industrial training report (submitted by shaloo mishra)

46
IEC COLLEGE OF ENGINEERING AND TECHNOLOGY INDUSTRIAL TRAINING REPORT NORTHERN COALFIELDS LIMITED Submitted by: SHALOO MISHRA B.Tech IVth year (2012-2016) 1209040172

Upload: sajid-hussain

Post on 12-Feb-2017

289 views

Category:

Engineering


4 download

TRANSCRIPT

Page 1: Industrial training report (submitted by shaloo mishra)

IEC COLLEGE OF ENGINEERING AND TECHNOLOGY

INDUSTRIAL TRAINING REPORT

NORTHERN COALFIELDS LIMITED

Submitted by:

SHALOO MISHRA

B.Tech IVth year (2012-2016)

1209040172

DEPARTMENT OF MECHANICAL ENGINEERING

Page 2: Industrial training report (submitted by shaloo mishra)

ABSTRACT

This paper reports the ‘Industrial Training Programme’ completed at Northern Coalfields Limited Khadia Project as part of the Bachelor of Technology (Mechanical Engineering) pursued at IEC College of Engineering and Technology, Greater Noida. It highlights the objectives and outcomes of the training along with detailed description of the activities performed in order to complete the Industrial Training.

Page 3: Industrial training report (submitted by shaloo mishra)

ACKNOWLEDGEMENT

My acknowledgement deeply thanks the co-operation received from all the employees of Northern Coalfields Limited, Singrauli as a whole for providing me the opportunity to learn from them their systematic approach of accomplishing the work. I also convey my gratitude to the employees specially the Khadia project for intending all the help I needed and the congenial working environment they provided me during my project, they were so helpful that I never felt that I am working with the persons senior to me age wise as well as experience wise. Without their guidance co-operation and best wishes it would not have been possible for me to complete my training and report satisfactorily. I express my deep sense of gratitude towards Mr. V.K. Singh (workshop in charge) of Khadia project for his constant supervision during the entire project work. I am truly grateful to all the shop managers who gave me vital information related to my project work.

I would also like to thank to my all family members whose morale support helped me to complete my project successfully. Lastly, a big thanks to all those who helped me sparing time even through their busy schedule and for being kind enough to help me whenever needed them.

RegardsShaloo MishraMechanical EngineeringIEC , Greater Noida

Page 4: Industrial training report (submitted by shaloo mishra)

TABLE OF CONTENTS

S No. PARTICULARS PAGE NO.1. ABSTRACT I2. ACKNOWLEDGEMENT II3. TABLE OF CONTENTS III4. INTRODUCTION 45. THE TRAINING INSTITUTE 56. INDUSTRIAL TRAINING 67. WELDING SHOP 68. MACHINE SHOP 129. TRANSMISSION SHOP 2310. ENGINE SHOP 2711. CONCLUSION 31

Page 5: Industrial training report (submitted by shaloo mishra)

INTRODUCTION

Objectives of the Industrial Training

1. To get exposure to the various aspects of industrial practices and ethics.2. To appreciate the significance of theoretical knowledge gained in the college into engineering practice.

Duration of the Industrial Training

Training was undertaken for 6 weeks from 16.06.2015 to 31.07.2015

Page 6: Industrial training report (submitted by shaloo mishra)

THE TRAINING INSTITUTE

Northern Coalfields Limited was formed in April 1986 as a subsidiary company of Coal India Limited. Its headquarter is located at Singrauli, Distt. Sidhi (M.P.). Singrauli is connected by road with Varanasi (220 Km.) – a holy city on the banks of river Ganga, and Rewa (206 Km.) – the state of white tigers and Sidhi (100 Km.) – district headquarter town of Madhya Pradesh. The nearest railway station is Singrauli located on the Katni-Chopan branch line running parallel to the northern boundary of the Coalfield. The nearest railway station for reaching directly to Delhi and Kolkata is Renukoot that is located on the Garhwa-Chopan rail-line. Nearest (private) airstrip is at Muirpur (60 Km.).

The area of Singrauli Coalfields is about 2202 Sq.Km. The coalfield can be divided into two basins, viz. Moher sub-basin (312 Sq.Km.) and Singrauli Main basin (1890 Sq.Km.). Major part of the Moher sub-basin lies in the Sidhi district of Madhya Pradesh and a small part lies in the Sonebhadra district of Uttar Pradesh. Singrauli main basin lies in the western part of the coalfield and is largely unexplored. The present coal mining activities and future blocks are concentrated in Moher sub-basin.

The exploration carried out by GSI/NCDC/CMPDI has proved abundant resource of power grade coal in the area. This in conjunction with easy water resource from Govind Ballabh Pant Sagar makes this region an ideal location for high capacity pithead power plants. The coal supplies from NCL has made it possible to produce about 10515 MW of electricity from pithead power plants of National Thermal Power Corporation (NTPC), Uttar Pradesh Rajya Vidyut Utpadan Nigam Ltd (UPRVUNL) and Renupower division of M/s. Hindalco Industries. The region is now called the "power capital of India". The ultimate capacity of power generation of these power plants is 13295 MW and NCL is fully prepared to meet the increased demand of coal for the purpose. In addition, NCL is also supplying coal to power plants of Rajasthan Rajya Vidyut Utpadan Nigam Ltd, Delhi Vidyut Board (DVB) and Haryana State Electricity Board.

NCL produces coal through mechanised opencast mines but its commitments towards environmental protection is total. It is one of very few companies engaged in mining activities, which has got ISO –14001 Certification for its environmental systems.

NCL, through its community development programmes, has significantly contributed towards improvement and development of the area. It is helping local tribal, non-tribal and project-affected persons in overall improvement of quality of their life through self-employments schemes, imparting education and providing health care.

Page 7: Industrial training report (submitted by shaloo mishra)

INDUSTRIAL TRAINING

WELDING SHOPTHINGS COVERED DURING WELDING SHOP TRAINING PERIOD:-

Safety while welding

Types of safeties

Types of welding

Welding equipments

Welding techniques

Welding defects and distortions

Prevention of defects

Types of welding starts

Different types of welding machines

Electric arc welding

Submerged arc welding

Gas welding and gas cutting

Shielding gas

Welding joints

Page 8: Industrial training report (submitted by shaloo mishra)

ARC WELDING

Gas metal arc welding

Arc welding is a type of welding that uses a welding power supply to create an electric arc between an

electrode and the base material to melt the metals at the welding point. They can use either direct

(DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region

is usually protected by some type of shielding gas, vapor, and/or slag. Power supplies Engine driven

welder capable of AC/DC welding. To supply the electrical energy necessary for arc welding

processes, a number of different power supplies can be used. The most common classification is

constant current power supplies and constant voltage power supplies. In arc welding, the voltage is

directly related to the length of the arc, and the current is related to the amount of heat input. Constant

current power supplies are most often used for manual welding processes such as gas tungsten arc

welding and shielded metal arc welding, because they maintain a relatively constant current even as

the voltage varies. This is important because in manual welding, it can be difficult to hold the

electrode perfectly steady, and as a result, the arc length and thus voltage tend to fluctuate. Constant

voltage power supplies hold the voltage constant and vary the current, and as a result, are most often

used for automated welding processes such as gas metal arc welding, flux cored arc welding, and

submerged arc welding. In these processes, arc length is kept constant, since any fluctuation in the

distance between the wire and the base material is quickly rectified by a large change in current. For

example, if the wire and the base material get too close, the current will rapidly increase, which in

turn causes the heat to increase and the tip of the wire to melt, returning it to its original separation

distance. The direction of current used in arc welding also plays an important role in welding.

Consumable electrode processes such as shielded metal arc welding and gas metal arc welding

generally use direct current, but the electrode can be charged either positively or negatively. In

welding, the positively charged anode will have a greater heat concentration and, as a result, changing

the polarity of the electrode has an impact on weld properties. If the electrode is positively charged, it

will melt more quickly, increasing weld penetration and welding speed. Alternatively, a negatively

charged electrode results in more shallow welds. Non-consumable electrode processes, such as gas

tungsten arc welding, can use either type of direct current (DC), as well as alternating current (AC).

With direct current however, because the electrode only creates the arc and does not provide filler

material, a positively charged electrode causes shallow welds, while a negatively charged electrode

makes deeper welds. Alternating current rapidly moves between these two, resulting in medium-

penetration welds. One disadvantage of AC, the fact that the arc must be re-ignited after every zero

crossing, has been addressed with the invention of special power units that produce a square wave

pattern instead of the normal sine wave, eliminating low-voltage time after the zero crossings and

minimizing the effects of the problem. Home and hobby power supplies Home and hobby arc welders

Page 9: Industrial training report (submitted by shaloo mishra)

for occasional light duty (under 0.25 in/unknown operator: u'strong' mm plate) repair and construction

are available from $100 and up as of 2011. In the $100 to $200 range, many choices are available in

welding power supplies such as output current at a given duty cycle, 120 volts (domestic) or 220 V

AC, and differing input currents. At these low prices, any positive factor typically weakens another

important factor. One seller offers this specification: "Duty Cycle: 45% @ 60 amps, 25% @ 80

amps," for their 120 volts, 20 A input, "90 Amp Flux Wire Welder". Duty cycle is a welding

equipment specification which defines the number of minutes, within a 10 minute period, during

which a given arc welder can safely be used. For example, an 80 A welder with a 60% duty cycle

must be "rested" for at least 4 minutes after 6 minutes of continuous welding.[5] Failure to observe

duty cycle limitations could damage the welder. Commercial- or professional-grade welders typically

have a 100% duty cycle.

SAFETY ISSUES IN ARC WELDING

Welding can be a dangerous and unhealthy practice without the proper precautions; however, with the

use of new technology and proper protection the risks of injury or death associated with welding can

be greatly reduced.

Heat and sparks

Because many common welding procedures involve an open electric arc or flame, the risk of burns

from heat and sparks is significant. To prevent them, welders wear protective clothing in the form of

heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat, flames, and

sparks.

Eye damage

Exposure to the brightness of the weld area leads to a condition called arc eye in which ultraviolet

light causes inflammation of the cornea and can burn the retinas of the eyes. Welding goggles and

helmets with dark face plates - much darker than those in sunglasses or oxy-fuel goggles - are worn to

prevent this exposure. In recent years, new helmet models have been produced featuring a face plate

that automatically self-darkens electronically. To protect bystanders, transparent welding curtains

often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield

nearby workers from exposure to the UV light from the electric arc.

Inhaled matter

Welders are also often exposed to dangerous gases and particulate matter. Processes like flux-cored

arc welding and shielded metal arc welding produce smoke containing particles of various types of

Page 10: Industrial training report (submitted by shaloo mishra)

oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller

particles presenting a greater danger. Additionally, many processes produce various gases (most

commonly carbon dioxide and ozone, but others as well) that can prove dangerous if ventilation is

inadequate. Furthermore, the use of compressed gases and flames in many welding processes pose an

explosion and fire risk;some common precautions include limiting the amount of oxygen in the air

and keeping combustible materials awayfrom the workplace.

Interference with pacemakers

Certain welding machines which use a high frequency AC current component have been found to

affect pacemaker operation when within 2 meters of the power unit and 1 meter of the weld site.

ELECTRODE

An electrode is an electrical conductor used to make contact with a non-metallic part of a circuit (e.g.

a semiconductor, an electrolyte or a vacuum). The word was coined by the scientist Michael Faraday

from the Greek words elektron (meaning amber, from which the word electricity is derived) and

hodos, away.

Anode and cathode in electrochemical cells

An electrode in an electrochemical cell is referred to as either an anode or a cathode (words that were

also coined by Faraday).The anode is now defined as the electrode at which electrons leave the cell

and oxidation occurs, and the cathode as the electrode at which electrons enter the cell and reduction

occurs. Each electrode may become either the anode or the cathode depending on the direction of

current through the cell. A bipolar electrode is an electrode that functions as the anode of one cell and

the cathode of another cell.

Primary cell

A primary cell is a special type of electrochemical cell in which the reaction cannot be reversed, and

the identities of the anode and cathode are therefore fixed. The anode is always the negative electrode.

The cell can be discharged but not recharged.

Secondary cell

A secondary cell, for example a rechargeable battery, is one in which the chemical reactions are

reversible. When the cell is being charged, the anode becomes the positive (+) and the cathode the

negative (−) electrode. This is also the case in an electrolytic cell. When the cell is being discharged,

it behaves like a primary cell, with the anode as the negative and the cathode as the positive electrode.

Page 11: Industrial training report (submitted by shaloo mishra)

Other anodes and cathodes

In a vacuum tube or a semiconductor having polarity (diodes, electrolytic capacitors) the anode is the

positive (+) electrode and the cathode the negative (−). The electrons enter the device through the

cathode and exit the device through the anode. Many devices have other electrodes to control

operation, e.g., base, gate, control grid. In a three-electrode cell, a counter electrode, also called an

auxiliary electrode, is used only to make a connection to the electrolyte so that a current can be

applied to the working electrode. The counter electrode is usually made of an inert material, such as a

noble metal or graphite, to keep it from dissolving.

Welding electrodes

In arc welding an electrode is used to conduct current through a workpiece to fuse two pieces

together. Depending upon the process, the electrode is either consumable, in the case of gas metal arc

welding or shielded metal arc welding, or non-consumable, such as in gas tungsten arc welding. For a

direct current system the weld rod or stick may be a cathode for a filling type weld or an anode for

other welding processes. For an alternating current arc welder the welding electrode would not be

considered an anode or cathode.

Alternating current electrodes

For electrical systems which use alternating current the electrodes are the connections from the

circuitry to the object to be acted upon by the electric current but are not designated anode or cathode

since the direction of flow of the electrons changes periodically, usually many times per second.

Uses

Electrodes are used to provide current through non-metal objects to alter them in numerous ways and

to measure conductivity for numerous purposes.

Examples include:

• Electrodes for medical purposes, such as EEG, ECG, ECT, defibrillator

• Electrodes for electrophysiology techniques in biomedical research

• Electrodes for execution by the electric chair

• Electrodes for electroplating

• Electrodes for arc welding

• Electrodes for cathodic protection

• Electrodes for grounding

• Electrodes for chemical analysis using electrochemical methods

• Inert electrodes for electrolysis (made of platinum)

• Membrane electrode assembly

Page 12: Industrial training report (submitted by shaloo mishra)

Chemically modified electrodes

Chemically modified electrodes are electrodes that have their surfaces chemically modified to change

the electrode's physical, chemical, electrochemical, optical, electrical, and transport properties. These

electrodes are used for advanced purposes in research and investigation.

SUBMERGED ARC WELDING

Submerged arc welding (SAW) is a common arc welding process. Originally developed by the Linde

- Union Carbide Company. It requires a non-continuously fed consumable solid or tubular (flux

cored) electrode. The molten weld and the arc zone are protected from atmospheric contamination by

being “submerged” under a blanket of granular fusible flux consisting of lime, silica, manganese

oxide, calcium fluoride, and other compounds. When molten, the flux becomes conductive, and

provides a current path between the electrode and the work. This thick layer of flux completely covers

the molten metal thus preventing spatter and sparks as well as suppressing the intense ultraviolet

radiation and fumes that are a part of the shielded metal arc welding (SMAW) process. SAW is

normally operated in the automatic or mechanized mode, however, semi-automatic (hand-held) SAW

guns with pressurized or gravity flux feed delivery are available. The process is normally limited to

the flat or horizontal-fillet welding positions (although horizontal groove position welds have been

done with a special arrangement to support the flux). Deposition rates approaching 100 lb/h (45 kg/h)

have been reported — this compares to ~10 lb/h (5 kg/h) (max) for shielded metal arc welding.

Although Currents ranging from 300 to 2000 A are commonly utilized,[1] currents of up to 5000 A

have also been used (multiple arcs).

Single or multiple (2 to 5) electrode wire variations of the process exist. SAW strip-cladding utilizes a

flat strip electrode (e.g. 60 mm wide x 0.5 mm thick). DC or AC power can be used, and

combinations of DC and AC are common on multiple electrode systems. Constant voltage welding

power supplies are most commonly used; however, constant current systems in combination with a

voltage sensing wire-feeder are available.

OXY-FUEL WELDING AND CUTTING

Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the U.S.)

and oxy-fuel cutting are processes that use fuel gases and oxygen to weld and cut metals, respectively.

French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene

welding in 1903. Pure oxygen, instead of air (20% oxygen/80% nitrogen), is used to increase the

flame temperature to allow localized melting of the workpiece material (e.g. steel) in a room

environment. A common propane/air flame burns at about 3,630 °F (2,000 °C), a propane/oxygen

Page 13: Industrial training report (submitted by shaloo mishra)

flame burns at about 4,530 °F (2,500 °C), and an acetylene/oxygen flame burns at about 6,330 °F

(3,500 °C).

Oxy-fuel is one of the oldest welding processes. Still used in industry, in recent decades it has been

less widely utilized in industrial applications as other specifically devised technologies have been

adopted. It is still widely used for welding pipes and tubes, as well as repair work. It is also frequently

well-suited, and favoured, for fabricating some types of metal-based artwork.

In oxy-fuel welding, a welding torch is used to weld metals. Welding metal results when two pieces

are heated to a temperature that produces a shared pool of molten metal. The molten pool is generally

supplied with additional metal called filler. Filler material depends upon the metals to be welded.

MACHINE SHOP MACHINES AVAILABLE IN THE MACHINE SHOP

1. To 23. Lathes in different sizes

24. SB CNC

25. NH CNC

26. BVS 25/50

27. Milling (total 6 machines,m1 to m6)

28. Horizontal boring machines

29. Radial drill (3)

30. Slotters (2)

31. Shapers (3)

32. Power grinders (4)

33. Surface grinders

34. Centre less grinder

35. Tool post grinder

36. Power hacksaw

37. Band saw

38. Gear hobbins

39. Circular saw

40. EOT cranes (10 ton and 5 ton capacities)

41. Plano miller

Page 14: Industrial training report (submitted by shaloo mishra)

LATHE

One of the most important machine tools in the metalworking industry is the lathe. A lathe operates

on the principle of a rotating workpiece and a fixed cutting tool. The cutting tool is feed into the

workpiece, which rotates about its own Z-axis, causing the workpiece to be formed to the desired

shape. The lathes in the Student Shop are commonly referred to as “engine lathes”. This is the most

popular type of lathe in industry because of its versatility and ease of operation. Some of the more

frequently performed operations on the engine lathe are: turning cylindrical surfaces, facing flat

surfaces, drilling and boring holes, and cutting internal or external threads. Although relatively

simple, these few operations provide a wide range of manufacturing ability. Lathes are classified

according to the maximum diameter, (known as the “swing”), and the maximum length of the

workpiece that can be handled by the lathe. Another important characteristic of any lathe is the

maximum horsepower that can be supplied to rotate the workpiece. A new way lathes are being

classified today is by their controls, manual, computer-numerically-controlled, (commonly called

CNC), and the latest referred to as hybrid lathes. Hybrid lathes are a cross between the standard

manually operated lathe and the computer operated lathe, CNC.

Lathe Construction

There are four main groups of components that comprise the basis for all engine lathes. These consist

of the: bed, headstock, tailstock, and the carriage. Please refer to figure for clarity.

The bed is the foundation of the engine lathe. The bed is a heavy, rugged casting made to support the

working parts of the lathe. The size and mass of the bed gives the rigidity necessary for accurate

engineering tolerances required in manufacturing today. On top of the bed are machined ways that

guide and align the carriage and tailstock, as they are move from one end of the lathe to the other. The

headstock is clamped atop the bed at the left-hand end of the lathe. The headstock contains the motor

that drives the spindle through a series of gears. The workpiece is mounted to the spindle through

means of a chuck, faceplate, or collet. Since the headstock contains the motor and drive gears, the

speed or RPM at which the spindle rotates is also controlled here. The headstock also contains the

power feed adjustments, which are the controls for the rate at which the carriage moves when the

power feed lever in engaged. The carriage assembly moves lengthwise, (longitudinally), along the

ways between the headstock and the tailstock. The carriage is composed of the cross slide, compound

rest, saddle, and apron. The saddle is an H shaped casting mounted on top of the ways, and supports

the cross slide and compound rest. The apron is fastened to the saddle, and houses the automatic feed

mechanisms. The cross slide is mounted on top of the saddle, and can be moved either manually or

automatically across the longitudinal axis (Z-axis) of the spindle. This provides the lathe’s X-axis,

which is the diameter the workpiece is machined to. The compound rest holds the tool post, which

supports the cutting tool. Mounted on top of the cross slide, the compound rest can be swivelled to

Page 15: Industrial training report (submitted by shaloo mishra)

any angle in the horizontal plane. This is useful when cutting angles and short tapers on the

workpiece.

Procedures

Proficiency in lathe operations involves more than simply “turning” metal. Quality work can be

produced on the lathe if the job is planned in advance. There are two main categories of procedures to

be followed when machining parts on a lathe: the preliminary operations, and the machining

operations.

Preliminary Operations-

Cleaning- The first, (and last), procedure in any machining operation. Without clean equipment and

tools, the accuracy of the finished product diminishes quickly. The accuracy, durability, and longevity

of the equipment and tools depend on being kept clean. In today’s high tolerances in engineering,

cleanliness is critical.

Holding the workpiece- There are several types of holding devices used on the engine lathe. The most

common is the three-jaw chuck (see figure). This chuck permits all three jaws to work

simultaneously, automatically centring round or hexagonal shaped pieces. Each jaw only fits with the

particular groove in the exact chuck it was made for, so the jaws are not interchangeable between

chucks. The advantages of this type of chuck are that it is very versatile, quick set-up, large range of

sizes, and uniform holding pressure on the workpiece. The disadvantage is that is the least accurate of

the holding devices in the Student Shop. The three-jaw chuck only has an accuracy of between

+0.005” to +0.010”, depending upon its condition. The second type of chuck is the four-jaw chuck,

(see figure). This is also called the independent chuck because each of its jaws operates independent

of the other three. This permits odd shaped work to be held and centred about a feature. The

advantages are that it is versatile, provides a secure hold o the workpiece, large range of sizes, and has

extremely accurate centring method. The four-jaw chuck is accurate to +0.0005”. The main

disadvantage is the long process necessary to centre the workpiece, requiring a high level of in the use

of a dial indicator. A third important holding device is the spring collet. This is a popular style due to

its ease of use and good accuracy. The spring collet will usually repeat within +0.001”. Disadvantages

to the spring collet are limitations to the size of each collet, (+0.005”), restrictive to only round

workpieces, and a maximum diameter of 1-1/16”. 3-Jaw Chuck 4-Jaw Chuck Spring Collet

Tooling- Tools must be clamped securely to the tool post regardless of what type of tool is being

used. It is also recommended to have the cutting tool extended the least amount possible to reduce

torque and vibrations induced in the tool when cutting. The tools must be adjusted so that their cutting

edge is at the height of the exact centre of the workpiece. This Defined as a line running between the

Page 16: Industrial training report (submitted by shaloo mishra)

centre of the headstock and tailstock spindles. Each lathe has a turning, facing and parting tool as part

of its tooling accessories.

Machine Controls- Many factors must be considered when determining the correct speed, (RPM), and

feed rates. Some of these are:

1. Type of material being machined.

2. Desired finish to the workpiece.

3. Condition of the lathe.

4. Rigidity of the workpiece. Smaller diameters are less rigid.

5. Shape and size of the workpiece.

6. Size and type of tooling being used.

Machining Operations

Once the set-up is complete, a quick check should be made of the machine settings. Next, the work

should be checked that it is in the holding device correctly. This is done with the machine OFF,

manually rotate the chuck, seeing if there are any interference points or possible inference points.

Once this is complete, the machining operations can being. There are usually two phase to machining,

roughing and finishing. The roughing operation is the process of removing the unwanted material to

within about 1/32”, (about 0.030”), of the finished dimension. Roughing speeds are approximately

80% of the finishing speeds. Roughing feed rates are from 0.005” to 0.010”/revolution. Sizes and

lengths should be check after the roughing operation before going on to the finish operation. Finish

operations are used to bring the workpiece to the required size, length, shape, and surface finish.

Depending upon the surface finish desired, feed rates are generally between 0.001” to

0.005”/revolution. The main difference between roughing and finishing cuts is the depth of cut. Depth

of cut refers to the distance the cutter has been fed, or advanced, into the workpiece surface. The

depth of cut, like feed rates, varies greatly with the machining conditions. Material, hardness, speed,

and total material needed to be removed all play a part in figuring the depth of cut amount. Roughing

depth of cuts are greater, or deeper than finishing depth of cuts, which are finer or shallower. All cuts,

whether roughing or finishing, should be made from right to left. Traveling towards the chuck as

oppose to away from it offers the greatest rigidity and therefore the greatest safety.

SAFETY AT MACHINE SHOP

The lathe can be a safe machine, but only if the student is aware of the hazards involved. In the

machine shop you must always keep your mind on your work in order to avoid accidents.

Page 17: Industrial training report (submitted by shaloo mishra)

Distractions should be taken care of before machining is begun. Develop safe working habits in the

use of safety glasses, set-ups, and tools. The following rules must be observed when working on the

lathes in the Student Shop:

1. No attempt should be made to operate the lathe until you understand the proper procedures for its

use and have been checked out on it.

2. Dress appropriately. Remove all watches and jewellery. Safety glasses or goggles are a must.

3. Plan out your work thoroughly before starting.

4. Know where the location of the OFF switch is.

5. Be sure the work and holding device are firmly attached.

6. Turn the chuck by hand, with the lathe turned OFF, to be sure there is no danger of striking any part

of the lathe.

7. Always remove the chuck key from the chuck immediately after use, and before operating the lathe.

Make it a habit to never let go of the chuck key until it is out of the chuck and back in its holder.

8. Keep the machine clear of tools. Tools must not be placed on the ways of the lathe.

9. Stop the lathe before making any measurements, adjustments, or cleaning.

10. Support all work solidly. Do not permit small diameter work to project too far from the chuck,

(over 3X’s the work’s diameter), without support.

12. If the work must be repositioned or removed from the lathe. Move the cutting tool clear of the

work to prevent any accidental injuries.

13. You should always be aware of the direction of travel and speed of the carriage before you engage

the automatic feed.

14. Chips are sharp. Do not attempt to remove them with your hand when they become “stringy” and

build up on the tool post or workpiece. Stop the machine and remove them with plies.

15. Stop the lathe immediately if any odd noise or vibration develops while you are operating it. If

you cannot locate the source of the trouble, get help from the instructor. Under no circumstance

should the lathe be operated until the problem has been corrected.

16. Remove sharp edges and burrs from the work before removing it from the lathe.

17. Use care when cleaning the lathe. Chips sometimes get caught in recesses. Remove them with a

brush or short stick. Never use a floor brush to clean the machine. Use only a brush, compressed air,

or a rag.

SHAPER

Shaper with boring bar setup to allow cutting of internal features, such as keyways, or even shapes

that might otherwise be cut with wire EDM. A shaper is a type of machine tool that uses linear

relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its

Page 18: Industrial training report (submitted by shaloo mishra)

cut is analogous to that of a lathe, except that it is (archetypally) linear instead of helical. (Adding

axes of motion can yield helical toolpaths, as also done in helical planing.) A shaper is analogous to a

planer, but smaller, and with the cutter riding a ram that moves above a stationary workpiece, rather

than the entire workpiece moving beneath the cutter. The ram is moved back and forth typically by a

crank inside the column; hydraulically actuated shapers also exist.

Types

Shapers are mainly classified as higher, draw-cut, horizontal, universal, vertical, geared, crank,

hydraulic, contour and traveling head. The horizontal arrangement is the most common. Vertical

shapers are generally fitted with a rotary table to enable curved surfaces to be machined (same idea as

in helical planing). The vertical shaper is essentially the same thing as a slotter (slotting machine),

although technically a distinction can be made if one defines a true vertical shaper as a machine

whose slide can be moved from the vertical. A slotter is fixed in the vertical plane.

Small shapers have been successfully made to operate by hand power. As size increases, the mass of

the machine and its power requirements increase, and it becomes necessary to use a motor or other

supply of mechanical power. This motor drives a mechanical arrangement (using a pinion gear, bull

gear, and crank, or a chain over sprockets) or a hydraulic motor that supplies the necessary movement

via hydraulic cylinders.

PLANER (METALWORKING)

A planer is a type of metalworking machine tool that uses linear relative motion between the

workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a

lathe, except that it is (archetypally) linear instead of helical. (Adding axes of motion can yield helical

toolpaths; see "Helical planing" below.) A planer is analogous to a shaper, but larger, and with the

entire workpiece moving on a table beneath the cutter, instead of the cutter riding a ram that moves

above a stationary workpiece. The table is moved back and forth on the bed beneath the cutting head

either by mechanical means, such as a rack and pinion drive or a leadscrew, or by a hydraulic

cylinder.

Linear planing

The most common applications of planers and shapers are linear-toolpath ones, such as:

• Generating accurate flat surfaces. (While not as precise as grinding, a planer can remove a

tremendous amount of material in one pass with high accuracy.)

• Cutting slots (such as keyways).

Page 19: Industrial training report (submitted by shaloo mishra)

• It is even possible to obviate wire EDM work in some cases. Starting from a drilled or cored hole, a

planer with a boring-bar type tool can cut internal features that don't lend themselves to milling or

boring (such as irregularly shaped holes with tight corners).

Helical planing

Although the archetypal toolpath of a planer is linear, helical toolpaths can be accomplished via

features that correlate the tool's linear advancement to simultaneous workpiece rotation (for example,

an indexing head with linkage to the main motion of the planer). To use today's terminology, one can

give the machine other axes in addition to the main axis. The helical planing idea shares close analogy

with both helical milling and single-point screw cutting. Although this capability existed from almost

the very beginning of planers (circa 1820), the machining of helical features (other than screw threads

themselves) remained a hand-filing affair in most machine shops until the 1860s, and such hand-filing

did not become rare until another several decades had passed.

HORIZONTAL BORING MACHINE

A horizontal boring machine or horizontal boring mill is a machine tool which bores holes in a

horizontal direction. There are three main types — table, planer and floor. The table type is the most

common and, as it is the most versatile, it is also known as the universal type. A horizontal boring

machine has its work spindle parallel to the ground and work table. Typically there are 3 linear axes in

which the tool head and part move. Convention dictates that the main axis that drives the part towards

the work spindle is the Z axis, with a cross-traversing X axis and a vertically-traversing Y axis. The

work spindle is referred to as the C axis and, if a rotary table is incorporated, its centre line is the B

axis. Horizontal boring machines are often heavy-duty industrial machines used for roughing out large

components but there are high-precision models too. Modern machines use advanced CNC control

systems and techniques. Charles DeVlieg entered the Machine Tool Hall of Fame for his work upon a

highly precise model which he called a JIGMIL. The accuracy of this machine convinced the USAF

to accept John Parson's idea for numerically controlled machine tools.

MILLING MACHINE

A milling machine is a machine tool used to machine solid materials. Milling machines are often

classed in two basic forms, horizontal and vertical, which refers to the orientation of the main spindle.

Both types range in size from small, bench-mounted devices to room-sized machines. Unlike a drill

press, which holds the workpiece stationary as the drill moves axially to penetrate the material,

milling machines also move the workpiece radially against the rotating milling cutter, which cuts on

its sides as well as its tip. Work piece and cutter movement are precisely controlled to less than 0.001

in (unknown operator: u'strong' mm), usually by means of precision ground slides and leadscrews

Page 20: Industrial training report (submitted by shaloo mishra)

or analogous technology. Milling machines may be manually operated, mechanically automated, or

digitally automated via computer numerical control. Milling machines can perform a vast number of

operations, from simple (e.g., slot and keyway cutting, planing, drilling) to complex (e.g., contouring,

die sinking). Cutting fluid is often pumped to the cutting site to cool and lubricate the cut and to wash

away the resulting swarf. Types and nomenclature

Mill orientation is the primary classification for milling machines. The two basic configurations are

vertical and horizontal. However, there are alternate classifications according to method of control,

size, purpose and power source.

MILL ORIENATION

Vertical mill

In the vertical mill the spindle axis is vertically oriented. Milling cutters are held in the spindle and

rotate on its axis. The spindle can generally be extended (or the table can be raised/lowered, giving the

same effect), allowing plunge cuts and drilling. There are two subcategories of vertical mills: the bed

mill and the turret mill.

• A turret mill has a stationary spindle and the table is moved both perpendicular and parallel to the

spindle axis to accomplish cutting. The most common example of this type is the Bridgeport,

described below. Turret mills often have a quill which allows the milling cutter to be raised and

lowered in a manner similar to a drill press. This type of machine provides two methods of cutting in

the vertical (Z) direction: by raising or lowering the quill, and by moving the knee.

• In the bed mill, however, the table moves only perpendicular to the spindle's axis, while the spindle

itself moves parallel to its own axis. Turret mills are generally considered by some to be more

versatile of the two designs. However, turret mills are only practical as long as the machine remains

relatively small. As machine size increases, moving the knee up and down requires considerable effort

and it also becomes difficult to reach the quill feed handle (if equipped). Therefore, larger milling

machines are usually of the bed type. Also of note is a lighter machine, called a mill-drill. It is quite

popular with hobbyists, due to its small size and lower price. A mill-drill is similar to a small drill

press but equipped with an X-Y table. These are frequently of lower quality than other types of

machines.

Horizontal mill

A horizontal mill has the same sort of x–y table, but the cutters are mounted on a horizontal arbour

(see Arbour milling) across the table. Many horizontal mills also feature a built-in rotary table that

allows milling at various angles; this feature is called a universal table. While endmills and the other

types of tools available to a vertical mill may be used in a horizontal mill, their real advantage lies in

Page 21: Industrial training report (submitted by shaloo mishra)

arbour-mounted cutters, called side and face mills, which have a cross section rather like a circular

saw, but are generally wider and smaller in diameter. Because the cutters have good support from the

arbour and have a larger cross-sectional area than an end mill, quite heavy cuts can be taken enabling

rapid material removal rates. These are used to mill grooves and slots. Plain mills are used to shape

flat surfaces. Several cutters may be ganged together on the arbour to mill a complex shape of slots

and planes. Special cutters can also cut grooves, bevels, radii, or indeed any section desired. These

specialty cutters tend to be expensive. Simplex mills have one spindle, and duplex mills have two. It

is also easier to cut gears on a horizontal mill. Some horizontal milling machines are equipped with a

power-take-off provision on the table. This allows the table feed to be synchronized to a rotary

fixture, enabling the milling of spiral features such as hypoid gears.

INDEXING HEAD

An indexing head, also known as a dividing head or spiral head, is a specialized tool that allows a

workpiece to be circularly indexed; that is, easily and precisely rotated to pre-set angles or circular

divisions. Indexing heads are usually used on the tables of milling machines, but may be used on

many other machine tools including drill presses, grinders, and boring machines. Common jobs for a

dividing head include machining the flutes of a milling cutter, cutting the teeth of a gear, milling

curved slots, or drilling a bolt hole circle around the circumference of a part.

The tool is similar to a rotary table except that it is designed to be tilted as well as rotated. Most

adjustable designs allow the head to be tilted from 10° below horizontal to 90° vertical, at which point

the head is parallel with the machine table. The workpiece is held in the indexing head in the same

manner as a metalworking lathe. This is most commonly a chuck but can include a collet fitted

directly into the spindle on the indexing head, faceplate, or between centres. If the part is long then it

may be supported with the help of an accompanying tailstock.

Manual indexing heads

Cross-section of an indexing head Interchangeable indexing plates Indexing is an operation of

dividing a periphery of a cylindrical workpiece into equal number of divisions by the help of index

crank and index plate. A manual indexing head includes a hand crank. Rotating the hand crank in turn

rotates the spindle and therefore the workpiece. The hand crank uses a worm gear drive to provide

precise control of the rotation of the work. The work may be rotated and then locked into place before

the cutter is applied, or it may be rotated during cutting depending on the type of machining being

done. Most dividing heads operate at a 40:1 ratio; that is 40 turns of the hand crank generates 1

revolution of the spindle or workpiece. In other words, 1 turn of the hand crank rotates the spindle by

Page 22: Industrial training report (submitted by shaloo mishra)

9 degrees. Because the operator of the machine may want to rotate the part to an arbitrary angle

indexing plates are used to ensure the part is accurately positioned.

Direct indexing plate: Most dividing heads have an indexing plate permanently attached to the

spindle. This plate is located at the end of the spindle, very close to where the work would be

mounted. It is fixed to the spindle and rotates with it. This plate is usually equipped with a series of

holes that enables rapid indexing to common angles, such as 30, 45, or 90 degrees. A pin in the base

of the dividing head can be extended into the direct indexing plate to lock the head quickly into one of

these angles. The advantage of the direct indexing plate is that it is fast and simple and no calculations

are required to use it. The disadvantage is that it can only be used for a limited number of angles. A

dividing head mounted on the table of a small milling machine. The direct indexing plate and centre

are visible facing the camera. An interchangeable indexing plate is visible on the left side.

Interchangeable indexing plates are used when the work must be rotated to an angle not available on

the direct indexing plate. Because the hand crank is fixed to the spindle at a known ratio (commonly

40:1) then dividing plates mounted at the handwheel can be used to create finer divisions for precise

orientation at arbitrary angles. These dividing plates are provided in sets of several plates. Each plate

has rings of holes with different divisions. For example, an indexing plate might have three rows of

holes with 24, 30, and 36 holes in each row. A pin on the hand crank engages these holes. Index plates

with up to 400 holes are available. Only one such plate can be mounted to the dividing head at a time.

The plate is selected by the machinist based on exactly what angle he wishes to index to.

Brown and Sharpe indexing heads include a set of 3 indexing plates. The plates are marked #1, #2

and #3, or "A", "B" and "C". Each plate contains 6 rows of holes. Plate #1 or "A" has 15, 16, 17, 18,

19, and 20 holes. Plate #2 or "B" has 21, 23, 27, 29, 31, and 33 holes. Plate #3 or "C" has 37, 39, 41,

43, 47, and 49 holes.

Some manual indexing heads are equipped with a power drive provision. This allows the rotation of

the dividing head to be connected to the table feed of the milling machine instead of using a hand

crank. A set of change gears is provided to select the ratio between the table feed and rotation. This

setup allows the machining of spiral or helical features such as spiral gears, worms, or screw type

parts because the part is simultaneously rotated at the same time it is moved in the horizontal

direction. This setup is called a "PTO dividing head".

Page 23: Industrial training report (submitted by shaloo mishra)

NUMERICAL CONTROL

Numerical control (NC) refers to the automation of machine tools that are operated by abstractly

programmed commands encoded on a storage medium, as opposed to controlled manually via

handwheels or levers, or mechanically automated via cams alone. The first NC machines were built in

the 1940s and 1950s, based on existing tools that were modified with motors that moved the controls

to follow points fed into the system on punched tape. These early servomechanisms were rapidly

augmented with analog and digital computers, creating the modern computer numerical control

(CNC) machine tools that have revolutionized the machining processes.

In modern CNC systems, end-to-end component design is highly automated using computer-aided

design (CAD) and computer-aided manufacturing (CAM) programs. The programs produce a

computer file that is interpreted to extract the commands needed to operate a particular machine via a

postprocessor (for specific controller), and then loaded into the CNC machines for production. Since

any particular component might require the use of a number of different tools-drills, saws, etc.,

modern machines often combine multiple tools into a single "cell". In other cases, a number of

different machines are used with an external controller and human or robotic operators that move the

component from machine to machine.

Page 24: Industrial training report (submitted by shaloo mishra)

TRANSMISSION SHOP

Transmissions available:

1. Model No. HD-785-2 transmission (85 ton dumper)

2. Model No. BD-335X transmission (410 hp dozer)

3. Model No. CLVT-750 transmission (35 ton dumper)

4. Model No. Bh-85-1 transmission (Rear dumper)

Details covered:

1. Clutch combinations

2. Valve combinations

3. Pressure oils used

4. Fitting, engaging and disengaging of clutches

5. PTO housing

6. Testing parameters for HD-785

7. Fluid coupling and torque converter

BD355X BULL DOZER

SALIENT FEATURES

1. BEML BS6D170-1 diesel engine: Turbo charged engine for superb fuel economy and generous

power to weight ratio for powerful dozing.

2. Torque flow transmission: Smooth and responsive power shift with single-lever control for instant

speed and directional changes.

3. Pilot operated hydraulic system: Offers effortless fine control of blade through

Joy stick

4. Operator Comfort: Conveniently located arm chair steering control for enhanced operator comfort.

5. Electronic Monitoring System: Introduction of state of the art electronic monitoring system, fitted

with cluster gauges.

6. Steering clutch & Brakes: Track-roller frames are made of high tensile steel for maximum rigidity.

The blade incorporates high-tensile steel at all key points to improve outstanding resistance to wear

7. Sturdy construction: High tensile steel blades of different configurations available for varying types

of working conditions and applications. The work attachment is sturdy in construction to withstand

adverse ground conditions.

Page 25: Industrial training report (submitted by shaloo mishra)

8. Sprockets: Bolt-on type segmented sprocket permits quick on site replacement. Special grooved

type floating seals and unique dust seals provide extended undercarriage life.

9. Reduced noise levels: Radiator, fuel tank, floor frame and the cabin are mounted on anti-vibration

rubber cushions to isolate vibration and to reduce noise levels.

Torque converter:

In modern usage, a torque converter is generally a type of hydrodynamic fluid coupling that is used

to transfer rotating power from a prime mover, such as an internal combustion engine or electric

motor, to a rotating driven load. The torque converter normally takes the place of a mechanical clutch

in a vehicle with an automatic transmission, allowing the load to be separated from the power source.

It is usually located between the engine's flexplate and the transmission. The key characteristic of a

torque converter is its ability to multiply torque when there is a substantial difference between input

and output rotational speed, thus providing the equivalent of a reduction gear. Some of these devices

are also equipped with a temporary locking mechanism which rigidly binds the engine to the

transmission when their speeds are nearly equal, to avoid slippage and a resulting loss of efficiency.

By far the most common form of torque converter in automobile transmissions is the device described

here. However, in the 1920s there was also the pendulum-based Constantinescu torque converter.

There are also mechanical designs for continuously variable transmissions and these also have the

ability to multiply torque, e.g. the Variomatic with expanding pulleys and a belt drive.

Usage

• Automatic transmissions on automobiles, such as cars, buses, and on/off highway trucks.

• Forwarders and other heavy duty vehicles.

• Marine propulsion systems.

• Industrial power transmission such as conveyor drives, almost all modern forklifts, winches, drilling

rigs, construction equipment, and railway locomotives.

Function

Torque converter elements

A fluid coupling is a two element drive that is incapable of multiplying torque, while a torque

converter has at least one extra element—the stator—which alters the drive's characteristics during

periods of high slippage, producing an increase in output torque.

In a torque converter there are at least three rotating elements: the impeller, which is mechanically

driven by the prime mover; the turbine, which drives the load; and the stator, which is interposed

between the impeller and turbine so that it can alter oil flow returning from the turbine to the impeller.

Page 26: Industrial training report (submitted by shaloo mishra)

The classic torque converter design dictates that the stator be prevented from rotating under any

condition, hence the term stator. In practice, however, the stator is mounted on an overrunning clutch,

which prevents the stator from counter-rotating with respect to the prime mover but allows forward

rotation.

Modifications to the basic three element design have been periodically incorporated, especially in

applications where higher than normal torque multiplication is required. Most commonly, these have

taken the form of multiple turbines and stators, each set being designed to produce differing amounts

of torque multiplication. For example, the Buick Dynaflow automatic transmission was a non-shifting

design and, under normal conditions, relied solely upon the converter to multiply torque. The

Dynaflow used a five element converter to produce the wide range of torque multiplication needed to

propel a heavy vehicle. Although not strictly a part of classic torque converter design, many

automotive converters include a lock-up clutch to improve cruising power transmission efficiency and

reduce heat. The application of the clutch locks the turbine to the impeller, causing all power

transmission to be mechanical, thus eliminating losses associated with fluid drive.

Operational phases

A torque converter has three stages of operation:

• Stall. The prime mover is applying power to the impeller but the turbine cannot rotate. For example,

in an automobile, this stage of operation would occur when the driver has placed the transmission in

gear but is preventing the vehicle from moving by continuing to apply the brakes. At stall, the torque

converter can produce maximum torque multiplication if sufficient input power is applied (the

resulting multiplication is called the stall ratio). The stall phase actually lasts for a brief period when

the load (e.g., vehicle) initially starts to move, as there will be a very large difference between pump

and turbine speed.

• Acceleration. The load is accelerating but there still is a relatively large difference between impeller

and turbine speed. Under this condition, the converter will produce torque multiplication that is less

than what could be achieved under stall conditions. The amount of multiplication will depend upon

the actual difference between pump and turbine speed, as well as various other design factors.

• Coupling. The turbine has reached approximately 90 percent of the speed of the impeller. Torque

multiplication has essentially ceased and the torque converter is behaving in a manner similar to a

simple fluid coupling. In modern automotive applications, it is usually at this stage of operation where

the lock-up clutch is applied, a procedure that tends to improve fuel efficiency. The key to the torque

converter's ability to multiply torque lies in the stator. In the classic fluid coupling design, periods of

high slippage cause the fluid flow returning from the turbine to the impellor to oppose the direction of

impeller rotation, leading to a significant loss of efficiency and the generation of considerable waste

Page 27: Industrial training report (submitted by shaloo mishra)

heat. Under the same condition in a torque converter, the returning fluid will be redirected by the

stator so that it aids the rotation of the impeller, instead of impeding it. The result is that much of the

energy in the returning fluid is recovered and added to the energy being applied to the impeller by the

prime mover. This action causes a substantial increase in the mass of fluid being directed to the

turbine, producing an increase in output torque. Since the returning fluid is initially travelling in a

direction opposite to impeller rotation, the stator will likewise attempt to counter-rotate as it forces the

fluid to change direction, an effect that is prevented by the one-way stator clutch.

Unlike the radially straight blades used in a plain fluid coupling, a torque converter's turbine and

stator use angled and curved blades. The blade shape of the stator is what alters the path of the fluid,

forcing it to coincide with the impeller rotation. The matching curve of the turbine blades helps to

correctly direct the returning fluid to the stator so the latter can do its job. The shape of the blades is

important as minor variations can result in significant changes to the converter's performance. During

the stall and acceleration phases, in which torque multiplication occurs, the stator remains stationary

due to the action of its one-way clutch. However, as the torque converter approaches the coupling

phase, the energy and volume of the fluid returning from the turbine will gradually decrease, causing

pressure on the stator to likewise decrease. Once in the coupling phase, the returning fluid will reverse

direction and now rotate in the direction of the impellor and turbine, an effect which will attempt to

forward-rotate the stator. At this point, the stator clutch will release and the impeller, turbine and

stator will all (more or less) turn as a unit.

Unavoidably, some of the fluid's kinetic energy will be lost due to friction and turbulence, causing the

converter to generate waste heat (dissipated in many applications by water cooling). This effect, often

referred to as pumping loss, will be most pronounced at or near stall conditions. In modern designs,

the blade geometry minimizes oil velocity at low impeller speeds, which allows the turbine to be

stalled for long periods with little danger of overheating.

Page 28: Industrial training report (submitted by shaloo mishra)

ENGINE SHOP

Engines available:

1) CUMMINS:

a) NT-495 (145hp-4 cylinder)

b) NT/A-495

c) NT-855

d) NT/A-855 (280 hp-6 cylinder)

e) NT-743

f) VT-1710

g) VT/A-1710

h) KT-1150

i) KT/A-1150

j) KT-2300 (900 hp-12 cylinder)

k) KT/A-2300

l) KT/A-38C

m) KT/A-3067 (1600hp-16 cylinders)

2) BEML:

a) 6D-170mm (410hp-6 cylinders)

b) 6D-140mm (280hp-6 cylinders)

3) DDC (Detra Diesel Corp.)

a) S-2000 (1200hp-16 cylinders)

4) CATERPILLER:

a) DITA-3406 (400hp-6 cylinders)

b) DITA-3506 (870 hp-8 cylinders)

c) CAT-3508 (900 hp-8 cylinders)

Page 29: Industrial training report (submitted by shaloo mishra)

Topics covered:

1. Cooling system

2. Air system

3. Lubrication system

4. Fuel system

5. Different manifolds

6. Turbocharger and supercharger in details

7. Construction of an air compressor

8. Construction of a water pump

9. Construction of a fuel injector

COOLING SYSTEMS Cooling system consists of the following major parts:

Air/water

Pump

Cylinder block

Oil cooler

Cylinder head

Water manifold

Thermostat housing

AIR SYSTEMS The air system consists of following important components:

Air cleaner

Turbocharger

After cooler

Intake manifold

Inlet valve

Combustion chamber

LUBRICATION SYSTEMS

Page 30: Industrial training report (submitted by shaloo mishra)

The lubrication system consists of the following important components:

Oil sump

Suction pipe

Oil pump

Oil regulator

Oil filter

Oil cooler

Main gallery

Sub gallery

Piston cooling nozzle gallery

Cylinder head

All moving components

Back to sump

FUEL SYSTEMS The fuel system consists of the following important parts:

Fuel tank

Fuel filter

Fuel pump

Pressure timing pump

Fuel injection pump

Fuel manifold

Fuel injector nozzle

Combustion chamber

CONCLUSION

Page 31: Industrial training report (submitted by shaloo mishra)

The industrial training has helped me achieve a better sense of the theoretical knowledge provided in the

college. Without the prior knowledge and concepts, the training would not have helped me understand the

peculiarities of industries and their practices. On the other hand, training has helped me capitalise on the base

provided by the institute.

The training gave me the opportunity to explore the industry, its machinery, work environment and its ethics.

The time spent in the welding shop, machinery shop, transmission shop and the engine shop provided me

with enough experience of the real working conditions.

It is worth noting about the safety concerns shown by the industry. To sum up I would say this training has

made me a better engineer.