   Aid   and   Technology.  London:  ITDG  Publishing.  

   

Page 187: Marshall Rachael 201301 MASc

  170  

5 Local  innovation,  ownership,  and  action:  A  systems  approach  to  context-­‐specific  ‘best’  options  for  integrated  solid  waste  management  in  Todos  Santos,  Guatemala    

5.1 Introduction    The  study  and  management  of  complex  systems,  such  as  SWM  systems,  requires  an  

understanding  of  feedback  loops,  information  flows,  and  other  complex  interactions  

among  system  components.  However,  many  policy  and  planning  decisions  are  made  

without  consideration  of  the  SWM  system  as  a  complex,  interconnected  whole;  this  

heightens   the   risk   of   making   poor   choices,   errors,   and   oversights   in   managerial  

activities   (Kollikkathara   et   al.,   2010).   For   these   reasons,   many   researchers   have  

begun  to  explore  SWM  from  a  systemic  perspective.  System  models,  including  causal  

mapping/loop  diagrams  and  system  dynamics  models,  have  been  used  by  a  number  

of  researchers  to  gain  a  fuller  understanding  of  SWM  systems  and  sub-­‐systems.  Such  

models   have   been   used   to   predict   municipal   solid   waste   generation   and   landfill  

capacity   (Dyson  &   Chang,   2005;   Kollikkathara   et   al.,   2010);   as   a   decision   support  

tool   for   SWM   financial   planning   (Kum,   Sharp,  &  Harnpornchai,   2004);   to   simulate  

the   composting   process   (Neves,   Gomes,   Tarelho,   &   Matos,   2007);   to   forecast   the  

development  of   SWM  systems   that   include  qualitative   variables   such   as   voluntary  

recycling   (Karavezyris,   Timpe,   &   Marzi,   2002);   to   explore   transitioning   from  

landfilling   to   other   forms   of   disposal   (Mashayekhi,   1993);     to   explore   the  

interactions  among  solid  waste  system  components  in  a  developing  country  context,  

ensuring   to   include   the   informal   sector   (Sudhir,   Srinivasan,   &   Muraleedharan,  

1997);   to  manage   healthcare   waste   (Clipak   &   Barton,   2012);   and   to   evaluate   the  

social  performance  of  construction  waste  management  (Yuan,  2012).      

While   taking   a   systems   approach   is   crucial   for   achieving   a  more   integrated   solid  

waste  system,  developing  a  SWM  system  that  is  locally  appropriate  and  sustainable  

cannot  be  achieved  without  the  involvement  of  local  stakeholders.  However,  though  

participatory   model   building   has   become   increasingly   popular   as   a   means   to  

facilitate   inclusive   decision-­‐making   and   effective   community   participation   in   the  

management   of   other   resources   (e.g.   see  Mirchi,   Madani,  Watkins   Jr.,   and   Ahmad  

Page 188: Marshall Rachael 201301 MASc

  171  

(2012);  Campo,  Bousquet,  and  Villanueva  (2010);  and    Suwarno,  Nawir,  Julmansyah,  

and  Kurniawan  (2009)),  such  approaches  have  received  little  attention  in  the  field  of  

SWM.  This  has   limited   the   success  of   systems  approaches   in   SWM  because   locally  

appropriate   systemic   change   is   dependent   upon   stakeholder   participation;   actual  

systemic  change  occurs  at  multiple  levels,  “beginning  with  people’s  initial  intent  to  

address   a   complex   problem   systemically   and   by   clarifying   the   end   result   around  

which  they  are  aligned”  (Stroh,  2003,  p.  7).  Locally  appropriate  change  proceeds  if  

stakeholders   are   engaged   in   understanding,   building   commitment   to,   and  

contributing   to   the   systemic   approach   (Stroh,   2003).   Only   then   can   the   system  

structure  be  examined   for  places   to   intervene   in  a   locally  appropriate,   sustainable  

manner.   The   previous   chapters   lay   the   groundwork   for   the   development   of   an  

action-­‐oriented   plan   for   change   through   systemic   intervention.   Such   ‘action  

planning’   is   based   on   the   use   of   leverage   effects,   or   as   Vermaak   (2007,   p.   184)  

describes,   “the  use  of  a   charming  and  deep-­‐seated  notion   in   systems   thinking:   the  

ability   to   achieve   as   much   impact   as   possible   with   as   little   effort   as   possible   by  

focusing  on  the  right  factors”.  These  leverage  points  can  be  identified  by  examining  

causal  maps  or  loop  diagrams  of  the  system  in  question,  and,  once  found,  can  point  

to   successful   strategies   for   change   (Vermaak,   2007).   Such   strategies   can   form   the  

foundation  of  a  locally  tailored  system  intervention  plan.  

 In   order   to   ensure   stakeholders   can   make   an   educated   decision   about   which  

strategies   are   “best   fit”   for   their   particular   system,   it   is   important   to   understand  

how   each   project   or   strategy   affects   the   structure   of   the   system:  Which   leverage  

points  are  targeted,  how  strongly  are  they  influenced,  and  how  might  these  changes  

affect   the   structure   and   behaviour   of   the   system?   This   chapter   explores   these  

questions  through  a  scenario  implementation  analysis.  

5.2 Methodology  Founded  on  the  results  of  previous  chapters,  this  study  explores  the  impacts  of  each  

of   the   four   SWM   scenarios   established   in   Chapter   4   on   the   structure   of   the   SWM  

system,  as  depicted  through  the  participatory  causal  mapping  process  described  in  

Chapter  3.    A  simplified  version  of   the  community-­‐wide  causal  map  depicting  only  

Page 189: Marshall Rachael 201301 MASc

  172  

the  feedback  loops,  elements,  and  relationships  that  are  ideal  places  to  intervene  in  

the   system  was   used   for   the   scenario   impact   analysis   (see   Figure   31).   The   system  

levers  identified  in  chapter  4  are  labeled  in  green.  

 

Figure  31.    Key  places  to  intervene  in  the  Todos  Santos  SWM  system  

 

The  following  sections  describe  the  methodology  used  to  determine  the  impact  of  all  

four  scenarios  on  the  SWM  system  in  Todos  Santos.    

Health

EnvironmentalSystems

Funding forSWM

RecyclableMaterialQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Preoccupation withOther Community

Needs

Generation Rate

Tourism

Locations for People toResponsibly Dispose of

Waste

People ThrowWaste in the

Streets

Coordination withLocal Businesses

Education

Participation ofWomen and Youth

Projects that are"Owned" By the

WholeCommunity

Interest/ Understandingabout the Waste Issue

-

+

+

MunicipalInterest in SWM

-

-

Adequacy ofSWM-

+

Degradation

Illness/Decrease inWellbeing

+

Life SupportSystems

+

-

-

Municipal BudgetContribution

+

+

Influx ofPlastic

EconomicIncome

+

ReductionRate

Maintaining Traditions,Culture, and Language

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture-

Educated Youth

+

-

ResourceAccess

+

+

+ ++

TownAesthetics

+

Valuing Womenand Youth

+

+

+

+

-

+

-

+

Recycled andReused

Materials

RecyclableMaterial

Entering theWaste Stream

Recycled MaterialDiversion

Page 190: Marshall Rachael 201301 MASc

  173  

   

5.2.1 Scenario  implementation    

The   four   SWM   scenarios   established   in   Chapter   4   are   implemented   separately   to  

display   the  differing   impacts   each  one  would  have  on   the   SWM  system.   Scenarios  

are  “implemented”  by  introducing  the  components  that  make  up  each  one  into  the  

system  structure.  New  system  elements  –  including  relationships,  variables,  stocks,  

and   flows   –   are   established   to   connect   the   scenario   components   to   the   existing  

system  structure  in  a  logical  manner.  The  strengths  of  new  relationships  are  rated  in  

the   same  way   they   are   in   the   original   causal  maps   (see   Chapter   3):   a   thin   arrow  

represents   low   strength,   and   is   assigned   a   numerical   value   of   1;   an   arrow   with  

medium   thickness  has   a  medium  strength   and   is   assigned  a  numerical   value  of   2;  

and  a  thick  arrow  represents  a  strong  relationship  with  a  value  of  3.  All  new  system  

elements  are  represented  in  purple,  and  newly  introduced  scenario  components  are  

represented  in  red  to  distinguish  each  one  from  the  existing  system  structure.  

5.2.2  Implementation  analysis  

The  implementation  analysis  consists  of  three  parts:  

• Determining   the   individual   and   collective   impacts   of   all   projects   within   a  

given   scenario.   This   includes  determining  which   variables   are   increased  or  

decreased,  which   relationships   are   strengthened,   and  which   system   levers,  

such  as  action-­‐entry  points  and  reinforcing  feedback  loops,  are  altered;  

• Verifying   which   scenarios   are   most   likely   to   be   well-­‐suited   for   immediate  

implementation  within  each  neighbourhood  of  Todos  Santos;  and    

• Identifying   which   projects   within   these   suggested   scenarios   should   be  

implemented   during   the   first   “momentum-­‐building”   phase   of   the   system  

intervention  plan.  It  is  important  to  ensure  a  system  intervention  plan  gains  

momentum  by   identifying  a   few  key   changes   in  processes,  procedures,   and  

perceptions   that   should   be   made   (Stroh,   2003).   The   success   of   this   initial  

stage   is  also  dependent  upon  deepening  stakeholders’  understanding  of   the  

system  as  changes  are  made  (Stroh,  2003).  

Page 191: Marshall Rachael 201301 MASc

  174  

It  should  be  noted  that  implementing  a  chosen  scenario  in  a  series  of  stages  ensures  

that  change  is  introduced  in  small,  natural  steps,  and  that  the  system  does  not  resist  

these  changes  to  the  extent  that  implementation  fails  altogether.  

5.3 Results    

5.3.1 The  Foundations  Scenario  

The  systemic  impacts  of  The  Foundations  Scenario  can  be  seen  in  Figure  32.  System  

levers   that   are   newly   introduced   in   this   scenario   are   depicted   in   red,   and   newly  

added  system  components  are  depicted  in  purple.  Grey  components  receive  little  to  

no   impact   in   this   scenario.   Blue   arrows   and   black   variables,   stocks,   and   flows  

represent  components  that  are  influenced  by  the  added  system  levers.    

Page 192: Marshall Rachael 201301 MASc

  175  

 

Figure  32.  Impacts  of  The  Foundations  Scenario  system  levers  on  the  community-­‐wide  causal  map    

 

5.3.1.1 Targeting  the  five  action  entry  points  

The  Foundations  Scenario  targets  each  of  the  five  primary  action  entry  points  

identified  in  Chapter  3,  although  some  more  weakly  than  others.    

• Education,  particularly  that  of  youth,  is  directly  targeted  through  the  Teach  

the  Teachers’  Program,  the  Youth  Waste  Entrepreneurship  Program,  and  

other  waste  education  measures;  

Health

EnvironmentalSystems

Funding forSWM

RecyclableMaterialQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Preoccupation withOther Community

Needs

Generation Rate

Tourism

Locations for People toResponsibly Dispose of

Waste

People ThrowWaste in the Streets

PublicEducation

Participationof Womenand Youth

Projects that are"Owned" By the

Whole Community

Interest/Understanding about

the Waste Issue

-

-

+

MunicipalInterest in SWM

-

-

Adequacy ofSWM-

+

Illness/Decrease inWellbeing

+

Life SupportSystems

+

-

MunicipalExpenditures

Municipal BudgetContribution

+

+

Influxof

Plastic

EconomicIncome

+

ReductionRate

MaintainingTraditions, Culture,

and Language Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

-

Educated Youth

+

-

+

+

Town Aesthetics

+

Installation andemptying of waste bins

in public areas

Quantity oforganics in

dump

WasteEducation

+

Vectors ofdisease

Dumpingrate

+

Organicsconsumption

+

RecyclableMaterialsEntering

WasteStream

+

Need fordisposal

Degradation

+

poor wastedisposal

(dumping,burying, slow

burning)

+

-

+

+

methane gasDecomposition

+

Development ofEffective SWM

Plan

RecyclableMaterial

Diverted fromLandfill

LEGEND

<FeeCollectionEducationProgram>

+

+

WasteCharacterization

Workshops

Youth WasteEntrepreneurship

Program

Micro-Enterprise

Development

Compensationfor Proper Waste

Practices

MotivationalTraining forManagers

andOperators

Community- wideWaste Education

Program

CommunitySWM

Committee(s)

'Teach theTeachers'Program

Hazardous WasteTransportation toHuehuetenango

Small-ScaleIncinerator

Manual Landfill

Solid WasteAuditing

Waste SeparationProgram

Women's RecycledCrafts Initiative

FeeCollectionEducationProgram

Tax-basedFee

System

Collection by SmallVehicles in OuterNeighbourhoods

Small-ScaleComposting

Organics to PaperProduction

Women'sVermiculture

Initiative

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

Valuing Womenand Youth

++

+

+

+

+

-

-

+

+

+Resource Access

RecyclableMaterial Diversion

+++

+

-

<Compensation forproper waste practices>

+

Page 193: Marshall Rachael 201301 MASc

  176  

• Municipal   interest   in  SWM   is  directly   targeted  by   the   tax-­‐based   fee  system,  

which  will  ensure  the  municipal  authorities  have  enough  money  to  run  SWM  

programs.  It  is  targeted  indirectly  through  increased  citizen  interest  in  SWM,  

which  will  make  SWM  a  higher  priority  for  the  municipality;  

• Youth’s   interest   in   consumerism   and  modern   culture   is   indirectly   targeted  

through  increased  participation  of  youth  in  SWM  activities;  

• Valuing   women   and   youth   is   targeted   by   activities   carried   out   by   the  

women’s  groups.  Increasing  the  participation  of  women  in  the  SWM  process  

is  directly  accomplished  through  their  participation  in  the  community  SWM  

committee(s);  and  

• Project   ownership   is   directly   targeted   through   micro-­‐enterprise  

development,   the   community   SWM   committee(s),   waste   education,  

motivational   training   for   managers   and   operators,   and   indirectly   through  

increased  participation  of  women  and  youth.    

5.3.2 The  Religious  Partnerships  Scenario  

The  systemic  impacts  of  The  Religious  Partnerships  Scenario  can  be  seen  in  Figure  

33.    

 

Page 194: Marshall Rachael 201301 MASc

  177  

 

Figure  33.  Impacts  of  The  Religious  Partnerships  Scenario  system  levers  on  the  community-­‐wide  causal  map  

 

5.3.2.1 Targeting  the  five  action  entry  points  

Newly   introduced   variables   in   The   Religious   Partnerships   Scenario   further   target  

two  of  the  five  primary  action  entry  points  identified  in  Chapter  3:  youth’s  interest  

Health

EnvironmentalSystems

Funding forSWM

RecyclableMaterialQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Preoccupation withOther Community

Needs

GenerationRate

Tourism

Locations for People toResponsibly Dispose of

Waste

People ThrowWaste in the Streets

PublicEducation

Participationof Womenand Youth

Projects that are"Owned" By the Whole

Community

Interest/Understanding about

the Waste Issue

-

-

+

MunicipalInterest in SWM

-

-

Adequacy ofSWM-

+

Illness/Decrease

inWellbeing

+

Life SupportSystems

+-

MunicipalExpenditures

Municipal BudgetContribution

+

+

Influxof

Plastic

EconomicIncome+

Reduction Rate

MaintainingTraditions, Culture,

and Language

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

Youth DiscussingAnything of Value

-+

Educated Youth

+

-

+

+

+

Town Aesthetics

+

Valuing Womenand Youth

+

CommunitySWM

Committee(s)

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioneducationprogram

'Teach theteachers' program

Micro-enterprisedevelopment

Manual Landfill

Motivationaltraining for

managers andoperators

Waste separationprogram

Tax-basedcollection fee

system

Collection by smallvehicles in outerneighbourhoods

Installation andemptying ofwaste bins inpublic areas

Hazardous wastetransportation toHuehuetanango

Community-wide wasteeducationprogram

Youth wasteentrepreneurship

program

Women's recycledcrafts initiative

Women'svermiculture

initiative

Organics to paperproduction

Small-scalecomposting

+

Quantity oforganics in

dump

WasteEducation

+

+

+

Vectors ofdisease

Dumpingrate

+ Organicsconsumption

+

-

+

+

++

++

+

RecyclableMaterialsEntering

WasteStream

+

+

+

+

+

-

+

+

+

Need fordisposal

Degradation

+

-

+

-

poor wastedisposal

(dumping,burying, slow

burning)

+

+

-

+

+ Developmentof EffectiveSWM Plan

+

methane gasDecomposition

+

Coordination withlocal businesses

+

SWMworkshops for

localbusinesses

+

+

Agricultural usesfor recyclable

materials

Recycled andReused

Materials

+++

Town BeautificationProject

+ +

ReligiousPartnerships

Community CleanStreets Program

IncreasingRespect for

Public Places

+

+

--

+

+

+

+

+

<FeeCollectionEducationProgram>

+

+

+

-

-

+

+

+

Resource Access+

RecyclableMaterial Diversion

Page 195: Marshall Rachael 201301 MASc

  178  

in   consumerism   and   modern   culture,   and   projects   that   are   owned   by   the  

community.    

• The   former   is   targeted  by   religious  partnerships,  which  will  predominantly  

target   the   Waste   in   the   Streets   Loop,   and   will   encourage   maintaining   the  

deeply  rooted  respect   for   the  environment  that  has  been  part  of   the  Mayan  

culture  and  traditions  for  centuries;  and  

• The  SWM  workshops   for   local  businesses  and  a   town  beautification  project  

indirectly   increase   local   ownership   of   SWM   projects   by   increasing  

coordination  with  local  businesses  and  helping  solid  waste  micro-­‐enterprises  

get  off  the  ground.  

5.3.3 The  Private  Sector  Involvement  Scenario    

The  systemic  impacts  of  The  Private  Sector  Involvement  Scenario  can  be  seen  in  Figure  34.  

Page 196: Marshall Rachael 201301 MASc

  179  

 

Figure  34.  Impacts  of  The  Private  Sector  Involvement  Scenario  system  levers  on  the  community-­‐wide  causal  map  

 

5.3.3.1 Targeting  the  five  action  entry  points  

In  The  Private  Sector  Involvement  Scenario,  additional  system  levers  further  target  

four   of   the   five   action   entry   points:   The   education   of   youth;   the   participation   of  

youth;  project  ownership;  and  youth’s  interest  in  modern  culture  and  consumerism.  

Health

EnvironmentalSystems

Funding forSWM

RecyclableMaterialQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Preoccupation withOther Community

Needs

GenerationRate

Tourism

Locations for People toResponsibly Dispose of

Waste

People ThrowWaste in the Streets

PublicEducation

Participation ofWomen and Youth

Projects that are"Owned" By the Whole

Community

Interest/Understanding about

the Waste Issue

-

-

+

MunicipalInterest in SWM

-

-

Adequacy ofSWM-

+

Illness/Decrease

inWellbeing

+

Life SupportSystems

+

-

MunicipalExpenditures

Municipal BudgetContribution

+

+

Influxof

Plastic

EconomicIncome

+

ReductionRate

MaintainingTraditions, Culture,

and Language

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

Youth DiscussingAnything of Value

-+

Educated Youth

+

-+

+

+

Town Aesthetics

+

Valuing Womenand Youth

+

CommunitySWM

Committee(s)

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioneducationprogram

'Teach theteachers'program

Micro-enterprisedevelopment

Manual Landfill

Motivationaltraining formanagers

andoperators

Waste separationprogram

Tax-basedcollectionfee system

Collection by smallvehicles in outerneighbourhoods

Installation andemptying of waste

bins in publicareas

Hazardous wastetransportation toHuehuetanango

Community-wide wasteeducationprogram

Youth wasteentrepreneurship

program

Women's recycledcrafts initiative

Women'svermiculture

initiative

+

Quantity oforganics in

dump

WasteEducation

+

++

Vectors ofdisease

Dumpingrate

+

Organicsconsumption

+

+

+

+

+

+

RecyclableMaterialsEntering

WasteStream

+

+

+

+

+

-

+

+

+

Need fordisposal

Degradation

+

-

+

-

poor wastedisposal

(dumping,burying, slow

burning)

+

+

-

+

+

Developmentof EffectiveSWM Plan

+

methane gasDecomposition

+

Coordination withlocal businesses

SWMworkshops for

localbusinesses

+

+

Agricultural usesfor recyclable

materials

Recycled andReused

Materials

+ +

+

Town BeautificationProject

+

+

ReligiousPartnerships

Community CleanStreets Program

IncreasingRespect for

Public Places

+

+

--

+

FosteringNeighbourhood/

HouseholdCompetition

Recycled MaterialsUsed in Construction

Roofing fromRecycled Materials

Biodigester forMethane Use as a

Cooking Fuel

Secondary and TertiarySeparation at Recycling

Center

Return to Point ofSale Progam

Youth WasteEducationProgram

-

+

+

+ ++

+

+

+

+

dgf

<FeeCollectionEducationProgram>

+

+

+

+

<Return toPoint of

SaleProgram>

+

+

+

+

+

+

+

-

-

Resource Access +

+Recyclable

Material Diversion

Page 197: Marshall Rachael 201301 MASc

  180  

• Education  of  youth  is  targeted  through  a  youth  waste  education  program  that  

ensures  youth  not  attending  school  have  the  opportunity  to  receive  training  

and  waste  education;  

• The  participation  of  youth  is  also  targeted  through  the  youth  waste  education  

program;  

• Project   ownership   is   targeted   by   fostering   constructive   neighbourhood   or  

household   competition   and   through   a   return   to   point   of   sale   program   that  

increases  the  participation  of  local  businesses  in  waste  issues;  and  

• Youth’s  interest  in  modern  culture  and  consumerism  is  indirectly  targeted  

through  the  youth  waste  education  program.  The  program  encourages  

ecological  awareness;  ethical  values;  entrepreneurial  thinking;  and  social  

responsibility,  and  therefore  may  foster  sustainable  behaviour  and  interest  

in  preserving  the  local  culture.    

5.3.4 The  Integrated  SWM  Vision  Scenario  

The  systemic  impacts  of  The  Integrated  SWM  Vision  Scenario  can  be  seen  in  Figure  

35.    

 

Page 198: Marshall Rachael 201301 MASc

  181  

 

Figure  35.  Impacts  of  The  Integrated  SWM  Vision  Scenario  system  levers  on  the  community-­‐wide  causal  map  

5.3.4.1 Targeting  the  five  action  entry  points  

In   this   scenario,   newly   added   system   levers   further   target   education   and   project  

ownership.  

• Education   is   targeted   by   establishing   sustainable   alliances   with   ecological  

universities,   which   can   foster   environmental   education   through   engaged,  

hands-­‐on   SWM  projects   in   the   community,   and   by   helping   schools   develop  

Health

EnvironmentalSystems

Funding forSWM

RecyclableMaterialQuantity

EconomicCapital

WasteQuantity

Health and Interest in SWM Loop

Waste in the Streets Loop

Preoccupation withOther Community

Needs

GenerationRate

Tourism

Locations for People toResponsibly Dispose of

Waste

People ThrowWaste in the Streets

PublicEducation

Participationof Womenand Youth

Projects that are"Owned" By the

Whole Community

Interest/Understandingabout the Waste

Issue

-

-

+

MunicipalInterest in SWM

-

-

Adequacy ofSWM

-

+

Illness/Decrease

inWellbeing

+

Life SupportSystems

+

-

MunicipalExpenditures

MunicipalBudget

Contribution

+

+

Influxof

Plastic

EconomicIncome

+

Reduction Rate

MaintainingTraditions, Culture,

and Language

Youth are a DifferentGeneration: Interest in

Consumerism and ModernCulture

Youth DiscussingAnything of Value

-

+

Educated Youth

+

-+

+

+

Town Aesthetics

+

Valuing Womenand Youth

+

Wastecharacterization

workshops

Solid wasteauditing

Fee collectioneducationprogram

'Teachthe

teachers'program

Micro-enterprisedevelopment

Manual Landfill

Motivationaltrainingformanagers

andoperators

Waste separationprogram

Tax-basedcollectionfee system

Collection by smallvehicles in outerneighbourhoods

Installationand

emptying ofwaste bins inpublic areas

Hazardous wastetransportation toHuehuetanango

Youth wasteentrepreneurship

program

Women's recycledcrafts initiative

Women'svermiculture

initiative

+

Quantity oforganics in

dump

WasteEducation

+

+

Vectors ofdisease

Dumping rate

+ Organicsconsumption

+

+

+

+

RecyclableMaterialsEntering

WasteStream

+

++

+

+

+

+

Need fordisposal

Degradation

+

-

+

-

poor wastedisposal

(dumping,burying, slow

burning)

+

+

-

+

+

Developmentof EffectiveSWM Plan

+

methane gasDecomposition

+

dgf

Coordination withlocal businesses

SWMworkshops for

localbusinesses

+

+

Agricultural usesfor recyclable

materials

Recycled andReused

Materials

++

+

ReligiousPartnerships

Community CleanStreets Program Increasing

Respect forPublic Places

+

+

--

+

FosteringNeighbourhood/

HouseholdCompetition

Recycled MaterialsUsed in Construction

Roofing fromRecycled Materials

Biodigester forMethane Use as a

Cooking Fuel

Secondary and TertiarySeparation at Recycling

Center

Return to Point ofSale Progam

Youth WasteEducationProgram

-

+

+

+

+

+

+

+

+

SeparateCollection Days

Pre-cycleCampaign

Waste FoodProducts

SustainableAlliances with

EcologicalUniversities

SecuringNational/

InternationalSupport

Ecotourism

IntegratingInformal Waste

Workers

Non-ProfitClean Todos

SantosFoundation

+

+

+

+

+

+

+

<Pre-cycleCampaign>

+

+

+

+

<FeeCollectionEducationProgram>

<Return toPoint of

SaleProgram>

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

-

-

+

RecyclableMaterial Diversion

Resource Access+

Page 199: Marshall Rachael 201301 MASc

  182  

programs   and   curriculums.   The   relationship   between   these   variables   has   a  

strength  of  2.  University  partnerships  can  also  play  a  strong  role  in  the  youth  

entrepreneurship   program,   ensuring   youth   both   in   and   out   of   the   public  

education  system  have  the  opportunity  to  improve  their  education;  and  

• Project   ownership   is   targeted   by   increased   coordination   with   local  

businesses  in  the  form  of  a  pre-­‐cycle  campaign  and  waste  food  products.  The  

pre-­‐cycle  campaign  will  engage  local  businesses  in  positive  waste  practices.    

5.3.5 New  influential  relationships  

The   sum   of   the   strengths   of   new   relationships   supporting   the   five   action   entry  

points   in   each   scenario   is   summarized   in   Table   16.   These   figures   quantitatively  

represent  the  cumulative  influence  of  system  levers  on  existing  variables  that  have  

the  ability   to  significantly   impact   the  structure  of   the   local  SWM  system.  Numbers  

that  have  been  added  to  in  a  given  scenario  are  marked  in  red.    

Table  16.  Sum  of  strengths  of  new  relationships  influencing  action  entry  points  

Action  entry  point  

The  Foundations  Scenario   The  Religious  Partnerships  Scenario  

The  Private  Sector  Involvement  Scenario  

The  Integrated  SWM  Vision  Scenario  

Sum  of  strengths  of  direct  

relationships  

Sum  of  strengths  of  indirect  

relationships  

Sum  of  strengths  of  direct  

relationships  

Sum  of  strengths  of  indirect  

relationships  

Sum  of  strengths  of  direct  

relationships  

Sum  of  strengths  of  indirect  

relationships  

Sum  of  strengths  of  direct  

relationships  

Sum  of  strengths  of  indirect  

relationships  

Education   4   1   4   1   4   2   6   3  

Municipal  interest  in  SWM  

2   4   2   4   2   4   2   4  

Youth’s  interest  in  consumerism  and  modern  culture  

0   3   0   4   0   5   0   5  

Participation  of/Valuing  women  and  youth  

5   0   5   0   7   0   7   0  

Projects  that  are  “owned”  by  the  whole  community  

7   3   7   5   9   5   11   5  

TOTAL   16   11   16   14   22   16   26   17  

 

Page 200: Marshall Rachael 201301 MASc

  183  

5.4 Discussion  

5.4.1 The  Foundations  Scenario    

The  Foundations  Scenario  has  the  least  impact  on  the  SWM  system.  This  basic  SWM  

scenario   targets  both  key   reinforcing   feedback   loops,  with  most  projects   targeting  

the  Health   and   Interest   in   SWM  Loop.   Project   ownership   and   the   participation   of  

women  and  youth  are  the  most  strongly  targeted  action  entry  points.  This  scenario  

represents  the  first  step  in  a  series  of  increasingly  improved  SWM  system  scenarios,  

and  has  some  benefits  and  drawbacks,  accordingly.    

5.4.1.1 Benefits  

The   benefits   of   this   scenario   are   primarily   associated   with   its   ease   of  

implementation.   Most   measures   are   simple,   require   little   capital   to   start   up,   and  

build  off  of  current  SWM  practices   in  Todos  Santos.  For  example,   there   is  a  strong  

culture  of  waste  burning  in  Todos  Santos,  which  occurs  in  the  home  or  the  backyard,  

releasing   toxins   into   the   air.   The   installation   of   a   simple,   small-­‐scale   incinerator  

would  minimize   these   environmental   and   health   threats  while   also   having   a   high  

chance   of   adoption.   Likewise,   community   committees   already   exist   in   each  

neighbourhood  in  town;  SWM  can  either  become  part  of  the  responsibility  of  these  

committees,   or   they   can   act   as   a   launching   platform   for   stand-­‐alone   SWM  

committees.   The   SWM   committees   are   vital   to   the   functioning   of   this   scenario,  

because   they   are   in   charge   of   running   most   of   the   waste   education   measures,  

strongly  contributing  to  project  ownership,  and  increasing  the  overall  participation  

of  women  and  youth  by  including  them  on  the  committee  and  in  waste  projects.  The  

existing  social  structure  makes  it  likely  that  these  committees  will  be  adopted.    

Another   benefit   of   this   scenario   is   the   number   of   projects   based   on   “learning   by  

doing”   principles,   which   will   help   to   ensure   new   solid   waste   knowledge   can   be  

applied  outside  the  classroom.  Projects   like  the  waste  characterization  workshops,  

motivational   training   workshops   for   waste   workers,   and   the   youth   waste  

entrepreneurship   program   help   build   the   SWM   system   as   community   members  

learn,  promoting  the  SWM  system’s  ability  to  support  knew  waste  knowledge  once  

Page 201: Marshall Rachael 201301 MASc

  184  

it   has   been   learned.   Waste   education   also   contributes   to   project   ownership   –  

community  members  can  gain  skills,  take  on  projects  themselves,  and  take  pride  in  

their  work.  

5.4.1.2 Drawbacks  

The   primary   drawbacks   that   come  with   The   Foundations   Scenario   are   associated  

with  its  minimalistic  nature;  most  projects  are  “end-­‐of-­‐pipe”  type  fixes,  which  may  

be   easier   to   implement   but   will   not   be   sustainable   in   the   long-­‐term   as   the  

population  continues  to  grow.  Reducing  waste  generation  is  only  minimally  targeted  

through   indirect   measures.   Additionally,   few   The   Foundations   Scenario   projects  

promote  reuse  and  recycling.  Due   to   the   lack  of  a  market   for   recyclable  materials,  

this  may  mean   that   a   large   portion   of   recyclables  will   still   be   sent   to   the   landfill,  

reducing   its   lifespan.   There   is   also   very   little   private   sector   involvement   in   this  

scenario,   and   few   opportunities   to   create   value-­‐added   products.   The   lack   of  

opportunities  to  turn  a  profit  from  waste  reclamation  may  make  it  difficult  to  raise  

interest  in  SWM  and  establish  other  projects  within  this  scenario.    

Financially,   the   primary   drawback   with   The   Foundations   Scenario   is   the   need   to  

provide   community   members   with   compensation   for   proper   waste   practices.  

Depending  on  what  kind  of  compensation  is  needed  to  bolster  proper  participation,  

this  measure  could  get  costly.  More  projects  with  the  potential  to  generate  financial  

gains  for  community  members  are  required  to  avoid  the  need  for  such  measures.    

This   scenario   contributes   minimally   to   the   improvement   of   the   public   education  

system,  which  is  one  of  the  community’s  largest  concerns.  The  ‘Teach  the  Teachers’  

program  is  the  only  program  that  directly  targets  it.  All  other  educational  measures  

are  concerned  with  waste  education  (see  Figure  36).  

Page 202: Marshall Rachael 201301 MASc

  185  

 

Figure  36.  Waste  Education  causes  tree    

These   measures   may   increase   the   community’s   understanding   of   SWM,   but   not  

necessarily   their   interest   in   it.   As   previously   discussed   in   Chapter   3,   education  

cannot   bring   about   behavioural   change   on   its   own.   Therefore,   the   causal  

relationship  between  Waste  Education  and  Interest/Understanding  about  the  Waste  

Issue  is  weak.  These  measures  are  certainly  needed,  but  their  impact  on  the  system  

may  prove  to  be  minimal  without  the  support  of  other  systemic  elements.    

5.4.2 The  Religious  Partnerships  Scenario  

The   Religious   Partnerships   Scenario   is   a   relatively   small   step   up   from   The  

Foundations   Scenario.     Of   the   five   action   entry   points,   youth’s   interest   in  

consumerism  and  modern  culture  and  project  ownership  are  targeted  slightly  more  

than   in   the   previous   scenario.   Two   new   projects   directly   target   the  Waste   in   the  

Streets  Loop,   and   two   indirectly   target   the  Health   and   Interest   in   SWM  Loop.  The  

benefits  and  drawbacks  of  this  scenario  are  discussed  below.    

5.4.2.1 Benefits  

The   Religious   Partnerships   Scenario   improves   the   SWM   system   more   than   The  

Foundations   Scenario,   yet   the   gap   that   exists   between   current  waste   practices   in  

Todos   Santos   and   this   scenario   is   not   so   large   that   a   simpler   scenario   –   The  

Foundations   Scenario   –   is   needed   to   act   as   a   stepping-­‐stone   between   them.   The  

Religious  Partnerships  Scenario  can  thus  be  directly   implemented,  providing  more  

benefits  in  terms  of  project  ownership  and  waste  minimization  while  still  consisting  

of  simple,  low-­‐cost  measures.    

Page 203: Marshall Rachael 201301 MASc

  186  

In   this   scenario,   the   private   sector   begins   to   participate   more   substantially,   and  

opportunities  for  turning  a  profit  from  waste  by  creating  value-­‐added  products  and  

services   are   introduced.   This   scenario   also   includes   the   participation   of   local  

farmers   in   waste   minimization   efforts,   introducing   money-­‐saving   reuse   practices  

into  the  most  common  occupation  in  town.  

The   potential   financial   drawbacks   associated   with   providing   compensation   for  

proper   waste   practices   are   eliminated   in   The   Religious   Partnerships   Scenario.    

Proper   participation   is   expected   to   grow   as   project   ownership   increases   and   the  

community’s   interest   in   SWM   improves   due   to   the   ability   to   make   a   profit   from  

recycled  materials.    

Religious  partnerships  are  introduced  in  this  scenario,  which  bring  several  benefits  

to   the  SWM  system:   these  partnerships  may  spread  SWM  awareness;   increase   the  

community’s   sense   of   responsibility   to   keep   the   public   environment   clean;  

strengthen   interest   in   maintaining   traditions;   and   potentially   reduce   waste  

generation.  

5.4.2.2 Drawbacks  

The  drawbacks  of  this  scenario  are  similar  to  those  associated  with  The  Foundations  

Scenario.  This  scenario  provides  only  a  small  increase  in  projects  for  recycling  and  

reuse;   the   central   focus   is   still   on   measures   for   final   disposal.   Similarly,   no   new  

measures   are   implemented   to   further   improve   the   public   education   system,   and  

therefore  it  is  only  minimally  targeted.    

The   lack   of   compensation   for   proper  waste   practices  may  make   certain  measures  

more  difficult  to  implement.  It  may  take  longer  to  get  certain  groups  to  adopt  proper  

waste   practices,   and   some   may   not   be   interested   in   adopting   them   at   all.   More  

project  ownership  and   interest   in  SWM   is  needed   to  get   the  whole   community  on  

board.    

Page 204: Marshall Rachael 201301 MASc

  187  

5.4.3 The  Private  Sector  Involvement  Scenario  

The  Private  Sector  Involvement  Scenario’s  impact  on  the  SWM  system  is  much  more  

substantial  than  that  of  The  Religious  Partnerships  Scenario.  Project  ownership  and  

the  participation  of  women  and  youth  are   increased,  and  new  measures   indirectly  

target   education   and   youth’s   interest   in   consumerism   and   modern   culture.   The  

Health  and  Interest  in  SWM  Loop  is  also  directly  strengthened.    

This  scenario  has  more  benefits  than  the  previous  two;  however,  it  also  has  unique  

drawbacks.  These  are  discussed  below.    

5.4.3.1 Benefits  

The   new   measures   implemented   in   this   scenario   bring   many   benefits.   The  

biodigester   will   greatly  minimize   the   amount   of   organics   ending   up   in   the   waste  

stream,  and  therefore  prevent  contamination   through  disease  vectors   that   feed  on  

organics.  The  biodigester   can  also  provide  methane  as  a   cooking   fuel   to  homes  or  

restaurants.   Since   wood   is   the   primary   fuel   source   used   for   cooking   in   the  

community,  the  biodigester  may  eventually  decrease  the  amount  of  deforestation  in  

the  area.    Wood  is  also  extremely  expensive,  and  families  receiving  methane  from  a  

biodigester   will   receive   significant   savings.   Additionally,   wood   may   be   used   for  

making  higher  value  products  than  heat.    

This  scenario  includes  measures  that  promote  the  involvement  of  the  private  sector,  

more  local  ownership,  and  much  more  reuse  and  recycling.  The  implementation  of  a  

recycling  center  will  generate  new  employment  opportunities  in  the  area.  The  youth  

waste   education   program   targets   the   community’s   concern   about   the   public  

education  system  and  also  has  the  potential  to  reduce  waste  generation.    

5.4.3.2 Drawbacks  

The   Private   Sector   Involvement   Scenario   is   more   costly   to   implement   than   the  

Religious   Partnerships   Scenario.   Particularly,   the   biodigester   and   the   secondary  

separation  program  at   a   recycling   center  will   increase   the   cost   of   implementation  

and   maintenance.   The   construction   of   the   recycling   center   will   decrease   the  

municipal  waste  budget  (even  if  the  majority  of  the  materials  used  for  construction  

Page 205: Marshall Rachael 201301 MASc

  188  

are   recycled   or   reused),   and   the   center  will   incur   an   annual   cost   associated  with  

paying  employees  to  do  the  sorting.    

There   are   two   drawbacks   associated   with   the   biodigester.   If   this   technology   is  

widely  adopted  within  the  community,  the  use  of  methane  as  a  cooking  fuel  may  put  

loggers  out  of  work.  However,  some  could  be  employed  to  run  the  biodigester  or  to  

sort  waste  at  the  recycling  center.  Additionally,  a  large  number  of  animals,  many  of  

which  are  household  pets,  rely  on  a  steady  supply  of  organic  material  deposited  in  

the  dump  as  a  food  source.  A  significant  reduction  in  the  amount  of  organic  material  

sent   to   the  dump  will   leave   these  animals  hungry.  This  will  not  only  be  extremely  

detrimental   to   the   wellbeing   of   the   animals   but   may   also   cause   them   to   become  

dangerous  to  community  members.  This  issue  will  be  difficult  to  resolve,  as  it  would  

be  beneficial  to  control  the  dog  population,  and  thus  the  number  of  disease  vectors,  

through   their   food  source,  yet  many  of   these  animals  are  highly  valued  household  

pets  that  may  not  be  provided  for  if  this  food  source  is  removed.      

5.4.4 The  Integrated  SWM  Vision  Scenario  

The   Integrated   SWM   Vision   Scenario   is   the  most   highly   integrated,   involved,   and  

systemically   impacting   scenario.   New   measures   are   introduced   that   target  

education   and   project   ownership,   and   have   the   potential   to   reduce   waste  

generation.   Several   measures   increase   the   strength   of   the   Health   and   Interest   in  

SWM  Loop,  both  directly  and  indirectly.  As  is  to  be  expected,  this  scenario  provides  

the   most   benefits   of   the   four,   but   also   carries   its   own   unique   drawbacks;   these  

issues  are  discussed  below.  

5.4.4.1 Benefits  

The   Integrated   SWM   Vision   Scenario   includes   many   measures   that   will   increase  

reuse   and   recycling.   It   also   contains   several   strategies   for   minimizing   waste  

generation,   including   separate   collection   days,   the   pre-­‐cycle   campaign,   and   the  

previously   introduced   return   to   point   of   sale   program.   The   pre-­‐cycle   campaign,  

which   is   an   in-­‐store,   point   of   purchase   educational   program,   can   help   minimize  

waste   by   encouraging   store   owners   to   provide   products  with  minimal   packaging,  

Page 206: Marshall Rachael 201301 MASc

  189  

and   having   store   owners   instruct   buyers   about   which   items   come   with   the   least  

amount  of  packaging.  The  return  to  point  of  sale  program  will  enlist  local  businesses  

to  accept  broken  products  or  empty  contains  for  repair  and  resale,  minimizing  the  

number  of  such  items  that  are  sent  to  landfill.  Therefore,  The  Integrated  SWM  Vision  

Scenario  promotes  more  private  sector  participation  in  waste  minimization  efforts.  

The   private   sector   is   also   further   encouraged   to   play   a   role   in   carrying   out   SWM  

tasks.    

Innovative   waste   practices   and   microenterprise   development   is   promoted   and  

supported   in   this   scenario   through   the   establishment   of   an   alliance   with   an  

ecological  university.  Such  an  alliance  has  the  potential  to  greatly  impact  the  public  

education  system  by  providing  expert  help  with  relevant  program  and  curriculum  

development.  

The   establishment   of   a   non-­‐profit   SWM  organization  has   the   potential   to   bring   in  

more  financial  support  and  more  support  from  the  NGO  and  governmental  sectors.  

The   foundation  may  also  draw   in  a  more  established  eco-­‐tourism  sector  as  Todos  

Santos  continues  to  develop  into  a  center  for  waste  innovation  in  the  region.    

 The  scenario  also  proactively  includes  the  few  waste  pickers  that  currently  exist  in  

Todos   Santos.   This   ensures   that   as   the   population   grows   and   the   allure   of   this  

activity   increases,   these   community  members   are   not   exposed   to   ever-­‐increasing  

health  risks  and  poor  working  conditions.    

5.4.4.2 Drawbacks  

The  Integrated  SWM  Vision  Scenario   is   the  most  costly  scenario  to   implement  and  

maintain.  Certain  measures  may  also  be  difficult  and/or  time  consuming  to  get  off  

the  ground,  such  as  securing  a  partnership  with  an  ecological  university,  or  starting  

up  a  successful  non-­‐profit  organization  that  can  bring  in  all  the  benefits  previously  

discussed.   Other  measures  may   encounter   backlash   from   the   community,   such   as  

the   implementation   of   separate   collection   days   for   recyclables   and   waste.   If   a  

culture   of   waste   responsibility   is   not   firmly   established   at   the   time   when   this  

Page 207: Marshall Rachael 201301 MASc

  190  

measure  is  implemented,  residents  may  turn  to  waste  burning  in  backyards  and  the  

home  when  collection  is  not  as  frequent  as  they  would  like.    

If   this   scenario   brings   about   a   substantial   increase   in   eco-­‐tourism,   the   two  weak  

balancing   loops   that   were   left   out   of   the   systemic   depiction   in   this   chapter   for  

simplicity’s  sake  might  become  medium  strength  loops  and  have  some  detrimental  

effects  on  the  environment  or  cause  further  population  growth.  This  would  result  in  

the  need  for  a  larger  landfill,  and/or  more  aggressive  waste  minimization  measures.  

Population   growth   should   be   closely   examined   in   order   to   predict   the   amount   of  

landfill   space   needed   in   the   future,   and   land   should   be   set   aside   now  while   it   is  

available.    

5.5 Recommendations  It   is   recommended   that   The   Foundations   Scenario   or   the   Religious   Partnerships  

Scenario  be  implemented  in  outer  neighbourhoods  that  currently  receive  little-­‐to-­‐no  

SWM  services.  Neighbourhoods  that  are  further  away  from  the  center  may  find  that  

The  Foundations  Scenario  is  a  better  fit  due  to  its  simplicity,  its  incineration  option,  

and  its  low  cost.  Neighbourhoods  that  are  closer  to  the  center  but  still  not  quite  as  

wealthy   as   El   Centro   are   recommended   to   start   with   The   Religious   Partnerships  

Scenario,  which  provides  more  benefits   than  The  Foundations   Scenario  while   still  

being   fairly   low-­‐cost   and   easy   to   implement.   The   wealthy   neighbourhood   of   El  

Centro   is   recommended   to   implement   The   Private   Sector   Involvement   Scenario.  

This   scenario   provides   many   more   opportunities   for   SWM   improvement   and   is  

better   tailored   to   the  residents   living   in   this  area.  As  new  waste  practices  become  

well   established   in   each   neighbourhood,   plans   to   upgrade   to   the   next   higher  

scenario   can   be  made.   Even   if   The   Integrated   SWM   Vision   Scenario   is   eventually  

established   within   the   community,   new   opportunities   for   innovation   and  

improvement  can  be  taken.  For  example,  wastewater  that  is  currently  piped  directly  

to   the   Limon   River   could   act   as   part   of   the   feed   source   for   the   biodigesters,  

providing  more  community  members  and  businesses  with  methane  and  preventing  

further  environmental  damage.    

Page 208: Marshall Rachael 201301 MASc

  191  

It   is   recommended   that   all   scenarios   be   implemented   in   a   series   of   stages.   The  

implementation   of   any   system-­‐wide   change   brings   about   what   Vermaak   (2007)  

refers  to  as  ‘intervention  paradoxes’:  changes  that  help  to  deal  with  a  systemic  issue  

are   also   resisted   and/or   rejected   by   the   system   in   question.   Like   the   strong  

homeostatic   internal   regulation   systems   in   “warm-­‐blooded”   organisms   that  

maintain  body  temperature  despite  drastic  external   temperature  changes,  systems  

will  use  all  available  means  to  resist  external  disturbances  as  they  are  moved  away  

from   equilibrium   (Schneider   &   Kay,   1994).   Thus,   while   strongly   deviating  

approaches  are  more  effective  at  transforming  a  given  system’s  structure,  they  also  

trigger   stronger   systemic   defenses   (Vermaak,   2007).   This   is   as   true   for   social  

systems  as   it   is   for  biological   systems.  Take  Galbraith’s   ‘conventional  wisdom’,   for  

example   –   defined   as   concepts   that   are   valued   at   any   time   for   their   acceptability  

(Galbraith,  2001).  These  concepts  are  stable,  predictable,  and  safe,  and  people  will  

fight   to   maintain   them,   particularly   when   confronted   with   extreme   change.   Any  

measures   that   are   implemented   in   these   cases   tend   to   be   diluted,   proving   “that  

‘those   novelties   do   not   work   here’”   (Vermaak,   2007,   p.   188).   Therefore,   it   is  

important   to   work   from   within   the   current   system   structure,   using   the   existing  

dynamics   of   dominant   practices   to   implement   change   in   manageable   steps  

(Vermaak,   2007).   Change  must  be   implemented   in   small   steps;   extreme  measures  

will   not   work.   It   is   for   these   reasons   that   scenarios   should   be   implemented   in   a  

series   of   stages.   Regardless   if   a   neighbourhood   is   employing   the   simple   The  

Foundations   Scenario,   or   the   more   advanced   The   Private   Sector   Involvement  

Scenario,  implementation  should  be  carried  out  in  manageable  steps.    

For   brevity’s   sake,   this   chapter   will   only   recommend   which   projects   should   be  

included   in   the   initial,   momentum-­‐building   implementation   stage.   The   projects  

suggested   as   momentum-­‐building   starting   points   for   each   scenario   are   listed   in  

Table  17.  

Table  17.  Implementation  Stage  1:  Momentum-­‐building  projects  

The  Foundations  Scenario   The  Religious  Partnerships   The  Private  Sector  Involvement  Scenario  initial  

Page 209: Marshall Rachael 201301 MASc

  192  

initial  projects   Scenario  initial  projects   projects  

Solid  waste  auditing   Solid  waste  auditing   Solid  waste  auditing  

Development  of  an  effective  SWM  plan  

Development  of  an  effective  SWM  plan  

Development  of  an  effective  SWM  plan  

Community  SWM  Committees   Community  SWM  Committees   Community  SWM  Committees  

Waste  education  measures   Waste  education  measures   Waste  education  measures  

Compensation  for  proper  waste  practices  

Manually  operated  landfill   Manually  operated  landfill  

Manually  operated  landfill   Tax-­‐based  fee  collection/education  program  

Tax-­‐based  fee  collection/education  program  

Tax-­‐based  fee  collection/  education  program  

Agricultural  uses  for  recyclable  materials  

Agricultural  uses  for  recyclable  materials  

Small-­‐scale  incinerator   SWM  workshops  for  local  businesses  

SWM  workshops  for  local  businesses  

    Biodigester  for  methane  used  as  a  cooking  fuel  

5.6 Conclusion  Systems  thinking  is  a  valuable  tool  for  the  improvement  of  SWM  systems.  A  systems  

perspective   can   change   both   how   community   members   think   about   the   SWM  

system,  and  how  they  interact  with  it.  It  can  help  to  maximize  effectiveness  and  the  

benefits   they   receive   from   it.   This   study  used   the   results   of   a  participatory   causal  

mapping  process  as  a  means  to  represent  the  SWM  system  in  Todos  Santos,  and  to  

hypothesize   about   the   systemic   impacts   of   potential   SWM   changes   in   the   future.  

While  working  with  causal  mapping  by  no  means  guarantees  results  or  a  successful  

change   process,   it   can   be   an   effective   tool   for   conveying   systemic   concepts,   for  

demonstrating  the  potential  for  widespread  change,  and  for  minimizing  actions  that  

might  have  a  detrimental  impact  on  the  system  in  the  future.    

Upon  examining  the  systemic  impacts  of  the  four  scenarios  established  in  Chapter  4  

on  a  simplified  version  of  the  community-­‐wide  causal  map,  this  study  recommends  

scenarios   1,   2,   and   3   be   implemented   in   different   neighbourhoods   according   to  

Page 210: Marshall Rachael 201301 MASc

  193  

socio-­‐economic  capacity.  Scenarios  should  be   implemented   in  a   series  of   stages   to  

avoid  triggering  major  system  defenses.    

This  chapter  has  laid  the  groundwork  for  the  implementation  of  a  system  

intervention  plan  that  is  action-­‐oriented  and  strongly  founded  upon  stakeholder  

participation.  The  measures  within  this  plan  set  the  foundations  for  the  continued  

development  and  support  of  local  SWM  innovation,  preparing  Todos  Santos  for  

continued  growth  and  change  well  into  the  future.  

5.7 References  Campo,  P.  C.,  Bousquet,  F.,  &  Villanueva,  T.  R.   (2010).  Modelling  with  stakeholders  

within   a   development   project.  Environmental  Modelling  &  Software,  25(11),  1302-­‐1321.    

Clipak,  N.,  &  Barton,  J.  R.  (2012).  A  system  dynamics  approach  for  healthcare  waste  management:   A   case   study   in   Istanbul   Metropolitan   City,   Turkey.   Waste  Management  &  Research,  30(6),  576-­‐586.    

Dyson,   B.,   &   Chang,   N.-­‐B.   (2005).   Forecasting  municipal   solid  waste   generation   in  fast-­‐growing   urban   region   with   system   dynamics   modeling.   Waste  Management,  25(7),  669-­‐679.    

Galbraith,  J.  (2001).  The  concept  of  the  conventional  wisdom  The  Essential  Galbraith.  Boston:  Houghton  Mifflin.  

Karavezyris,  V.,  Timpe,  K.-­‐P.,  &  Marzi,  R.  (2002).  Application  of  system  dynamics  and  fuzzy   logic   to   forecasting   of   municipal   solid   waste.   Mathematics   and  Computers  in  Simulation,  60(3),  149-­‐158.    

Kollikkathara,  N.,  Feng,  H.,  &  Yu,  D.  (2010).  A  system  dynamic  modeling  approach  for  evaluating   municipal   solid   waste   generation,   landfill   capacity   and   related  cost  management  issues.  Waste  Management,  30(11),  2194-­‐2203.    

Kum,   V.,   Sharp,   A.,   &   Harnpornchai,   N.   (2004).   A   system   dynamic   approach   for  financial  planning  in  solid  waste  management:  A  case  study  in  Phnom  Penh  city.  International  Journal  of  Science  and  Technology,  9(2),  27-­‐34.    

Mashayekhi,  A.  N.   (1993).  Transition   in   the  New  York  State   solid  waste   system:  A  dynamic  analysis.  System  Dynamics  Review,  9(1),  23-­‐47.    

Mirchi,   A.,   Madani,   K.,   Watkins   Jr.,   D.,   &   Ahmad,   S.   (2012).   Synthesis   of   system  dynamics   tools   for   holistic   conceptualization   of   water   resources   problems.  water  resource  management,  26(9),  2421-­‐2442.    

Page 211: Marshall Rachael 201301 MASc

  194  

Neves,  D.  S.  F.,  Gomes,  A.  P.  D.,  Tarelho,  L.  A.  C.,  &  Matos,  M.  A.  A.  (2007).  Application  of   a   dynamic   model   to   the   simulation   of   the   composting   process.   Paper  presented   at   the   Eleventh   International   Waste   Management   and   Landfill  Symposium,  Cagliari,  Italy.  

Schneider,   E.   D.,   &   Kay,   J.   (1994).   Life   as   a   manifestation   of   the   second   law   of  thermodynamics.  Mathematical  Computer  Modelling,  19(6-­‐8),  25-­‐48.    

Stroh,  D.  P.  (2003).  Leveraging  change:  The  power  of  systems  thinking  in  action.  In  P.   Kumar   (Ed.),   Organisational   learning   for   all   seasons:   Building   internal  capabilities   for   competitive   advantage.   Buona   Vista,   Singapore:   National  Community  Leadership  Institute.  

Sudhir,   V.,   Srinivasan,   G.,   &  Muraleedharan,   V.   R.   (1997).   Planning   for   sustainable  solid  waste  management  in  urban  India.  System  Dynamics  Review,  13(3),  223-­‐246.    

Suwarno,  A.,  Nawir,  A.  A.,  Julmansyah,  &  Kurniawan.  (2009).  Participatory  modelling  to  improve  partnership  schemes  for  future  Community-­‐  

Based  Forest  Management  in  Sumbawa  District,  Indonesia.  Environmental  Modelling  &  Software,  24(12),  1402-­‐1410.    

Vermaak,  H.  (2007).  Working  interactively  with  causal  loop  diagrams:  Intervention  choices  and  paradoxes  in  practical  applications.  In  J.  Boonstra  &  L.  De  Caluwé  (Eds.),   Intervening   and   changing:   Looking   for   meaning   in   interactions.  Chichester,  England:  John  Wiley  &  Sons  Ltd.  

Yuan,   H.   (2012).   A   model   for   evaluating   the   social   performance   of   construction  waste  management.  Waste  Management,  32(6),  1218-­‐1228.    

 

   

Page 212: Marshall Rachael 201301 MASc

  195  

6 Conclusions  and  recommendations  

6.1 Research  synthesis  The   following  sections  provide  a  summary   that  reformulates   the  central   literature  

and  original  research  findings  of  this  thesis.  

6.1.1 Literature  review  key  findings  

SWM   in   high-­‐income   countries   has   been   historically   driven   by   public   health,   the  

environment,   resource   scarcity,   climate   change,   and   public   awareness   and  

participation   (Wilson,   2007).   Integrated   solid   waste   management,   the   current  

paradigm  industrialized  countries  are  striving  for,  aims  to  strike  a  balance  between  

the  environmental  effectiveness,   social  acceptability,  and  economic  affordability  of  

SWM   (McDougall   et   al.,   2001;  Morrissey  &  Browne,   2004;   Petts,   2000;   Thomas  &  

McDougall,   2005;   van   de   Klundert   &   Anschutz,   2001).   However,   SWM   systems   in  

industrialized  countries  are  still  far  from  integrated  (Wilson,  2007),  and  a  lack  of  a  

systems  thinking  has  been  identified  as  a  prominent  contributor  to  this  shortcoming  

(McDougall  et  al.,  2001;  Seadon,  2010;  Turner  &  Powell,  1991).  

In   developing   countries,   poor   SWM   practices   remain   severely   problematic   for   a  

variety   of   reasons,   resulting   in   severe   human   health   and   environmental   issues  

(Boadi  et  al.,  2005;  Konteh,  2009).  While  parallels  exist  between   the  development  

trajectories   of   SWM   practices   in   industrialized   and   developing   countries,   the  

contexts  of  developing  nations,  and  thus  the  problems  they  face,  are  unique  (Konteh,  

2009):  rapid  urbanization,  soaring  inequality,  and  the  struggle  for  economic  growth;  

varying   economic,   cultural,   socio-­‐economic,   and   political   landscapes;   governance,  

institutional,   and   responsibility   issues;   and   international   influences   have   created  

SWM   challenges   of   immense   complexity   (Boadi   et   al.,   2005;   Coffey  &  Coad,   2010;  

Cohen,   2004;  Henry   et   al.,   2006;   Jha   et   al.,   2011;  Konteh,   2009;  Tacoli,   2012;  UN-­‐

HABITAT,  2010;  Zurbruegg,  2003).  Researchers  are  calling  for  case-­‐specific,   locally  

appropriate  SWM  methods  that  can  be  absorbed  and  carried  by  a  given  society  (Jha  

et  al.,  2011;  Schübeler,  1996;  Yousif  &  Scott,  2007).    

Page 213: Marshall Rachael 201301 MASc

  196  

Systems   approaches   to   SWM   have   the   potential   to   meet   these   demands,   though  

taking   such   a   perspective   increases   management   difficulties   (Seadon,   2010).  

Particularly,   SWM   approaches   can   benefit   from   being   founded   in   two   schools   of  

thought:    post-­‐normal  science,  and  complex,  adaptive  systems  theory.  Post-­‐normal  

science   embraces   incomplete   control,   unpredictability,   and   multiple   legitimate  

perspectives,   and   is   structured   to   handle   problems   in   which   uncertainties   and  

decision   stakes   are   high   (Funtowicz   &   Ravetz,   1993).   Thus,   it   is   appropriate   for  

SWM,  which  is  fraught  with  uncertainty  and  strongly  impacts  the  lives  of  millions  of  

people.  Taking   a  post-­‐normal   science   approach   calls   for   the   inclusion  of   extended  

peer  communities  in  the  processes  of  SWM  quality  assurance,  policy,  research,  and  

project   implementation   (Funtowics   &   Ravetz,   1993).   Complex,   adaptive   systems  

theory   has   the   potential   to   provide   significant   insight   into   the   structure   and  

functioning  of   SWM  systems,   and  how   to  begin  going  about   “managing”   them   in  a  

successful  manner.   Sometimes,   outcomes   from   seemingly   direct   interventions   are  

extremely   surprising   due   to   time   lags,   cross-­‐scale   effects,   and   incomplete   system  

models   (Waltner-­‐Toews   et   al.,   2003).   With   an   understanding   of   how   CAS   work,  

approaches   to   SWM   may   help   avoid   or   at   least   prepare   for   unwanted   system  

behaviour.  

Ultimately,   the   next   steps   for   SWM   must   be   tailored   to   the   context   of   the   local  

history,   relationships,   culture,   and   aspirations   of   stakeholders   (Checkland,   2000;  

Wilson,  2007).  Approaches  must  be   locally  sensitive,  critical,  creative,  and   ‘owned’  

by   the   community   of   concern   (Coffey   &   Coad,   2010;   Henry   et   al.,   2006a;   Konteh,  

2009;  Schübeler,  1996;  UN-­‐HABITAT,  2010).  

6.1.2 Key  study  findings  

The   Guatemalan   town   of   Todos   Santos   Cuchumatán   is   experiencing   a   solid  waste  

crisis   that   threatens   fragile   environmental   systems,   essential   natural   resources,  

economic   potential,   and   human   health.   Poor   SWM  has   created   complex   problems  

within   the   community   that   call   for   new,   innovative,   and   highly   context-­‐specific  

approaches   capable   of   dealing   with   complexity,   uncertainty,   and   high   decision  

stakes.  This  thesis  presents  three  research  studies  that  aim  to  address  this  need.    

Page 214: Marshall Rachael 201301 MASc

  197  

The  first,  a  participatory  research  study  of  the  current  SWM  system  in  Todos  Santos  

Cuchumatán,  generated  three  distinct  perspectives  on  the  structure  and  functioning  

of  the  complex,  eco-­‐social  SWM  system.  The  primary  barriers  to  successful  SWM  in  

the  community  were  identified  as  follows:    

• A   disposal   system   incapable   of   handling   the   change   in   composition   and  

increase  in  quantity  of  solid  waste;    

• Little   interest,   understanding   or   concern   about   the   waste   issue   due   to  

preoccupations  with:    

o Poor  health  

o A  failing  education  system  

o Poverty  

o Domestic  violence  and  alcoholism  

• A  male-­‐dominated  SWM  decisional  arena  that  limits  the  inclusion  of  women  

and  youth;  and  

• A  lack  of  municipal  government  interest  in  SWM  because  it  is  not  a  priority  

for  voters,  and  it  does  not  bring  in  funds.  

When   amalgamated,   the   perspectives   of   male,   female,   and   youth   participants  

provided   significant   insight   into   what   kinds   of   projects   have   the   potential   to  

strongly   impact   the   structure   and  behaviour  of   the   system,  potential   indicators  of  

success,   and   critically   sensitive   factors   to   be   aware   of.   Identified   leverage   points  

included  two  feedback  loops  –  the  Health  and  Interest  in  SWM  Loop  and  the  Waste  

in  the  Streets  Loop  –  and  five  system  elements:  public  education,  particularly  that  of  

youth;  project  ownership;  participation  of  women  and  youth;  municipal  interest  in  

SWM;  and  youth’s  interest  in  consumerism  and  modern  culture.  This  study  laid  the  

groundwork  needed  to  identify  ‘best  fit’,  locally  appropriate  solutions.    

The   second   study   employed   a   residential   waste   audit   to   further   determine   the  

issues  plaguing  the  current  SWM  system.  New  insights  gathered  include:  

• Limited  SWM   funding  due   to   a   general   lack  of  willingness   to  pay   for   SWM  

services;  

Page 215: Marshall Rachael 201301 MASc

  198  

• Waste  collection  is  sparse  and  irregular,  predominantly  occurring  in  the  rich  

neighbourhood  of  El  Centro;  

• Large  quantities  of  recyclable  materials,   including  plastic,  metal,  and  paper,  

are  found  in  the  waste  stream;  and  

• Existing   waste   practices   include   waste   burning   and   a   small   amount   of  

composting.      

With  a  more  complete  picture  of  the  waste  issues  and  needs  in  the  community,  the  

second   study   compiled   a   wide   range   of   locally   appropriate   projects   with   the  

potential  to  act  as  system  levers  into  four  SWM  scenarios.  These  scenarios  represent  

increasingly  integrated  and  improved  SWM  systems;  each  builds  upon  the  previous  

scenario,  allowing  the  community   to  gradually  work  towards  a   locally  sustainable,  

integrated  vision  of  SWM.    

The   third   study   examines   the   impact   of   each   of   the   four   SWM   scenarios   on   the  

community-­‐wide  representation  of  the  SWM  system.    

In   keeping   with   the   need   for   context   specificity,   scenarios   1,   2,   and   3   were  

recommended  as   starting  points   for  neighbourhoods  with   relatively   low,  medium,  

and  high  levels  of  socio-­‐economic  capacity.    

6.2 Outstanding  issues  While  the  methodology  used  in  this  thesis  aimed  to  capture  the  “big  picture”  of  SWM  

in  Todos  Santos,  an  issue  of  particular  importance  to  the  health  and  wellbeing  of  the  

community  was  left  out  of  the  research  scope  –  the  need  to  remediate  the  existing  

open  dump.  The  dump,  which  sits  directly  on  a  riverbank  of  the  Limon  River  in  the  

center   of   town,   is   a   threat   to   local   environmental   systems   and   human   health.  

Nothing  is  known  about  the  kind  of  soil   it  sits  on,  meaning  that  toxic  leachate  may  

well  be  entering  the  ground  and  surface  water  systems.  Todos  Santos  sits  near  the  

headwaters  of  the  Limon  River,  which  flows  past  many  communities  on  its  way  into  

Mexico.   Clearly,   there   is   a   strong  need   to   remediate   the   site.  However,   due   to   the  

quantity  of  waste  in  the  dump  and  the  steep  grade  of  the  bank,  digging  out  the  waste  

and   contaminated   soil   is   both   a   dangerous   and   unmanageable   task   for   the  

Page 216: Marshall Rachael 201301 MASc

  199  

community.  While  covering  the  dump  with  soil  and  certain  varieties  of  plants  may  

help   somewhat,   leachate   will   likely   continue   to   contaminate   ground   and   surface  

water.   Unfortunately,   no   easy   solution   presents   itself   for   this   situation.   Like   in   so  

many  places   around   the  world,   this   kind  of   intractable   environmental   destruction  

will  remain  as  part  of  our   legacy  of  mass  consumption,  haunting  us   for  decades  to  

come.   It   is   the   author’s   hope   that   further   research   and   innovative  measures  may  

help  to  alleviate  this  tragic  situation.    

6.3 Recommendations  Based  on  the  research  presented  in  this  thesis,  the  following  recommendations  are  

made:  

• A   thorough   examination   should   be   made   of   how  much   waste   is   produced  

daily  in  Todos  Santos;  

• An  environmental  impact  assessment  study  of  the  influence  of  the  current  

open  dump  on  the  Rio  Limon  (water  quality,  species/ecosystem  effects)  and  

subsequent  health  risks  should  be  conducted;  

• Waste  audits  of  schools,  businesses,  and  restaurants  should  be  conducted;  

• The  amalgamated  system  structure  and   functioning  should  be  verified  with  

community  members;  

• A   long-­‐term   (5+   years)   study   of   population   growth   patterns   and   waste  

generation  rates  in  Todos  Santos  should  be  conducted  for  planning  purposes;  

• A  wider   range  of   stakeholders  should  be   included   in  SWM  decision-­‐making  

processes;  and  

• Finally,   local   decision   makers   should   use   the   results   from   this   thesis   to  

consider  the  implementation  of  one  or  more  SWM  scenarios  for  the  effective  

management  of  solid  waste  in  Todos  Santos.    

6.3.1 Building  action  momentum  

If  a  neighbourhood  chooses  to  implement  a  given  scenario,  it  is  recommended  that  

the   implementation   process   be   carried   out   in   a   series   of   stages.   Staged  

implementation   will   support   the   creation   of   immediate   momentum   for   initiating  

Page 217: Marshall Rachael 201301 MASc

  200  

ongoing   action,   and   help   to   avoid   triggering   strong   systemic   defenses.   It   can   also  

allow   time   and   space   for   reviewing   small   projects   that   have   been   implemented,  

assessing   their   effectiveness,   and   adjusting   accordingly.   Thus,   a   step-­‐wise  

implementation   process   brings   flexibility,   momentum,   continuous   learning,   and  

ongoing  innovation  to  the  SWM  system  (see  Figure  37).    

 

Figure  37.  The  staged  implementation  process  

Implementation

ReassessmentAdjustment

Innovation Learning-by-doing

New projectgeneration

Onto the nextstage/scenario...

Implementation

Reassessment

Adjustment

Innovation

Learning-by-doing

New projectgeneration

Implementation

Reassessment

Adjustment

Innovation

Learning-by-doing

New projectgeneration

Act

ion

Mom

entu

m

Stage 1: BuildingMomentum

Stage 2: Buildingon Foundations

Page 218: Marshall Rachael 201301 MASc

  201  

6.3.1.1 Short-­‐term  stage:  Capacity  development  and  foundational  system  elements  

Chapter  5  identified  the  immediate  local  action  initiatives  that  can  be  implemented  

to  build  action  momentum.  These  projects  are  focused  on  developing  local  capacity  

and   foundational   system   elements   that   future   initiatives   can   build   upon.  

Fundamental  planning,   financial,   social,  educational,  and  structural  elements  make  

up  this  stage  of  implementation.  As  the  dominant  waste  practices  and  the  behaviour  

of   the   system   shift,   new  projects  within   the   chosen   scenario   can  be   implemented.  

This   secondary   wave   of   projects   includes   those   that   require   some   level   of  

foundational   knowledge,   commitment,   relationships,   or   physical   structure   to   be  

adopted  by  a  given  neighbourhood.    

6.3.1.2 Long-­‐term  stage:  Transitioning  to  a  community-­‐owned  vision  of  SWM  

In   the   long-­‐term,   the   town   of   Todos   Santos   can   work   towards   transitioning   to   a  

vision   of   SWM   focused   on   community-­‐wide   ownership,   widespread   participation,  

education  improvement,  business  development,  and  environmental  protection.  Each  

neighbourhood  can  make  this   transition  gradually,  evolving  through  each  scenario  

up  to  The  Integrated  SWM  Vision  Scenario  and  beyond.  The  community  living  in  the  

town   center,   called   El   Centro,   is   recommended   to   begin   with   The   Private   Sector  

Involvement  Scenario,  while  outer  neighbourhoods  are  recommended  to  begin  with  

The   Religious   Partnerships   Scenario.   Those   neighbourhoods   on   the   outskirts   of  

Todos   Santos   may   find   The   Foundations   Scenario   to   be   the   most   appropriate  

starting  point  (see  Figure  38).  

Page 219: Marshall Rachael 201301 MASc

  202  

 

Figure  38.  Long-­‐term  stage:  Community-­‐wide  transition  through  the  scenarios  

 

6.4 “Situatedness”  and  local  ownership  While  recommendations  were  given  for  the  community  of  Todos  Santos  throughout  

this  thesis,  the  researcher  recognizes  that  no  projects  or  approaches  can  be  deemed  

appropriate   by   anyone   but   the   community   itself.   The   fundamental   imperative  

behind   each   study   conducted   is   the   necessity   of   local   validation   of   research  

methods,  results,  and  recommendations.  Todos  Santos,  like  many  other  indigenous  

communities   in  Guatemala,  has  a  history   filled  with  racism,  violence,  and  abuse  or  

complete   disregard   of   indigenous   rights,   control,   and   authority.   ‘Top-­‐down’,  

imposed   solutions   to   waste   management   have   failed   in   the   past;   approaches   not  

structured   around   local   control   and   authority   perpetuate   the   hegemonic,  

imperialistic   imposition   of   knowledge   that   has   only   succeeded   in   creating   a   deep  

sense   of   distrust   in   the   community.   It   is   here   that   post-­‐normal,   participatory  

systems   approaches   are   most   needed   –   approaches   founded   on   the   inclusion   of  

extended   peer   communities   with   multiple   legitimate   perspectives,   and   a   strong  

consideration  and  profound  respect  for  history,  narrative,  and  context.  Even  more,  

Scenario 1 Scenario 2Scenario 3Scenario 2 Scenario 1

Scenario 2

Scenario 3

Scenario 3 Scenario 3

Scenario 3

Scenario 2

Scenario 4

Neighbourhood ofEl Centro

OuterNeighbourhoods

OutskirtNeighbourhoods

OuterNeighbourhoods

OutskirtNeighbourhoods

Community vision of SWM

Page 220: Marshall Rachael 201301 MASc

  203  

what  is  needed  is  an  approach  that  embraces  the  sociocultural  “situatedness”  of  the  

community,   defined   as   “the   way(s)   in   which   individual   minds   and   cognitive  

processes  are  shaped  by...  their  interaction  with  social  and  cultural  structures,  such  

as   other   agents,   artifacts,   conventions,   etc.”   (Frank,   2008,   p.   1).   An   individual’s  

situatedness  defines  “where  [they  are]  coming  from”  –  not  just  a  place  or  a  culture,  

but   somewhere   between   where   one   stands   with   intention   and   where   one   is  

concretely  embedded  without  choice  (e.g.  in  culture  or  race)  (Simpson,  2002,  pp.  7-­‐

8).   Imposed   approaches   can   be   disembedding,   delegitimizing   local   systems   and  

resulting  in  the  rise  of  new  systemic  problems  whose  root  causes  are  unlikely  to  be  

addressed.    

In   response   to   such   issues,   community   capacity   building   and   empowerment   have  

emerged  as  mainstream  strategies   in   indigenous   research.  However,   these  models  

often  have  limited  ability  to  meet  the  real  needs  of  indigenous  populations  (Chino  &  

DeBruyn,   2006).  While   Chino   and   DeBruyn   (2006,   p.   596)   argue   that   indigenous  

people  need   “not  only   to  develop   tribal  programs  but  also   to  define  and   integrate  

the   underlying   theoretical   and   cultural   frameworks”   for   application   in   the   public  

health  sector,  this  is  also  a  serious  need  in  other  sectors,  such  as  SWM.  Indeed,  local  

project   ownership   was   identified   as   one   of   the   primary   community   concerns   in  

Todos  Santos,  and  one  of  the  key  places  to  intervene  in  the  SWM  system.    

This  study  was  therefore  strongly  considerate  of  and  built  upon  the  worldviews  of  

local  stakeholders,  many  of  whom  do  not  traditionally  participate  in  SWM  decision-­‐

making  processes.  Ultimately,  recommendations  given  in  this  thesis  are  founded  on  

multiple   legitimate   perspectives   of   participating   stakeholders.   These   suggestions  

are  meant  to  spark  ground-­‐level  discussion  amongst  a  wide  range  of  stakeholders,  

and   provide   concrete   examples   to   stimulate   local   innovation   and  work   towards   a  

community-­‐defined  SWM  vision.    

6.5 A  new  methodology  for  SWM  and  engineering  inquiry  The  methodology  used  in  this  study  may  benefit  future  solid  waste  management  and  

engineering   research.   Engineering,   as   a   discipline   with   a   history   of   development  

Page 221: Marshall Rachael 201301 MASc

  204  

projects   fraught  with   inappropriate  approaches  and  subsequent   failures,  may  gain  

assurance  in  its  ability  to  carry  out  development  work  through  appropriate  means  

that   also   follow   a   structured   study   approach.   As   an   area   of   study   traditionally  

focused  on  the  technical  sphere,  SWM  research  may  gain  significant  insight  into  how  

to  address  SWM  in  a  locally  appropriate  manner,  and  how  to  successfully  instigate  

desired  systemic  change.  The  causal  mapping  process  can  help  to  identify  principal  

barriers,   challenges,  and  key  places   to   intervene   in   the  system   for  positive  change  

where  simple  observation  might  lead  to  other  conclusions.  The  methodology  used  in  

this   study   can   also   provide   insight   about   potential   areas   in   conflict   among  

stakeholders,  an  important  element  to  consider  in  any  management  process.    

Participatory   systems   approaches   may   be   able   to   help   these   disciplines   move  

towards   capacity   development   in   cases   where   mainstream   models   have   failed.  

Participatory   system   modeling   can   identify   key   barriers   to   local   ownership,   and  

initiate  discussion  and  local  innovation  for  removing  them.  Systems  approaches  may  

also   be   able   to   address   systemic  misrepresentations   that   lead   to   project   collapse.  

For  example,  too  often,  consideration  is  not  given  to  the  amount  of  time  needed  to  

fully  establish  capacity  building  processes.  Socio-­‐cultural,  economic,  historical,  and  

political  contexts  can  prevent  communities  from  being  able  to  immediately  resolve  a  

given  issue  (Chino  &  DeBruyn,  2006).  Here,  a  systems  perspective  can  make  all  the  

difference,   as   time   lags   and   delays   are   inherent   in   systems.   Ultimately,   local  

ownership  and  a  strong  consideration  for  sociocultural  ‘situatedness’  will  define  the  

success  of  future  SWM  developments.      

6.6 Final  remarks  The   systems   approaches   used   in   this   study   are   immensely   important   for   the  

improvement  of  SWM,  the  care  of  the  environment,  and  health  in  its  broadest  sense.  

Todos   Santos’   SWM   system,   like   the   SWM   systems   impacting   many   vulnerable  

populations,  is  a  mess  of  disparities  on  its  way  to  collapse.  To  begin  the  process  of  

“righting”   it,   close   attention   must   be   paid   to   what   is   important   as   defined   by   the  

people   it   impacts,   not   just   what   is   quantifiable.   To   tackle   these   issues,   decision-­‐

makers  will  need  flexibility  of  mind  and  the  ability  to  throw  off  their  own  paradigms  

Page 222: Marshall Rachael 201301 MASc

  205  

about   whose   perspectives   are   legitimate.   Careful   observation   of   behavioural  

patterns,  not  theories,  is  important.  More  questions  must  be  asked.    

The  words  of  the  late  Donella  Meadows  (2008,  p.  170)  best  wrap  up  this  viewpoint:  

Systems   thinking   leads   to   another   conclusion,   however,   waiting,   shining,  

obvious,   as   soon   as  we   stop   being   blinded   by   the   illusion   of   control...   The  

future  can’t  be  predicted,  but  it  can  be  envisioned  and  brought  lovingly  into  

being.  Systems  can’t  be  controlled,  but  they  can  be  designed  and  redesigned.  

We  can’t   surge   forward  with  certainty   into  a  world  of  no  surprises,  but  we  

can   expect   surprises   and   learn   from   them   and   even   profit   from   them.  We  

can’t  impose  our  will  on  a  system.  We  can  listen  to  what  the  system  tells  us,  

and  discover  how   its  properties  and  our  values  can  work   together   to  bring  

forth  something  much  better  than  could  ever  be  produced  by  our  will  alone.  

 My  analyses   are  by  no  means  exhaustive,   or   even   thorough;   indeed,   I   have  barely  

skimmed   the   surface   of   an   incredibly   complex   topic.   A   SWM   system   is   a   complex  

system,   composed  of   complex   sub-­‐systems,  which  are   composed  of  more   complex  

sub-­‐systems  still.  Yet  in  Todos  Santos,  its  detrimental,  distorted  tendencies  must  be  

rebalanced.  It  is  the  sincerest  hope  of  the  author  that  this  thesis  might  act  as  a  place  

to   begin   this   rebalancing   through   local   innovation,   ownership,   and   action   for  

continued,   long-­‐term  positive  change.  If  the  health  of  those  most   lacking  it   is  to  be  

achieved  on  any  level,  the  SWM  system  must  be  seen  and  treated  as  the  whole  that  it  

is.    

 

   

Page 223: Marshall Rachael 201301 MASc

  206  

6.7 References  Boadi,   K.,   Kuitunen,  M.,   Raheem,   K.,   &  Hanninen,   K.   (2005).   Urbanisation  Without  

Development:   Environmental   and   Health   Implications   in   African   Cities.  Environment,  Development  and  Sustainability,  7(4),  465-­‐500.    

Checkland,   P.   (2000).   Soft   Systems   Methodology:   A   Thirty   Year   Retrospective.  Systems  Research  and  Behavioral  Science,  17(S1),  S11-­‐S58.    

Chino,   M.,   &   DeBruyn,   L.   (2006).   Building   true   capacity:   Indigenous   models   for  indigenous  communities.  American  Journal  of  Public  Health,  96(4),  596-­‐599.    

Coffey,   M.,   &   Coad,   A.   (2010).   Collection   of   Municipal   Solid   Waste   in   Developing  Countries.  Malta:  UN-­‐HABITAT.  

Frank,   R.   (2008).  Cognitive  Linguistics  Research:  Body,  Language  and  Mind   (Vol.   2:  Sociocultural  Situatedness).  Berlin:  Walter  de  Gruyter  GmbH  &  Co.  

Funtowics,   S.   O.,   &   Ravetz,   J.   R.   (1993).   Science   for   the   post-­‐normal   age.   Futures,  25(7),  739-­‐755.    

Henry,   R.   K.,   Yongsheng,   Z.,   &   Jun,   D.   (2006).   Municipal   solid   waste  management  challenges  in  developing  countries  -­‐  Kenyan  case  study.  Waste  Management,  26(1),  92-­‐100.    

Jha,  A.  K.,  Singh,  G.  P.,  Singh,  G.  P.,  &  Gupta,  P.  K.  (2011).  Sustainable  municipal  solid  waste  management  in  low  income  group  of  cities:  a  review.  Tropical  Ecology,  52(1),  123-­‐131.    

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

McDougall,   F.,  White,   P.   R.,   Franke,  M.,   &  Hindle,   P.   (2001).   Integrated   solid  waste  management:  a  lifecycle  inventory  (2nd  ed.).  Oxford,  UK:  Blackwell  Science.  

Morrissey,   A.   J.,   &   Browne,   J.   (2004).   Waste   management   models   and   their  application   to   sustainable   waste   management.  Waste   Management,   24(3),  297-­‐308.    

Petts,   J.   (2000).   Municipal   waste   management:   inequities   and   the   role   of  deliberation.  Risk  Analysis,  20(6),  821-­‐832.    

Schübeler,   P.   (1996).   Conceptual   Framework   for   Municipal   Solid   Waste  Management   in  Low-­‐Income  Countries.   In  K.  Wehrle  &  J.  Christen  (Eds.).  St.  Gallen   Switzerland:   UNDP/UNCHS/World   Bank/SDC   Collaborative  Programme   on   Municipal   Solid   Waste   Management   in   Low-­‐Income  Countries.  

Seadon,   J.   K.   (2010).   Sustainable   waste   management   systems.   Journal   of   Cleaner  Production,  18(16-­‐17),  1639-­‐1651.    

Simpson,  D.   (2002).  Situatedness,  or  why  we  keep  saying  where  we're  coming   from.  Durham,  NC:  Duke  University  Press.  

Thomas,   B.,   &   McDougall,   F.   (2005).   International   expert   group   on   life   cycle  assessment  for  integrated  waste  management.  Journal  of  Cleaner  Production,  13(3),  321-­‐326.    

Turner,   R.   K.,   &   Powell,   J.   (1991).   Towards   an   integrated   waste   management  strategy.  Environmental  Management  and  Health,  2(1),  6-­‐12.    

Page 224: Marshall Rachael 201301 MASc

  207  

UN-­‐HABITAT.   (2010).   Solid   Waste   Management   in   the   World’s   Cities:   Water   and  Sanitation  in  the  World's  Cities  2010.  In  Earthscan  (Series  Ed.)        

van   de   Klundert,   A.,   &   Anschutz,   J.   (2001).   Integrated   Sustainable   Waste  Management  -­‐  the  Concept:  Tools  for  Decision-­‐makers.  Experiences  from  the  Urban   Waste   Expertise   Programme   (1995-­‐2001).   In   A.   Scheinberg   (Ed.).  Gouda,  Netherlands:  Urban  Waste  Expertise  Programme.  

Wilson,   D.   C.   (2007).   Development   drivers   for   waste   management.   Waste  Management  &  Research,  25(3),  198-­‐207.    

Yousif,  D.  F.,  &  Scott,  S.  (2007).  Governing  solid  waste  management  in  Mazatenango,  Guatemala.  International  Development  Planning  Review,  29(4),  433-­‐450.    

   

Page 225: Marshall Rachael 201301 MASc

  208  

Complete  Reference  list  Ancona,  C.,   et   al.   (2010).   Integrated  environmental  and  health  impact  assessment  of  

waste  management  in  Lazio  (Italy):  INTARESE.  Anschütz,   J.   (1996).   Community-­‐based   solid   waste   management   and   water   supply  

projects:  Problems  and  solutions  compared:  A  survey  of  the   literature.   Gouda,  The  Netherlands:  WASTE    

Asian  Tribune.   (2009).   The   importance  of   technology   for  development:  A  political  economy  perspective,  Asian  Tribune.    

Axelrod.  (1976).  Structure  of  Decision:  The  Cognitive  Maps  of  

Political  Elites.  Princeton,  NJ:  Princeton  University  Press.  Badilla,  R.  A.,  &  Suarez,  A.  S.  (2002).  Viabilidad  de  implementar  un  sistema  integrado  

de  manejo   de   desechos   para   pequenas   comunidades   de   la   zona   Atlantica   de  Costa   Rica   a   traves   de   microempresas.   Undergraduate   thesis.   Universidad  EARTH.  Guacimo,  Costa  Rica.    

Berkes,   F.,   &   Folke,   C.   (1998).   Linking   social   and   ecological   systems:   Management  practices   and   social   mechanisms   for   building   resilience.   Cambridge,   U.K.:  Cambridge  University  Press.  

Bhuiyan,   S.   H.   (2010).   A   crisis   in   governance:   Urban   solid   waste   management   in  Bangladesh.  Habitat  international,  34(1),  125-­‐133.    

Bigoth,  K.  S.   (2001).  Auditoria  del  manejo  de  los  desechos  en  la  empresa  Linda  Vista,  Cartago,   Costa   Rica.   Undergraduate   thesis.   Universidad   EARTH.   Guacimo,  Costa  Rica.    

BIO   Intelligence   Service.   (2011).   Implementing   EU   Waste   Legislation   for   Green  Growth  Final  Report  prepared  for  European  Commission  DG  ENV.  

BNAmericas.   (2011).   Govt   creates   national   waste   management   strategy,   Online  report,  Business  News  Americas.    

Boadi,   K.,   Kuitunen,  M.,   Raheem,   K.,   &  Hanninen,   K.   (2005).   Urbanisation  Without  Development:   Environmental   and   Health   Implications   in   African   Cities.  Environment,  Development  and  Sustainability,  7(4),  465-­‐500.    

Boulding,   K.   E.   (1956).   General   Systems   Theory   -­‐   The   Skeleton   of   Science.  Management  Science,  2(3),  197-­‐208.    

Byrne,   D.   (2005).   Complexity,   Configurations   and   Cases.  Theory,  Culture  &  Society,  22(5),  95-­‐111.    

Byrne,   D.   S.   (1998).   Complexity   theory   and   the   social   sciences   :   an   introduction.  London;  New  York:  Routledge.  

Calderon,   J.   C.   S.,   &   Ventura,   J.   F.   Q.   (2008).  Plan  de   gestion  para   el  manejo   de   los  residuos   solidos   en   empresas   del   distrito   de   guapiles.   Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Campo,  P.  C.,  Bousquet,  F.,  &  Villanueva,  T.  R.   (2010).  Modelling  with  stakeholders  within   a   development   project.  Environmental  Modelling  &  Software,  25(11),  1302-­‐1321.    

Capra,  F.  (2005).  Complexity  and  Life.  Theory,  Culture  &  Society,  22(5),  33-­‐44.    Carabias,  W.   J.   V.,  Winistoerfer,   H.,   &   Stuecheli,   A.   (1999).   Social   aspects   of   public  

waste  management  in  Switzerland.  Waste  Management,  19(6),  417-­‐425.    

Page 226: Marshall Rachael 201301 MASc

  209  

Carmona,   C.,   &   Giraldo,   E.   (1997).   Analysis   del   sistema   de   recoleccion   de   desechos  solidos  municipales  con  previa  separacion  en  al  fuente.  Bogota,  Colombia.  

CEC.   (1977).   Second   EC   Environment   Action   Programme.   Brussels:   Commission   of  the  European  Communities.  

Chai,  K.-­‐H.,  &  Yeo,  C.  (2012).  Overcoming  energy  efficiency  barriers  through  systems  approach—A  conceptual  framework.  Energy  Policy,  46,  460-­‐472.    

Checkland,   P.   (1981).   Systems   thinking,   systems   practice.   Chichester,   England;  Toronto:  J.  Wiley.  

Checkland,   P.   (2000).   Soft   Systems   Methodology:   A   Thirty   Year   Retrospective.  Systems  Research  and  Behavioral  Science,  17(S1),  S11-­‐S58.    

Chino,   M.,   &   DeBruyn,   L.   (2006).   Building   true   capacity:   Indigenous   models   for  indigenous  communities.  American  Journal  of  Public  Health,  96(4),  596-­‐599.    

Clipak,  N.,  &  Barton,  J.  R.  (2012).  A  system  dynamics  approach  for  healthcare  waste  management:   A   case   study   in   Istanbul   Metropolitan   City,   Turkey.   Waste  Management  &  Research,  30(6),  576-­‐586.    

Coc,   E.  M.,   &   Zonso,   J.   J.   (2011).  Elaboracion  de  una  guia  basica  para   la  manejo  de  desechos  solidos  en  una  comunidad  rural.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Coffey,   M.,   &   Coad,   A.   (2010).   Collection   of   Municipal   Solid   Waste   in   Developing  Countries.  Malta:  UN-­‐HABITAT.  

Cohen,   B.   (2004).   Urban   Growth   in   Developing   Countries:   A   Review   of   Current  Trends   and   a   Caution   Regarding   Existing   Forecasts.   World   Development,  32(1),  23-­‐51.    

Cointreau,   S.   (1982).   Environmental   management   of   urban   solid   wastes   in  developing   countries:   A   project   guide   Urban   Development   Technical   Paper  Number  5.  Washington,  DC:  World  Bank.  

Conteh,  A.   (2003).  Culture  and  the  transfer  of   technology.   In  B.  Hazeltine  &  C.  Bull  (Eds.),  Field  guide  of  appropriate  technology.  San  Diego,  CA:  Elsevier  Science.  

Cook,   D.   M.,   Swanson,   R.   C.,   Eggett,   D.   L.,   &   Booth,   G.   M.   (2009).   A   retrospective  analysis  of  prevalence  of  gastrointestinal  parasites  among  school  children  in  the  Palajunoj  Valley  of  Guatemala.  Journal  of  Health,  Population  and  Nutrition,  27(1),  31-­‐40.    

Da   Zhu,   P.,   Asnani,   H.,   Zurbrugg,   C.,   Anapolsky,   S.,   &   Mani,   S.   (2008).   Improving  municipal   solid  waste  management   in   India:  A   source  book   for  Policy  Makers  and  Practitioners.  Washington,  DC:  World  Bank.  

Darrow,   K.,   &   Saxenian,   M.   (1993).  Appropriate   technology   sourcebook:   A   guide   to  practical   books   for   village   and   small   community   technology.   Stanford,   CA:  Village  Earth.  

Dijkema,  G.  P.   J.,  Reuter,  M.  A.,  &  Verhoef,  E.  V.   (2000).  A  new  paradigm   for  waste  management.  Waste  Management,  20(8),  633-­‐638.    

Drack,   M.,   &   Schwarz,   G.   (2010).   Recent   developments   in   general   system   theory.  Systems  Research  and  Behavioral  Science,  27(6),  601-­‐610.    

Dunn,   P.   (1978).   Appropriate   technology:   Technology   with   a   human   face.   London:  Macmillan.  

Duru,  R.  C.  (1981).  Technological  growth  and  ecological  crisis:  the  Nigerian  example.  The  Science  of  the  Total  Environment,  17(3),  243-­‐256.    

Page 227: Marshall Rachael 201301 MASc

  210  

Dyson,   B.,   &   Chang,   N.-­‐B.   (2005).   Forecasting  municipal   solid  waste   generation   in  fast-­‐growing   urban   region   with   system   dynamics   modeling.   Waste  Management,  25(7),  669-­‐679.    

Echeverria,   F.  O.   (2009).  Evaluacion  del  sistema  de  tratamiento  de  aguas  residuales  del   sector   central   de   la   Universidad   EARTH.   Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Eckaus,  R.  S.  (1977).  Appropriate  technologies  for  developing  countries.  Washington,  D.C.:  National  Academy  of  Sciences.  

European  Commission.  (2010).  2009  Environment  Policy  Review.  Brussels:  EC.  Fairweather,   J.   (2010).   Farmer   models   of   socio-­‐ecologic   systems:   Application   of  

causal  mapping  across  multiple   locations.  Ecological  Modelling,  221(3),  555-­‐562.    

Frank,   R.   (2008).  Cognitive  Linguistics  Research:  Body,  Language  and  Mind   (Vol.   2:  Sociocultural  Situatedness).  Berlin:  Walter  de  Gruyter  GmbH  &  Co.  

Funtowicz,   S.   O.,   &   Ravetz,   J.   R.   (1991).   A   new   scientific   methodology   for   global  environmental  issues.  In  R.  Costanza  (Ed.),  Ecological  economics:  The  science  and   management   of   sustainability   (pp.   137-­‐152).   New   York:   Columbia  University  Press.  

Funtowicz,   S.   O.,   &   Ravetz,   J.   R.   (1993).   Science   for   the   post-­‐normal   age.   Futures,  25(7),  739-­‐755.    

Furedy,   C.   (1992).   Garbage:   Exploring   non-­‐conventional   options   in   Asian   cities.  Environment  and  Urbanization,  4(2),  42-­‐61.    

Galbraith,  J.  (2001).  The  concept  of  the  conventional  wisdom  The  Essential  Galbraith.  Boston:  Houghton  Mifflin.  

Galli,   A.,   Wiedmann,   T.,   Ercin,   E.,   Knoblauch,   D.,   Ewing,   B.,   &   Giljum,   S.   (2011).  Integrating   ecological,   carbon,   and  water   footprint:   Defining   the   "Footprint  Family"   and   its   application   in   tracking   human   pressure   on   the   planet:   One  Planet  Economy  Network.  

Geng,   Y.,   Tsuyoshi,   F.,   &   Chen,   X.   (2010).   Evaluation   of   innovative  municipal   solid  waste   management   through   urban   symbiosis:   A   case   study   of   Kawasaki.  Journal  of  Cleaner  Production,  18(10-­‐11),  993-­‐1000.    

Gertsakis,  J.,  &  Lewis,  H.  (2003).  Sustainability  and  the  Waste  Management  Hierarchy:  A  discussion  paper  on  the  waste  management  hierarchy  and  its  relationship  to  sustainability  (pp.  1-­‐15).  Melbourne:  RMIT  University.  

Gonzalez,   G.   P.   B.,   &   Taborga,   S.   A.   T.   (2001).   Evaluacion   economica   de   la  contaminacion   por   desechos   en   la   zona   urbana   de   Guapiles.   Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Halla,  F.,  &  Majani,  B.  (1999).  Innovative  Ways  for  Solid  Waste  Management  in  Dar-­‐Es-­‐Salaam:   Toward   Stakeholder   Partnerships.   Habitat   international,   23(3),  351-­‐361.    

Hardoy,   J.   E.,   Mitlin,   D.,   Satterthwaite,   D.,   &   Hardoy,   J.   E.   (2001).   Environmental  problems  in  an  urbanizing  world  :  finding  solutions  for  cities  in  Africa,  Asia,  and  Latin  America.  London;  Sterling,  VA:  Earthscan  Publications.  

Henry,  R.  K.,   Yongsheng,   Z.,  &   Jun,  D.   (2006a).  Municipal   solid  waste  management  challenges  in  developing  countries  -­‐  Kenyan  case  study.  Waste  Management,  26(1),  92-­‐100.    

Page 228: Marshall Rachael 201301 MASc

  211  

Henry,  R.  K.,   Yongsheng,   Z.,  &   Jun,  D.   (2006b).  Municipal   solid  waste  management  challenges   in  developing  countries-­‐-­‐Kenyan  case  study.  Waste  Management,  26(1),  92-­‐100.  

Hirschhorn,   J.,   Jackson,   T.,   &   Baas,   L.   (1993).   Towards   Prevention:   the   emerging  environmental  management  paradigm.   In  T.   Jackson  (Ed.),  Clean  Production  Strategies:   developing   preventative   environmental   management   in   the  industrial  economy.  Chelsea,  MI:  Lewis.  

Holling,   C.   S.   (2001).   Understanding   the   Complexity   of   Economic,   Ecological,   and  Social  Systems.  Ecosystems,  4(5),  390-­‐405.    

Hoornweg,  D.,  &  Bhada-­‐Tata,  P.  (2012).  What  a  waste:  A  global  review  of  solid  waste  management.  Washington,  DC:  World  Bank.  

Hoornweg,   D.,   &   Giannelli,   N.   (2007).   Managing   municipal   solid   waste   in   Latin  America   and   the   Caribbean:   Integrating   the   private   sector,   harnessing  incentives:  PPIAF  World  Bank.  

IDB.   (2011).   Strategic  guidelines   for   the  municipal   solid  waste   sector   (MSW).   Paper  presented  at  the  CSD  intersessional  conference  on  building  partnerships  for  moving  towards  zero  waste,  Tokyo,  Japan.  

IDB.   (2012).   GU-­‐T1177:   National   Plan   for   Solid  Waste  Management   in   Guatemala.    Retrieved   November   2,   2012,   from  http://www.iadb.org/en/projects/project-­‐description-­‐title,1303.html?id=GU-­‐T1177.  

Iwerks,  L.  (Writer).  (2006).  Recycled  Life.  In  M.  Glad  (Producer):  Leslie-­‐Glad.  Jacome,   A.   C.,   &   Romero,   F.   F.   V.   (2003).   Elaboracion   de   sustratos   y   enmiendas  

agricolas  a  partir  de  desechos  de  la  agroindustria  azucarera  y  la  industria  del  jabon.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Jha,  A.  K.,  Singh,  G.  P.,  Singh,  G.  P.,  &  Gupta,  P.  K.  (2011).  Sustainable  municipal  solid  waste  management  in  low  income  group  of  cities:  a  review.  Tropical  Ecology,  52(1),  123-­‐131.    

Jimenez,  E.  D.  S.  (2000).  Analysis  del  sistem  a  de  manejo  integrado  de  desechos  solidos  domesticos   de   EARTH   y   su   evaluacion   desde   el   punto   de   vista   social   interno.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Joseph,   K.,   Rajendiran,   S.,   Senthilnathan,   R.,   &   Rakesh,   M.   (2012).   Integrated  approach   to   solid   waste   management   in   Chennai:   an   Indian   metro   city.  Journal  of  Material  Cycles  and  Waste  Management,  14(2),  75-­‐84.    

Karavezyris,  V.,  Timpe,  K.-­‐P.,  &  Marzi,  R.  (2002).  Application  of  system  dynamics  and  fuzzy   logic   to   forecasting   of   municipal   solid   waste.   Mathematics   and  Computers  in  Simulation,  60(3),  149-­‐158.    

Kay,   J.   J.,   Regier,  H.  A.,   Boyle,  M.,  &  Francis,  G.   (1999).  An   ecosystem  approach   for  sustainability:   addressing   the   challenge   of   complexity.   Futures,   31(7),   721-­‐742.    

Kgathi,   D.,   &   Bolaane,   B.   (2001).   Instruments   for   sustainable   solid   waste  management  in  Botswana.  Waste  Management  and  Research,  19(4),  342-­‐353.    

Koestler,  A.  (1978).  Janus:  a  Summing  Up  (1St  American  Ed  ed.).  New  York:  Random  House.  

Page 229: Marshall Rachael 201301 MASc

  212  

Kojima,  M.  (2011,  February  16-­‐18,  2011).  Case  from  Asia:  Expanding  role  of  private  sectors   in  waste  management  and  recycling  business   towards  realizing  sound  material  cycle  society.  Paper  presented  at   the  CSD   intersessional  conference  on  building  partnerships  for  moving  towards  zero  waste,  Tokyo,  Japan.  

Kollikkathara,   N.,   Feng,   H.,   &   Stern,   E.   (2009).   A   purview   of   waste   management  evolution:  special  emphasis  on  USA.  Waste  Management,  29(2),  974-­‐985.    

Kollikkathara,  N.,  Feng,  H.,  &  Yu,  D.  (2010).  A  system  dynamic  modeling  approach  for  evaluating   municipal   solid   waste   generation,   landfill   capacity   and   related  cost  management  issues.  Waste  Management,  30(11),  2194-­‐2203.    

Konteh,   F.   H.   (2009).   Urban   sanitation   and   health   in   the   developing   world:  reminiscing  the  nineteenth  century  industrial  nations.  Health  &  Place,  15(1),  69-­‐78.    

Kosko,  B.  (1988).  Hidden  patterns  in  combined  and  adaptive  knowledge  networks.  International  Journal  of  Approximate  Reasoning,  2(4),  377-­‐393.    

Kuhn,   T.   S.   (1962).   The   structure   of   scientific   revolutions.   Chicago:   University   of  Chicago  Press.  

Kum,   V.,   Sharp,   A.,   &   Harnpornchai,   N.   (2004).   A   system   dynamic   approach   for  financial  planning  in  solid  waste  management:  A  case  study  in  Phnom  Penh  city.  International  Journal  of  Science  and  Technology,  9(2),  27-­‐34.    

Langeweg,   F.,   Hilderink,  H.,   &  Maas,   R.   (2000).   Urbanisation,   industrialisation   and  sustainable  development  Globo  Report  Series  No.  27:  RIVM.  

Louis,  G.  E.  (2004).  A  Historical  Context  of  Municipal  Solid  Waste  Management  in  the  United  States.  Waste  Management  &  Research,  22(4),  306-­‐322.    

Mantilla,  J.  E.  V.  (2007).  Proyecto  cuente  con  ambiente  primer  informe  sobre  desechos  solidos  (1  ed.):  MARN  Universidad  Rafael  Landivar.  

Martuzzi,  M.,  Mitis,  F.,  &  Forastiere,  F.  (2010).  Inequalities,  inequities,  environmental  justice   in  waste  management  and  health.  European  Journal  of  Public  Health,  20(1),  21-­‐26.    

Mashayekhi,  A.  N.   (1993).  Transition   in   the  New  York  State   solid  waste   system:  A  dynamic  analysis.  System  Dynamics  Review,  9(1),  23-­‐47.    

Matuschke,   I.   (2009).  Rapid  urbanization  and  food  security:  Using  food  density  maps  to  identify  future  food  security  hotspots.  Paper  presented  at  the  International  Association  of  Agricultural  Economists  Conference,  Beijing,  China.    

Mayo,   E.,   Knight,   A.,   Clifton,   R.,   Jackson,   T.,   Johnstone,   J.,   Furey,   S.,   .   .   .   Pomfret,   C.  (2006).   I   will   if   you   will:   Towards   sustainable   consumption.:   National  Consumption  Roundtable  Sustainable  Development  Commission.  

McDougall,   F.,  White,   P.   R.,   Franke,  M.,   &  Hindle,   P.   (2001).   Integrated   solid  waste  management:  a  lifecycle  inventory  (2nd  ed.).  Oxford,  UK:  Blackwell  Science.  

McGranahan,   G.   (2001).   The   citizens   at   risk:   from   urban   sanitation   to   sustainable  cities.  London;  Sterling,  VA:  Earthscan:  Stockholm  Environment  Institute.  

McKenzie-­‐Mohr,   D.,   &   Smith,   W.   (1999).   Fostering   Sustainable   Behavior:   An  Introduction   to   Community-­‐Based   Social   Marketing.   Gabriola   Island   (B.C.):  New  Society  Publishers.  

Page 230: Marshall Rachael 201301 MASc

  213  

Meadows,   D.   H.   (2008).   Thinking   in   systems:   A   primer.   London;   Sterling,   VA:  Earthscan.  

Melosi,  M.  V.  (1981).  Garbage  in  the  cities:  refuse,  reform,  and  the  environment,  1880-­‐1980  (1st  ed.).  College  Station,  Tex.:  Texas  A&M  University  Press.  

Memon,   M.   A.   (2010).   Integrated   solid   waste   management   based   on   the   3R  approach.  Journal  of  Material  Cycles  and  Waste  Management,  12(1),  30-­‐40.    

Mendonca,  A.  E.  A.  (2007).  Propuesta  de  modelo  para  la  gestion  de  los  residuos  solidos  en  el  canton  de  Pococi.  Undergraduate   thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Mirchi,   A.,   Madani,   K.,   Watkins   Jr.,   D.,   &   Ahmad,   S.   (2012).   Synthesis   of   system  dynamics   tools   for   holistic   conceptualization   of   water   resources   problems.  Water  Resource  Management,  26(9),  2421-­‐2442.    

Mohamad,   Z.   F.,   Idris,   N.,   &   Mamat,   Z.   (2012).   Role   of   religious   communities   in  enhancing   transition   experiments:   a   localised   strategy   for   sustainable   solid  waste  management  in  Malaysia.  Sustainability  Science,  7(2),  237-­‐251.    

Moodley,   S.   (2005).   Deconstructing   the   South   African   Government's   ICT   for  Development  Discourse.  Africa  Insight,  35(3),  3-­‐11.    

Morrissey,   A.   J.,   &   Browne,   J.   (2004).   Waste   management   models   and   their  application   to   sustainable   waste   management.  Waste   Management,   24(3),  297-­‐308.    

Moyaz,  M.  V.,  &  Reyes,  M.   F.   (2002).  Analisis  de   factibilidad  technico-­‐economica  del  engorde   de   bovinos   en   semiconfinamiento   suplementados   con   desechos   de  palmito.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Murphy,  H.  M.,  McBean,  E.  A.,  &  Farahbakhsh,  K.  (2009).  Appropriate  technology  –  A  comprehensive  approach   for  water   and   sanitation   in   the  developing  world.  Technology  in  Society,  31(2),  158-­‐167.    

Muttamara,   S.,   &   Leong,   S.   T.   (1997).   Environmental   Monitoring   and   Impact  Assessment   of   a   Solid   Waste   Disposal   Site.   Environmental   Monitoring   and  Assessment,  48(1),  1-­‐24.    

Nemerow,  N.  L.  (2009).  Environmental  engineering:  Environmental  health  and  safety  for   municipal   infrastructure,   land   use   and   planning,   and   industry   (6th   ed.).  Hoboken,  N.J.:  Wiley.  

Neves,  D.  S.  F.,  Gomes,  A.  P.  D.,  Tarelho,  L.  A.  C.,  &  Matos,  M.  A.  A.  (2007).  Application  of   a   dynamic   model   to   the   simulation   of   the   composting   process.   Paper  presented   at   the   Eleventh   International   Waste   Management   and   Landfill  Symposium,  Cagliari,  Italy.  

Ntim,   B.   (1988).   Introduction.   In   S.   Buatsi   (Ed.),   Technology   Transfer   -­‐   nine   case  studies.  London,  UK:  IT  Publications.  

OECD.   (2012).   Members   and   partners.     Retrieved   October   2,   2012,   from  http://www.oecd.org/about/membersandpartners/  

Özesmi,  U.,  &  Özesmi,  S.  L.  (2004).  Ecological  models  based  on  people’s  knowledge:  a  multi-­‐step  fuzzy  cognitive  mapping  approach.  Ecological  Modelling,  176(1-­‐2),  43-­‐64.    

Pan  American  Health  Organization.   (1998).  Health  in  the  Americas.   (Vol.  2):  World  Health  Organization.  

Page 231: Marshall Rachael 201301 MASc

  214  

Parkes,  M.  W.,  Morrison,  K.  E.,  Bunch,  M.  J.,  Hallström,  L.  K.,  Neudoerffer,  C.,  Venema,  H.  D.,  &  Waltner-­‐Toews,  D.  (2010).  Towards  integrated  governance  for  water,  health   and   social-­‐ecological   systems:   The   watershed   governance   prism.  Global  Environmental  Change,  20,  693-­‐704.    

Patton,   M.   Q.   (2002).   Qualitative   research   and   evaluation   methods   (3rd   ed.).  Thousand  Oaks,  Calif.:  Sage  Publications.  

Pellegrini,  U.  (1979).  The  problem  of  appropriate  technology.  .  In  A.  De  Giorgio  &  C.  Roveda   (Eds.),  Criteria   for   selecting  appropriate   technologies  under  different  cultural,  technical,  and  social  conditions  (pp.  1-­‐5).  New  York:  Pergamon  Press.  

Petts,   J.   (2000).   Municipal   waste   management:   inequities   and   the   role   of  deliberation.  Risk  Analysis,  20(6),  821-­‐832.    

Pfammater,   R.,   &   Schertenleib,   R.   (1996).   Non-­‐Governmental   Refuse   Collection   in  Low-­‐   Income   Urban   Areas:   Lessons   Learned   from   Selected   Schemes   in   Asia,  Africa  and  Latin  America.  Duebendorf,  Switzerland.  

Ponting,  C.   (1991).  A  green  history  of  the  world:  the  environment  and  the  collapse  of  great  civilizations.  New  York:  St.  Martin's  Press.  

Price,  J.  L.,  &  Joseph,  J.  B.  (2000).  Demand  management  —  a  basis  for  waste  policy:  a  critical   review   of   the   applicability   of   the   waste   hierarchy   in   terms   of  achieving  sustainable  waste  management.  Sustainable  Development,  8(2),  96-­‐105.    

Robbins,   P.   T.   (2007).   The   reflexive   engineer:   perceptions   of   integrated  development.  Journal  of  International  Development,  19(1),  99-­‐110.    

Robles,  M.   B.,   &  Orejuela,   F.   S.   (2002).  Evaluacion  de  manejo  dedesechos  organicos  domesticos  en  la  EARTH.  Undergraduate  thesis.  Universidad  EARTH.  Guacimo,  Costa  Rica.    

Rodic,  L.,  Scheinberg,  A.,  &  Wilson,  D.  C.  (2010).  Comparing  Solid  Waste  Management  in   the   World’s   Cities.   Paper   presented   at   the   ISWA   World   Congress   2010,  Urban   Development   and   Sustainability   -­‐   a   Major   Challenge   for   Waste  Management  in  the  21st  Century,  Hamburg,  Germany.    

Rybczynski,  W.  (1980).  Paper  Tigers.  Charlmington:  Prism.  Schneider,   E.   D.,   &   Kay,   J.   (1994).   Life   as   a   manifestation   of   the   second   law   of  

thermodynamics.  Mathematical  Computer  Modelling,  19(6-­‐8),  25-­‐48.    Scholz,   R.   W.,   &   Tietje,   O.   (2002).   Embedded   case   study   methods   :   integrating  

quantitative   and   qualitative   knowledge.   Thousand   Oaks,   Calif.:   Sage  Publications.  

Schübeler,  P.  (1996).  Conceptual  Framework  for  Municipal  Solid  Waste  Management  in   Low-­‐Income   Countries.   In   K.   Wehrle   &   J.   Christen   (Eds.).   St.   Gallen  Switzerland:   UNDP/UNCHS/World   Bank/SDC   Collaborative   Programme   on  Municipal  Solid  Waste  Management  in  Low-­‐Income  Countries.  

Schumacher,   E.   F.   (1973).   Small   is   beautiful:   A   study   of   economics   as   if   people  mattered.  London:  Blond  and  Briggs,  1974.  

Seadon,  J.  K.  (2006).  Integrated  waste  management  -­‐  looking  beyond  the  solid  waste  horizon.  [Review].  Waste  Management  26(12),  1327-­‐1336.    

Seadon,   J.   K.   (2010).   Sustainable   waste   management   systems.   Journal   of   Cleaner  Production,  18(16-­‐17),  1639-­‐1651.    

Page 232: Marshall Rachael 201301 MASc

  215  

Shimura,   S.,   Yokota,   I.,   &   Nitta,   Y.   (2001).   Research   for   MSW   flow   analysis   in  developing   nations   Journal   of  Material  Cycles  and  Waste  Management,   3(1),  48-­‐59.    

Shukla,  S.  R.,  et  al.  (2000).  Solid  Waste  Management  Manual.  New  Delhi:  Government  of  India.  

Sierra,   J.   A.   P.,   &   Matute,   T.   D.   S.   P.   (2010).   La   biodigestion   como   estrategia   en   el  manejo  sostenible  de  desechos  organicos,  y  para  el  fomento  de  alianzas  entre  la  agroindustria,  las  comunidaded,  y  redes  de  escuelas  ecologicas.  Undergraduate  thesis.  Universidad  EARTH.      

Simon,   A.   M.   (2008).   Analysis   Of   Activities   Of   Community   Based   Organizations  Involved   in   Solid   Waste   Management,   Investigating   Modernized   Mixtures  Approach:  The  case  of  Kinondoni  Municipality,  Dar  es  Salaam,  Tanzania.  (MSc),  Wageningen  University.        

Simpson,  D.   (2002).  Situatedness,  or  why  we  keep  saying  where  we're  coming   from.  Durham,  NC:  Duke  University  Press.  

Singh,  R.,  Tyagi,  V.  V.,  Allen,  T.,  Ibrahim,  M.  H.,  &  Kothari,  R.  (2011).  An  overview  for  exploring   the  possibilities  of   energy  generation   from  municipal   solid  waste  (MSW)  in  Indian  scenario.  Renewable  and  Sustainable  Energy  Reviews,  15(9),  4797-­‐4808.    

Singh,  R.  P.,  Singh,  P.,  Araujo,  A.  S.  F.,  &  Ibrahim,  M.  H.  (2011).  Management  of  urban  solid  waste:  Vermicomposting  a   sustainable  option.  Resources,  Conservation  &  Recycling,  55(7),  719-­‐729.    

Smillie,   I.   (2000).   Mastering   the   Machine   Revisited:   Poverty,   Aid   and   Technology.  London:  ITDG  Publishing.  

Southerton,  D.,  McMeekin,  A.,  &  Evans,  D.  (2011).  International  Review  of  Behaviour  Change  Initiatives:  Scottish  Government  Social  Research.  

Stokoe,  J.,  &  Teague,  E.  (1995).  Integrated  solid  waste  management  for  rural  areas:  A  planning   tool   kit   for   solid   waste   managers.   Washington,   D.C.:   USDA   Rural  Utilities  Service.  

Stroh,  D.  P.  (2003).  Leveraging  change:  The  power  of  systems  thinking  in  action.  In  P.   Kumar   (Ed.),   Organisational   learning   for   all   seasons:   Building   internal  capabilities   for   competitive   advantage.   Buona   Vista,   Singapore:   National  Community  Leadership  Institute.  

Sudhir,   V.,   Srinivasan,   G.,   &  Muraleedharan,   V.   R.   (1997).   Planning   for   sustainable  solid  waste  management  in  urban  India.  System  Dynamics  Review,  13(3),  223-­‐246.    

Suwarno,  A.,  Nawir,  A.  A.,  Julmansyah,  &  Kurniawan.  (2009).  Participatory  modelling  to  improve  partnership  schemes  for  future  Community-­‐  

Based  Forest  Management  in  Sumbawa  District,  Indonesia.  Environmental  Modelling  &  Software,  24(12),  1402-­‐1410.    

Tacoli,   C.   (2012).   Urbanization,   gender   and   urban   poverty:   paid   work   and   unpaid  carework  in  the  city.  London,  UK:  International  Institute  for  Environment  and  Development  United  Nations  Population  Fund.  

Page 233: Marshall Rachael 201301 MASc

  216  

Tchobanoglous,   G.,   Theisen,   H.,   &   Eliassen,   R.   (1977).   Solid   Wastes:   Engineering  Principles  and  Management  Issues.  New  York;  Toronto:  Mcgraw-­‐Hill.  

Thomas,   B.,   &   McDougall,   F.   (2005).   International   expert   group   on   life   cycle  assessment  for  integrated  waste  management.  Journal  of  Cleaner  Production,  13(3),  321-­‐326.    

Thornloe,  S.  A.,  Weitz,  K.,  Nishtala,  S.,  Barlaz,  M.,  Ranjithan,  R.,  &  Ham,  R.  K.  (1997).  Update   on   the   US   study   applying   life-­‐cycle   management   to   compare  integrated  waste  management  strategies.  In  T.  H.  Christensen,  R.  Cossu  &  R.  Stegmann   (Eds.),   International   Landfill   Symposium.   Sardinia,   Italy:  Environmental  Sanitary  Engineering  Centre.  

TTSSC.  (2010).  SSC  in  the  context  of  aid  effectiveness:  Telling  the  story  of  partners  in  south-­‐south   and   triangular   cooperation:   Task   Team   on   South-­‐South  Cooperation.  

Turner,   R.   K.,   &   Powell,   J.   (1991).   Towards   an   integrated   waste   management  strategy.  Environmental  Management  and  Health,  2(1),  6-­‐12.    

Turnpenny,   J.,   Jones,   M.,   &   Lorenzoni,   I.   (2011).   Where   Now   for   Post-­‐Normal  Science?:  A  Critical  Review  of  its  Development,  Definitions,  and  Uses.  Science,  Technology  &  Human  Values,  36(3),  287-­‐306.    

UMA  Environmental.  (1995).  Small  scale  waste  management  models  for  rural,  remote  and  isolated  communities  in  Canada.   Saskatoon,  Saskatchewan:  Prepared   for  the  Canadian  Council  of  Ministers  of  the  Environment.  

UN   Habitat.   (1989).   Community   participation   -­‐   Solid   waste   management   in   low  income   housing   projects:   The   scope   of   community   participation.   Nairobi,  Kenya.  

UN-­‐HABITAT.   (2010).   Solid   Waste   Management   in   the   World’s   Cities:   Water   and  Sanitation  in  the  World's  Cities  2010.  In  Earthscan  (Series  Ed.)        

UNDP.   (2010).   Regional   Human   Development   Report   for   Latin   America   and   the  Caribbean  2010.  Costa  Rica:  United  Nations  Development  Programme.  

UNEP.   (1996).   International   Source  Book  on  Environmentally   Sound  Technologies  for   Municipal   Solid   Waste   Management   International   Environmental  Technology   Centre   Technical   Publication   Series:   United   Nations  Environmental  Programme.  

UNEP.   (2009).   Developing   Integrated   Solid   Waste   Management   Plan:   Training  Manual  (Vol.  1:  Waste  Characterization  and  Quantification  within  Projections  for  Future).  Osaka/Shiga,  Japan:  United  Nations  Environment  Programme.  

UNEP.   (2010).  Waste   and   Climate   Change:   Global   Trends   and   Strategy   Framework.  Osaka;  Shiga:  United  Nations  Environmental  Programme    

UNFPA.  (2011).  State  of  world  population  2011:  United  Nations  Population  Fund.  United  Nations  ESCAP.   (2010,  22-­‐24  February,  2010).  Regional  exposure  workshop  

on  pro-­‐poor  and  sustainable  solid  waste  management   in  secondary  cities  and  small   towns:  Dhaka,  Bangladesh.   Paper   presented   at   the   Regional   exposure  workshop   on   pro-­‐poor   and   sustainable   solid   waste   management   in  secondary  cities  and  small  towns,  Dhaka,  Bangladesh.  

Page 234: Marshall Rachael 201301 MASc

  217  

van   de   Klundert,   A.   (1995).   Community   And   Private   (Formal   And   Informal)   Sector  Involvement   In  Municipal   Solid  Waste  Management   In   Developing   Countries.  Paper  presented  at  the  UMP  workshop,  Ittingen.    

van   de   Klundert,   A.,   &   Anschutz,   J.   (1999).   Integrated   Sustainable   Waste  Management:   the   selection   of   appropriate   technologies   and   the   design   of  sustainable   systems   is   not   (only)   a   technical   issue.   Paper   presented   at   the  CEDARE/IETC   Inter-­‐Regional   Workshop   on   Technologies   for   Sustainable  Waste  Management,  Alexandria,  Egypt.    

van  de  Klundert,  A.,  &  Anschutz,  J.  (2001).  Integrated  Sustainable  Waste  Management  -­‐   the   Concept:   Tools   for   Decision-­‐makers.   Experiences   from   the   Urban  Waste  Expertise   Programme   (1995-­‐2001).   In   A.   Scheinberg   (Ed.).   Gouda,  Netherlands:  Urban  Waste  Expertise  Programme.  

Vanek,  F.  (2003).  Design  philosophies  for  appropriate  technology.  In  B.  Hazeltine  &  C.   Bull   (Eds.),  Field  guide  of  appropriate  technology.   San  Diego,   CA:   Elsevier  Science.  

Vennix,  J.  A.  M.  (1996).  Group  model  building:  facilitating  team  learning  using  system  dynamics.  Chichester:  Wiley.  

Vermaak,  H.  (2007).  Working  interactively  with  causal  loop  diagrams:  Intervention  choices  and  paradoxes  in  practical  applications.  In  J.  Boonstra  &  L.  De  Caluwé  (Eds.),   Intervening   and   changing:   Looking   for   meaning   in   interactions.  Chichester,  England:  John  Wiley  &  Sons  Ltd.  

von  Bertalanffy,  L.  (1950).  An  Outline  of  General  System  Theory.  British  Journal  for  the  Philosophy  of  Science,  1(2),  134-­‐165.    

VWB.  (2009a).  Guatemala:  Companion  animals  and  community  health:  Veterinarians  Without  Borders.  

VWB.   (2009b).   Todos   Santos,   Guatemala   interim   report:   Implemenation   Phase   I,  January  2009:  Veterinarians  Without  Borders.  

Wajcman,   J.   (2002).   Addressing   Technological   Change:   The   Challenge   to   Social  Theory.  Current  Sociology,  50(3),  347-­‐363.    

Wall,   J.  M.   (1993).  With   the  Mayans:   In  Guatemala.  The  Christian  Century,  110(36),  1259.    

Waltner-­‐Toews,   D.,   Kay,   J.,   &   Lister,   N.-­‐M.   E.   (2008).   The   ecosystem   approach:  complexity,  uncertainty,  and  managing  for  sustainability.  New  York:  Columbia  University  Press.  

Waltner-­‐Toews,  D.,  Kay,   J.,  Neudoerffer,  C.,  &  Gitau,  T.   (2003).  Perspective  changes  everything:   managing   ecosystems   from   the   inside   out.   Frontiers   in   Ecology  and  the  Environment,  1(1),  23-­‐30.    

Waltner-­‐Toews,  D.,  Neudoerffer,  C.,  Joshi,  D.  D.,  &  Tamang,  M.  S.  (2005).  Agro-­‐urban  Ecosystem  Health  Assessment  in  Kathmandu,  Nepal:  Epidemiology,  Systems,  Narratives.  EcoHealth,  2(2),  155-­‐164.    

Wicklein,   R.   C.   (1998).   <Designing   for   appropriate   technology   in   developing  countries.pdf>.  Technology  in  Society,  20(3),  371-­‐375.    

Wilson,   D.   C.   (2007).   Development   drivers   for   waste   management.   Waste  Management  &  Research,  25(3),  198-­‐207.    

Page 235: Marshall Rachael 201301 MASc

  218  

Wilson,  D.  C.,  Velis,  C.,  &  Cheeseman,  C.  (2006).  Role  of  informal  sector  recycling  in  waste   management   in   developing   countries.   Habitat   international,   30(4),  797-­‐808.  doi:  10.1016/j.habitatint.2005.09.005  

Wolsink,  M.   (2010).   Contested   environmental   policy   infrastructure:   Socio-­‐political  acceptance   of   renewable   energy,  water,   and  waste   facilities.  Environmental  Impact  Assessment  Review,  30(5),  302-­‐311.    

Woodward,   D.   (1985).   "Swords   into   ploughshares":   Recycling   in   Pre-­‐Industrial  England.  The  Economic  History  Review,  38(2),  175-­‐191.    

World   Bank.   (2005a).   Guatemala:   Country   Economic   Memorandum   (Report   No.  29145-­‐GT).  Washington,  DC:  World  Bank.  

World   Bank.   (2005b).   Tunisia   integrated   solid  waste  management   project:  World  Bank.  

World   Bank.   (2009).   Integrated   solid   waste   management   and   carbon   finance  project:  World  Bank.  

World   Bank.   (2011).   Guatemala   Overview     Retrieved   April   6,   2011,   from  http://www.worldbank.org/en/country/guatemala/overview  

Worrell,  W.  A.,  &  Vesilind,  P.  A.  (2012).  Solid  waste  engineering  (2nd  ed.).  Stamford,  CT:  Cengage  Learning.  

Yousif,  D.  F.,  &  Scott,  S.  (2007).  Governing  solid  waste  management  in  Mazatenango,  Guatemala.  International  Development  Planning  Review,  29(4),  433-­‐450.    

Yuan,   H.   (2012).   A   model   for   evaluating   the   social   performance   of   construction  waste  management.  Waste  Management,  32(6),  1218-­‐1228.    

Zarate,  M.  A.,  Slotnick,  J.,  &  Ramos,  M.  (2008).  Capacity  building  in  rural  Guatemala  by   implementing   a   solid   waste  management   program.  Waste  Management,  28(12),  2542-­‐2551.    

Zellmer,   A.   J.,   Allen,   T.   F.   H.,   &   Kesseboehmer,   K.   (2006).   The   nature   of   ecological  complexity:  A  protocol  for  building  the  narrative.  Ecological  Complexity,  3(3),  171-­‐182.    

Zerbock,  O.  (2003).  Urban  Solid  Waste  Management:  Waste  Reduction  in  Developing  Nations  Written   for   the   Requirements   of   CE   5993     Field   Engineering   in   the  Developing  World:  Michigan  Technological  University.  

Zero  Waste  SA.  (2011).  Waste  Management  Hierarchy  Retrieved  May  18,  2012,  from  http://www.zerowaste.sa.gov.au/About-­‐Us/waste-­‐management-­‐hierarchy  

Zurbruegg,  C.  (2003).  Solid  waste  management  in  developing  countries:  A  sourcebook  for  policy  makers  and  practitioners:  EAWAG  /SANDEC.  

 

 

   

Page 236: Marshall Rachael 201301 MASc

  219  

Appendix  A:  Interview  guide    

INTERVIEW  GUIDE  –  COMMUNITY  MEMBERS  

A  systems  approach  to  community  engaged  integrated  waste  management  in  Todos  Santos  Cuchumatán,  Guatemala    

 Pre-­‐Interview  Script    Thank  you  for  taking  the  time  to  meet  with  me  today.  My  name  is  Rachael  Marshall  from  the  University  of  Guelph  in  Canada  and  I  would  like  to  talk  to  you  about  your  experiences  with   solid  waste   and  wastewater  management   in   Todos   Santos.   As   a  member   of   the   community   here   we   believe   that   your   day-­‐to-­‐day   activities   and  experiences   will   provide   some   useful   insight   into   not   only   identifying   waste  management   problems,   but   also   help   with   developing   solutions   to   improve   the  waste  management  of  the  community.      This  interview  process  is  meant  to  be  like  a  conversation,  allowing  you  to  share  your  experiences   and   expertise   as   community   member.   The   interview   should   take  approximately  30  to  60  minutes  of  your  time.      All   responses   will   be   kept   confidential.   This   means   that   any   information   that   is  collected  during  this  session  will  only  be  shared  amongst  the  University  of  Guelph  research   team.   The   information   gathered   here   today   will   be   combined   with  information   from  other   interviews   and  will   be   presented   in   a  meeting  with   other  participants   with   the   intention   of   developing   solutions   to   improve   the   waste  management  in  Todos  Santos.  Any  information  that  you  provide  during  this  session  that  will  be  used  in  these  meetings  will  be  amalgamated  in  such  a  way  as  to  avoid  making   individual   information   recognizable   as   much   as   possible.   However,   some  waste  management  staff  may  provide   information  that  will  be  recognizable  due  to  their   specific   function/job,   and   therefore   it   is   important   to   note   that   in   this   case  their   identity   may   be   known   to   other   focus   group   members.   In   addition   to   this  interview,  I  welcome  you  to  participate  in  these  meetings.    I  would  like  to  remind  you  that  you  do  not  have  to  talk  about  anything  that  you  do  not  want  to  talk  about  and  you  may  end  the  interview  at  any  time.    Now   I   would   like   to   review   the   consent   form   in   front   of   you   orally.   This   form  outlines  what  I  have  just  talked  about  in  more  detail  including:  

Page 237: Marshall Rachael 201301 MASc

  220  

a) the  purpose  of  this  research  b) the  method  for  conducting  this  interview  session  c) potential  risks  and  how  the  information  you  present  here  will  be  used  in  

ways  that  will  keep  you  safe  and  comfortable  d) the  benefits  to  you  as  a  participant    e) methods   for  ensuring   the  confidentiality  of   the   information  you  present  

during  the  interview,  and,  f) your  rights  as  a  participant  

 [Consent  form  will  be  reviewed  orally  with  participant  in  the  language  they  prefer]  Are  there  any  questions  about  this  form  or  anything  else  that  I  have  explained  so  far?    

Are  you  willing  to  participate  in  this  interview?    I  would  also  like  to  record  this  session  on  audiotape  because  I  do  not  want  to  miss  any  of  your  comments.  Although   I  will  be   taking  some  notes  during   this   session,   I  cannot  possibly  write  fast  enough  to  get  all  of  the  information  down.  Recording  this  interview  on  audiotape  will  only  be  done  if  you  feel  comfortable  and  consent  to  the  process.   It   will   be   used   to   clear   up   any   missed   information   and   will   remain  confidential.      How  would  you  like  to  proceed  with  this  interview?  On  audiotape  or  without  audio-­‐

recording?  

 

Interview    The  following  describes  the  anticipated  themes  to  be  discussed  with  community  members.  

INTERVIEW  QUESTION  THEMES  (not  for  public  distribution)  

1. Title  /  Job  Description.    

2. Duration  of  position  within  waste  management  (if  applicable).    

3. Personal  experiences  with  solid  waste  and  wastewater  management  practices  and  projects  in  Todos  Santos.  (Possible  areas  include):  

Page 238: Marshall Rachael 201301 MASc

  221  

a. [waste  system  description  –  boundaries,  inputs  and  outputs,  information  flow,  delays,  etc]  

b. [how  waste  affects  participant’s  needs  and  activities]  c. [participant’s  concerns  –  issues,  causes,  consequences]  d. [how  waste  affects  resource  states]  e. [project  planning]  f. [preliminary  or  detailed  project  design]  g. [approvals]    h.  [construction]  i. [operation]  

   

4. Anticipated  themes  for  further  discussion:      

a. Capacity  issues  b. Self-­‐governance  issues  c. Funding  issues  d. Resource  issues  e. Staff/  Human  Resources  turnover  issues  f. Participant’s  vision/possible  solutions  for  the  future  

 

Post-­‐interview  Script    I  have  no  further  questions  for  this  interview  session.    

Is  there  anything  more  that  you  would  like  to  add?    I   will   be   analyzing   the   information   I   have   received   from   you   today   as   well   as  information   I   have   gathered   from   conducting   interviews   with   other   community  members.  I  would  like  to  remind  you  again  that  the  use  of  this  information  will  not  identify  you  as  the  respondent  and  will  remain  confidential.  Because  this  interview  session  was  recorded  on  audiotape,   I  will  be  transcribing  what  has  been  said  here  into   a  written   document.   I  would   be  more   than   happy   to   send   you   a   copy   of   this  document   if   you   wish   to   review   it.   In   addition,   I   may   contact   you   (by   email   or  telephone  through  the  main  community  contact,  Kelly  Chauvin)  to  clarify  some  of  the  information  you  have  provided  to  ensure  that  my  interpretation  of  what  you  have   said   is   correct.   It   is   important   to   note   that   participants’   identity  will   not   be  confidential,   but   known   to   this   main   community   contact.   However,   the   main  community  contact  has  signed  a  confidentiality  agreement.      Would  you  be  interested  in  participating  in  the  group  meetings  as  the  next  step  in  this  

process?  

Page 239: Marshall Rachael 201301 MASc

  222  

Are  there  any  other  questions  you  have  at  this  time?    Thank  you  for  your  time  and  I  hope  you  have  a  great  day.    

   

Page 240: Marshall Rachael 201301 MASc

  223  

Appendix  B:  Feedback  loop  descriptions  

A. Men’s  feedback  loops  

The  Waste   in   the  Streets  Loop  demonstrates  how  poor  SWM  has   lead   to   a   lack  of  

locations,   such  as  waste   receptacles,   for  people   to  properly  dispose  of   their  waste  

throughout  town.  This  encourages  people  to  throw  their  waste  in  the  streets,  which  

then   creates  more   cleaning   up   work   for   the  municipality,   decreasing   SWM   funds  

that  could  be  used   to  ameliorate  SWM.  This   loop   is  of   low  to  medium  strength,  as  

people  throw  waste  in  the  streets  not  only  because  there  is  a  lack  of  receptacles  in  

which   to   place   it.   The   habit   of   throwing   waste   in   the   streets   is   also   greatly  

influenced  by  a   lack  of   interest  or  understanding  about  the  waste  issue  (see  Figure  

15).   The   majority   of   the   population   is   accustomed   to   throwing   organic   waste   on  

fields  with  no  consequence  due   to   the   fact   that  plastic  has  only  entered   the  waste  

stream  within   approximately   the   last   20   years.   Therefore,   it   has   developed   into   a  

habit  that  is  reinforced  by  the  Waste  in  the  Streets  feedback  loop.  Intervening  in  this  

loop  by  providing  receptacles  may  not  create  much  change  in  behaviour  or  improve  

the  SWM  situation,  as  receptacles  must  first  be  emptied,  and  without  other  system  

changes,  would  simply  be  emptied  into  the  full,  unregulated  dump  in  the  center  of  

town.    

The   Environment   and   Population   Loop   shows   the   balancing   effects   of  

environmental   degradation   on   population   growth   and   thus   on   the   adequacy   of  

SWM.  Population  growth  is  a  stressor  on  the  SWM  system  not  only  by  increasing  the  

quantity  of  waste  but,  as  this  particular   loops  shows,  by   limiting  the  availability  of  

land,   preventing   proper   facilities   from   being   constructed.   The   lack   of   a   properly  

located  landfill  and  recycling  facility  due  to  land  constraints  was  strongly  identified  

as   a  major   cause   of   inadequate   SWM   in   Todos   Santos   by   this   sample   group.   This  

balancing   loop   demonstrates   how   environmental   degradation   decreases   tourism,  

limits  the  economy  and  decreases  population  growth.    

The   Waste   Quantity   Loop   demonstrates   how   the   degradation   of   environmental  

systems  increases  the  waste  quantity,  reinforcing  inadequate  SWM  by  creating  more  

Page 241: Marshall Rachael 201301 MASc

  224  

waste   that   must   be   dealt   with.   Degradation   impacts   waste   quantity   through  

population   growth,   which   increases   consumption   and   limits   land   availability   to  

construct   recycling   facilities,   but   also   through   the   need   to   consume   pre-­‐packaged  

goods,   such   as   bottled   water   or   pre-­‐wrapped   food   due   to   health   concerns   about  

contamination.   This   loop   also   relies   on   the   weak-­‐to-­‐medium   connection   between  

environmental   degradation,   tourism,   economic   income   and   population   growth.  

However,   it   is   supplemented   by   the   need   to   rely   on   pre-­‐packaged   goods   because  

environmental  services,  such  as  clean  water,  are  lacking.  Thus,  this  loop  has  a  higher  

strength   than   the   Environment   and   Population   Loop,   and   could   contain   leverage  

points  with  medium  impacts.  

B. Women’s  feedback  loops  

The  Education  and  Poverty  Loop   is  a   reinforcing   feedback   loop   that  demonstrates  

how   the   poor   education   system   decreases   the   number   of   educated   youth   in   the  

town,  which   in   turn  prevents   them   from  attaining  high  paying   jobs,   and   therefore  

prevents  them  from  being  able  to  afford  education  fees  for  their  children.  The  lack  of  

opportunities  for  youth  to  gain  an  education  decreases  their  interest  in  waste  issues  

and  increases  the  amount  of  waste  thrown  in  the  street,  as  youth  are  perceived  as  

the  primary  culprits  of  littering.    

The  Youth   and  Tradition   Loop   shows   the   reinforcing   effects   of   youth’s   interest   in  

modern  culture  and  consumerism  on  loss  of  culture  and  traditions.  As  traditions  are  

lost,  youth  do  not  know  how  to  maintain  them  and  lose  interest  in  doing  so  because  

they   have   less   connection   to   them.   Thus   they   grow   increasingly   interested   in  

modern  culture  and  consumerism,  which  draws  their   time  away   from  maintaining  

traditions.   With   a   focus   on   consumerism,   youth   become   a   driving   force   for  

consumption   and   thus   waste   production   –   particularly   the   production   of   plastic  

waste   in   the   form   of   highly   packaged   goods   and   other   items   that   were   not  

previously  available  in  the  local  economy.  

The   Economic   Income   Loop   demonstrates   how   inadequate   SWM   has   a   negative  

effect  on   the   local   economy,  which   reinforces   the   inadequacy  of   SWM.   Inadequate  

Page 242: Marshall Rachael 201301 MASc

  225  

SWM  has  lead  to  the  placement  of  the  dump  and  abattoir  in  close  proximity  to  the  

town  center,  and  has  allowed  it  to  fill  to  the  brim.  This  has  a  negative  effect  on  the  

aesthetics  of  the  town.  Aesthetics  impact  tourism  and  local  businesses,  which  need  

to   maintain   a   clean   storefront   in   order   to   attract   customers.   Tourism   is   also  

impacted  by  environmental  degradation.  Tourism  and   local  business  contribute   to  

the   local   economy,   which   provides   resources   to   the   community.   These   resources  

allow   community   members   to   maintain   their   good   health,   or   pay   for   medical  

services.   Therefore,   a   decrease   in   tourism  has   a   negative   impact   on  health,  which  

increases   inhabitants’   preoccupation   with   other   issues   and   draws   time   and  

resources   away   from   dealing   with   the   adequacy   of   SWM.     While   the   Economic  

Income   Loop   has   strong   connections   all   along   its   length,   economic   capital   made  

through   tourism   or   local   business  may   not   always   be   spent   on  maintaining   good  

health.   Additionally,   local   business   brings   in  more   economic   capital   than   tourism,  

yet   the   connection   between   aesthetics   and   local   business   success   is   fairly   weak.  

Therefore,  this  loop  is  likely  of  low  strength.  However,  the  proximity  of  the  dump  to  

the  town  center  also  has  a  direct   impact  on  health  through  the  Contamination  and  

Health  Loop,  as  vectors  move  from  the  dump  into  human  spaces,  including  dogs  and  

cats   that   are   allowed   into   kitchens   and   the  market.   Again,   this   loop   is   difficult   to  

target  because  all  factors  within  it  are  highly  embedded  in  the  system.    

The   female   participants   identified   the   same   Waste   in   the   Streets   Loop   that   was  

identified  by   the  male  participants,   and   it   functions   in   the   same  way.  This   loop   is  

again   limited   in   terms  of   interventions  due   to   other   variables   impacting   the  main  

problem  of  people  throwing  waste  in  the  streets.  

C. Youth’s  feedback  loops  

The  reinforcing  Waste  Generation  Loop  demonstrates  how  SWM  impacts  on  health  

impact   waste   generation   rates,   which   put   more   pressure   on   the   SWM   system.  

Contamination   from   the   local   dump   and   abattoir   and   waste   left   in   the   streets  

increases  illness,  which  has  a  negative  impact  on  family  wellbeing.  Family  wellbeing  

is   directly   tied   to   community   wellbeing.   If   many   families   in   the   community   are  

Page 243: Marshall Rachael 201301 MASc

  226  

preoccupied  with  poor  health,  they  are  less  focused  on  the  preservation  of  culture,  

language,   and   the   traditional  way  of   life.  As   traditions   and   culture   are   lost,   a  high  

consumption  culture  replaces  them,  which  leads  to  more  waste  generation.  This  in  

turn   creates   a   larger   volume   of   waste   that   must   be   dealt   with   by   an   already  

overloaded  SWM  system.    

The  reinforcing  Youth  and  Culture  Loop  shows  how  the  more  youth  value  the  town,  

the  more   interest   they   have   in   preserving   the   culture,  which   in   turn   increases   its  

value  to  them.    

The  reinforcing  Waste  Generation  Loop  is  a  fairly  weak  loop  due  to  the  low  strength  

relationship   between   community   wellbeing   and   preservation   of   culture   and  

language.  Likewise,  the  Youth  and  Culture  Loop  is  of  low  strength.    

The   two   balancing   feedback   loops,   Tourism   1   and   Tourism   2,   are   of   medium  

strength   due   to   the   connections   from   tourism   to   degradation   and   to   economic  

income.  Like  the  balancing  loop  in  the  men’s  causal  map,  these  loops  would  only  be  

effective   if   tourism   became   a   larger   focus   in   the   local   economy.   The   balancing  

Tourism   Loop   1,   shows   how   environmental   systems   have   a   balancing   effect   on  

tourism.  While  many  tourists  are  attracted  to  the  surrounding  area  for  its  ecological  

beauty,   they   cause   some   environmental   degradation   directly   by   creating   traffic  

through   sensitive   ecological   zones,   and   through   the   increase   in   consumption   they  

bring  as  the  town  caters  to  their  needs.    This  decreases  the  ‘pristineness’  of  the  very  

ecological   systems   tourists   are   attracted   to.   The   balancing   Tourism   Loop   2  

demonstrates   how   environmental   degradation   caused   by   poor   SWM   decreases  

tourism,   which   puts   less   pressure   on   the   waste   system.   Tourism   contributes   the  

economy,   which   provides   resources   to   maintain   good   health   or   pay   for   medical  

services.   This   in   turn   promotes   the   preservation   of   traditions   and   culture,   which  

decreases   waste   generation.   Waste   generation   contributes   to   the   inadequacy   of  

SWM  by  adding  more  waste  to  the  full  dump  that  must  be  dealt  with.  

   

Page 244: Marshall Rachael 201301 MASc

  227  

Appendix  C:  Bank  of  Ideas    

Table  18.  Overall  system  management  options  

Overall  system  management  options  

Description  and  details  

Public-­‐private  partnerships25  26  

Semi-­‐privatization  of  the  waste  management  system:  

• Has  high  potential  to  improve  the  quality/efficiency  of  SWM  services;  • Municipality  must  maintain  financial  and  managerial  autonomy;  and  • Competition,  transparence,  and  accountability  are  necessary  for  private  

sector  success.  Creation  of  a  non-­‐profit  community-­‐based  organization:  Clean  Todos  Santos  Foundation36  

A  community-­‐based  SWM  organization:  

• Founded  on  the  vision  of  the  community  at  large;  • Signs  an  agreement  with  the  municipality  on  solid  waste  objectives,  

targets  and  a  comprehensive  SWM  plan  for  the  town  of  Todos  Santos;  • Conducts  ‘learning-­‐by-­‐doing’  educative  workshops  and  sessions  in  the  

community;  • Searches  for  and  secures  national  and  international  support;    • Conducts  certain  SWM  tasks  (e.g.  establishes  collection  centers,  

conducts  a  thorough  waste  audit,  conducting  ongoing  monitoring,  etc.);  • Oversees  and  manages  certain  SWM  aspects  in  the  community  (e.g.  

coordinates  with/oversees  micro-­‐enterprises);  and  • Must  be  composed  of  a  group  that  is  representative  of  the  population.  

Development  of  SWM  micro-­‐enterprises39  40  26  

Micro-­‐enterprises:  

• Can  accomplish  smaller  scale  tasks  within  the  SWM  system  that  the  municipality  cannot  manage;  

• Municipality  can  remain  the  governing  body,  delegating  tasks  to  each  community-­‐based  micro-­‐enterprise  and  coordinating  their  efforts;    

• Micro-­‐enterprises  contribute  to  the  local  economy;  • Low-­‐cost,  labor-­‐intensive  approaches;    • Greater  community  participation,  which  encourages  better  collection  

and  source  separation;  and  • Requires  more  extensive  municipal  monitoring  than  larger  scale  public-­‐

private  partnerships.  Coordination  with  local  NGOs  for  capacity  building40  

Coordinating  with  existing  local  NGOs:  

• Can  build  capacity,  coordinate  waste  education,  training,  workshops,  etc.;  

• NGOs  can  help  tackle  governance  issues;  and  • Community  capacity  building  and  good  governance  can  greatly  ease  

management  responsibilities  and  tasks.  Motivational  training  and/or  exchange  visits  for  managers  and  

To  maintain  high  motivation  among  managers  and  operators:  

• Training  and  exchange  visits  to  areas  with  successful  SWM  systems;  • Potential  locations  for  exchange  visits  could  be  coordinated  with  NGO  

contacts.  

Page 245: Marshall Rachael 201301 MASc

  228  

operators37  

Integrating  informal  waste  pickers26    

Waste  picker  integration  program:  

• Aimed  at  eliminating  counterproductive  competition  between  informal  and  formal  sectors;  and  

• Upgrading  informal  pickers  into  community-­‐based  recycling  cooperatives.  

 

Table  19.  Waste  characterization  options  

Waste  Characterization  

Options  Description  and  details  

Further  waste  auditing27  

Conducting  a  waste  audit:  

• Of  local  businesses,  restaurants,  and  schools;  • That  determines  how  much  waste  is  construction  debris,  street  

sweepings,  etc.  is  in  the  overall  waste;  and  • That  provides  an  overall  estimate  of  how  much  waste  is  brought  to  

landfill  each  month.  Determine  energy  potential  of  solid  waste27  

Conducting  a  moisture  content  study:  

• Monthly  data  allow  waste-­‐to-­‐energy  technologies  to  be  considered  in  greater  detail.  

Hands-­‐on  waste  characterization  workshops41  

Hands-­‐on  solid  waste  workshops:  

• For  conducting  waste  characterization  and  quantification;  • Capacity  building  and  education-­‐centered;  and  • Workshop  participants  ranging  from  solid  waste  workers  to  local  

schools.    

Table  20.  Waste  Reduction  Options  

Waste  Reduction  Options  

Description  and  details  

Community-­‐wide  waste  education  program28  29  30  31  

An  education  program  that  explores:  

• The  profitability  of  waste;    • The  usefulness  of  waste;  and    • The  environmental  and  health  benefits  of  recycling.    

Waste  separation28   Promoting  waste  separation  through:  

• Education  programs;  and    Waste  bins  for  separate  solid  waste  types,  divided  by  colour.  

 Youth  waste  education  program42  

A  waste  education  program  founded  on:  

• Ecological  awareness;  

Page 246: Marshall Rachael 201301 MASc

  229  

28   • Ethical  values;  • Entrepreneurial  thinking;  and    • Social  responsibility.  

‘Teach  the  teachers’  program28  30  

A  waste  education  program  for  teachers  that  explores:  

• Environmental  education;  • Entrepreneurship;  •  The  solid  waste  system;  and  • Solid  waste  management  activities.    

The  program  should  include:  

• Seminars  and  workshops  to  allow  teachers  to  network,  present  their  successes/failures,  and  share  experiences;    

• A  final  workshop  for  the  teachers  to  assemble  a  solid  waste  education  manual;  and    

• A  final  goal  for  basing  each  class  taught  in  school  on  the  pillars  of  ecological  awareness,  ethic  values,  entrepreneurial  thinking,  and  social  responsibility  

Community  clean  streets  initiative35  

An  education  program  focused  on:  

• Preventing  waste  from  being  thrown  in  the  streets  by  making  it  the  community’s  responsibility;      

• Consumer  buying  power  awareness;  and  • Encouraging  purchases  that  have  less  packaging  

Youth  waste  entrepreneurship  program35  

A  program  focused  on:  

• Getting  the  youth  involved  in  instructing  the  municipality  about  innovative  SWM  practices;  and  

•  Marketing  SWM  skills  for  work  in  the  community  or  other  towns.  Community  SWM  committees35  

Committees  composed  of:  

• Community  members;  workers  from  the  ministries  of  health,  environment,  and  agriculture;  municipal  authorities;  local  businesses;  restaurants;  local  schools;  the  police  force,  etc.    

Committee  purposes  include:  

• Providing  a  place  for  community-­‐wide  motivational  speeches,  workshops,  and  training;  

• Determining  what  kind  of  solid  wastes  are  being  produced  by  each  group;  

• Determining  what  can  be  reused  and  how;  • Ensuring  the  municipal  authorities  take  responsibility  for  implementing  

planned  SWM  measures;  and  • Conducting  ongoing  monitoring.  

SWM  planning  workshops  for  local  businesses48  

Group  and  personalized  workshops  for  local  businesses:  

• Initiating  solid  waste  audits  on  a  business  by  business  basis;  • Identifying  ways  to  minimize  wastes,  recover  resources;  • Potential  for  sharing  waste  materials  as  resources  among  local  

businesses;  and  • Developing  personalized  SWM  plans;  

Pre-­‐cycle   In-­‐store,  point  of  purchase  educational  campaign:  

Page 247: Marshall Rachael 201301 MASc

  230  

campaign49   • Encourages  store  owners  to  provide  products  with  minimal  packaging;  • Store  owners  can  instruct  buyers  about  which  items  have  the  least  

packaging;  and  • Shelves  can  indicate  which  items  are  the  most  environmentally  friendly.    

Fostering  constructive  neighbourhood/  household  competition37  

Fostering  competition:  

• Among  households  or  neighbourhoods  for  the  cleanest  streets/environment;  

• Most  waste  reduction  by  weight;  • Most  reuse  around  the  house,  etc.;    • An  appropriate  incentive  can  be  given  out  as  a  prize;  and  • A  competition/celebration  day  can  be  held.  

Compensation  for  proper  separation/  system  compliance37  

Households  receive  monetary  benefits:  

• Through  a  small  stipend;  • Through  discounts  on  valued  items,  targeted  at  those  who  are  in  charge  

of  solid  waste  activities  (such  as  vegetable  discounts  for  women);  and  • Stipend/discount  amount  depends  on  the  degree  of  participation.  

Increasing  respect  for  public  spaces  to  keep  them  clean37    

Program  for  streets  and  public  spaces  that  are  frequently  littered  with  waste:  

• Education  campaign  about  the  financial  repercussions  of  littering  (less  municipal  resources  for  education,  health,  etc.,  unclean  spaces  causes  health  and  environmental  issues);  and  

• Installing  religious  shrines,  symbols  of  respect,  etc.  in  public  spaces  and  holding  a  public  inauguration  for  them.  

Religious  partnerships54  

Establishing  interest  among  the  churches,  religious  leaders  and  organizations:  

• Partnerships  that  demonstrate  how  waste  reduction,  recycling,  reuse,  and  proper  SWM  is  in  line  with  religious  teachings  and  beliefs;  

• Religious  groups  can  be  very  effective  at  motivating  the  community;  and  

• Recycling  and  reuse  activities  can  be  based  on  the  concepts  of  charity  and  communal  good    

Ecotourism   Encouraging  ecotourism  activities  within  the  community:  

• Will  provide  a  local  drive  to  shift  to  more  ecological  practices;  • Will  help  the  economy;  and  • Can  be  based  on  innovative  waste  practices  in  the  community  –  as  

waste  practices  improve,  Todos  Santos  can  represent  a  “sustainable  community”  

 

Table  21.  Collection  and  transport  options  

Collection,  Transport,  and  

Financing  Options  Description  and  details  

Mini  collection  centers34  35  

Mini  solid  waste  collection  centers:  

• Located  in  areas  where  pick-­‐up  is  not  occurring  weekly;  • Located  in  an  areas  that  is  accessible  to  large  trucks;    • Have  drop-­‐off  zones  for  different  kinds  of  wastes;  and  

Page 248: Marshall Rachael 201301 MASc

  231  

• Can  be  used  as  an  education  tool  for  local  schools  and  the  community.  Citizens  must  understand  that  they  have  to  clean  all  items  going  to  recyclable  material  bins.    

Separate  collection  days38  

Collecting  recyclables  on  one  day  and  other  waste  on  a  second  day:  

• Encourages  separation  at  the  source;  • Only  an  option  in  areas  with  weekly  collection;  and  • May  initially  increase  costs  or  lack  collaboration  from  citizens.  

Secondary  and  tertiary  sorting  at  Recycling  center35  

Constructing  a  centralized  recycling  center  where:  

• Re-­‐sorting  all  waste  that  was  previously  separated  in  the  home  or  in  mini  collection  center  bins  occurs;  

• Re-­‐sorting  occurs  by  glass  colour,  plastic  type,  etc.;  and  • Materials  are  organized  for  sale  or  free  pick-­‐up.  

Collection  by  small  vehicle/pushcart  in  outer  neighbourhoods50  

Due  to  limited  collection  outside  of  El  Centro:  

• Small  motorized  vehicles  or  manual  pushcarts  can  be  used  for  waste  collection;  

• Smaller  vehicles  can  fit  into  narrow,  steep  roadways  that  are  unfit  for  municipal  trucks;  and  

• Vehicles  must  be  able  to  handle  the  wet  season  and  unpaved,  rocky  roads.  

Tax-­‐based  collection  fee  system40  43  

Collection  fee  system:  

• Based  on  taxation;  • Will  require  solid  waste  education  in  the  community;  and  • Will  require  municipality  to  demonstrate  to  the  community  that  it  is  

capable  of  making  substantial  long-­‐term  SWM  improvements.    Collection  fee  community  education  program43  

Education  program:  

• To  inform  the  community  on  the  value  and  importance  of  paying  for  SWM  services;  

• Primary  goal  to  get  the  public  on  board  with  a  taxation  system  for  SWM  funding;    

• Founded  on  transparency,  fully  explaining  the  taxation  process;  • Demonstrates  the  financial  benefits  of  having  a  proper  SWM  system  

(savings  in  terms  of  health  and  environmental  services  expenses).  User  pays  fee  system37  

Payment  is  made  upon  service  achievement:  

• To  increase  willingness  to  pay  in  cases  where  services  are  seen  as  unreliable;  and  

• User  pays  per  collection  round.  Change  in  method  of  payment37  

Discuss  with  the  community:  

• Which  way  they  would  like  to  pay  for  SWM    services;  • Lump  sum,  with  water  bills,  etc.    

Relate  collector/  

transporter  salaries  to  performance37  

If  collection  or  other  services  are  unreliable:  

• Operators  may  need  new  incentive  to  perform  better;  • This  is  particularly  true  for  new  operators  that  are  former  waste  

pickers;  

Page 249: Marshall Rachael 201301 MASc

  232  

If  paid  according  to  achievement,  reliability  and  quality  of  services  will  improve.    

Installation  of  more  waste  bins  in  public  areas  and  incorporation  into  collection  route  

Installation  of  more  waste  bins:  

• In  public  places  where  people  tend  to  throw  waste  on  the  ground;  • Waste  bins  should  be  regularly  emptied  by  collection  operators  on  the  

weekly  route;  and  • Separate  bins  for  waste,  recyclables,  and  organics  should  be  provided.  

 

 

Table  22.  Resource  recovery  options  

Resource  Recovery  Options  

Description  and  details  

Women's  vermiculture  initiative32  

Develop  a  partnership  with  the  NGO  Byoearth  to  transfer  knowledge  on:  

• Vermiculture;  and    • Entrepreneurship  for  women’s  groups.    

Women's  recycled  craft  initiative32  

Partnership  with  Byoearth:  

• Can  help  local  women  develop  entrepreneurship  skills  to  make  and  sell  recycled  crafts  

Recycled  materials  as  construction  materials28  35  

Recycled  plastic  and  metal  can  act  as:  

• Barriers  around  garden  beds,  etc.  to  beautify  work/community  spaces;  and    

• Can  decorate  community  gardens  on  top  of  old  covered  landfill  trenches.  

Agricultural  uses  for  recycled  materials  (substrate,  etc.)28  

Recyclable  materials  can  be  used  as:  

• Substrate  in  soil;  • Barriers  around  beds,  for  dirt  walls,  etc.;  and    • Must  accompanied  by  activated  charcoal.  

Biodigesters  for  methane  use  as  a  cooking  fuel  28  46  

Biodigesters  can  be  used  for:  

• Methane  production  for  cooking  use;  • Fertilizer  (biodigester  by-­‐product);  and  • Can  also  run  on  wastewater  for  future  projects.    

Waste-­‐to-­‐electricity28  47  

Biodigesters  that  create  electricity:  

• Can  run  on  pig  manure  or  other  organic  materials;  and  • Effluent  must  go  to  organic  deposition  and  oxygenation  ponds.  

Sustainable  alliances  between  agroindustry,  communities,  and  ecological  universities47  

An  alliance  between  agroindustry,  ecological  universities,  and  communities:  

• Agroindustry  waste  can  act  as  the  nutrient  source;  • Communities  and  ecological  universities  can  participate  in  setting  up  

and  running  the  biodigesters;  • Communities  can  benefit  from  electricity/methane  production;  and  • Universities  can  foster  environmental  education  through  engaged,  

hands-­‐on  SWM  learning.  

Page 250: Marshall Rachael 201301 MASc

  233  

Organics  to  paper  production28  

Paper  can  be  made  out  of  fruit  peels  (e.g.  banana)  and  sold  to  tourists,  etc.  

Roofing  from  recycled  materials35  

Tetra  paks  or  plastic/metal  combinations  used  to  make  roofing.  

Waste  crops  for  livestock  production  during  flooded  market51  

If  a  particular  crop  has  flooded  the  market:  

• Waste  crops  can  be  used  to  fatten  livestock  for  meat,  depending  on  the  crop;  

• Diversification  of  production  can  help  to  support  farmers  through  a  period  when  the  market  is  flooded;  and  

• Minimum  conditions  for  such  a  venture  to  be  profitable  must  be  calculated  on  a  case-­‐by-­‐case  basis.  

Small-­‐scale  composting28  35  52  

Composting  organic  material  can  be  used  for:  

• Creating  organic  fertilizer  for  sale  or  use  in  agricultural  practices;  • Can  be  done  on  a  house-­‐by-­‐house  basis,  or  in  groups  of  families;    • Can  be  sold  for  a  profit  or  used  for  crops;  and  • Uses  manual  labour.  

Substrate  and  fertilizer  produced  from  soap  and  sugar  cane  waste53  

Highly  marketable  agricultural  products:  

• Made  from  soap  waste,  cane/palm  sugar  waste  (mill  mud,  bagasse),  ashes,  and  silica  sand;  and  

• Agroindustry  and  community  alliances  can  be  established  for  the  production  of  these  products.  

Waste  food  products55  

Waste  from  food  products  on  farms  can  be  used  for:  

• Making  value-­‐added  products;  • E.g.  whey  from  cheese-­‐making,  burnt  coffee  beans,  etc.    

Compost  pile  with  aeration  tube  and  fan56  

Composting  technique:  

• Uses  a  perforated  aeration  btube,  placed  in  the  center  of  the  pile;  • Pile  is  continually  aerated  by  directing  a  fan  into  the  aeration  tube;  • Time-­‐efficient,  volume-­‐reducing  technique  • Easy  to  implement/operate,  low  capital  cost,  produces  high  quality  

compost  Town  beautification  project49  

Competition  to  design  a  beautification  project:  

• That  uses  recycled  materials  only;  and  • That  represents  the  culture/identity  of  the  town;  • Can  be  open  to  schools,  community  members,  etc.    

Return  to  point  of  sale  program49  

Reuse  program:  

• Enlisting  local  businesses  that  would  accept  broken  products  or  empty  containers  etc.  for  repair  and  re-­‐sale;  

• E.g.  old  paint  to  paint  stores,  used  oil  and  car  batteries  to  gas  stations/garages,  etc.;  and  

• Program  can  be  advertised  on  the  radio,  in  the  storefront,  etc.  Medium-­‐scale  composting26  

Composting  facilities  can  be  set  up  for:  

• Can  be  done  in  mini  composting  centers  in  each  community;    • Can  establish  centers  for  agricultural  waste;  and    

Page 251: Marshall Rachael 201301 MASc

  234  

• Can  be  used  for  market  waste.      

Table  23.  Waste  transformation  options  

Waste  Transformation  

Options  Description  and  details  

Small-­‐scale  incinerator34  

 

 Small-­‐scale  incinerator:  

• Employs  simple  combustion;  • Requires  easily  found  materials,  including  a  concrete/metal  cylinder,  

large  equally  sized  rocks  or  a  concrete  slab  for  the  base,  and  a  metal  grate;  

• Does  not  fully  combust  waste,  only  reduces  volume;    • Ashes  must  be  deposited  in  the  landfill;  and  • Either  a  filter  must  be  installed  or  plastics  and  bleached  items  should  

not  be  incinerated  to  avoid  dioxin  production.      

Table  24.  Disposal  options  

Disposal  Options   Description  and  details  

Manual  landfill35   Small-­‐scale  manual  labour  landfill:  

• Located  on  clay  or  geotextile;    • Composed  of  rows  of  4.5  m  trenches  dug  out  with  a  back-­‐hoe/by  hand;  • Covered  with  soil  every  day  to  prevent  open  exposure;  • Requires  10  years  of  leachate  monitoring,  so  monthly  fees  must  be  

charged  for  a  minimum  of  15  years  (this  is  the  minimum  lifespan  of  the  landfill);  

• Nearly  no  organic  materials  should  be  deposited  in  the  landfill  to  minimize  methane  production  and  vectors;  and  

• This  design  results  in  no  odors.  Hazardous  waste  disposal  pit29  

A  hazardous  waste  disposal  pit  can  be  constructed:  

• Located  on  clay;  • Lined  with  concrete;  • Pit  can  act  as  a  disposal  site  for  fluorescent  light  bulbs,  batteries,  

medical  waste,  etc.;  and  • Hazardous  waste  should  be  treated  with  sulfur  before  being  disposed  of  

in  the  pit.    Transporting  hazardous  waste  to  Huehuetenango  

Transporting  hazardous  waste:  

• Medical  waste  is  already  transported  to  the  city  of  Huehuetenango,  which  is  2.5  hours  away;  

• Transporting  other  hazardous  wastes  along  with  medical  waste  would  not  significantly  increase  costs;  and  

• Residents  would  have  to  separate  these  wastes  from  regular  municipal  waste  and  safely  deposit  them  at  a  hazardous  waste  drop-­‐off  site.    

   

Page 252: Marshall Rachael 201301 MASc

  235  

Appendix  D:  System  lever  assessment  Table  25.  System  lever  assessment    

    =  YES  

    =  MAYBE  

    =  NO  

 

 

 

System  Lever  Options  

Selection  Criteria  

User  Affordability  

Use  of  local  m

aterials/  resources  

Relatively  labour-­‐intensive  

Low  capital  cost  

Education-­‐centered  

Targets  youth  culture  

Socially  appealing  

Environm

entally  sustainable  

Locally  sustainable  

Flexibility  

Capacity  building  

Soundness  of  conceptual/  technological  

design    

Targets  recyclables  

Targets  organics  

Targets  w

aste  reduction  

Targets  rem

aining  waste  

Privatization  

                                                               

 Clean  Todos  Santos  Foundation  

                                                               

Development  of  SWM  micro-­‐enterprises  

                                                               

Coordination  with  local  NGOs  

                                                               

Integrating  informal  waste  pickers  

                                                               

Motivational  training/exchange  visits  for  managers  and  operators  

                                                               

Further  waste  auditing  

                                                               Determine  energy  potential  of  solid  waste  

                                                               Hands-­‐on  waste  characterization  workshops  

                                                               

Community-­‐wide  waste  education  program  

                                                               

 Youth  waste  education  program  

                                                               

Teach  the  teachers  program  

                                                               

Community  clean  streets  initiative  

                                                               

Youth  waste  entrepreneurship  program  

                                                               

Community  SWM  committees  

                                                               

SWM  planning  workshops  for  local  businesses  

                                                               

Pre-­‐cycle  campaign  

                                                               

Waste  separation  

                                                               

Fostering  constructive  competition  

                                                               

Page 253: Marshall Rachael 201301 MASc

  236  

Compensation  for  proper  system  compliance  

                                                               

Increasing  respect  for  public  spaces  

                                                               

Religious  partnerships  

                                                               

Mini  collection  centers  

                                                               

Separate  collection  days  

                                                               

Secondary  and  tertiary  sorting  at  Recycling  center  

                                                               

Collection  by  small  vehicle  in  outer  neighbourhoods  

                                                               

Tax-­‐based  collection  fee  system  

                                                               

Collection  fee  community  education  program  

                                                               

User  pays  fee  system  

                                                               

Change  in  method  of  payment  

                                                               

Relate  operator  salaries  to  performance    

                                                               

Women's  vermiculture  initiative  

                                                               

Women's  recycled  craft  initiative  

                                                               

Recycled  materials  as  decorative  construction  materials  

                                                               Agricultural  uses  for  recycled  materials  

                                                               

Biodigesters  for  methane  use  as  a  cooking  fuel  

                                                               

Waste-­‐to-­‐electricity  

                                                               

Organics  to  paper  production  

                                                               

Roofing  from  recycled  materials  

                                                               

Sustainable  alliances  between  agroindustry,  communities,  and  ecological  schools  

                                                               

Waste  crops  for  livestock  production  during  flooded  market  

                                                               

Small-­‐scale  composting  

                                                               

Substrate  and  fertilizer  produced  from  soap  and  sugar  cane  waste  

                                                               

Waste  food  products  

                                                               

Page 254: Marshall Rachael 201301 MASc

  237  

Compost  pile  with  aeration  tube  and  fan  

                                                               

Town  beautification  project  

                                                               

Return  to  point  of  sale  program  

                                                               

Medium-­‐scale  composting  

                                                               

Small-­‐scale  incinerator  

                                                               

Methane  tester  

                                                               

Hazardous  waste  disposal  pit                                                                  

Transporting  hazardous  waste  to  Huehuetenango