ii sem (csvtu) mathematics unit 3 (multiple integral )solustions

35
Prepared by Mrityunjoy Dutta Unit III – Multiple Integral (May-Jun-2006) 1. Evaluate by changing the order of integration. Ans 0 0 2 x x y xe dydx 0 0 2 x x y xe dydx by changing the order of the equation we will have 0 2 y x y xe dydx 0 0 2 2 y y x x y y xe dydx xe dx dy 0 0 2 2 2 2 2 2 2 2 2 2 2 y y t y y x x y y y xe dydx e dy y x x y xe dx taking t y xdx ydt x x y y y y y xdx dt xe dx e dt e y 00 / . 2 x y x dydx xe

Upload: mrityunjoy-dutta

Post on 08-Nov-2014

30 views

Category:

Documents


1 download

DESCRIPTION

Previous Years Solutions from 2006-2012 for both summer and winter

TRANSCRIPT

Page 1: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Unit III – Multiple Integral

(May-Jun-2006)

1. Evaluate by changing the order of integration.

Ans 0 0

2xx yxe dydx

0 0

2xx yxe dydx

by changing the order of the equation we will have 0

2

y

xyxe dydx

0 0

2 2

y y

x xy yxe dydx xe dx dy

0 0

2

2 2

2

2

2

22

2 2 2

y

y

t

y y

x xyy yxe dydx e dy

y

xxyxe dx taking ty

xdx ydt

xx yy y yyxdx dt xe dx e dt e

y

0 0

/ .2

xyx dydxxe

Page 2: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

0 0 0 0

2 20

2 2 2y

x xy y yy y y yxe dydx e dy e dy e dy

yy

0 0

21 1. 1/ 22 1y

x yey yxe dydx y e

(Ans).

2. Find the volume common to the cylinder 2 2 2 2 2 2,x y a x z a .

Ans:

2 2 2 2 2 2 2 2

2 2 2 2 0 0 0

Volume 8a a x a x a a x a x

a a x a x

dxdydz dxdydz

2 2 2 2

2 22 2

00 0 0 0

Volume 8 8a a x a a x

a xz dxdy a x dxdy

2 2

2 2 2 2 2 2 2 20

0 0 0

Volume 8 . 8 . 8 ( )a a a

a xa x y dx a x a x dx a x dx

3 3 3 3

2 2

0

2 16Volume 8 8 83 3 3 3

ax a a aa x a

(Ans).

3. Prove that . 1,0,)1(

!.)1().(log 1

1

0

mnm

ndxxx n

nnm

Page 3: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

(Nov –Dec 2006)

4. Evaluate the following integral by changing of order of integration 2

4 2 20

a a

ax

y dxdyy a x

.

Ans:

Here region of integration is x varies from 0 to a, y varies from ax to a.

After changing order y varies from 0 to a, x varies from 0 to2y

a.

2 /2 2

4 2 2 4 2 20 0 0

y aa a a

ax

y dxdy y dydxy a x y a x

putting 2a as common we get

2

2

4 2 2 220 0 0 2

2a a a

ax

y y dydxay dxdy ay a x y x

a

2

2 21

24 2 2 220 0 0 02

0

22

sina a a a

ax

yay y dxay dxdy y xa dy dy

a yy a x y x aa

2

2 2 21 1 1

2 24 2 20 0 0

0

2

sin sin sin 0a a a a

ax

ya y

y dxdy y x y ady dya ay yy a x

a a

Page 4: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2 2 2

4 2 20 0 0

02 2

a a a a

ax

y dxdy y ydy dya ay a x

2 2 2

3

04 2 20 02 6 6

a a aa

ax

y dxdy y ady ya ay a x

(Ans)

5. Find the volume common to gas cylinder 2 2 2 2 2 2,x y a x z a .

Ans:

2 2 2 2 2 2 2 2

2 2 2 2 0 0 0

Volume 8a a x a x a a x a x

a a x a x

dxdydz dxdydz

2 2 2 2

2 22 2

00 0 0 0

Volume 8 8a a x a a x

a xz dxdy a x dxdy

2 2

2 2 2 2 2 2 2 20

0 0 0

Volume 8 . 8 . 8 ( )a a a

a xa x y dx a x a x dx a x dx

3 3 3 3

2 2

0

2 16Volume 8 8 83 3 3 3

ax a a aa x a

(Ans).

6. Define Beta function and show that ( ) ( )( , )( )m nm nm n

.

Page 5: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Ans: The Beta function is defined as 1 1

1 1

0 0

( , ) (1 ) , , 0(1 )

nm n

m nxB m n x x dx dx m nx

.

We know that 1

0

( ) .x nn e x dx

By putting x az dx adz we get

1

0

( ) .( )az nn e az adz

1

0

( ) .n az nn a e z dz

Putting z = x we get

1

0

( ) .n ax nn a e x dx

Now, taking a = z we get

1

0

( ) .zx n nn e x z dx

By multiplying 1z me z both side we get

1 (1 ) 1 1

0

( ) .z m z x n m nn e z e x z dx

Now taking integration with respect to z both side from 0z we get

1 1 (1 ) 1

0 0 0

( ) .z m n z x m nn e z dz x e z dzdx

Now, let (1 )1 1

y dyz x y z dzx x

we get

1

1

0 0

.( ) ( )(1 )

y m nn

m n

e y dyn m x dxx

1

1

0 0

( ) ( ) .(1 )

ny m n

m n

xn m e y dy dxx

1

0

( ) ( ) ( )(1 )

n

m nxm n m n dxx

Page 6: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

1

0

( ) ( ) ( ) ( ). ( , )(1 )

n

m nxm n m n dx m n B m nx

( ) ( )( , ) .( )m nB m nm n

(proved)

(May-Jun-2007)

7. Change the order of integration in 2

1 2

0

x

x

I xydxdy

and hence evaluate the same.

Ans: From 2

1 2

0

x

x

I xydxdy

, region of integration is 2 , 2 , 0, 1y x y x x x

By changing of order of integration we get two regions

In one region limit of x is 0,x x y and limit of y is 0, 1y y

In another region limit of x is 0, 2x x y and limit of y is 1, 2y y

So, 2

21 2 1 2

0 0 0 1 0

y yx

x

I xydxdy xydydx xydydx

21 2

0 0 1 0

y y

I xydx dy xydx dy

21 22 2

0 10 02 2

y yx y x yI dy dy

1 22 2

0 1

0 (2 ) 02 2

y y yI dy dy

1 22 3

2

0 1

2 22 2y yI dy y y dy

Page 7: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

1 23 3 4

2

0 1

26 3 8y y yI y

1 16 16 2 10 4 16 3 8 3 8

I

4 96 128 48 24 16 3

24I

164 153 11

24 24I

(Ans)

8. Find the volume bounded by the cylinder 2 2 4x y and the planes 4, 0y z z

Ans:

From the figure 4z y is to be integrated over the circle 2 2 4x y in the xy plane.

To cover the shaded half of the circle, x varies from 0 to 24 y

So, 2 24 42 2

2 0 2 0

Volume 2 2 (4 )y y

zdxdy y dxdy

2

24

02

Volume 2 (4 ) yy x dy

2

2

2

Volume 2 (4 ) 4y y dy

2 2

2 2

2 2

Volume 8 4 2 4y dy y y dy

22

1

2

4 4Volume 8 sin 02 2 2

y y y

Page 8: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

{second term is zero because of odd function}

1 1Volume 8 0 0 2sin 1 2sin ( 1)

1Volume 8 4sin 1 8 4 162 (Ans).

9. Solve 2 2 /2( )nxy x y dxdy over the positive quadrant of 2 2 4x y supposing n+3>0. Ans:

2 2

2 2 /2 2 2 /2

0 0

( ) ( )a a x

n nxy x y dxdy xy x y dxdy

2 2

32 2 2

2 2 /2

0

0

( )( ) 322

a xn

an

y

x x yxy x y dxdy dxn

3

2 2 /2 2 2 2 2

0

1( ) ( 0)3

a nnxy x y dxdy x x a x dx

n

3 322 2

2 2 /2

0 0

( )3 3 2

n n aan a a xxy x y dxdy xdx

n n

73

222 2 /2( )

3 2 2( 3)

nn

naa axy x y dxdy

n n

(Ans)

(Nov –Dec 2007)

10. Define Beta Function.

Page 9: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Ans. The Beta function ,m n is defined as

1

0

1 1, 1m nm n x x dx for m>0 and n>0 It is also known as first Eularian Integral

11. Evaluate .

Ans:

2 2 2c b a

x y z dxdydzc ab

3 32 2 2 2 22 2

3 3

ac b c bz ax z y z dxdy ax ay dxdyc cab b

3 3 3 3

2 2 2 2 22 2 4 42 43 3 3 3

bc b a c cay a y ab a bx y z dxdydz ax y dx abx dxc a c cbb

3 3 3 3 3 3

2 2 2 4 4 4 8 8 83 3 3 3 3 3

cc b a abx ab x a bx abc ab c a bcx y z dxdydzc a cb

2 2 2 2 2 283

c b a abcx y z dxdydz a b cc ab

(Ans)

12. Prove that .

Sol.

1

10

1 !log

1

nn

n

nmx x dxm

1

0

log nmx x dx ……………………………………………….1

Let log tx t x e tdx e dt

1 becomes 0

0

1 1n nm t m te t dt e t dt

……………………………….2

1

1dpm t p dt

m

2 becomes 0

11 1

nppe dpm m

c

c

b

b

a

a

dxdydzzyx )( 222

1,0,)1(

!.)1().(log 1

1

0

mn

mndxxx n

nnm

Page 10: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

0

11 11

nn

p ne p dpm

=

0

1 1 11 11

nn npe p dp

m

0

1 11 11 11 1 11 1

n nn nnpe p dp n

m m

1 1 !1 1 1 11 1

nn

n nn nm m

Hence Proved

13. Find the area enclosed by the parabolas 푦 = 4푥 − 푥 , 푦 = 푥 .

Ans:

23 4

0

Areax x

x

dxdy

2

3 3 34 2 2

0 0 0

Area (4 ) (3 )x x

xy dx x x x dx x x dx

32 3

0

27 27 27 9Area 3 0 02 3 2 3 6 2x x

(Ans)

(May-Jun-2008)

14. Define Gamma Function.

Ans. Gamma function is defined as 1

0

, 0x nn e x dx n

15. Evaluate the integral: 1

loglog

1 1

xye ezdxdydz

Page 11: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Sol. 1

loglog

1 1

xye ezdxdydz

1 1 1

log log loglog log 0 11

1 1 1 1

xx

x xy y ye e e eezdz dxdy z z z dxdy e x e dx dy

1 1 1

log log loglog 1 1

1 1 1

xx x x x x

y ye e e e yzdxdydz e x e dx dy e x e e x dy

1

1 1

1 1

loglog log 2 log 2 1

1 1log

log log 2 log 11 1

x

x

ye e ezdxdydz y y y y e e dy

ye e ezdxdydz y y y y e dy

2

2 2

1

loglog log log 1

4 11 1

xy

eye e yzdxdydz y y y y y e

2 2

1

log 5log 1 0 5 / 4 0 12 41 1

xye e e ezdxdydz e e e e

2

1

loglog 2 13 / 4

41 1

xye e ezdxdydz e

Ans.

16. Given 1

0 1 sin( )

nx dxx n

Show that 1

sin( )n n

n

Hence evaluate 40 1

dyy

Sol. Given that

1

0 1 sin( )

nx dxx n

We know that ( , ) m nm nm n

1

0 1

n

m nx m ndx

m nx

1 1let m n m n

1

0

1 111

n

m nx n ndx n nx

1

0

1sin( )1

nx dx n nnx

Page 12: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Therefore 1sin( )

n nn

Now for

40 1

dyy

……………………………………….1

Let 4y =x

Y= 1/4x

Y= 3/414

dy x dx

3/4 1/4 1

40 0 0

1 1 1 1 111 4 1 4 1 4 sin 4 4 2 2sin

4 2

dy x dx x dxy x x

(Ans)

17. Find the area enclosed by the parabolas 푦 = 4푎푥,푥 = 4푎푦 .

Area is given by 4

0

2

2/4

a axdxdy

x a

4 4

0 0

2 22/42/4

a aax axdxdy y dxx a

x a

4 42

0 0

22 / 4

2/4

a aaxdxdy ax x a dx

x a

44 3 2 2 2

0 0

2 3/2 1 32 16 1623 / 2 4 3 3 3 32/4

aa ax x x a a adxdy a

ax a

(Ans)

(Nov –Dec 2008)

Page 13: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

18. Write only the value of .

Ans By using Legendre duplication formula

1 22 12 2

m m mm

14

1 1 1 1 12 214 4 2 4 22 122 2

19. Evaluate .

Ans:

2 2 2c b a

x y z dxdydzc ab

3 32 2 2 2 22 2

3 3

ac b c bz ax z y z dxdy ax ay dxdyc cab b

3 3 3 3

2 2 2 2 22 2 4 42 43 3 3 3

bc b a c cay a y ab a bx y z dxdydz ax y dx abx dxc a c cbb

3 3 3 3 3 3

2 2 2 4 4 4 8 8 83 3 3 3 3 3

cc b a abx ab x a bx abc ab c a bcx y z dxdydzc a cb

2 2 2 2 2 283

c b a abcx y z dxdydz a b cc ab

(Ans)

20. Change the order of integration 0

y

x

e dxdyy

and hence evaluate it.

Ans 0

y

x

e dxdyy

43.

41

c

c

b

b

a

a

dxdydzzyx )( 222

Page 14: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

0

y

x

e dxdyy

by changing the order of the equation we will have 0 0

y ye dxdyy

0 0 0 0

y yy ye edxdy dx dyy y

0 0 0 0

yy y ye edxdy x dyy y

0 0 0 0

y y yye edxdy y dy e dy

y y

0

0 0 0 0

1y y y

y ye edxdy y dy e dy ey y

(Ans).

21. Find the area of the loop of the curve 푎푦 = 푥 (푎 − 푥) . Ans.

Page 15: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Area of the loop of the curve 푎푦 = 푥 (푎 − 푥) .will be given by 0 0

a xx aadxdy

0 0 0 0

a x a xx xa aa adxdy dy dx

……………………………..1

0 0 0 0 0 0

a x a x a xx x xa aa a a adxdy dy dx y dx

0 0 0 0 0 00 0

a x a x a xx x xa aa a a aa a xdxdy dy dx y dx x dxa

0 0 0 0

a xx aa a a xdxdy x dxa

…………………………..2

Take 2sinx a

Page 16: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Becomes /2 /2

2 2 2 4 2

0 0 0 0

sin cos 2 sin cos 2 sin cos

a xx aadxdy a a d a a d

/2 22 4 2 2

0 0 0

3 1 12 sin cos 2

6 4 2 2 16

a xx aa adxdy a a d a

(Ans).

(May-Jun-2009)

22. Write the relation between Beta and Gamma function.

Ans: ( ). ( )( , )( )m nB m nm n

23. Evaluate the following integral by changing of order of integration 2

4 2 20

a a

ax

y dxdyy a x

.

Ans:

Here region of integration is x varies from 0 to a, y varies from ax to a.

After changing order y varies from 0 to a, x varies from 0 to2y

a.

2 /2 2

4 2 2 4 2 20 0 0

y aa a a

ax

y dxdy y dydxy a x y a x

putting 2a as common we get

2

2

4 2 2 220 0 0 2

2a a a

ax

y y dydxay dxdy ay a x y x

a

Page 17: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2

2 21

24 2 2 220 0 0 02

0

22

sina a a a

ax

yay y dxay dxdy y xa dy dy

a yy a x y x aa

2

2 2 21 1 1

2 24 2 20 0 0

0

2

sin sin sin 0a a a a

ax

ya y

y dxdy y x y ady dya ay yy a x

a a

2 2 2

4 2 20 0 0

02 2

a a a a

ax

y dxdy y ydy dya ay a x

2 2 2

3

04 2 20 02 6 6

a a aa

ax

y dxdy y ady ya ay a x

(Ans)

24. Evaluate 2 2( )

0 0

x ye dxdy

by changing to polar coordinates. Hence show that 2

0 2xe dx

.

Ans: 2 2 2

/2( )

0 0 0 0

x y r

r

e dxdy e rdrd

2 2 2

/2( )

0 0 0 0

1 22

x y r

r

e dxdy re dr d

2 2 2

/2( )

00 0 0

12

x y re dxdy e d

2 2

/2( )

0 0 0

1 (0 1)2

x ye dxdy d

2 2/2

/2( )0

0 0 0

1 1 12 2 2 2 4

x ye dxdy d

(Ans)

Now, 2 2( )

0 0 4x ye dxdy

2 2( ) ( )

0 0 4x ye dx e dy

Page 18: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2 2( ) ( )

0 0 4x xe dx e dx

2

2

( )

0 4xe dx

2

0 2xe dx

(Proved)

25. Find by double integration, the area lying between the parabolas 24y x x and the line y x .

Ans:

23 4

0

Areax x

x

dxdy

2

3 3 34 2 2

0 0 0

Area (4 ) (3 )x x

xy dx x x x dx x x dx

32 3

0

27 27 27 9Area 3 0 02 3 2 3 6 2x x

(Ans)

(Nov –Dec 2009)

26. Find the value of 2

0

axe x dx

.

Ans: - ∫ 푒 푥 푑푥∞ Let 푎푥 = 푡 ⇒ 푎푑푥 = 푑푡 ⇒ 푑푥 = 푑푡

= ∫ 푒 푡 푑푥∞ = Γ(3) = × 2 = (Ans).

27. Change the order of integration and evaluate 43

0 1

( )y

x y dxdy

Page 19: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Ans: - ∫ ∫ (푥 + 푦)푑푥 푑푦 = ∫ ∫ (푥 + 푦)푑푦 푑푥 = ∫ 푥푦 + 푑푥

= ∫ 푥(4 − 푥 ) + ( ) 푑푥

= ∫ 4푥 − 푥 + 8− 4푥 + 푑푥

= 2푥 − + 8푥 − +

= 2(4 − 1) − (16 − 1) + 8(2 − 1) − (8 − 1) + (32 − 1)

= 6− + 8− + = = (Ans).

28. Find the volume bounded by the plane xy, the cylinder 2 2 1x y and plane 3x y z .

Ans: - Volume = ∭푑푥푑푦푑푧

= ∫ ∫ ∫ 푑푥푑푦푑푧√√ = ∫ ∫ 푧] 푑푥푑푦√

= ∫ ∫ (3 − 푥 − 푦)푑푥푑푦 = ∫ 3푦 − 푥푦 −√

√푑푥√

= ∫ (3− 푥)(√1− 푥 + √1− 푥 ) − ( )푑푥

= ∫ 2(3− 푥)√1− 푥 푑푥 = ∫ 6√1 − 푥 − 푥√1− 푥 푑푥

= 6 √ + 6 푠푖푛 푥 + ( ) /

= 6(0 − 0) + 3 + + (0 − 0) = 3휋 (Ans).

29. Prove that: 1 12

4 40 0 4 21 1

x dx dxx x

.

Ans: - ∫ √ Let 푥 = 푠푖푛푡 ⇒ 2푥푑푥 = 푐표푠푡푑푡 ⇒ 푑푥 = =

√푑푡

⇒ ∫ √= ∫ /

√푑푡 = ∫ √푠푖푛푡푑푡/ =

Γ Γ

Γ=

Γ

Γ√

⇒ ∫ √=

Γ

Γ√ ----------------------------------(1)

∫ √ Let 푥 = 푡푎푛푡 ⇒ 2푥푑푥 = 푠푒푐 푡푑푡 ⇒ 푑푥 = =

√푑푡

⇒ ∫ √= ∫ /

√푑푡 = ∫

√푑푡/ = ∫ √

푑푡/

⇒ ∫ √=

√∫ √

푑푡/ Let 2푡 = 휃 ⇒ 2푑푡 = 푑휃 ⇒ 푑푡 =

Page 20: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

⇒ ∫ √=

√∫ √

/ =√

Γ Γ

Γ=

Γ

Γ√ --------------------(2)

Now, ∫ √× ∫ √

Γ√ ×

Γ

Γ√

⇒ ∫ √× ∫ √

=√

Γ

Γ휋 =

Γ

Γ휋 =

√ (Ans).

(May-Jun-2010) 30. Compute, 훽 , .

Ans: -

9 7 7 5 3 1 5 3 1. . . . . . . .9 7 52 2 2 2 2 2 2 2 2,9 72 2 7.6.5.4.3.2.1 20482 2

(Ans).

31. Show that : ∫ √= √ ∫ √

=.

.

Ans: -

1

061 x

dx putting ddxxx cossin

31sinsin 3/23/13

2/

0

1)2/1(21)6/1(22/

0

3/22/

0

3/21

06

cossin31sin

31

cos

cossin31

1

dd

d

xdx

3/2

.6/161

3/222/1.6/1

31

1

1

06

xdx

--------------------(1)

By Legendre’s Duplication method nnn n 222

112

---------(2)

Now, putting 61

n in eqn (2) we get 3/12

3/26/1 3/2

3/2

3/126/13/2

So, equation (1) becomes

3/23/23/12

61

3/23/12

3/261

1

3/23/21

06

xdx

Page 21: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

233/2

2

23/21

06 )3/sin(/

3/1.261

3/23/13/13/12

61

1

x

dx as

nrn

rnr

sin1.

3/7

333/21

06 2

3/1.4.

3.3/1.261

1

xdx

(Proved)--------(I)

Again

1

0312

3

xdx

putting ddxx cossin32sin 3/13/2

2/

0

1)2/1(21)3/1(22/

0

3/12/

0

3/11

03

cossin3

1cossin3

1cos

cossin32

23

123

dd

d

xdx

6/5

.3/132

16/52

2/1.3/13

1

123 1

03

xdx

-----------------(3)

By Legendre’s Duplication method nnn n 222

112

---------(4)

Now, putting 31

n in eqn (4) we get 3/22

6/53/1 3/2

3/1

3/226/53/2

So, equation (3) becomes

3/2

3/132

1

3/13/22

3/132

112

3 2

3/53/2

1

03

xdx

)3/sin(/

3/132

13/23/13/13/1

321

123 3

3/5

2

3/5

1

03

xdx

as

nrn

rnr

sin1.

3/7

33

3/5

1

03 2

3/1233/1

321

123

xdx

(Proved)--------------(II)

From (I) and (II)

Page 22: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

3/7

3

1

03

1

06 2

31

123

1

xdx

xdx

(Proved)

32. Change the order of following integration: ∫ ∫ 푥푦 푑푥 푑푦 and evaluate.

Ans: From 2

1 2

0

x

x

I xydxdy

, region of integration is 2 , 2 , 0, 1y x y x x x

By changing of order of integration we get two regions

In one region limit of x is 0,x x y and limit of y is 0, 1y y

In another region limit of x is 0, 2x x y and limit of y is 1, 2y y

So, 2

21 2 1 2

0 0 0 1 0

y yx

x

I xydxdy xydydx xydydx

21 2

0 0 1 0

y y

I xydx dy xydx dy

21 22 2

0 10 02 2

y yx y x yI dy dy

1 22 2

0 1

0 (2 ) 02 2

y y yI dy dy

1 22 3

2

0 1

2 22 2y yI dy y y dy

1 23 3 4

2

0 1

26 3 8y y yI y

Page 23: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

1 16 16 2 10 4 16 3 8 3 8

I

83

249

24155164

243162448128964

I (Ans).

33. Find the volume enclosed by the cylinders

x2 + y2 = 2ax and z2 = 2ax.

Ans: - 2 2 2 2 2 2 22 2 0 ( )x y ax x y ax x a y a

At 2 20, ( ) 0,2y x a a x a

Volume = 2

2

2 2 2

0 22

a ax x ax

axax x

dxdydz

Volume = 2

2

2 22

20 2

a ax xax

axax x

z dxdy

Volume = 2

2

2

2

2 2 22

20 02

2 2 2 2a ax x a

ax x

ax xax x

axdxdy a x y dx

Volume = 2

2

0

2 2 .2 2a

a x ax x dx

Volume = 2

2

0

4 2 . 2a

a x ax x dx Let 22 sin 4 sin cosx a dx a d

Volume = /2

0

4 2 2 sin .2 sin cos .4 sin cosa a a a d

Volume = /2 3

3 3 2 3

0

2 12864 sin .cos 64 .5 3 15

aa d a

(Ans).

(Nov –Dec 2010)

34. Write the relation between beta and gamma function. ( ) ( )( , ) .( )m nB m nm n

35. Change the order of integration and evaluate : 2

4 2

0 /4

a ax

x a

I dydx

Page 24: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2

4 2

0 /4

a ax

x a

I dydx By changing the order of the integration we will have figure below and the

solution will be 2 2

24 2 4

0 0/4 /4

aya ax a

x a y a

dydx dydx

=

24

0 2/4

ayadydx

y a =

4

0

24 22/40 2/4

aaya aydydx x dyy ay a

4 42

0 0

22 / 4

2/4

a aaydxdy ay y a dy

y a

44 3 2 2 2

0 0

2 3/2 1 32 16 1623 / 2 4 3 3 3 32/4

aa ay

y y a a adxdy aa

y a

(Ans)

36. Evaluate :

2 22 11 1

0 0 0

x yx

I xyzdydxdz

Sol.

2 22 22 2 111 1 1 1 2

0 0 0 0 0 02

x yx yx x xyzI xyzdydxdz dydx

Page 25: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2 22 2 2 211 1 1 1

0 0 0 0 0

12

x yx x xy x yI xyzdydxdz dydx

2 22 2 3 311 1 1 1

0 0 0 0 0 2

x yx x xy x y y xI xyzdydxdz dydx

2

2 22

12 3 2 4

11 1 1

0 0 0 0

0

2 2 42

x

x yxxy x y y x

I xyzdydxdz dx

2 222 2 4

2 3 2 211 1 1

0 0 0 0

1 1 1

4 4 8

x yx x x x x x xI xyzdydxdz dx

2 22 22 3 2 211 1 1

0 0 0 0

1 1 14 4 8

x yx x x x x x xI xyzdydxdz dx

2 22 3 3 5 5 311 1 1

0 0 0 0

24 4 8

x yx x x x x x x xI xyzdydxdz dx

2 22

12 4 4 6 2 6 4

11 1

0 0 0

0

22 4 4 6 2 6 4

4 4 8

x yxx x x x x x x

I xyzdydxdz

2 22 11 1

0 0 0

1 1 1 1 1 1 18 16 16 24 16 48 16

x yx

I xyzdydxdz

2 22 11 1

0 0 0

1 1 1 1 1 1 1 18 16 16 24 16 48 16 48

x yx

I xyzdydxdz

(Ans)

37. Given 1

0 1 sin( )

nx dxx n

Show that 1

sin( )n n

n

Hence evaluate 40 1

dyy

Sol. Given that

1

0 1 sin( )

nx dxx n

Page 26: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

We know that ( , ) m nm nm n

1

0 1

n

m nx m ndx

m nx

1 1let m n m n

1

0

1 111

n

m nx n ndx n nx

1

0

1sin( )1

nx dx n nnx

Therefore 1sin( )

n nn

Now for

40 1

dyy

……………………………………….1

Let 4y =x

Y= 1/4x

Y= 3/414

dy x dx

3/4 1/4 1

40 0 0

1 1 1 1 111 4 1 4 1 4 sin 4 4 2 2sin

4 2

dy x dx x dxy x x

(Ans)

(May-Jun-2011)

38. Evaluate 3

2

Ans. We know that

( 1) ( )n n n

( 1)( ) nnn

3 13 2

322

Page 27: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

13 2

322

………………………..1

As we know that

( 1)( ) nnn

Therefore we will have

1 111 2 2

1 122 2

…………………..2

From 1 and 2 we will have

121 1

3 2 23 3 12

2 2 2

143 2

2 3

Ans

39. Evaluate the following integral by changing of order of integration

2

4 2 20

a a

ax

y dxdyy a x

.

Ans:

Here region of integration is x varies from 0 to a, y varies from ax to a.

Page 28: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

After changing order y varies from 0 to a, x varies from 0 to2y

a.

2 /2 2

4 2 2 4 2 20 0 0

y aa a a

ax

y dxdy y dydxy a x y a x

putting 2a as common we get

2

2

4 2 2 220 0 0 2

2a a a

ax

y y dydxay dxdy ay a x y x

a

2

2 21

24 2 2 220 0 0 02

0

22

sina a a a

ax

yay y dxay dxdy y xa dy dy

a yy a x y x aa

2

2 2 21 1 1

2 24 2 20 0 0

0

2

sin sin sin 0a a a a

ax

ya y

y dxdy y x y ady dya ay yy a x

a a

2 2 2

4 2 20 0 0

02 2

a a a a

ax

y dxdy y ydy dya ay a x

2 2 2

3

04 2 20 02 6 6

a a aa

ax

y dxdy y ady ya ay a x

(Ans)

40. State and prove relation between beta and gamma function. Ans: The Beta function is defined as

1 11 1

0 0

( , ) (1 ) , , 0(1 )

nm n

m nxB m n x x dx dx m nx

.

We know that 1

0

( ) .x nn e x dx

By putting x az dx adz we get

Page 29: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

1

0

( ) .( )az nn e az adz

1

0

( ) .n az nn a e z dz

Putting z = x we get

1

0

( ) .n ax nn a e x dx

Now, taking a = z we get

1

0

( ) .zx n nn e x z dx

By multiplying 1z me z both side we get

1 (1 ) 1 1

0

( ) .z m z x n m nn e z e x z dx

Now taking integration with respect to z both side from 0z we get

1 1 (1 ) 1

0 0 0

( ) .z m n z x m nn e z dz x e z dzdx

Now, let (1 )1 1

y dyz x y z dzx x

we get

1

1

0 0

.( ) ( )(1 )

y m nn

m n

e y dyn m x dxx

1

1

0 0

( ) ( ) .(1 )

ny m n

m n

xn m e y dy dxx

1

0

( ) ( ) ( )(1 )

n

m nxm n m n dxx

1

0

( ) ( ) ( ) ( ). ( , )(1 )

n

m nxm n m n dx m n B m nx

( ) ( )( , ) .( )m nB m nm n

(proved)

Page 30: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

41. Find the volume common to gas cylinder 2 2 2 2 2 2,x y a x z a .

Ans:

2 2 2 2 2 2 2 2

2 2 2 2 0 0 0

Volume 8a a x a x a a x a x

a a x a x

dxdydz dxdydz

2 2 2 2

2 22 2

00 0 0 0

Volume 8 8a a x a a x

a xz dxdy a x dxdy

2 2

2 2 2 2 2 2 2 20

0 0 0

Volume 8 . 8 . 8 ( )a a a

a xa x y dx a x a x dx a x dx

3 3 3 3

2 2

0

2 16Volume 8 8 83 3 3 3

ax a a aa x a

(Ans).

(Nov –Dec 2011)

42. Write the relation between Beta and Gamma function

Ans: - The relation between beta & gamma function is ( ) ( )( , )( )m nm nm n

.

43. Change the order of integration 0

y

x

e dxdyy

and hence evaluate it.

Ans 0

y

x

e dxdyy

Page 31: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

0

y

x

e dxdyy

by changing the order of the equation we will have 0 0

y ye dxdyy

0 0 0 0

y yy ye edxdy dx dyy y

0 0 0 0

yy y ye edxdy x dyy y

0 0 0 0

y y yye edxdy y dy e dy

y y

0

0 0 0 0

1y y y

y ye edxdy y dy e dy ey y

(Ans).

44. Find the volume common to the cylinder 2 2 2 2 2 2,x y a x z a .

Ans:

Page 32: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2 2 2 2 2 2 2 2

2 2 2 2 0 0 0

Volume 8a a x a x a a x a x

a a x a x

dxdydz dxdydz

2 2 2 2

2 22 2

00 0 0 0

Volume 8 8a a x a a x

a xz dxdy a x dxdy

2 2

2 2 2 2 2 2 2 20

0 0 0

Volume 8 . 8 . 8 ( )a a a

a xa x y dx a x a x dx a x dx

3 3 3 3

2 2

0

2 16Volume 8 8 83 3 3 3

ax a a aa x a

(Ans).

45. Prove that 2

1 2 12 2 1n

nnn

Ans.

2 11 2 1 12 2 2

nnn

2 1 2 1 2 1 2 1 2 3 2 31 1 ..........2 2 2 2 2 2 2

n n n n n nn

2 1 2 1 2 3 2 5 2 71 1 11 ............2 2 2 2 2 2 2 2

n n n n nn

2 1 . 2 3 . 2 5 . 2 7 ................112 2

n n n nn n

2 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 ................112 2 .2 . 2 2 . 2 4 . 2 6 ......................2

n n n n n n n nn n n n n n

1 2 !2 2 .2 . 1 . 2 . 3 ......................1

nn n n n n n

1 2 !22 2 . !

nn n n

1 2 122 2 . 1

nn n n

hence Proved

(May-Jun-2012)

46. Evaluate the following Integral:

Page 33: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

2 3 2

0 1xy dxdy

3 23 22 3 2 22

0 1 0 01 0

26 26 52 / 33 3 6

xy x xxy dy dx dx dx

47. Evaluate the following integral by changing the order of integration:

0

y

x

e dydxy

Ans 0

y

x

e dxdyy

0

y

x

e dxdyy

by changing the order of the equation we will have 0 0

y ye dxdyy

0 0 0 0

y yy ye edxdy dx dyy y

0 0 0 0

yy y ye edxdy x dyy y

0 0 0 0

y y yye edxdy y dy e dy

y y

0

0 0 0 0

1y y y

y ye edxdy y dy e dy ey y

(Ans).

48. Given 1

0 1 sin

nx dxx n

, show that ( ) (1 )sin

n nn

Page 34: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

Sol. Given that

1

0 1 sin( )

nx dxx n

We know that ( , ) m nm nm n

1

0 1

n

m nx m ndx

m nx

1 1let m n m n

1

0

1 111

n

m nx n ndx n nx

1

0

1sin( )1

nx dx n nnx

Therefore 1sin( )

n nn

Now for

40 1

dyy

……………………………………….1

Let 4y =x

Y= 1/4x

Y= 3/414

dy x dx

3/4 1/4 1

40 0 0

1 1 1 1 111 4 1 4 1 4 sin 4 4 2 2sin

4 2

dy x dx x dxy x x

(Ans)

49. Find the area included between the parabola: 24y x x and the line y x Ans:

Page 35: II sem (csvtu) Mathematics Unit 3 (Multiple Integral )Solustions

Prepared by Mrityunjoy Dutta

23 4

0

Areax x

x

dxdy

2

3 3 34 2 2

0 0 0

Area (4 ) (3 )x x

xy dx x x x dx x x dx

32 3

0

27 27 27 9Area 3 0 02 3 2 3 6 2x x

(Ans)

.