jose roque, yusuke kuroda, lucas t. göttemann, richmond … · 2019. 8. 28. · deconstructive...

1
Deconstructive fluorination of cyclic amines Jose Roque , Yusuke Kuroda, Lucas T. Göttemann, Richmond Sarpong Sarpong Research Group, College of Chemistry, University of California, Berkeley, CA, USA 94720 N R F N Bz N Bz NH Bz 2b: 45% 2c: 39% 2d: 70% * 2h: 49% 2f: 33% N R N Bz N Bz N Bz N Bz NH Bz 2e: 40% F NH Bz F N Bz R R N Bz F 2i: 59% N Bz Me Me NH Bz F N Bz H H H H N Bz 2o: 46% N Me 2p: 81% 2q: 56% N Me O O 2g: 67% N Bz N Bz Me Me Me N Bz NH Piv 2r: 43% N Piv O O F F F n n Me 2t: 22% 2s: 28% N Bz CO 2 H N Bz HO 2 C NH Bz F F NH Bz F F 1b: R = Ac 1c: R = Boc 1d: R = Piv 1e 1f 1g 1h 1l 1j: R = Me 1k: R = Et 1m 1i 2m: 43% 2l: 50% (1:1 dr) 2j: 81% 2k: 85% 1o 1p: n = 1 1q: n = 2 1r 1s 1t MeO 2 C MeO 2 C O O O F O F NH Bz F N Bz MeO 2 C MeO 2 C 2n: 68% 1n O O O Substrate Scope N Bz N Bz F OH N Bz F F 11 10 12 N Bz O F F mechanistically driven reaction design O 12a: 76% F + H 2 O [Ag], F + N Bz O F F Me 12b: 54% N Bz 12c: 61% O F F AgBF 4 (0.25 equiv) acetone:H 2 O (1:1) rt, 15 h 10 Catalytic gem-Difluorination of Enamides N Bz F O N Bz OH N Bz O NH Bz F BzHN [Ox] then decarboxylative fluorination O Path B Path A radical ring-opening B C D Selectfluor N O H N F N F H PhthN O H PhthN F N O OH N F D 2a 7 8 9 6 6 H CHO Bz Bz Bz H Bz Bz H N Bz 1a AgBF 4 (4 equiv) acetone:H 2 O (1:9) 40 °C, 1 h 55% AgBF 4 (4 equiv) acetone:H 2 O (1:9) 40 °C, 1 h 70% AgBF 4 (4 equiv) acetone:H 2 O (1:9) 40 °C, 1 h 23% AgBF 4 (4 equiv) acetone:H 2 O (1:9) rt, 16 h 54% Possible Mechanisms for Ring Opening N Bz N Bz OH H 2 O A B 1a Ag(ll) + 5 Ag(l) N 1a Ag(l) Ph O Selectfluor N N Cl 2BF 4 Ag(ll) + Ag(l) 5 (1) F (2) N N F Cl 2BF 4 Selectfluor (1 equiv) AgBF 4 (1 equiv) acetone:H 2 O (1:9) 40 °C, 1 h N N F Cl BF 4 1) No consumption of Selectfluor when treated with equimolar amount of AgBF 4 2) Line broadening in the 1H NMR suggests the formation of a paramagnetic Ag(II) complex. 3) Downfield shifts of 1a observed upon addition of AgBF 4 suggests binding of Amide to Ag(I) Proposed Mechanism for Oxidation Step O N R N R E N R N R OH N R O E + A B C 1st stage: α-oxidation 2nd stage: radical ring-opening H 2 O [Ag] E + source deconstructive functionalization [Ag] cyclic amines as latent radical synthons [Ag] N R OH B N R O B N R N R A (1) Silver mediated oxidation - Uknown (3) Over-oxidation of hemiaminal N R N R OH A B H 2 O (2) Transition metal compatible with aqueous media Reaction Design Challenges: Strategy and Design N N F Cl 2BF 4 Selectfluor (4 equiv) N Bz N Bz F O AgBF 4 (4 equiv) acetone:H 2 O (1:9) 40 °C, 1 h entry yield (%) * 1 2 3 4 5 6 81 42 0 0 51 52 variation from the standard conditions none AgNO 3 instead of AgBF 4 no [Ag] NFSI instead of Selectfluor MeCN instead of acetone AgBF 4 (50 mol%) 1a 2a * Yield by 1 H NMR integration using Ph 3 CH as an internal standard. Isolated yield. + Reaction Development N value-added bond construction R N R F O Csp 3 –F bond formation 1) Tune lipophilicity 2) Influence on pKa 3) Conformational tuning 4) Increased metabolic stability H 2 N F n R novel fluorinated building blocks N H H N O O F R complex/late-stage chemical diversification N R Challenges: - Unstrained ring system - Saturated heterocycle N H F paroxetine HO HO O H H N Me morphine N H peptide O O - Cyclic amines are found in drugs, agrochemicals, natural products, and peptides. - Piperidine is the most encountered heterocycle in U.S. FDA approved drugs. N H NH OMe O OMe OMe troxipide N H Me coniine N H N N H Me O H 2 N N O H H NC saxagliptin N H HN O HO 2 C Me HO Me alvimopan anabasine ritalin H N O N H O R OR O R N Me H O epimythrine Application of Deconstructive Functionalization HN Bz H N O Me Me O OMe F N Bz H N O Me Me O OMe HN Bz H N O Me Me N H O Me O OMe F N Bz H N O OMe O Me Me O 3a 4a 4d 4c 76% 50% (25% RSM) 39% (25% RSM) N OMe O O Me NHBz HN OMe O O Me NHBz F 3b 4b AgBF 4 (4 equiv) acetone:H 2 O (1:9) rt, 15 h 38% (40% RSM) AgBF 4 (4 equiv) acetone:H 2 O (1:9) rt, 15 h Peptide Diversification Carbon–Carbon Bond Cleavage (well established) functional group diversity (elusive) skeletal diversity FG C(sp 2 )–C(sp 2 ) bond cleavage (well established) O O olefin metathesis ozonolysis C(sp 3 )–C(sp 3 ) bond cleavage Not readily available (elusive) M [M] O [M] O [M] β-carbon fragmentation C–C activation M σ* M C–C M M C C C–C Bond 80–110 kcal/mol C–M Bond 20–70 kcal/mol Ring Strain 27 kcal/mol Kinetic barrier Thermodynamic considerations Acknowledgements and References 1) Hoveyda, A.H.; Zhugralin, A.R. Nature 2007, 450, 243–251. 2) Vougioukalakis, G.C.; Grubbs, R.H. Chem. Rev. 2010, 110, 1746-1787. 3) Vitaku, E.; Smith, D.T.; Njardason, J.T. J. Med. Chem. 2014, 57, 10257-10274. 4) Sun, H.;Tawa,G.; Wallqvist, A. Drug Discov.Today 2012,17, 310–324. 5) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330. 6) Roque, J. B.; Kuroda , Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171–174. 7) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Nature 2018, 564, 244–248. Prof. Richmond Sarpong Dr. Yusuke Kuroda Lucas Göttemann HN Piv O Ph O C-O bond formation HN Piv NC C-C bond formation HN Piv MeS C-S bond formation HN Piv N 3 C-N bond formation N O t Bu Cyclization Peptide Diversification: N Piv CO 2 H NH Piv O O N Bz N Bz 1) [Ag] 2) Base 89% over two steps (94%)* 1) [Ag] NBS 44% one chromatography event 1a 13 15 14 Ring Contraction Skeletal Remodeling H N HN Piv O R N H O CO 2 Me Me Me Me 1) [Ag], NCS 2) Nuc N Piv Other Directions: Deconstructive Diversification . .

Upload: others

Post on 07-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jose Roque, Yusuke Kuroda, Lucas T. Göttemann, Richmond … · 2019. 8. 28. · Deconstructive fluorination of cyclic amines Jose Roque, Yusuke Kuroda, Lucas T. Göttemann, Richmond

Deconstructive fluorination of cyclic aminesJose Roque, Yusuke Kuroda, Lucas T. Göttemann, Richmond Sarpong

Sarpong Research Group, College of Chemistry, University of California, Berkeley, CA, USA 94720

NR

F

NBz

NBz

NHBz

2b: 45%2c: 39% 2d: 70%*

2h: 49%

2f: 33%

NR

NBz

NBz

NBz

NBz

NHBz

2e: 40%

F

NHBz

F

NBz

R R

NBz

F

2i: 59%

NBz

Me Me

NHBz

F

NBz

H

HH

H

NBz

2o: 46%

NMe

2p: 81% 2q: 56%

NMe

O O

2g: 67%

NBz

NBz

MeMe Me

NBz

NHPiv

2r: 43%

NPiv

O

O

F

F

F

n n

Me

2t: 22%

2s: 28%

NBz

CO2H

NBz

HO2C

NHBz

FF

NHBz

FF

1b: R = Ac1c: R = Boc1d: R = Piv

1e

1f

1g

1h

1l

1j: R = Me1k: R = Et

1m

1i

2m: 43%

2l: 50% (1:1 dr)

2j: 81%2k: 85%

1o

1p: n = 11q: n = 2

1r

1s

1t

MeO2C MeO2C O

O

O

F

O

F

NHBz

F

NBz

MeO2C MeO2C

2n: 68%1n

O

O

O

Substrate Scope

NBz

NBz

F

OH NBz

FF

1110 12

NBz

O

FF

mechanistically driven reaction design

O

12a: 76%

F+

H2O

[Ag], F+

NBz

O

FF

Me

12b: 54%

NBz

12c: 61%

O

FF

AgBF4 (0.25 equiv)

acetone:H2O (1:1)rt, 15 h

10

Catalytic gem-Difluorination of Enamides

NBz

F

O

NBz

OH NBz

O

NHBz

F

BzHN

[Ox] thendecarboxylative

fluorination

O

Path B

Path A

radicalring-opening

B C

DSelectfluor

N

O

H NF

NF

H

PhthN

O

H PhthNF

N

O

OH NF

D 2a

7 8

9 6

6

H

CHO

Bz

BzBz

H

BzBz

H

NBz1a

AgBF4 (4 equiv)

acetone:H2O (1:9)40 °C, 1 h

55%

AgBF4 (4 equiv)

acetone:H2O (1:9)40 °C, 1 h

70%

AgBF4 (4 equiv)

acetone:H2O (1:9)40 °C, 1 h

23%

AgBF4 (4 equiv)

acetone:H2O (1:9)rt, 16 h54%

Possible Mechanisms for Ring Opening

NBz

NBz

OH

H2O

A B

1a

Ag(ll) + 5

Ag(l)

N1aAg(l)

Ph O

Selectfluor

NN

Cl

2BF4Ag(ll) +

Ag(l)5

(1)

F

(2)

NN

F

Cl2BF4

Selectfluor(1 equiv)

AgBF4 (1 equiv)

acetone:H2O (1:9)40 °C, 1 h

NN

F

ClBF4

1) No consumption of Selectfluor when treated with equimolar amount of AgBF42) Line broadening in the 1H NMR suggests the formation of a paramagnetic Ag(II) complex.3) Downfield shifts of 1a observed upon addition of AgBF4 suggests binding of Amide to Ag(I)

Proposed Mechanism for Oxidation Step

ON

R NR

E

NR

NR

OH

NR

O

E+

A B C

1st stage:α-oxidation

2nd stage:radical ring-opening

H2O

[Ag]E+ source

deconstructive functionalization

[Ag]

cyclic amines as latent radical synthons

[Ag]

NR

OH

B

NR

O

B

NR

NR

A

(1) Silver mediated oxidation - Uknown

(3) Over-oxidation of hemiaminal

NR

NR

OH

A B

H2O

(2) Transition metal compatible with aqueous media

Reaction Design Challenges:

Strategy and Design

NN

F

Cl2BF4

Selectfluor(4 equiv)

NBz

NBz

FOAgBF4 (4 equiv)

acetone:H2O (1:9)40 °C, 1 h

entry yield (%)*

123456

81†

4200

5152

variation from the standard conditions

noneAgNO3 instead of AgBF4

no [Ag]NFSI instead of SelectfluorMeCN instead of acetone

AgBF4 (50 mol%)

1a 2a

* Yield by 1H NMR integration using Ph3CH as an internal standard. † Isolated yield.

+

Reaction Development

N

value-added bond construction

RNR

F

OCsp3–F bond formation

1) Tune lipophilicity 2) Influence on pKa

3) Conformational tuning4) Increased metabolic stability

H2N Fn

R

novel fluorinated building blocks

NH

HN

OO

FR

complex/late-stage chemical diversification

NR

Challenges:- Unstrained ring system- Saturated heterocycle

NH

F

paroxetine

HO

HO

O

H

H

N Me

morphine

NH

peptide

O

O

- Cyclic amines are found in drugs, agrochemicals, natural products, and peptides.

- Piperidine is the most encountered heterocycle in U.S. FDA approved drugs.

NH

NH

OMe

O

OMe

OMe

troxipide

NH

Me

coniine

NH

N

NH

Me O H2N

N

O

H

H

NC

saxagliptin

N H

HNO

HO2C

Me

HOMe

alvimopan

anabasine ritalin

HN

ONH

O

R

OR

O

R

N MeH

O

epimythrine

Application of Deconstructive Functionalization

HNBz

HN

OMe Me

O

OMe

F

NBz

HN

OMe Me

O

OMe HNBz

HN

OMe Me

NH

O Me

O

OMe

F

NBz

HN

OOMe

O

Me Me

O

3a 4a

4d

4c

76%

50% (25% RSM)

39% (25% RSM)

NOMe

OO

Me

NHBz

HNOMe

OO

Me

NHBz

F

3b 4b

AgBF4 (4 equiv)

acetone:H2O (1:9)rt, 15 h

38% (40% RSM)

AgBF4 (4 equiv)

acetone:H2O (1:9)rt, 15 h

Peptide Diversification

Carbon–Carbon Bond Cleavage

(well established)

functional groupdiversity

(elusive)

skeletaldiversity

FG

C(sp2)–C(sp2) bond cleavage

(well established)

OO

olefin metathesis ozonolysis

C(sp3)–C(sp3) bond cleavage

Not readily available

(elusive)

M

[M]

O[M]

O

[M]

β-carbon fragmentationC–C activation

M

σ*

MC–CM

MC C

C–C Bond80–110 kcal/mol

C–M Bond20–70 kcal/mol

Ring Strain27 kcal/mol

Kinetic barrier Thermodynamic considerations

Acknowledgements and References1) Hoveyda, A.H.; Zhugralin, A.R. Nature 2007, 450, 243–251. 2) Vougioukalakis, G.C.; Grubbs, R.H. Chem. Rev. 2010, 110, 1746-1787. 3) Vitaku, E.; Smith, D.T.; Njardason, J.T. J. Med. Chem. 2014, 57, 10257-10274. 4) Sun, H.;Tawa,G.; Wallqvist, A. Drug Discov.Today 2012,17, 310–324. 5) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330. 6) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171–174. 7) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Nature 2018, 564, 244–248.Prof.

Richmond SarpongDr.

Yusuke Kuroda Lucas Göttemann

HNPiv

OPh

O

C-O bond formation

HNPiv

NC

C-C bond formation

HNPiv

MeS

C-S bond formation

HNPiv

N3

C-N bond formation

N

O

tBu

Cyclization

Peptide Diversification:

NPiv

CO2H

NHPiv

O

O

NBz

NBz

1) [Ag]2) Base

89% over two steps(94%)*

1) [Ag]NBS

44%

one chromatography event1a 13

1514

Ring Contraction

Skeletal Remodeling

HNHN

Piv O

R

NH

O

CO2Me

Me

MeMe

1) [Ag], NCS2) NucN

Piv

Other Directions: Deconstructive Diversification

.

.