m01 principles

Upload: anubhav-bansal

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 M01 Principles

    1/27

    - PHYSICAL QUANTITIES and DIMENSIONS- MEASURE UNITY SYSTEMS- SCALARS E VECTORS- DISPLACEMENT, VELOCITY, ACCELERATION- DYNAMICS PRINCIPLES- GRAVITY- MASS, WEIGHT, DENSITY, FLOW, PRESSURE

    MECHANICSIst part

    D. SCANNICCHIO 2009

    corso integrato FISICA - disciplina FISICA

    Corso di Laurea Specialistica inMEDICINA e CHIRURGIA

    Laurea Magistralis in MEDICINE and SURGERY

    Integrated Course/Discipline: PHYSICS

    01/23

    HARVEY

  • 8/12/2019 M01 Principles

    2/27

    STATICS

    KINEMATICSDYNAMICS

    BASIC

    MECHANICS

    D. SCANNICCHIO 2009 02/23

  • 8/12/2019 M01 Principles

    3/27

    PHYSICAL QUANTITIES

    definition measurable

    D. SCANNICCHIO 2009

    DIMENSIONS

    fundamental [L] lenght [M] mass [t] time [i] electric current

    derived [L]a[M]b[t]c[i]d

    dimensional equations:

    control of physical relations uniformity

    FUNDAMENTAL CONSTANTS

    03/23

  • 8/12/2019 M01 Principles

    4/27

    UNITS of MEASUREMENT SYSTEMS

    International System (S.I.)(previous MKSQ System)

    meter (m) kilogram (kg) second (s) ampere(A)

    C.G.S. System

    centimeter (cm) gram (g) second (s)

    D. SCANNICCHIO 2009

    Practical Systems examples:

    millimeter of mercury (mmHg) atmosphere (atm)hour (h) ngstrom() electronvolt(eV) ..............

    04/23

  • 8/12/2019 M01 Principles

    5/27

    deci- (d)

    centi- (c)

    milli- (m)

    micro- ()pico- (p)

    sottomultiplimultipli

    tera- (T)

    giga- (G)

    mega- (M)

    kilo- (k)

    1012

    109

    106

    103

    peta- (P) 1015

    101

    102

    103

    106

    1012

    nano- (n) 109

    MULTIPLES and SUBMULTIPLE

    multiplessubmultiples

    D. SCANNICCHIO 2009 05/23

  • 8/12/2019 M01 Principles

    6/27

    SCALAR QUANTITIES

    characterization: only 1number(ratio between the physical quantity and its measuring unit)

    examples

    mass m = 73.8 kg time t = 32.3 s density d = m/V = 4.72 g cm3

    D. SCANNICCHIO 2009 06/23

  • 8/12/2019 M01 Principles

    7/27

    VECTOR QUANTITIES

    characterization: 3data

    modulus

    direction

    versus

    application pointv

    modulus

    direction

    versus

    lettervin bold

    examples: displacement svelocity v

    s = 16.4 mv = 32.7 m s1

    07/23D. SCANNICCHIO 2009

  • 8/12/2019 M01 Principles

    8/27

    DISPLACEMENT

    displacementdifined with :modulus, direction, versus vector s

    to

    trajectory : a line tangent to the vector sin every pointand in every subsequent time instant with the following components:

    s = s(t)x = x(t)y = y(t)z = z(t)

    t1t2s1 s2

    dimensions [L]

    measure units: I.S. (meter (m)) C.G.S. (cm)

    D. SCANNICCHIO 2009 08/23

  • 8/12/2019 M01 Principles

    9/27

    VARIATION (CHANGE) DEFINITION of a PHYSICAL QUANTITY

    distance variation s (in modulus):

    (from initial value s1=23 m to final value s2=16 m) !s = 16 m 23 m = - 7 m (from initial value s1= 23 m to final value s2=16 m) !s = 16 m (23 m) = + 39 m

    variat ion or change: a2 a1= afinal ainitial= !a

    difference: a1 a2= ainitial afinal= !a

    variat ion or change symbol : !

    D. SCANNICCHIO 2009 09/23

  • 8/12/2019 M01 Principles

    10/27

    SOME MOTION of BODIES

    rectilinear uniform motion

    rectilinear motion uniformly accelerated

    circolar uniform motion

    harmonic motion

    rectilinear motion(same direction and versus) :

    t1 s1 = s(t1 )t2 s2 = s(t2 )

    !s= s2 s1= s(t2) s(t1)}

    D. SCANNICCHIO 2009 10/23

  • 8/12/2019 M01 Principles

    11/27

    VELOCITY

    velocity = time intervalcovered distance

    D. SCANNICCHIO 2009 11/23

    0x

    y

    z

    t2

    s1 s

    1

    s2

    s2

    t1t

    0

    vm

    velocit media: vm= s(t

    2) s(t1)t

    2 t

    1

    =

    st

    t2 t

    1

    s2 s1

    =mean velocity

  • 8/12/2019 M01 Principles

    12/27

    velocit media:

    vm=

    s(t2) s(t1)t

    2 t

    1

    =

    st

    t2 t

    1

    s2 s1

    =mean velocity

    INSTANT VELOCITY

    velocit istantanea: v = lim st

    t 0=

    d s(t)

    dt

    instant velocity

    dimensions [v] = [L] [t]1

    measure units: I.S. (m s1) C.G.S. (cm s1)

    D. SCANNICCHIO 2009 12/23

  • 8/12/2019 M01 Principles

    13/27

    ACCELERATION

    a

    m= v(t2) v(t1)

    t2 t

    1

    =

    vt

    accelerazione media:mean acceleration :

    a = lim vt

    =d v(t)

    dt

    t 0accelerazione istantanea:instant acceleration :

    D. SCANNICCHIO 2009 13/23

    dimensions [a] = [L] [t]2

    measure units: I.S. (m s2) C.G.S. (cm s2)

  • 8/12/2019 M01 Principles

    14/27

    force"

    physical quantity modifying the motioncondition of a body

    motion condition of a body: defined by its velocity motion condition change "velocity vector change velocity vector change "acceleration vector

    II- F =m a

    mass m = amount of matter

    DYNAMICS PRINCIPLES

    I- INERTANCE PRINCIPLE in absence of forcesa body is at rest or move with rectilinear uniform motion

    ( v = constant in modulus, direction and versus)

    D. SCANNICCHIO 2009 14/23

  • 8/12/2019 M01 Principles

    15/27

    II- F =m a

    DYNAMICS PRINCIPLES

    dimensions [a] = [M] [L] [t]2measure units:

    I.S. newton (N) = kg meter s2

    C.G.S. dyne (dyn) = gram cm s2

    1000 x 100 = 100 000 = 105

    1 newton = 105 dynes

    D. SCANNICCHIO 2009 15/23

  • 8/12/2019 M01 Principles

    16/27

    DYNAMICS PRINCIPLES

    III- ACTION-REACTION PRINCIPLE

    BODY A BODY B

    FAB = FBA

    LINEAR MOMENTUM CONSERVATION

    linear momentum definition: q = m v

    !q = 0(isolated system)

    D. SCANNICCHIO 2009 16/23

  • 8/12/2019 M01 Principles

    17/27

    aA=

    FAB

    mA=

    vA

    t aB=FBA

    mB=

    vB

    t

    LINEAR MOMENTUM CONSERVATION

    mAa

    A + m

    Ba

    B= 0

    mA v

    A + m

    B v

    B= 0

    FAB + FBA = 0(vectors with same direction and opposite versus)

    qA+ q

    B= 0 !q total = 0

    (isolated system)D. SCANNICCHIO 2009 17/23

  • 8/12/2019 M01 Principles

    18/27

    G = 6.67 1011N m2kg2

    (Newton)

    F = G m1m2

    r2r

    r

    m

    1

    m2

    r

    GRAVITATIONAL FORCE

    at Earth ground : MTEarth mass RTEarth radius m mass of the body

    F = G =gmMT m

    R2

    g= 9.8 m s2= 980 cm s2

    F = mg= p

    (definition of the gravity force vector p)D. SCANNICCHIO 2009 18/23

  • 8/12/2019 M01 Principles

    19/27

    p = gravity force vector

    p

    linee di forza

    xy

    z

    suolo

    90

    ground

    lines of forcemodulus p = mgdirection vertical

    versus to ground

    space domain where forces are actingFORCE FIELD

    D. SCANNICCHIO 2009 19/23

    g= 9.8 m s2= 980 cm s2

    F = mg= p

    GRAVITY FORCE FIELD

  • 8/12/2019 M01 Principles

    20/27

    H2O d = 1 g cm3 = 1000 kg m3

    m kg g

    kggravity= kgmass9.8 m s2 = 9.8 N

    gravity kggravity ggravity

    MASS, GRAVITY, DENSITY

    D. SCANNICCHIO 2009

    d =m

    V

    [d] = [M][L]3

    I.S. kg m3 C.G.S. g cm3

    20/23

  • 8/12/2019 M01 Principles

    21/27

    FLUID FLOW

    V

    t

    Q =Vt

    D. SCANNICCHIO 2009

    [Q] = [L]3[t]1

    I.S. m3s1 C.G.S. cm3s1

    21/23

  • 8/12/2019 M01 Principles

    22/27

    PRESSURE

    p = FnS =F nS.

    n

    Fn

    F

    S

    pascal = 105dine

    104cm2 =10 barie

    =[M][L]1[t]2[M][L][t]2

    [L]2[p] =

    I.S. N/m2 pascal (Pa)

    C.G.S. dyne/cm2 barye

    D. SCANNICCHIO 2009 22/23

  • 8/12/2019 M01 Principles

    23/27

    1 atmosphere = 760 mmHg = 760 tor = 1.016 106barye == 1.016 10 pascal = 1033 ggravitycm2

    (0C)

    PRESSURE

    D. SCANNICCHIO 2009 23/23

    hydrostatic pressure: p = d gh = = 13.59 g cm3980 cm s176 cm = 1.016 106barye

  • 8/12/2019 M01 Principles

    24/27

    RECTILINEAR UNIFORM MOTION and

    MOTION with CONSTANT ACCELERATION

    rectilinear uniform motion v= constant = vo s = vot + so so=initial displacement

    motion with constant acceleration a= constant = ao v = aot + vo vo=initial velocity

    s = aot2 + vot + sos

    o=

    initial displacement

    12

    D. SCANNICCHIO 2009

  • 8/12/2019 M01 Principles

    25/27

    massima gittata per = 45

    x

    y

    g

    v

    ox

    v

    oy

    v

    vox

    vy

    vo

    vo

    vox

    voy

    vox

    v

    vox

    vy

    vy = 0

    o

    body undergoing gravity accelerationg

    maximum range for #= 45

    BULLET MOTION

    D. SCANNICCHIO 2009

    vx= v

    ox

    vy= v

    oy gt

    g2 voytouchdown time t =

  • 8/12/2019 M01 Principles

    26/27

    a

    aN

    aT

    aN

    a

    v

    v

    R

    aT

    x

    y

    o

    CURVILINEAR MOTION

    accelerazione tangenziale aT aT =dv

    dt

    accelerazione normale (radiale) aN

    aN =

    v2

    R

    radial acceleration (normal)

    tangential acceleration

    D. SCANNICCHIO 2009

  • 8/12/2019 M01 Principles

    27/27

    KEPLERS LAWS

    1st- The planets in their motion around the Sun describe an

    elliptical orbit with the Sun in one of the ellipsis focuses.

    3rd- The square of revolution times T are directly proportional

    to the third power of the half longer orbital axis a:

    T2

    a3= constant

    2nd- The area sweeped by the vector radiuses are directly

    proportional to the times !t spent to be traced:

    when S1= S2than !t1= !t2 from whichAB

    !t1

    CD

    !t2< .

    S1

    !t

    S2

    !t=

    D. SCANNICCHIO 2009