m2-3 buck converter objective is to answer the following questions: 1.how does a buck converter...

26
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?

Upload: bennett-hubbard

Post on 14-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

M2-3 Buck Converter

Objective is to answer the following questions:1. How does a buck converter operate?

Buck Converter

• The input voltage is always greater than the output voltage

12 V 5 VControl

Buck Configuration

• The input voltage is always greater than the output voltage

VOUT

VIN

VM

VGATE

LC

ISW

IL

VIN

time

20V

15V

10V

5V

0V

VOUT

time

7.5V

5V

2.5V

0V

10V

Switching Regulator Components

Switching Power Supply Block Diagram

VIN VOUT

Switching Power Supply

Switch

Error Amplifier

Bandgap Reference

PWMController

Network Network

External Network• An external network (consisting of an inductor, capacitor,

and diode) transforms the energy from the PWM controlled power switch into a desired output voltage

NetworkSwitchVIN VOUT

VIN = 12 VVOUT = 5 V

Recirculation Diode

VOUT

VIN

VOUT

VIN

SIN

SGND

VM VM

How a Switching Regulator WorksVIN

Switching Regulator

Duty Cycle Controller

OutputMonitor

VOUT

time

5V

VoltageOK50%

Filt

er N

etw

ork

VOUT

How a Switching Regulator WorksVIN

Voltage Regulator

Duty Cycle Controller

OutputMonitor

VOUT

time

5V

VoltageOK50%

Filt

er N

etw

ork

VOUT

How a Switching Regulator WorksVIN

Voltage Regulator

Duty Cycle Controller

OutputMonitor

VOUT

time

5V

VoltageOK50%

Filt

er N

etw

ork

VOUT

How a Switching Regulator WorksVIN – 1V

Voltage Regulator

Duty Cycle Controller

OutputMonitor

VOUT

time

5V

VoltageLow60%

Filt

er N

etw

ork

VOUT

How a Switching Regulator WorksVIN – 1V

Voltage Regulator

Duty Cycle Controller

OutputMonitor

VOUT

time

5V

VoltageLow60%

Filt

er N

etw

ork

VOUT

How a Switching Regulator WorksVIN

Switching Regulator

Duty Cycle Controller

Output Monitor

VOUT

time

5V

VoltageOk50%

Filt

er N

etw

ork

VOUT

Step Down Switching RegulatorSteady State Operation

VOUT

VIN

VM

VGATE

+ VL -

COUT

ISW

IL

VGATE goes high

VM ~ VIN

VL = VM – VOUT

t

VM

t

VGATE

t

IL

VOUT

t

ISW

t

RLOAD

-VF

-VF

+

Step Down Switching RegulatorSteady State Operation

VOUT

VIN

VM

VGATE

COUT

ISW

IL

VL Constant

t

VM

t

VGATE

t

IL

VOUT

t

ISW

L LdI V= Constant

dt L

IL and ISW increase

t

RLOAD

COUT is charged by IL

and

VOUT increases

-VF

-VF

+

+ VL -

Step Down Switching RegulatorSteady State Operation

VOUT

VIN

VM

VGATE

COUT

ISW

IL

VGATE = 0V

The pass transistor

is turned off

ISW = 0At

VM

t

VGATE

t

IL

VOUT

t

ISW

t

RLOAD

LV

=dtdI LL

IL cannot go to 0A instantly:

VM goes negativeVL = VM – VOUT

L LdI V= < 0 A/s

dt L

-VF

-VF

+

+ VL -

Step Down Switching RegulatorSteady State Operation

VOUT

VIN

VGATE

COUT

ISW

IL

But, VM is clamped

to -VF

and IL decays

through the diode t

VM

t

VGATE

t

IL

VOUT

t

ISW

t

RLOADCOUT stabilizes

the output voltageso VOUT will only slowly

decay

-VF

VM = -VF

-VF

+

+ VL -

Step Down Switching RegulatorSteady State Operation

VOUT

VIN

VGATE

COUT

ISW

IL

The MOSFET is

turned on and off

to repeat

the sequence

RLOAD

t

VM

t

VGATE

t

IL

VOUT

t

ISW

t

-VF

VM = -VF

-VF

+

+ VL -

Volt-Second Balance

VOUT

VIN

VM

VGATE

COUT

ISW

RLOAD IL

t

VGATE

t

+ VL -

IL

ConstantLV

dtdi LL

Volt-Second Balance

• In steady state, the inductor current ripples about an average, IL,AVG:

• Therefore, the total area (or volt-seconds) under the inductor voltage waveform is zero.

1-D TT DT

L L L0 0 DT

V (t)dt = V (t)dt + V (t)dt

VL

t

VIN - VOUT

-VOUT

TDT

(1-D)T

T

L IN OUT OUT0

V (t)dt = (V - V )DT +(-V )(1-D)T = 0

+ VL -+ VL -

Voltage-Second Principleand the DC Transfer Function

IN OUT OUT OUTV DT +(-V D+ V D- V )T = 0

OUT

IN

V=D

V

• From:

we can calculate the transfer function of the step down switching voltage regulator

T

L IN OUT OUT0

V (t)dt = (V - V )DT +(-V )(1-D)T = 0

IN OUTV DT +(-V )T = 0

VIN vs. VOUT and Duty Cycle, D

VOUT

VIN

L

COUT

ISW

IL

RLOAD

SIN

SGND

• During steady state:

VL,AVG = 0V

+ VL -

VL

time

VIN - VOUT

-VOUT

TDT

(1-D)T

IN OUT OUTV - V D = V (1-D)

OUT INV = DV

VOUT Increases with DVOUT = DVIN

VOUT

VIN

VM

VGATE

COUT

ISW

IL

VOUT

RLOAD

t

VL

t

VGATE

VIN - VOUT

t

+ VL - -VOUT

SIN

SGND

VOUT Decreases with DVOUT = DVIN

VOUT

t

VL

t

VGATE

VIN - VOUT

t

-VOUT

VOUT

VIN

VM

VGATE

COUT

IL

RLOAD

+ VL -

SIN

SGND

ISW

Ripple Current• Recall, IL is the sum of the

current flowing through SIN and SGND

VOUT

VIN

COUT

IL

RLOAD

SIN

SGND

IGND

time

ISW IGNDIL

IL,AVG

ISW

Memo

Memo