lecture7 ee720 eq intro txeq

27
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN720: High-Speed Links Circuits and Systems Spring 2013 Lecture 7: Equalization Introduction & TX FIR Eq

Upload: frankliu

Post on 12-Apr-2015

32 views

Category:

Documents


2 download

DESCRIPTION

ECEN720: High-Speed Links Circuits and Systems Spring 2013Lecture 7: Equalization Introduction & TX FIR Eq

TRANSCRIPT

Sam Palermo Analog & Mixed-Signal Center

Texas A&M University

ECEN720: High-Speed Links Circuits and Systems

Spring 2013

Lecture 7: Equalization Introduction & TX FIR Eq

Announcements

• Exam 1 is March 6 • 4:10-5:35PM (10 extra minutes) • Closed book w/ one standard note sheet • 8.5”x11” front & back • Bring your calculator • Covers material through lecture 6 • Previous years’ exam 1s are posted on the website for reference

• Special seminar this Friday • 10:20AM, Zachry 119C • Karl Muth –TI • “Model Based Systems Engineering for High Speed Optical Links” • Attendance = 10pts extra credit distributed on your HW/Lab score

2

Agenda

• Equalization theory and circuits • Equalization overview • Equalization implementations

• TX FIR • RX FIR • RX CTLE • RX DFE

• TX FIR Equalization • FIR filter in time and frequency domain • MMSE Coefficient Selection • Circuit Topologies

• Equalization overview paper posted on website

3

High-Speed Electrical Link System

4

Link with Equalization

5

Seria

lizer

DTX[N:0]

TX Clk Generation

(PLL)

TX FIR Equalization

RX Clk Recovery

(CDR/Fwd Clk)

Σ

RX CTLE + DFE Equalization

Des

eria

lizer

DRX[N:0]

Channel

f

6

Channel Performance Impact

7

Channel Performance Impact

Channel Equalization

8

• Equalization goal is to flatten the frequency response out to the Nyquist Frequency and remove time-domain ISI

TX FIR Equalization

• TX FIR filter pre-distorts transmitted pulse in order to invert channel distortion at the cost of attenuated transmit signal (de-emphasis)

9

L

L L

L

L

L

L

L

L

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs&

BiasControl

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)From on-chip PLL

2

(2.5

Gb/

s)

(10Gb/s)

(5Gb/s)

ESD

L

L L

L

L

L

L

L

L

LL

LL LL

LL

LL

LL

LL

LL

LL

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs&

BiasControl

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)From on-chip PLL

2

(2.5

Gb/

s)

(10Gb/s)

(5Gb/s)

ESD

( ) ( ) ( ) ( ) ( )[ ]

−+−++= − 2

21010 2101TERM

outRDIDIDIDIV

“A Low Power 10Gb/s Serial Link Transmitter in 90-nm CMOS,” A. Rylyakov et al., CSICS 2005

I-1 I0 I1 I2

D(1) D(0) D(-1) D(-2)

6Gb/s TX FIR Equalization Example

• Pros • Simple to implement • Can cancel ISI in pre-

cursor and beyond filter span

• Doesn’t amplify noise • Can achieve 5-6bit

resolution

• Cons • Attenuates low

frequency content due to peak-power limitation

• Need a “back-channel” to tune filter taps

10

RX Equalization #1: RX FIR

• Pros • With sufficient dynamic range, can amplify

high frequency content (rather than attenuate low frequencies)

• Can cancel ISI in pre-cursor and beyond filter span

• Filter tap coefficients can be adaptively tuned without any back-channel

• Cons • Amplifies noise/crosstalk • Implementation of analog delays • Tap precision

11

w-1

z-1

x w0

z-1

x

z-1

x wn-1

z-1

wnx

Σ DEQ

Din

Analog Delay Elements

*

*D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," ISSCC, 2007.

RX Equalization #2: RX CTLE

12

Din- Din+

Vo-Vo+

• Pros • Provides gain and

equalization with low power and area overhead

• Can cancel both pre-cursor and long-tail ISI

• Cons • Generally limited to 1st

order compensation • Amplifies noise/crosstalk • PVT sensitivity • Can be hard to tune

RX Equalization #3: RX DFE

13

z-1clk

Σ

x

w1

z-1x

w2

z-1x

wn-1

z-1x

wn

Din DRX

• Pros • No noise and crosstalk

amplification • Filter tap coefficients

can be adaptively tuned without any back-channel

• Cons • Cannot cancel pre-

cursor ISI • Critical feedback timing

path • Timing of ISI

subtraction complicates CDR phase detection

Equalization Effectiveness

• Some observations: • Big initial performance boost with 2-tap TX eq. • With only TX eq., not much difference between 2 to 4-tap • RX equalization, particularly DFE, allows for further performance

improvement • Caution – hard to build fast DFEs due to critical timing path

14

Incr

easi

ng

Equa

lizat

ion

Channel Responses

Link with Equalization

15

Seria

lizer

DTX[N:0]

TX Clk Generation

(PLL)

TX FIR Equalization

RX Clk Recovery

(CDR/Fwd Clk)

Σ

RX CTLE + DFE Equalization

Des

eria

lizer

DRX[N:0]

Channel

f

Channel Equalization

16

• Equalization goal is to flatten the frequency response out to the Nyquist Frequency and remove time-domain ISI

TX FIR Equalization – Time Domain

17

z-1

z-1

z-1

w-1

w0

w1

w2

TXdata

z-1 wn

( ) 21 274.0595.0131.0 −− −+−= zzzW :10GbpsFor

[ ]

[ ] [ ] [ ]

[ ] [ ] [ ]...111...274.0595.0131.0...111...

...190.0190.0190.0...274.0595.0131.0...111...

274.0595.0131.0

−=−−∗−−

=−−∗

−−=

Polarity) ng Alternatiw/ Taps (Sum Response FrequencyNyquist

Taps) (Sum Response Frequency Low

W

TX FIR Equalization – Freq. Domain

18

z-1

z-1

z-1

w-1

w0

w1

w2

TX data

z-1 wn

( ) 21 274.0595.0131.0 −− −+−= zzzW :10GbpsFor

( )( )ss

fTj fTjfTezzzzW

s πππ 2sin)2cos(

274.0595.0131.02

21

+==

−+−= −−

w/

( )( ) ( ) dBfWjz

f4.14190.001)0sin(0cos −⇒==⇒=+=

= 0 Response Frequency Low

( ) dBT

fWjz

Tf

s

s

01211)sin(cos

21

⇒−=

=⇒−=+=

=

ππ

Response FrequencyNyquist

• Equalizer has 14.4dB of frequency peaking • Attenuates DC at -14.4dB and passes Nyquist frequency at 0dB

Note: Ts=Tb=100ps

TX FIR Coefficient Selection

• One approach to set the TX FIR coefficients is a Minimum Mean-Square Error (MMSE) Algorithm

19

( )( )

( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( )

( )( )

( )

−−−

−−−

=

−++ 1...10

10...00021...000

..................00...00100...000

10...00021...000

..................00...00100...000

3...10

lc

cc

nwnwnw

www

khkhkh

hhh

knly

yy

l input symbols, c

channel output vector, y Rows = k+n+l-2 where k = channel pulse model length

TX Eq “w” Matrix Rows = n+l-1 where n = tap number Columns = l = input symbol number

Channel “h” Matrix Rows = k+n+l-2 Columns = n+l-1

TX FIR Coefficient Selection

• Multiplying input symbols by TX Eq., wc=w*c

20

( )( )

( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( )

( )( )

( )

−−−

−−−

=

−++ 1...10

10...00021...000

..................00...00100...000

10...00021...000

..................00...00100...000

3...10

lc

cc

nwnwnw

www

khkhkh

hhh

knly

yy

• Total system

( )( )

( )

( )( ) ( )

( ) ( )( )

( )( )

( )

−+

−−−

=

−++ 1...

10

10...00021...000

..................00...00100...000

3...10

lnwc

wcwc

khkhkh

hhh

knly

yy

• We desire the output vector, y, to be ISI free ( )( )

++≠=++==

=1 # tapprecursor Eq # samplecursor -pre Channel1 # tapprecursor Eq # samplecursor -pre Channel

nnynny

ydes

desdes ,0

,1

Lone-Pulse Equalization Example

21

• With lone-pulse equalization, l=1 input symbols, i.e. c=[1]

( )( )( )

[ ]12

1

0

0.0067 0 0

0.0090 0.0067 0

0.0097 0.0090 0.0067

0.0152 0.0097 0.0090

0.0162 0.0152 0.0097

0.0224 0.0162 0.0152

0.0360 0.0224 0.0162

0.0526 0.0360 0.0224

0.0917 0.0526 0.0360

0.1775 0.0917 0.0526

0.3437 0.1775 0.0917

0.0812 0.3437 0.1775

0.0052 0.0812 0.3437

0.0023 0.0052 0.0812

0.0010 0.0023 0.0052

0.0004 0.0010 0.0023

0 0.0004 0.0010

0 0 0.0004

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

=

w

w

w

Ydes

Channel pulse matrix H with 5 pre-cursor samples and 10 post-cursor samples, 3 columns for 3 eq taps

3-tap Eq Matrix, W

Symbol Matrix, C for

“Lone Pulse”

Ydes(5+1+1=7)=1

Channel pre-cursor samples

Equalization pre-cursor taps

TX FIR Coefficient Selection

• Differentiating this w.r.t. tap matrix taps to find taps which yield minimum error norm2

22

input pulse with desdesCdes YHWYHWYYE −=−=−=• We can calculate the error w.r.t. a desired output

HYHHW

HYHHWEdWd

Tdes

TT

Tdes

TT

=

=−= 0222

• Solving for optimum TX Eq taps, W ( ) desTT

ls YHHHW 1−=

desT

desT

desTT YYHWYHWHWE +−= 22

• Computing the error matrix norm2

• This will yield a W matrix to produce a value of “1” at the output cursor, i.e. an FIR filter with gain • Need to normalize by the total abs(tap) sum for TX FIR realization

( ) ( )( )∑

=

= n

ils

lslsnorm

nW

nWnW

1

TX FIR Tap Resolution

23

• Using the above MMSE algorithm for the Refined Server Channel at 10Gb/s

( )[ ]

[ ]274.0595.0131.011

274.0595.0131.0 21

−−

−+−= −−

postmainprezzzW

• Generally, TX DAC resolution is limited to between 4 to 6bits

• Mapping these equalization coefficients with this resolution may impact performance

=⇒

=

0.2745-

0.5949

0.1307-

1.7184-

3.7245

0.8180-6.2609by gnormalizin

lsnormls WW

TX FIR Circuit Architectures

• Direct FIR vs Segmented DAC • Direct FIR

• Parallel output drivers for output taps • Each parallel driver must be sized to

handle its potential maximum current • Lower power & complexity • Higher output capacitance

• Segmented DAC • Minimum sized output transistors to

handle peak output current • Lowest output capacitance • Most power & complexity

• Need mapping table (RAM) • Very flexible in equalization

24

Segmented DAC

Direct FIR

[Zerbe]

[Zerbe]

Direct FIR Equalization

25

L

L L

L

L

L

L

L

L

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs&

BiasControl

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)From on-chip PLL

2

(2.5

Gb/

s)

(10Gb/s)

(5Gb/s)

ESD

L

L L

L

L

L

L

L

L

LL

LL LL

LL

LL

LL

LL

LL

LL

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs&

BiasControl

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)From on-chip PLL

2

(2.5

Gb/

s)

(10Gb/s)

(5Gb/s)

ESD

( ) ( ) ( ) ( ) ( )[ ]

−+−++= − 2

21010 2101TERM

outRDIDIDIDIV

“A Low Power 10Gb/s Serial Link Transmitter in 90-nm CMOS,” A. Rylyakov et al., CSICS 2005

I-1 I0 I1 I2

D(1) D(0) D(-1) D(-2)

Segmented DAC Example

26

[Casper ISSCC 2006]

Row = 4-bit data pattern Column = 6-bit weighting

For this 4-bit pattern, send this 6-bit number Combining taps in digital domain, not at output

4 filtered bits (parallel) at 6-bit

resolution

Sized only to deliver maximum

total current

Next Time

• RX FIR • RX CTLE • RX DFE • Alternate/Future Approaches

27