jan. 2007vlsi design '071 statistical leakage and timing optimization for submicron process...

18
Jan. 2007 VLSI Design '07 1 Statistical Leakage and Timing Optimization for Submicron Process Variation Yuanlin Lu and Vishwani D. Agrawal ECE Dept. Auburn University Auburn, AL 36849, USA 20 th International Conference on VLSI Design Bangalore, January 9, 2006

Post on 21-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Jan. 2007 VLSI Design '07 1

Statistical Leakage and Timing Optimization for SubmicronProcess Variation

Yuanlin Lu and Vishwani D. Agrawal

ECE Dept. Auburn University

Auburn, AL 36849, USA

20th International Conference on VLSI Design

Bangalore, January 9, 2006

Jan. 2007 VLSI Design '07 2

Previous Work and Problem Statement

Previous Work: Mixed integer linear program (MILP) for optimum Dual-Vth and delay buffer assignment for

Minimum leakage Glitch elimination Overall delay specification Lu and Agrawal, “Leakage and Glitch Minimization for Power-

Performance Tradeoff,” JOLPE, vol. 2, no. 3, pp. 1-10, December 2006.

Problem Statement: to minimize the leakage and glitch power (not included in this paper) considering process variation.

Overall nominal delay, process variability and statistical timing yield are specified.

Jan. 2007 VLSI Design '07 3

Motivation Present trends in semiconductor technology:

Shrinking device dimensions. Leakage power is a dominant contributor to the

total power consumption. Large variations in process parameters can cause

a significant increase in leakage current because of an exponential relation between the leakage current and some key process parameters.

Jan. 2007 VLSI Design '07 4

Effects of Process Variation on Leakage and Performance

too slow

too leaky

0.18µ CMOS process 20X leakage variation 30% clock frequency variation low leakage chips with too low frequency must be discarded high frequency chips with too high leakage must also be discarded

S. Borkar, et al., Parameter variations and impact on circuits and microarchitecture, DAC 2003.

Jan. 2007 VLSI Design '07 5

Leakage in C432 Due to Global Process Variation (3σ = 15%, Spice simulation)

0.000

0.050

0.100

0.150

0.200

0.250

Normalized Leakage Power

Pro

bab

ility

Global Leff+Tox+VthGlobal LeffGlobal ToxGlobal Vth

• Subthreshold is most sensitive to the variation in the effective gate length.

Jan. 2007 VLSI Design '07 6

Leakage in C432 Due to Local Process Variation (3σ = 15%)

0.000

0.200

0.400

0.600

0.800

1.000

Normalized Leakage Power

Pro

bab

ility

Local Leff+Tox+VthLocal LeffLocal ToxLocal Vth

• Subthreshold is most sensitive to the variation in the effective gate length.

Jan. 2007 VLSI Design '07 7

Leakage Distribution of C432 Due to the Variation of Leff and Vth (3σ = 15%)

0.000

0.100

0.200

0.300

0.400

0.500

0.00

0.30

0.60

0.90

1.20

1.50

1.80

2.10

2.40

2.70

3.00

3.30

3.60

3.90

4.20

4.50

4.80

NormalizedLeakage Power

Prob

abilit

y

Global LeffLocal Leff

• Global variation has a stronger effect on the leakage distribution.

0.000

0.200

0.400

0.600

0.800

1.000

Normalized Leakage Power

Prob

abilit

y

Global VthLocal Vth

Jan. 2007 VLSI Design '07 8

process parameter

(3σ=15%)nominal

(nW)mean(nW)

standard dev. (nW)

std. dev.

/ mean

(mean-nominal)/ nominal

max dev. from nominal

(nW)

max dev. / nominal

Leff local 906.9 1059.0 103.6 9.8% 16.8% 611.6 67.4%

global 906.9 1089.0 599.1 55.0% 20.1% 4652.0 513.0%

Tox local 906.9 939.6 33.7 3.6% 3.6% 136.9 15.1%

global 906.9 938.6 199.9 21.3% 3.5% 795.8 87.7%

Vth local 906.9 956.7 36.4 3.8% 5.5% 171.0 18.9%

global 906.9 964.4 219.8 22.8% 6.3% 1028.0 113.4%

Leff + Tox + Vth

local 906.9 1155.0 140.8 12.2% 27.4% 1044.0 115.1%

global 906.9 1164.0 719.4 61.8% 28.3% 5040.0 555.7%

Comparison of Leakage Distribution of C432 Due to Process Parameter Variations

Jan. 2007 VLSI Design '07 9

Statistical Leakage Modeling

R. Rao, et al. “Parametric Yield Estimation Considering Leakage Variability,” DAC 2004.

Jan. 2007 VLSI Design '07 10

Statistical Delay Modeling

03

02

01, 1

dop

dopi

ox

oxi

eff

effiinomi N

Nc

T

Tc

L

LcDD

thdd

dd

VV

CVD

i i

iiXthth X

XXVV

i

0

00

Let 0

30

20

1dop

dopi

ox

oxi

eff

effii N

Nc

T

Tc

L

Lcr

Deterministic Statistical – normal distribution

Mean

Standard Deviation DiiDi r inomD D

i ,

A. Davoodi and A. Srivastava, “Probabilistic Dual-Vth Optimization Under Variability,”

Proc. ISLPED, 2005.

Jan. 2007 VLSI Design '07 11

MILP Formulation (Basic)(Deterministic vs. Statistical)

Deterministic ApproachDelay and subthreshold current of every gate are assumed to be fixed and without any effect of the process variation.Basic MILP Minimize the total leakage, keeping the circuit performance unchanged.

Minimize i gate number

Subject to k PO

i

isubnomI ,

maxTTPOk

Statistical ApproachTreat delay, timing and leakage as random variables with normal distributions.Basic MILP Minimize the total nominal leakage, keeping a certain timing yield (η).

Minimize i gate number

Subject to k PO

i

isubnomIE ,

maxPr TTPOk

Jan. 2007 VLSI Design '07 12

Real Variables of MILP Delay of gate i, Di , is a Gaussian

random variable N(µDi , σDi) Maximum signal arrival time at the

output of gate i, Ti , is a Gaussian random variable N(µTi , σTi)

For gate i with input from gate j,Ti ≥ Tj + Di , µTi ≥ µTj + µDi

A linear approximation used for σTi

Jan. 2007 VLSI Design '07 13

Integer Variables of MILP For gate i, Xi = [0, 1]

Ileakage, i = ILi Xi + IHi (1 – Xi) Di = DLi Xi + DHi (1 – Xi) Where ILi , IHi , DLi , and DHi are

determined by Spice simulation of gate i

Jan. 2007 VLSI Design '07 14

Leakage Power Saving Due to Statistical Modeling with Different Timing Yields (η)

CircuitDeterministic

Opti. (η = 100%)

Statistical Optimization (η = 99%)

Statistical Optimization (η = 95%)

Circuit Name

# gates

Un-opt. Leakage Power (μW)

Optimized

Leakage Power (μW)

Run Time

(s)

Optimized Leakage Power (μW)

Extra Power Saving

Run Time

(s)

Optimized Leakage Power (μW)

Extra Power Saving

Run Time

(s)

C432 160 2.620 1.003 0.00 0.662 33.9% 0.44 0.589 41.3% 0.32

C499 182 4.293 3.396 0.02 3.396 0.0% 0.22 2.323 31.6% 1.47

C880 328 4.406 0.526 0.02 0.367 30.2% 0.18 0.340 35.4% 0.18

C1355 214 4.388 3.153 0.00 3.044 3.5% 0.17 2.158 31.6% 0.48

C1908 319 6.023 1.179 0.03 1.392 21.7% 11.21 1.169 34.3% 17.45

C2670 362 5.925 0.565 0.03 0.298 47.2% 0.35 0.283 49.8% 0.43

C3540 1097 15.622 0.957 0.13 0.475 50.4% 0.24 0.435 54.5% 1.17

C5315 1165 19.332 2.716 1.88 1.194 56.0% 67.63 0.956 64.8% 19.7

C7552 1045 22.043 0.938 0.44 0.751 20.0% 0.88 0.677 27.9% 0.58

Average of ISCAS’85 benchmarks 0.24 29.2% 9.04 41.3% 4.64

ARM7 15.5k 686.56 495.12 15.69 425.44 14.07% 36.79 425.44 14.07% 36.44

Jan. 2007 VLSI Design '07 15

Power-Delay Curves of Statistical and Deterministic Approaches for C432

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Timing

Nor

mal

ized

Lea

kage

Pow

er

Deterministic LP

Statistical LP ( 99% Timing Yield)

Statistical LP ( 95% Timing Yield)

When performance is kept unchanged:

Leakage power reduced by deterministic approach normalized to 1 unit.

0.65 unit and 0.59 unit leakage power achieved by statistical approach with 99% and 95% timing yields, respectively.

Lower the timing yield, higher is power saving.

With a further relaxed Tmax , all three curves will give more reduction in leakage power.

Jan. 2007 VLSI Design '07 16

Leakage Power Distribution with Different Timing Yields (η)

CircuitDeterministic Optimization

(η =100%)Statistical Optimization

(η = 99%)Statistical Optimization

(η = 95%)

Name#

gates

Nominal Leakage

(uW)

Mean Leakage

(uW)

Standard Deviation

(uw)

Nominal Leakage

(uW)

Mean Leakage

(uW)

Standard Deviation

(uW)

Nominal Leakage

(uW)

Mean Leakage

(uW)

Standard Deviation

(uW)

C432 160 0.907 1.059 0.104 0.603 0.709 0.074 0.522 0.614 0.069

C499 182 3.592 4.283 0.255 3.592 4.283 0.255 2.464 2.905 0.197

C880 328 0.551 0.645 0.086 0.430 0.509 0.080 0.415 0.491 0.079

C1355 214 3.198 3.744 0.200 3.090 3.606 0.202 2.199 2.610 0.175

C1908 319 1.803 2.123 0.170 1.356 1.601 0.116 1.140 1.341 0.127

C2670 362 0.635 0.750 0.078 0.405 0.473 0.046 0.395 0.461 0.043

C3540 1097 1.055 1.243 0.119 0.527 0.611 0.032 0.493 0.575 0.031

C5315 1165 2.688 3.128 0.165 1.229 1.420 0.088 1.034 1.188 0.067

C7552 1045 0.924 1.073 0.069 0.774 0.903 0.049 0.701 0.823 0.045

Average of ISCAS’85 benchmarks 0.138 0.105 0.085

Jan. 2007 VLSI Design '07 17

Leakage Power Distribution of Optimized Dual-Vth C7552

0.000

0.050

0.100

0.150

0.200

0.250

0

1.00

E-07

2.00

E-07

3.00

E-07

4.00

E-07

5.00

E-07

6.00

E-07

7.00

E-07

8.00

E-07

9.00

E-07

1.00

E-06

1.10

E-06

1.20

E-06

1.30

E-06

1.40

E-06

Leakage Power (micro W)

Pro

babi

lity

C7552_d

C7552_p99

C7552_p95

Jan. 2007 VLSI Design '07 18

Conclusion A mixed integer linear programming method

statistically minimizes leakage power and eliminates glitch power in a dual-Vth design under process variations.

Experimental results show 30% more leakage power reduction by this statistical approach compared with the deterministic approach.

Impacts of process variation on leakage power and circuit performance are simultaneously reduced when a small yield loss is allowed.