leif jönsson lund university - particle physics · 2008. 3. 11. · 11/03/2008. leif jönsson. 1....

67
11/03/2008 Leif Jönsson 1 The International Linear Collider Leif Jönsson Lund University Introduction The physics case; some examples The accelerator The detector the vertex detector the TPC the calorimeter

Upload: others

Post on 04-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 1

The International Linear ColliderLeif Joumlnsson

Lund University

IntroductionThe physics case some examplesThe acceleratorThe detector

bull the vertex detectorbull the TPCbull the calorimeter

Introduction1995 1st DESYECFA Workshop series on future e+e--colliders

Uppsala April 25-26 1996 a symposium on Future Electron Accelerators and Free Electron LasersLund June 28-30 1998 a workshop meeting in the series lsquo2nd ECFADESY Study on Physics and Detectorsrsquo2004 Important decisionsScientists from throughout the worldwide particle physics community have endorsed an electron-positron linear collider as the next high-energy particle acceleratorThe 12-member International Technology Recommendation Panel chaired by Barry Barish of the California Institute of Technology recommended that the world particle physics community adopt superconducting accelerating structures that operate at 2 Kelvin rather than X-band accelerating structures operating at room temperature as the technology choice for the internationally-federated design of a new electron-positron linear collider to operate at an energy between 05 and 1 TeVA linear collider is the logical next step to complement the discoveries that will be made at the LHC Aymar said The technology choice is an important step in the path towards an efficient development of the international TeV linear collider design in which CERN will participateldquo2004 EuroTeV 2006 EURODET 2009 DevDet

11032008 Leif Joumlnsson 3

Physics

11032008 Leif Joumlnsson 4

The physics agenda for the ILCbull Higgs

- The Standard Model Higgs- SUSY Higgs

bull Non-SUSY extensions of SMbull SUSY

- Minimal Supersymmetric Standard Model (MSSM)- The Minimal Supergravity model (mSUGRA)- Gauge-Mediated SUSY Breaking (GSMB)- Anomaly-Mediated SUSY Breaking (AMSB)

bull Alternative theories- Extra Dimensions- Strong electroweak symmetry breaking- Compositness

bull Precision measurements- Electroweak Gauge bosons- Extended Gauge theories- Top quark physics- Quantum Chromodynamics

Very much the same as LHCWhy do we need the ILCKey wordsbull Complementaritybull Precision

bull JA Aguilar-Saavedra et al hep-ph0106315

bull T Abe et al hep-ex0106055bull K Abe et al hep-ph0109166bull G Weiglein et al hep-ph0410364

11032008 Leif Joumlnsson 5

General remarksLHC+ Large mass range for direct searches (6-7 TeV for singly produced particles 2-

3 TeV for pair produced)+ High luminosity (1034)+ Access to coloured particles (squarks and gluinos)- Huge QCD-background (irreducable)- High collision frequency (25 MHzrarrpile-up of events)

ILC+ Cleaner experimental environment+ Initial state well defined (important for precision measurements)+ Precision measurements give indirect sensitivity to new physics beyond LHC

(typically 10 TeV)+ High luminosity (51034)+ Favourable signalbackground situation (reducable background)+ Low collision frequency (can run rsquotriggerlessrsquo)- Beamstrahlung background

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 2: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Introduction1995 1st DESYECFA Workshop series on future e+e--colliders

Uppsala April 25-26 1996 a symposium on Future Electron Accelerators and Free Electron LasersLund June 28-30 1998 a workshop meeting in the series lsquo2nd ECFADESY Study on Physics and Detectorsrsquo2004 Important decisionsScientists from throughout the worldwide particle physics community have endorsed an electron-positron linear collider as the next high-energy particle acceleratorThe 12-member International Technology Recommendation Panel chaired by Barry Barish of the California Institute of Technology recommended that the world particle physics community adopt superconducting accelerating structures that operate at 2 Kelvin rather than X-band accelerating structures operating at room temperature as the technology choice for the internationally-federated design of a new electron-positron linear collider to operate at an energy between 05 and 1 TeVA linear collider is the logical next step to complement the discoveries that will be made at the LHC Aymar said The technology choice is an important step in the path towards an efficient development of the international TeV linear collider design in which CERN will participateldquo2004 EuroTeV 2006 EURODET 2009 DevDet

11032008 Leif Joumlnsson 3

Physics

11032008 Leif Joumlnsson 4

The physics agenda for the ILCbull Higgs

- The Standard Model Higgs- SUSY Higgs

bull Non-SUSY extensions of SMbull SUSY

- Minimal Supersymmetric Standard Model (MSSM)- The Minimal Supergravity model (mSUGRA)- Gauge-Mediated SUSY Breaking (GSMB)- Anomaly-Mediated SUSY Breaking (AMSB)

bull Alternative theories- Extra Dimensions- Strong electroweak symmetry breaking- Compositness

bull Precision measurements- Electroweak Gauge bosons- Extended Gauge theories- Top quark physics- Quantum Chromodynamics

Very much the same as LHCWhy do we need the ILCKey wordsbull Complementaritybull Precision

bull JA Aguilar-Saavedra et al hep-ph0106315

bull T Abe et al hep-ex0106055bull K Abe et al hep-ph0109166bull G Weiglein et al hep-ph0410364

11032008 Leif Joumlnsson 5

General remarksLHC+ Large mass range for direct searches (6-7 TeV for singly produced particles 2-

3 TeV for pair produced)+ High luminosity (1034)+ Access to coloured particles (squarks and gluinos)- Huge QCD-background (irreducable)- High collision frequency (25 MHzrarrpile-up of events)

ILC+ Cleaner experimental environment+ Initial state well defined (important for precision measurements)+ Precision measurements give indirect sensitivity to new physics beyond LHC

(typically 10 TeV)+ High luminosity (51034)+ Favourable signalbackground situation (reducable background)+ Low collision frequency (can run rsquotriggerlessrsquo)- Beamstrahlung background

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 3: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 3

Physics

11032008 Leif Joumlnsson 4

The physics agenda for the ILCbull Higgs

- The Standard Model Higgs- SUSY Higgs

bull Non-SUSY extensions of SMbull SUSY

- Minimal Supersymmetric Standard Model (MSSM)- The Minimal Supergravity model (mSUGRA)- Gauge-Mediated SUSY Breaking (GSMB)- Anomaly-Mediated SUSY Breaking (AMSB)

bull Alternative theories- Extra Dimensions- Strong electroweak symmetry breaking- Compositness

bull Precision measurements- Electroweak Gauge bosons- Extended Gauge theories- Top quark physics- Quantum Chromodynamics

Very much the same as LHCWhy do we need the ILCKey wordsbull Complementaritybull Precision

bull JA Aguilar-Saavedra et al hep-ph0106315

bull T Abe et al hep-ex0106055bull K Abe et al hep-ph0109166bull G Weiglein et al hep-ph0410364

11032008 Leif Joumlnsson 5

General remarksLHC+ Large mass range for direct searches (6-7 TeV for singly produced particles 2-

3 TeV for pair produced)+ High luminosity (1034)+ Access to coloured particles (squarks and gluinos)- Huge QCD-background (irreducable)- High collision frequency (25 MHzrarrpile-up of events)

ILC+ Cleaner experimental environment+ Initial state well defined (important for precision measurements)+ Precision measurements give indirect sensitivity to new physics beyond LHC

(typically 10 TeV)+ High luminosity (51034)+ Favourable signalbackground situation (reducable background)+ Low collision frequency (can run rsquotriggerlessrsquo)- Beamstrahlung background

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 4: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 4

The physics agenda for the ILCbull Higgs

- The Standard Model Higgs- SUSY Higgs

bull Non-SUSY extensions of SMbull SUSY

- Minimal Supersymmetric Standard Model (MSSM)- The Minimal Supergravity model (mSUGRA)- Gauge-Mediated SUSY Breaking (GSMB)- Anomaly-Mediated SUSY Breaking (AMSB)

bull Alternative theories- Extra Dimensions- Strong electroweak symmetry breaking- Compositness

bull Precision measurements- Electroweak Gauge bosons- Extended Gauge theories- Top quark physics- Quantum Chromodynamics

Very much the same as LHCWhy do we need the ILCKey wordsbull Complementaritybull Precision

bull JA Aguilar-Saavedra et al hep-ph0106315

bull T Abe et al hep-ex0106055bull K Abe et al hep-ph0109166bull G Weiglein et al hep-ph0410364

11032008 Leif Joumlnsson 5

General remarksLHC+ Large mass range for direct searches (6-7 TeV for singly produced particles 2-

3 TeV for pair produced)+ High luminosity (1034)+ Access to coloured particles (squarks and gluinos)- Huge QCD-background (irreducable)- High collision frequency (25 MHzrarrpile-up of events)

ILC+ Cleaner experimental environment+ Initial state well defined (important for precision measurements)+ Precision measurements give indirect sensitivity to new physics beyond LHC

(typically 10 TeV)+ High luminosity (51034)+ Favourable signalbackground situation (reducable background)+ Low collision frequency (can run rsquotriggerlessrsquo)- Beamstrahlung background

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 5: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 5

General remarksLHC+ Large mass range for direct searches (6-7 TeV for singly produced particles 2-

3 TeV for pair produced)+ High luminosity (1034)+ Access to coloured particles (squarks and gluinos)- Huge QCD-background (irreducable)- High collision frequency (25 MHzrarrpile-up of events)

ILC+ Cleaner experimental environment+ Initial state well defined (important for precision measurements)+ Precision measurements give indirect sensitivity to new physics beyond LHC

(typically 10 TeV)+ High luminosity (51034)+ Favourable signalbackground situation (reducable background)+ Low collision frequency (can run rsquotriggerlessrsquo)- Beamstrahlung background

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 6: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 6

HiggsLHC Direct measurement of heavier Higgs (provided the bgr is manageable)

If hrarrγγ accesible then Δmh asymp 200 MeVOther decay channels give Δmh much worse

ILC Precise measurements on light Higgs bosons

Higgs strahlung e+e- rarr ZH- Clear experimental signal- ∆MH = 50 MeV

Theory The prediction of mh is sensitive to radiative corrections from top rArr needs Δmt lt 01 GeV from ILC

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 7: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Higgs couplingsbull Important to measure the couplings to as many particles as possiblebull Some couplings can be determined independently from different observables

whereas others are partially correlatedrArr Extract Higgs couplings from a global fit to the measured observables

(σHZ σHνν BR(H0rarrWW) BR(H0rarrγγ) BR(H0rarrbb) BR(H0rarrττ) BR(H0rarrgg) BR(H0rarrcc) σttH)

Accuracy δ(X)X in the measurements of Higgs couplings

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 8: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The Yukawa couplingbull Since the top quark decays much faster than the typical time for top hadron

formation it provides a clean source of fundamental information Accurate measurements of mt couplings (to gauge bosons and Higgs) and BRrsquos probe possible deviations to the SM

e+

e-

W+

W-

H t

t

ν

ν

e+

e-

γΖ

t

t

H

q q

q q

t

tH

g

g

-

-

-

bull ILC the Yukawa coupling htt can only be measured with limited precision at radics = 500 GeV for a light Higgs boson (few events) At radics = 800 GeV ILC will do agood job (4-5 accuracy)

bull LHC provides the tth production cross section ~ gttH x BR(hrarrbb or hrarrW+W-)bull ILC provides precision measurements of BRrsquos

Combine LHC and ILC rArr Precision measurement

--

LHC ~ 10-30

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 9: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Higgs self-couplingbull The maybe most important measurement after the Higgs has been established is

the Higgs-boson self coupling which is needed for the reconstruction of theHiggs potential Directly probed by multi-Higgs production

V(ηH) = 12mH2ηH

2 + λvηH3 + 14ληH

4 ηH is the physical Higgs fieldλ is the Higgs boson couplings

mH lt 160 GeVLHC Higgs pair production dominated by gluon fusion

Serious background problems rArr low sensitivityILC e+e- rarr ZHH rArr precision on λ ~ 23 for a lumi of 1 ab-1 radics = 500 GeV

mH gt 160 GeVLHC Higgs decay into W-pairs SLHC gives a 20-30 measurement of λ

However to control systematic uncertainties associated with Higgs BRrsquos andthe top Yukawa coupling information from the ILC is needed

e+

e-

ZHHH

LHC ILC

q

q

g

g

t

tH

H

H

q

q

q

q

g

g

t

t

H

H

q

q

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 10: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 10

Sparticle mass spectrum

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 11: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 11

Mass determination

LHC Edge effects in cascade decayrArr mass-differencesrArr strong correlation between masses

Gluino decay

m2(ll)=(m2(χ20)-m2(lR))(m2(lR)-m2(χ1

0))m2(lR)~~ ~ ~ ~

m2(qll)=(m2(qL)-m2(χ20))(m2(χ2

0)-m2(χ10)m2(χ2

0)~ ~ ~ ~ ~

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 12: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 12

Mass determination

where E+ and E- are the end point energies

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 13: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 13

SupersymmetrySPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 14: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 14

Grand Unification in mSUGRA

For gauge couplings

For sparticle masses

SPS1a input parameters M12 = 250 GeV M0 = 100 GeV A0 = -100 GeV sign(μ) = + tanβ = 10 rArr unification at MU = 21016 GeV

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 15: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 15

Grand Unification in mSUGRA

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 16: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 16

Accelerator

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 17: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 17

Why a linear collider

e+ e-

~15-20 km

Energy loss per turn of a machine with an average bending radius r

Linear Collider no bends but lots of RF

For a Ecm = 1 TeV machine Effective gradient G = 500 GV 15 km= 34 MVm

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 18: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 18

Why Super Conducting RFbull Low RF losses in resonator walls

(The quality factor Q0 ~ RF power storedRF power lost)(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeamndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)

very small wakefieldsrelaxed alignment toleranceshigh beam stability

Wakefield a particle going through an aperture induces charges and currentswhich produce electromagnetic fields (wake fields) that act on later particlesCompare to a boat travelling in a canal waves reflected against the boarders of the canal

- Resistive wall wakefielddue to finite conductivity of cavities

- Geometric wakefielddue to changes in vacuum chamber X-section

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 19: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 19

TESLA Nine-Cell 13GHz Cavity

1 meter length

9-cell 13GHz Niobium Cavity

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 20: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 20

ILC Technology StatusAccelerating Structures

Vertical (low power test)

Comparison of low and high power tests (AC73)

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 21: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 21

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 22: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 22

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 23: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 23

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 24: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 24

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 25: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 25

Cryo modules

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 26: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The Main Linac

36 9-cell 13 GHz Niobium Cavity

3 Cryomodules

1 10 MW Multi-Beam Klystron

10MW klystron

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 27: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 27

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 28: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 28

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 29: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 29

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 30: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 30

The Baseline Machine (500GeV)

not to scale

~31 km

20 mr

2 mr BDS 5km

main linac ~10 km (G = 315 MVm)

x2e+ undulator 150 GeVR = 955m

E = 5 GeV

January 2006

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 31: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 31

ndash Centralized injector incl damping ringsndash Single IR with 14 mrad crossing anglendash 500 GeV center of mass energyndash Dual tunnel configuration for safety and availability

ILC Reference Design ndash Feb 2007

main linac ~11km (G = 315 MVm)

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 32: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 32

SHB Subharmonic prebunching cavitiesL-band 05 ndash 15 GHzS-band 2 - 4 GHz

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 33: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 33

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 34: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 34Six dimensional cooling based on solenoid magnets surrounding RF cavitiesEmittance the spread in space and momentum space of a beam

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 35: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 35

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 36: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 36

Damping ringRadiation dampingPrinciple - force the electrons to radiate synchrotron radiation which reduces

the momentum spread in all directions - accelerate the electrons in the desired direction

Wiggler magnets causes the electrons to oscillate transversely

Synchrotron radiation Acceleration

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 37: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Damping ring1 ms bunch train rarr 10-3s x 3108ms = 300 km ring

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 38: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Fast feedbackLong bunch train ~ 3000 bunches over 1 ms rArr 337 ns between bunchesMultiple feed back system will be mandatory to maintain the nanobeams in collisions

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 39: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

TESLA IP Feedback

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 40: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Data aquisition

up to 1 ms active pipeline (full train)no trigger interruptsparcificationcluster finding at FEstandardized readout units (RU)

readout between trains (200ms)

optional subdetector event building

event building network and farm complete train into a single PC

software event selection usingfull information of a complete traindefine bunches of interestmove data only once into PCand relevant data to storage

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 41: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

2008-03-11 Leif Joumlnsson 41

ILC Projected Time Line

2005 2006 2007 2008 2015

CDRTDR

GDI process

constructioncommissioning

physicssite selection

International Funding

EUROTeVVery aggressive

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 42: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The Global Design Effort GDE

bull 3 Regional Design Teams

bull Central Group with Director

bull Goal Produce an internal full costed ILC Technical Design Report by 2008

EuropeanDesignGroup

USDesignGroup

IntDesignGroup Asian

DesignGroup

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 43: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 43

Detector

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 44: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The detector

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 45: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

One quadrant side view

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 46: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Precision measurements requiregood angular coverage (cos θ = 096)

proximity to IP large lever arm

5 layers radii from 15 mm to 60 mm

minimal layer thickness ( lt 01 X0 )

to minimise multiple scattering

mechanically stable low mass support

low power consumption

High hit density near interaction point requiressmall pixel size 20 μm times 20 μm

fast readout

The vertex detector

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 47: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The TPC

TPC read-out devices

Conventional MWPC + pads-Positive ion feedback-Resolution limited by the MWPC response

MPGDrsquos (Micro Pattern Gas Detectors)-GEM (Gas Electron Multiplier)-MicroMEGAS (Micro Mesh GAS detector)

e+μ+

endashμndash

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 48: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The electromagnetic calorimeterbull Si-W calorimeter High granularity (~ 1x1 cm2)

(tracking calorimeter) ExpensiveSegmentation optimization (cost reduction)

bull Tile fibre calorimeter Modest granularity (4x4 cm2)Segmentation optimizationFibre configuration

bull Shashlik calorimeter Fibres run longitudinallyLongitudinal segmentationScintillating fibre type

bull Scintillator strip calo Orthogonally arranged

- Typical energy resolution ΔEE = 10 ndash 15radicE

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 49: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

One of the jets in a 2-jet event at 91 GeV

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 50: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The hadron calorimeter

Granularity is essential (rsquoImaging calorimeterrsquo)Onoff read-outDigital HCAL

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 51: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Single looped fibrebullstrong fibre bendingbullmost stress on fibresbullprobably ageing damages

Centrestraight WLS-fibre Diagonalbent WLS-fibre

No stress on fibrefibre end reflector

=tile reflector

L=785cmL=5cm

L=20cm

14 mm hole in centre bulldrilled and polished bullFor 5 cm straight WLS-fibre RObullcheep for SiPMrsquos only

more stress on fibrefibre end reflector

=tile reflectorL=785cm

clear RO fibresbulll=1-35m to photo detector bulllight attenuation lt18

Light yield for MIPrsquos (used for calibration) 18-25 phe on photo-cathode

The Hadron CalorimeterTile-fibre calorimeter

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 52: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The digital hadron calorimeter

Uniformity within cell 3

Very high granularity (~1cm2) with 1-bit read-out

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 53: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Analoguedigital response for hadrons

Analogue calorimeter sum energy whereas digital calorimeter sum hitsDigital calorimeter sampling fluctuations are fluctuations in the total number of tracks crossing the sensitive planes

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 54: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

Summary

bull The physics programme of both the LHC and the ILC will bevery rich

bull The high energy of the LHC leads to a large mass reach forthe discovery of heavy new particles

bull The clean experimental environment of the ILC allowsdetailed studies of directly acceptible new particle andgives rise to a high sensitivity to indirect effects of newphysics

bull The physics at LHC and ILC is complementary in manyrespects

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 55: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

11032008 Leif Joumlnsson 65

Why Super Conducting RF

bull Low RF losses in resonator walls(Q0 asymp 1010 compared to Cu asymp 104)ndash high efficiency ηAC rarrbeam

ndash long beam pulses (many bunches) rarr low RF peak powerndash large bunch spacing allowing feedback correction within bunch train

bull Low-frequency accelerating structures(13 GHz for Cu 6-30 GHz)ndash very small wakefieldsndash relaxed alignment tolerancesndash high beam stability

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 56: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

The positron source

Thin single targetUndulator basedLocation in linacImpact on operation

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67
Page 57: Leif Jönsson Lund University - Particle Physics · 2008. 3. 11. · 11/03/2008. Leif Jönsson. 1. The International Linear Collider Leif Jönsson Lund University Introduction. The

ILC Projected Time Line

  • The International Linear ColliderLeif JoumlnssonLund University
  • Introduction
  • Physics
  • The physics agenda for the ILC
  • General remarks
  • Higgs
  • Higgs couplings
  • The Yukawa coupling
  • Higgs self-coupling
  • Sparticle mass spectrum
  • Mass determination
  • Mass determination
  • Supersymmetry
  • Grand Unification in mSUGRA
  • Grand Unification in mSUGRA
  • Accelerator
  • Why a linear collider
  • Why Super Conducting RF
  • TESLA Nine-Cell 13GHz Cavity1 meter length
  • ILC Technology StatusAccelerating Structures
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Cryo modules
  • The Main Linac
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • The Baseline Machine (500GeV)
  • Slide Number 31
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Damping ring
  • Damping ring
  • Fast feedback
  • Slide Number 39
  • Data aquisition
  • ILC Projected Time Line
  • Slide Number 42
  • Detector
  • The detector
  • One quadrant side view
  • Slide Number 46
  • Slide Number 47
  • The TPC
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • The electromagnetic calorimeter
  • Slide Number 53
  • The hadron calorimeter
  • The Hadron Calorimeter
  • Slide Number 56
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Slide Number 60
  • The digital hadron calorimeter
  • Analoguedigital response for hadrons
  • Slide Number 63
  • Summary
  • Why Super Conducting RF
  • The positron source
  • Slide Number 67