itc-cpv - kit - itas

54
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association ITC-CPV www.kit.edu Biomass for energy fuels & chemicals Prof. Eckhard Dinjus Dr. N. Boukis, Dr. N. Dahmen, Dr. L. Leible and Prof. M. Kaltschmitt (DBFZ)

Upload: others

Post on 25-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ITC-CPV - KIT - ITAS

KIT – University of the State of Baden-Württemberg andNational Large-scale Research Center of the Helmholtz Association

ITC-CPV

www.kit.edu

Biomass for energy fuels & chemicalsProf. Eckhard DinjusDr. N. Boukis, Dr. N. Dahmen, Dr. L. Leible and Prof. M. Kaltschmitt (DBFZ)

Page 2: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV2 25.09.2009

Quelle:BGR

Oil era –2500 years time window

world population

Oil consumptiontoday ~ 4 Gtoe

?

billion

0

2

4

6

8

10

0 500 1000 1500 2000 2500

today ~ 6,8

?Year

Page 3: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV3 25.09.2009

32%

21%

26%

5%

6%

10%

ÖlGasKohleKernenergieWasserkraftBiomasse

World-wide energy systemTotal: about 12 Gtoe primary energy

100 %primaryenergy

63 %endenergy

29 %effectiveenergy

Transport conversion

Efficiency of use

Transport 19 %

residential10 %

industry29 %

commerce5 %

Page 4: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV4 25.09.2009

forest (woodland)

agriculture

gras

slan

d

othe

r lan

d

desert (tundra)

Global biomass production

69 % forest

(27 Gt C/y)

11 %agri-culture11 %

grassland

6 %other

3 %desert

energy conversion factors: 1 tC ≈ 1.12 tce ≈ 0.77 toe ≈ ca. 2 t carbon coal oil dry biomass

ecosystemsoceans 351 million km2 (71 %)land 149 million km2 (29 %)

net biomass productionocean ∼ 25 Gt C/y, land ∼ 40 Gt C/ytotal ∼ 65 Gt C per year

net biomassproductivitykg C per m2

0 10.5

area %

agriculture

grassland

other land

desert(tundra)

36

6

15

9

34

tropical rain

forestsother

Page 5: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV5 25.09.2009

Production and use of land biomass30 Gtoe land biomass in 2000(32 Gtoe in 2100)

69 % forests, ¼ wood11 % agriculture10 % grassland10 % other biomass

non-woody partsrotted on-site

48 %

10 %otherbiomass

10 %grassland

7 %unused

straw 4 %grain 4 %

residues 4 %crops 4 %

wood16 %

cereal16 %

other

forestry:

1.5 % "timber" waste6 % fuelwood

agriculture:

0.7 % "grain“ waste

2 % cereal straw

0.6 % other residues

0.7 % "crop“ waste

0.4 % unsuited hay1 Gtoe biofuel in 20004 Gtoe biofuel in 2100

~ 50 % fuelwood~ 25 % agroresidues~ 25 % biowastes year 2100 percentage

fuelwood 6 %

timbe

r 3 %

~ 9 % wood and ´straw´~ 3 % biowaste

Page 6: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV6 25.09.2009

Maximum bioenergy scenariocrude estimate for 150 Mkm2 global land area

forests 1 kg/m2*a

Gt/aupgrowth bioenergy

50 Mkm2: average upgrowth 50

grassland 0,5 kg/m2*a

20 Mkm2: for animal food, business as usual 10 0

agriculture 2 kg/m2*a (harvest)

10 Mkm2:

10 Mkm2:

for food and feed, SCP and irrigation 20

5

525 % residues

energy plantations, organic material 20 20

90 Mkm2:sum: without ca. 60 Mkm2

desert, tundra,…100 30

30 Gt/a dry lignocellulose correspond to 12 Gtoe/a, the present primary energy need

Page 7: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV7 25.09.2009

Competitive use of biomass

wood (construction material)organic raw materials

(cellulose, paper, cotton, rubber latex…)

biorefinery: BtC (carbon products)The organic chemical industry of the future arebio-chemical, thermo-chemical, physico-chemical conversion processes

ore reductant (iron)high T process heat (cement, lime, ceramic…)

residential fuelCHPCo-firing

human and animal food

decreasing priority

bioenergy

Page 8: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV8 25.09.2009

Utilization options of biomass for energy

BIO-CHEMICAL CONVERSION

Alcoholic Fermen-

tationCom-

postingAnaerob.Fermen-

tation

Mech. & el.

Page 9: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV9 25.09.2009

Production costs of heat, electricity and FT-Synfuel from wood residues and cereal straw (basis 2006)

0

50

100

150

200

250

300

ElectricityHeat FT-Synfuel

reference: coal-fired power plant (500 MWe)

reference: fossil diesel (65 $/bbl)reference: heat fromheating oil (30 kWw)

a) Industrial wood (pellets, 92% DM) b) Wood residues (chips, 50% DM) c) Straw (bales, 86% DM)

CHP

combustion gasification pyrolysis and gasification

ITAS LL/2008

Prod

uctio

n co

sts

(€/M

Wh)

decentral integrated

500

MW

th(0

.12

mill

ion

Mg

FT)

Two-step BtL-concept bc)

1500

MW

th(0

.37

mill

ion

Mg

FT)

5000

MW

th(1

.26

mill

ion

Mg

FT)

CH

P pl

ant b

c)

(10-

67 M

Win)

Hea

ting

plan

t b)

(500

kW

w)

Smal

l fur

nace

a)(3

0 kW

w)

CH

P pl

ant b

c)

(1.5

-13.

4 M

We)

Pow

er p

lant

bc)

(20-

45 M

We)

Co-

com

bust

ion

bc)

(10%

of 5

00 M

We)

Flui

dise

d be

d bc

)

(2.8

-63

MW

e)

Co-

gasi

ficat

ion

b)

(app

rox.

4%

of 5

00 M

We)

Fixe

d be

d b)

(460

kW

e)

0

50

100

150

200

250

300

ElectricityHeat FT-Synfuel

reference: coal-fired power plant (500 MWe)reference: coal-fired power plant (500 MWe)

reference: fossil diesel (65 $/bbl)reference: fossil diesel (65 $/bbl)reference: heat fromheating oil (30 kWw)reference: heat fromheating oil (30 kWw)

a) Industrial wood (pellets, 92% DM) b) Wood residues (chips, 50% DM) c) Straw (bales, 86% DM)

CHP

combustion gasification pyrolysis and gasification

ITAS LL/2008

Prod

uctio

n co

sts

(€/M

Wh)

decentral integrated

500

MW

th(0

.12

mill

ion

Mg

FT)

Two-step BtL-concept bc)

1500

MW

th(0

.37

mill

ion

Mg

FT)

5000

MW

th(1

.26

mill

ion

Mg

FT)

decentral integrated

500

MW

th(0

.12

mill

ion

Mg

FT)

Two-step BtL-concept bc)

1500

MW

th(0

.37

mill

ion

Mg

FT)

5000

MW

th(1

.26

mill

ion

Mg

FT)

CH

P pl

ant b

c)

(10-

67 M

Win)

Hea

ting

plan

t b)

(500

kW

w)

Smal

l fur

nace

a)(3

0 kW

w)

CH

P pl

ant b

c)

(10-

67 M

Win)

Hea

ting

plan

t b)

(500

kW

w)

Smal

l fur

nace

a)(3

0 kW

w)

CH

P pl

ant b

c)

(1.5

-13.

4 M

We)

Pow

er p

lant

bc)

(20-

45 M

We)

Co-

com

bust

ion

bc)

(10%

of 5

00 M

We)

Flui

dise

d be

d bc

)

(2.8

-63

MW

e)

Co-

gasi

ficat

ion

b)

(app

rox.

4%

of 5

00 M

We)

Fixe

d be

d b)

(460

kW

e)

CH

P pl

ant b

c)

(1.5

-13.

4 M

We)

Pow

er p

lant

bc)

(20-

45 M

We)

Co-

com

bust

ion

bc)

(10%

of 5

00 M

We)

Flui

dise

d be

d bc

)

(2.8

-63

MW

e)

Co-

gasi

ficat

ion

b)

(app

rox.

4%

of 5

00 M

We)

Fixe

d be

d b)

(460

kW

e)

Page 10: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV10 25.09.2009

World primary energy demand 2060

0

500

1000

1500

1900 1920 1940 1960 1980 2000 2020 2040 2060

noch offen

Geo- / ozea nische Energie

Sola renergie

N eue Bioma sse

Windenergie

Kernkra ft

Wa sserkra ft

Erdga s

Erdöl

Kohle

Tra d. Bioma sse

Quelle: Deutsche Shell AG

VISION

Use of biomass as the only renewable carbon source for production of fuels and chemicals prior to heat and power generation.

Page 11: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV11 25.09.2009

Opening statements to the use of Biomass

• Biomass is the only renewable carbon source!

• Biomass should be used favourably for organic chemicals and fuel production instead of electrical power and heat generation!

• Syngas and its main constituent, Hydrogen, are key intermediates for synthetic chemistry!

• Synthetic fuels are promising products to begin with!

• Technologies already proved for other applications should be utilized!

• Technologies used have to suitable for high capacities!

• New structures of agricultural production are required!

• Biomass stems from our biosphere – sustainable use!

Page 12: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV12 25.09.2009

Routes for the production of fuels from biomass

ITAS LL/2008ITAS LL/2008

Page 13: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV13 25.09.2009

178

79

135

135

98

144

52

Energy harvestGJ/ha

1.9402440Maize

9754000 (6000)Palm oil

5.5352730HVO

101143910BTL

101164160BioethanolSugar cain/beet

7.41304980Biogas

3381450BiodieselRape seed

GHG reduction

t/ha

Netto energyyieldGJ/ha

Fuel yieldl/ha

Biofuels - comparison

Source: FNR

Page 14: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV14 25.09.2009

BtL synthetic fuels (biomass to liquids)

Synthetic fuels are chemically identical and full compatible to conventional diesel- or gasoline

Due to their high quality they improve emissions e.g. of CO, particles, or hydrocarbons already by adding small amounts to conventional fuels

They can be tailored towards new demands e.g. in regard to emission standards or new combustion engine concepts

BtL fuels are based on a broad feed stock range…

…exhibiting a large CO2- reduction potential

Page 15: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV15 25.09.2009

Feedstock – dry lignocellulose“

AgricultureStraw, hay, ….Energy crops

ForestryResidual woodShort rotation plantation

Land cultivation residuesCultivation woodCultivation hay

Page 16: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV16 25.09.2009

Feedstock requirements

• Humidity/water contentis not critical to the process, but reduces its effiiciencyDrying on the field (storability)Initial water content < 15 % (air dried) Process internal further drying

• Compositionany ratio of cellulose, hemicellulose and lignin possible

• Mineral content/Contaminantslow contents of chlorine and sulfur desirable

• Delivery in form of bales, grinded and loose material, transportation costs are determining

Page 17: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV17 25.09.2009

Chemical pathways to synthetic fuels

Biomass Syngas

Fischer-Tropsch-Synthesis

Methanol-Synthesis

⇒DME⇒Propylen⇒Ethylen⇒Diesel⇒Gasoline⇒…….

⇒Wax⇒Diesel⇒Gasoline⇒LPG⇒Gas⇒……….

FurtherProcessing

Refining

H2 CO

CH3OH

C6H9O4

Direct use(Fuel cell, PME-

production)

⇒Hydrogen⇒Methane (SNG)

CH3-(CH2 )n-CH3

Page 18: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV18 25.09.2009

Hurdles in large scale biomass utilization

Low volumetric energy density

Widely distributed and periodical occurrence

Heterogeneous solid fuels

High competition in biomass use

High ash and salt contents

Direct gasification is problematic

Downstream syntheses require high pressures

Page 19: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV19 25.09.2009

Syngas and Synfuel production from dry biomass

Dry Biomass

CO, H2

C6H12O6 → 6 CO + 6 H2

6 CO + 6 H2O → 6 CO2 + 6 H2

Fischer-Tropsch

Methanol

DME .....

Page 20: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV20 25.09.2009

The - slurry gasification concept

regionale Pyrolyse- Anlagen

ZentralerCentralized syngas- and

synfuel production

25 km

Regional intermediate fuel production

250 km

Transport radiusEnergy density[GJ/m3]

Straw 2

Biosyncrude 25

Diesel 36

Biomass harvesting

Page 21: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV21 25.09.2009

The - process chainO2 (Steam)

bioSyncrudebioSyncrude

Filter Sorption CO2 and water separation

Catalyst

Fuel synthesis

DMEsynthesis

Gas cleaning and conditioning

High pressureentrained flow

gasification

bioSyncrudebioSyncrude

SynfuelFast pyrolysis

Bio

mas

s

Pre-treatment Syngas

de-central centralized

Slag

Page 22: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV22 25.09.2009

Stepwise implementation plan

3 GW

First plant (demonstration, CHP)

Power plant network

Synfuel network

Page 23: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV23 25.09.2009

Fast pyrolysis using a twin screw mixer reactor

M

HeizerSandkreislauf

M

Stroh, Heu u.a.

Häcksler

Kühler

Doppelschnecken-Reaktor

kalte

s St

rohh

äcks

el

heis

serS

and

ca. 5

00 °C

Pyrolysekoks

Pyroly segas

Pyrolyseöl

Slurry

M

HeizerSandkreislauf

M

Stroh, Heu u.a.

Häcksler

Kühler

Doppelschnecken-Reaktor

kalte

s St

rohh

äcks

el

heis

serS

and

ca. 5

00 °C

Pyrolysekoks

Pyroly segas

Pyrolyseöl

Slurry

Pyrolysis oil

Pyrolysis char

Straw, wood, ....

Twin screw mixer reactor

Heater,Heat carrier loop

CoolerBioSyncrude

Chopper

Cold chopped straw

Hot sand 550°C

• Mechanical fluidizedsand at 500°C

• Rapid transport, good radial mixing

• Fast heat transfergas retention time ca. 2 sec

Pyrolysis gas

Page 24: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV24 25.09.2009

Page 25: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV25 25.09.2009

Relative volumes of pyrolysis products

Page 26: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV26 25.09.2009

Key issue: BioSyncrude preparation

Kolloid-Mischer

• Free flowing suspension

• High particle content up to 40wt.%

• Stable for storage and transport

• Easy to produce by mixing

Page 27: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV27 25.09.2009

Suitable for feeds rich of ash

Gasification with pure O2

Temperatures around 1200 °C

High pressures up to 80 bar

Tar free synthesis gas

Residence time of seconds,complete C-conversion

4 gasification campaigns withdifferent feed materials at the 2-5 MWth pilot-gasifierof Future Energy, Freiberg

further development based on Lurgi MPG technology

High pressure entrained flow gasification

Raw syngasSoot water

BioSyncrude

Oxygen

Water

Cooling screen

Page 28: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV28 25.09.2009

Results of biosyncrude gasification

H2

CO

CO2

N2

Gas composition

• no tar, < 0.1 vol.% methane• C-conversion ≥ 99 %• operation without problems

Feeds:Solids: 0 – 39 wt.%Ash: 3 %Heating value: 10 – 25 MJ/kgDensity: 1250 kg/m3

Operation conditions:Throughput: 0.35 – 0.5 t/hPressure: 26 barTemperature: 1200 – 1600 °CFeed-Temperature: 40, 80 °C

Page 29: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV29 25.09.2009

Page 30: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV30 25.09.2009

Synfuels fromFischer-Tropsch- and Methanol synthesis

Titan, Trinidad ca. 0.8 Mio. t/a

Sasol, South Africaca. 6 Mio. t/a

Page 31: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV31 25.09.2009

Energy and mass balance

~ 7 t airdry ( 15 % H2O) wood or straw

~ 4.7 t condensate/char - slurry or pasteplus ~ 2.7 t technical O2

~ 1.2 t FT-synthesis raw products

~ 1 t synfuel~ 10 % more with by-product recycle

inevitable by-products:chemicals, electricity and HT-steam

~ 6 t dry wood or straw

Schnellpyrolyse

Kondensat/Koks – Slurry ~ 90 %

Flugstrom -Druckvergasung ~ 3 %

~ 13 %

ReaktionswärmeSynthese-Rohgas Synthese-Reingas

~ 76 %

FT- Synthese

FTS - Reaktionswärme

~ 18 %

~ 4 %

~ 5 %

nicht umgesetztes SyngasSyntheseprodukte

~ 51 %

C5- - ProdukteTrennung

lignocellulose 100 %

fast pyrolysis~ 1,5 %

~ 4%

condensate/char – slurry~ 89 %

entrained -flow gasification ~ 3 %

~ 13 %heat of reactionsynthesis-raw gas

clean syngas~ 75 %

FT- synthesis

heat of reaction~ 18 %

~ 5 %

unconverted syngassynthesis products

~ 56 %

~ 0,5 %

~ 0,5 %

~ 0,5 %

C5 - productsseparation

pyrolysis gas~ 6 %

energy forpyrolysis

C 5+

synfuelFTSproducts

~ 42 %: by- productrecycle ~ 5%

electricityhigh- p steam

~ 40 %:

slightly exothermal

thermal losssum ~ 3%

Page 32: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV32 25.09.2009

Biomass, C6H9O4 , 100 %

Bio-SlurryC5H5,4O1,1, 88 %

Synthesis gas72 %

Methanol61,1 %

Hydrogen72 %

Methane56 %

FT-Products55 %

FT-Diesel44 %

4,3 CO + 3,1 H2

Platform chemicals

Energetic efficiency in % of energy initially contained in the biomass (related to HHV)

Alternative use

Power production

Page 33: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV33 25.09.2009

- Pilot plant

1. Biomass pretreatmentFast pyrolysis, Biosyncrude preparation

2. Syngas generation

3. Gas cleaningDME synthesis

4. DME to Synfuel

500 kg/h 100 L Synfuel

Page 34: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV34 25.09.2009

Stage 1: Fast pyrolysis and Biosyncrude preparation

Biomass preparation

Biosyncrude preparationFeed stock storage

Pyrolysis product recoveryFast pyrolysis

Page 35: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV35 25.09.2009

Bioliq pilot plant – actual state

SynfuelDMESynthesis gasBioSyncrudeProduct

2012201220112008Realization

22.5 Mio.€*24.8 Mio.€8.2 Mio.€Costs

80 kg/h150 kg/h1 t/h (5 MW)500 kg/h (2 MW)Capacity

Synthesis IIGas cleaning + Synthesis I

HP Entrained flow gasification

Fast pyrolysisProcess

Stage 4Stage 3Stage 2Stage 1

Biomass Synfuel

*applied for

Page 36: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV36 25.09.2009

Production costs of FT-synfuel from straw and wood residues

0.20

0.40

0.60

0.80

1.00

1.20

0.2 1.0

Pyrolyse, Vergasung, FT -Synthese

Biomasse: Transport

Biomasse: Ernte u. Konditionierung

Raffinerie

Erdöl frei Raffinerie

Mineral ölsteuer

0FT-Synfuel (plant capacity, million Mg/a) 1)

Prod

uctio

n co

sts

(€/li

tre)

Pyrolysis, gasification, FT-synthesis

Biomass: transport

Biomass: collection

Diesel (fossil) with30 / 65 / 100 $/bbl

Refinery

Petroleum, free refinery plant

Mineral oil tax

1) FT-Synfuel from straw and wood residues, central plant; production costs quoted free plant, without tax; basis 2006 ITAS LL/2008

0.20

0.40

0.60

0.80

1.00

1.20

0.2 1.0

Pyrolyse, Vergasung, FT -Synthese

Biomasse: Transport

Biomasse: Ernte u. Konditionierung

RaffinerieRaffinerie

Erdöl frei RaffinerieErdöl frei Raffinerie

Mineral ölsteuerMineral ölsteuer

0FT-Synfuel (plant capacity, million Mg/a) 1)

Prod

uctio

n co

sts

(€/li

tre)

Pyrolysis, gasification, FT-synthesis

Biomass: transport

Biomass: collection

Diesel (fossil) with30 / 65 / 100 $/bbl

Refinery

Petroleum, free refinery plant

Mineral oil tax

Diesel (fossil) with30 / 65 / 100 $/bbl

Refinery

Petroleum, free refinery plant

Mineral oil tax

1) FT-Synfuel from straw and wood residues, central plant; production costs quoted free plant, without tax; basis 2006 ITAS LL/2008

Page 37: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV37 25.09.2009

International interests

Request and contacts:China Straw and other residuesChile Wood- residuesIndia Residues from sugar cane Malaysia, Indonesia Residues from palm oil productionRussia / former USSR Straw und wood- residues

Page 38: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV38 25.09.2009

Conclusion BTL

Production of high quality synthetic fuelsvalue added products by innovative technologies

Use of any kind of dry biomasshuge feedstock potential

No competition to food and feed productionUse of residues from agricultural and forestry

De-central/centralized concepthigh availability of biomass

Regionally distributed plant for biomass pretreatmentnew income options for farmers

Process energy is produced as a side producthigh CO2 reduction potential

Large scale synfuel productioneconomic industrial plant size

Page 39: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV39 25.09.2009

Hydrothermal gasification of wet biomass

Wet (waste)

BiomassH2, CH4

2 C6H12O6 + 6 H2O → 12 H2 + 3 CH4 + 9 CO2

Page 40: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV40 25.09.2009

Feed materials for hydrothermal gasification

Use of complete plantWithout catalystWet / toxicWet

Suitable ground and aquatic fresh plants

Corn silageMash (bio- ethanol)

Sludge (biogas)

Bio-alcoholRape oilMeOH

Hydrocarbons

Pyrolysis oil

Paper & cellulosePharmaceutical & chemical industry

Biotechnology Sewage sludge

Food &beverage

Wine trashAgricultural production

Liquid manure

Enduring energyDecentralized EnergyDisposal& energy

Disposal& energy

Energy plantsFuelsOrganic

wasteResidual biomass

Page 41: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV41 25.09.2009

Hydrothermal gasification of biomass

• Gasification in excess water at 700°C, 300bar

• “integrated” water gas shift reaction

• High H2-yield obtained under pressure

• Short reaction times, high space/time-yields

• No tar and char due to solvation of the intermediates

• Easy CO2-separation under pressure

• Inorganic components are not volatile

300 400 500 6000

1020304050

H2

CO

CO2

CH4

T / °C

Wood, CH1,44O0,66, 25 MPa, 10 wt.%

Page 42: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV42 25.09.2009

Flow scheme for hydrothermal gasification

Biomass Water

Storage

Colloidal mill

HD-pump

ReactorPre-heater

Economizer

Cooler

Phase separation

CO2-scrubber

Residual water

Gas tank650°C300 bar

VERENA pilot plant

Page 43: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV43 25.09.2009

Hydrothermal gasification of corn silage

7.5 wt.% DS 700 °C, 250 bar 1.3 – 3.4 min

CO244%

H228%

CH422%

C2H65%

CO1% H2

51%CH439%

C2H68%

CO2%

After CO2–separation

Before CO2–separation

Page 44: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV44 25.09.2009

ConclusionsEnergetic utilisation of biomass already contributes to the reduction of greenhouse gases in Germany and worldwide. Sustainable use of biomass increases this effect.The emission of greenhouse gases depends strongly on the biomass and the utilisation (conversion technology and the form of end energy).

Waste and residual biomasses show low emission of greenhouse gasesHeat generation from biomass shows very low emissionsLong term use of biomass as C-carrier necessaryEfficient technologies are developed.

Optimization target for the future is the whole chain of the biomass utilization.

Page 45: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV45 25.09.2009

„Stone era did not end because a lack of stones, and the oil era will not end up because oil is running out “

Sheich Zaki Yamani, 1974former minister from Saudi Arab

Page 46: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV46 25.09.2009

Bundesministeriumfür Bildung und Forschung

Supported by….

Forschungszentrum Karlsruhe

Helmholtz-Gemeinschaft HGF

Ministerium für Verbraucherschutz, Ernährung und Landwirtschaft BMELV

Fachagentur Nachwachsende Rohstoffe

Ministerium für Ernährung und ländlichen RaumBaden-Württemberg MELR

EU Kommission

Ministerium für Bildung und Forschung BMBF

Page 47: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV47 25.09.2009

Energy system Germany- Avoided Greenhouse gases -

Quelle: BMU 2008

Σ ca. 114 Mio. tdavon Biomasse

53,7 Mio. t

Die durch die Nutzung der Biomasse (reg. Energien) vermiedenen Klimagasmissionen liegen bei 6 bis 7 % (14 bis 15 %) der energiebedingten Klimagasfreisetzungen in Deutschland (2007).

Page 48: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV48 25.09.2009

Greenhouse gasesbalance for bio-energy systems

Treibhausgasemissionen in kg CO2-Äquiv. / GJel/th

0 20 40 60 80 100 120 140

Pellet

Scheitholz

KUP HS Strom

Wär

me

Stro

m

Biodiesel Raps

Bioethanol Weizen

Bioethanol Zuckerrübe

Biomethan (aus Biogas) Mais

BtL KUP

Bio SNG KUP

Kra

ftsto

ffe

Page 49: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV49 25.09.2009

Energiesystem Deutschland- Anteil der ern. Energien am EEV -

Ang

aben

in %

Quelle: BMU 2008

Page 50: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV50 25.09.2009

Nutzungsperspektiven für BioSyncrude

Co-Verbrennung in (Heiz)kraftwerkenCo-Verbrennung in (Heiz)KraftwerkenStadtwerke Hannover, UM NiedersachsenStadtwerke Halle, UM ThüringenNordhessen HMULV, eon-mitte, Lurgi (Nordhessen-Studie)Weitere Kontakte mit Vattenfall, EnBW, RWE

Monoverbrennung (BHKW)AGO (Kulmbach), Agrartechnik (Schleidorf)

Motorische VerbrennungGroßdieselhersteller Caterpillar und MAN

Page 51: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV51 25.09.2009

5 GW

rail

rail

500 km

truck

otherplants

otherplants

otherplants

5 GW

rail

500 km

truck

otherplants

otherplants

otherplants

Examplary plant configuration

40 pyrolysis plants (20 M€)Capacity ~ 0.2 Mt/a straw each

1 central gasification unit (500 M€)production capacity ~ 1 Mt/a

Slurry Transport

Straw Transport

10 trucks (60 m3 straw each)

Page 52: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV52 25.09.2009

Energy system - Germanyprimary energy

Quelle: BMU 2008

PEV 2007: 13,9 EJ (2,7 % bez. auf den Welt-PEV)

Page 53: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV53 25.09.2009

Entwicklung des Welt-Primärenergieverbrauchs bis 2030 (IEA-Referenz-Szenario)

Fazit: Bis 2030 wird sich der Primärenergieverbrauch um rd. 45 % erhöhen!

Other renewables: Geothermie, Solar, Wind, etc.Quelle: IEA (17.11.2008): World Energy Outlook 2008, Key Graphs

Page 54: ITC-CPV - KIT - ITAS

Prof. E. Dinjus ITC-CPV54 25.09.2009

Well to Whell GHG vs. total energy use

Europ. Biofuels Techn. Platform, 2008