løsningsforslag til oppgaver fra gruppetime...

6
Løsningsforslag til oppgaver fra gruppetime 2 1. How does the sun influence the movement in the sea: • Directly (a) The sun influences the sea directly by warming the surface water, thus chang- ing its density. • Indirectly (a) The sun influences the sea indirectly by setting up processes in the atmo- sphere, for instance the wind. 2. Draw a simplified illustration of the main wind-fields found on Earth and name the different areas. (a) The picture is taken from "Invitation to oceanography", Paul R. Pinet 3. What is Q and q? (a) Q is the amount of heat/energy when looking at the heat budget [J], while the q is the flux of heat per surface unit [Wm -2 ]. 4. Set up the equation for the heat budget and explain the different components. (a) The heat budget: Q t = Q s + Q v + Q h + Q b + Q e Q t : the total heat gain/loss of the ocean Q s : net amount of solar energy that goes through the ocean surface. Q v : the net heat transported by currents (advection). Q h : amount of heat gained/lost by conduction between the ocean and the atmo- sphere (sensible heat/varmeledning). Q b : net transfer of infrared radiation from atmosphere to the ocean (long-wave 1

Upload: truongkhanh

Post on 08-Jun-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Løsningsforslag til oppgaver fra gruppetime 2

1. How does the sun influence the movement in the sea:

• Directly(a) The sun influences the sea directly by warming the surface water, thus chang-

ing its density.• Indirectly

(a) The sun influences the sea indirectly by setting up processes in the atmo-sphere, for instance the wind.

2. Draw a simplified illustration of the main wind-fields found on Earth and name thedifferent areas.

(a) The picture is taken from "Invitation to oceanography", Paul R. Pinet

3. What is Q and q?

(a) Q is the amount of heat/energy when looking at the heat budget [J], while the q isthe flux of heat per surface unit [W m−2].

4. Set up the equation for the heat budget and explain the different components.

(a) The heat budget:

Qt = Qs +Qv +Qh +Qb +Qe

Qt : the total heat gain/loss of the oceanQs: net amount of solar energy that goes through the ocean surface.Qv: the net heat transported by currents (advection).Qh: amount of heat gained/lost by conduction between the ocean and the atmo-sphere (sensible heat/varmeledning).Qb: net transfer of infrared radiation from atmosphere to the ocean (long-wave

1

radiation).Qe: heat loss due to evaporation (latent heat).

5. State the simplified heat flux equation and explain the different components.

(a) In order to get to the simplified version of the heat flux, we start with the heatbudget, then assume we look at the World Ocean, setting Qv = 0, and averagingover many years, thereby setting Qt = 0. Finding the heat per surface unit andtime unit, we get:

qs = −qh − qb − qe

6. State the volume budget and explain the different components.

(a) The volume budget:Vi + R + P − Vo − E = Fh

Vi: Volume of in-flowing seawater.Vo: Volume of out-flowing seawater.R: Volume supplied by rivers.P: Volume from precipitation.E: Volume of evaporation.F: Surface area.h: Averaged increase in water level. (in this course, very often put equal zero)

7. State the salt budget and explain the different components.

(a) The salt budget:Si ρiVi = So ρoVo

Si/So: Salinity of the water volume entering/leaving.ρi/ρo: Density of the water volume entering/leaving. Very often ρi ≈ ρo so theyare crossed out.Vi/Vo: Same as above, volume of the in-flowing/out-flowing water.

8. State and explain Newton’s 2nd Law of motion.

(a) Newton’s 2nd Law:

∑F = m~a

∑F: The sum of all the forces [N].

m: The mass of the object we are looking at [kg].~a: The acceleration of the object we are looking at [ms−2].

9. What is meant by a fictional force? Give some examples.

(a) Fictional forces (fictitious forces/apparent forces) are forces introduced in a systemwhich is rotating to compensate for the acceleration of the coordinate system.Two good examples are the centrifugal force, experienced by all bodies, and theCoriolis force, which is dependent on the relative velocity of the body in thereference system.

10. State and explain the Coriolis force. The Coriolis force is stated as:

C = 2vΩsin(φ) = f v

where f is the Coriolis parameter, f = 2Ωsin(φ) and Ω = 2π24hours = 7.27 ∗ 10−5s−1

(the angular velocity), and v is the velocity in x and y-direction.

2

11. State and explain the tidal force.(Simple version, details can be read in Chapter 9) Thetidal force can be written as:

~T = ~Gm + ~Gs − ~ao

where ~Gm is the gravitational force from the moon on the Earth per mass unit, ~Gs isthe gravitational force from the sun on the Earth per mass unit, and ~ao is the negativeacceleration of the Earth’s centre (See page 85 in compendium).The tidal force is the gravitational force the sun and the moon (mostly the moon) exhibitonto the Earth. Because water is easier to move than land, the oceans are mostlyinfluenced.

12. Describe the simplified models:

• Hydrostatic equilibrium(a) Hydrostatic equilibrium means that we have a balance between the pressure

gradient force and the gravity force. This we get when we assume the velocityis zero everywhere:

δPδz= −ρg

• Ekman Spiral(a) The Ekman spiral is a balance between the frictional forces and the Coriolis

force. The surface water will move 45°to the right of the wind-direction inthe northern hemisphere, while the Ekman transport will be 90°to the rightof the wind. The opposite is true for the southern hemisphere.

• Geostrophic current(a) Geostrophic means that we are looking at a balance between the Coriolis

force and the horizontal pressure gradient force. See extra material to getmore information. The equation we are using is:

v =1f ρ

δPδx

u : wind in east-west direction (x-direction)v : wind in north-south direction (z-direction)f : Coriolis parameterρ : density of waterδPδx : horizontal pressure gradient (we also can use δP

δy (not entirely correct,but for this course we say it is, but in general, use the one given above)

13. If the wind blows on the water surface in the Northern Hemisphere, which way will thesurface water flow?

(a) The surface water will 45°to the right of the wind, as long as the wind is not toostrong.

14. If the wind blows on an iceberg in the Northern Hemisphere, which way will it drift?

(a) Using the theory of Ekman, the iceberg will drift 90 degrees toward the rightcompared to the direction of the wind.

15. Explain and give examples of where we can have:

• Upwelling(a) Upwelling is when water from below rises up towards the surface. This water

is fresher and filled with more oxygen and nutrients. Upwelling regions canoccur along the coast if the wind blow along the coast in such a way that theEkman transport directs the water mass away from the coast, making new,fresher water rise from below. It can also occur in Langmuir circulations,which is on a smaller scale. Along the equator we also have an upwellingzone.

3

• Downwelling(a) Downwelling is when water masses moves down in the water column. It can

be wind-induced such as the upwelling, by having wind blowing along thecoast line, causing water to be pilled up and submerge. In the oceanic gyreswe also have downwelling, as the Ekman transport is directed towards thecenter.

16. What is a Sverdrup?

(a) One Sverdrup ( the name comes from a Norwegian oceanographer) is a measureof transport, and has the value 106m3s−1.

17. Oppgave 3 fra eksamen 2003

(a) Definer begrepene termoklin, haloklin og pyknoklin i havet. Hvor finner vi denvindrevne Ekmantransporten?i. Termoklin, pyknoklin og haloklin er alle begreper som beskriver området der

det er størst endring (ved å gå dypere ned i vannet, vil temperaturen/saliniteten/tetthetenendre seg rask). Termoklinen spesielt varierer mye med årstid og breddegrad.Ekamtransporten finner vi i overflatelaget, den går 90°til høyre for vinden påden nordlige halvkule, og 90°til venstre for vinden på den sørlige halvkule.

(b) Definer Coriolisparameteren. Anta at vinden er konstant ved havoverflaten.Skisser retninga av Ekmantransporten i forhold til vindretningen hvis vi befinneross på den sørlige halvkule.i. Coriolisparameteren:

f = 2Ωsin(φ)

Ω: rotasjonshastigheten til jordaφ: breddegraden vi ser på

(c) Hva menes med geostrofisk balanse?i. Balanse mellom Corioliskrafta og trykkgradientkrafta.

(d) På et sted i havet finner vi en horisontal trykkgradient på 0.05Nm−3. Hva blirden geostrofiske strømmen (hastigheten) i dette tilfellet, når tettheten av vannet er103kgm−3 og Coriolisparameteren er 10−4s−1?

i. Oppgaven angir ikke på hvor på jorden vi befinner oss eller hvilken retningtrykkgradienten er, da antar vi alltid norlig halvkule og trykkgradient i x-retning. Altså: den horisontale trykkgradienten det er snakk om er δP

δx , detvil si at vi lar vannet bygge seg opp på den høyre siden. Dermed kan vi brukeligningen:

v =1f ρ

δPδx

Siden enhetene er riktige, er det bare å sette de forskjellige verdiene inn:

v =1

10−4s−1103kgm3 0.05Nm−3

v = 0.5ms−1 = 0.5ms−1 100cm1m

= 50cms−1

18. Oppgave 2 fra hjemmeeksamen 2013

(a) Forklar uten å regne hvordan en luftpartikkel beveger seg rundt i et lavtrykk påden nordlige halvkule.

4

i. Et lavtrykk på den nordlige halvkule roter mot klokka, syklonsk.

V 2

Rter sentrifugalkrafta ~ace

(b) Et stort horisontalt isflak i Polhavet beveger seg med konstant fart påvirket av enkonstant vindspenning langs y-aksen. Det er ingen friksjonskraft mellom isen oghavet under. Hva er kraftbalansen på isflaket i dette tilfellet?i. Hvis man ignorerer friksjonskrafta så står man igjen med vindspenningen i

y-retningen og Corioliskrafta 90°til høyre for den.(c) Hva blir retningen av isens hastighet?

i. Dette er en forvirrende oppgave, og jeg foreslår for sikkerhets skyld å svaresom følger: Dersom isflaket ikke blir påvirket av havet under isflaket (vedingen friksjon) vil isflaket bevege seg i samme setning som bølgene i havover-flaten, nemlig 45°til høyre for vindretningen, vanligvis vil isflak bli påvirketav friksjonskraften fra havet under, og vi får en Ekmandrift 90°til høyre forvindretningen.

(d) Hva slags fenomen observerer vi?i. Vi observerer Ekman drift.

19. Oppgave 1f fra eksamen 2015 (Gef2610)

(a) Vi antar at utenfor Cape Hatteras, på 37°N, er Golfstrømmen geostrofisk balansert,og at helningen av overflaten på tvers av strømmen er 2 cm per km. Hva erstrømhastigheten? Bruk g = 9.80ms−2 og f = 8.8 ∗ 10−5s−1.i. I dette tilfellet bruker vi ligningen:

v =g

ftan(ϕ)

Der φ beskriver helningsvinkelen på havoverflaten. For å finne den bruker vitrigonometri:

tan(ϕ) =2cm1km

tan(ϕ) =0.02m1000m

= 2 ∗ 10−5

Dette setter vi så inn i formelen over:

v =g

ftan(ϕ) =

9.80ms−2

8.8 ∗ 10−5s−1 2 ∗ 10−5 = 2.23ms−1 = 223cms−1

20. Oppgave 2g fra eksamen 2015 (Gef2610)

(a) Midlere inngående transport av sjøvann til Polhavet (theArctic Sea) har blitt anslåtttil 9.3 Sv, med en midlere saltholdighet på 34.6. Netto ferskvannstilstilførsel tilområdet er 0.1 Sv.- Ut fra volumbudsjettet, hvor stor er transporten av vann som forlater Polhavet?

5

i. Vi ser på:Vo − Vi = R + P − E

så setter vi X = R + P − E og sier at dette er den totale ferskvannstilførseleninn i Polhavet. Dermed er det bare å sette inn verdiene:

Vo = Vi + X = 9.3Sv + 0.1Sv = 9.4Sv

- Ut fra saltbudsjettet, hva er midlere saltholdighet på det vannet som forlaterPolhavet?i. Vi bruker ligningen for saltbudsjettet for å finne So:

SiVi = SoVo

So =SiVi

Vo

So =34.6 ∗ 9.3Sv

9.4Sv= 34.2

Vannet som strømmer ut av Polhavet er altså mindre salt enn det som kommerinn.

6