[IEEE 22nd International Conference on Data Engineering (ICDE'06) - Atlanta, GA, USA (2006.04.3-2006.04.7)] 22nd International Conference on Data Engineering (ICDE'06) - Enabling Query Processing on Spatial Networks

Download [IEEE 22nd International Conference on Data Engineering (ICDE'06) - Atlanta, GA, USA (2006.04.3-2006.04.7)] 22nd International Conference on Data Engineering (ICDE'06) - Enabling Query Processing on Spatial Networks

Post on 15-Apr-2017




4 download

Embed Size (px)


<ul><li><p>Enabling Query Processing on Spatial Networks</p><p>Jagan Sankaranarayanan, Houman Alborzi, and Hanan Samet</p><p>Center for Automation Research, Institute for Advanced Computer StudiesDepartment of Computer Science</p><p>University of Maryland, College Park, MD 20742{jagan,houman,hjs}@cs.umd.edu</p><p>Abstract</p><p>A system that enables real time query processing on largespatial networks is demonstrated. The system provides func-tionality for processing a wide range of spatial queries suchas nearest neighbor searches and spatial joins on spatial net-works of sufficiently large sizes.</p><p>1 SILC Framework</p><p>Recently, we have witnessed the emergence of severalweb services1that enable users to pose simple spatial queries.However, the query result may not be of much practical useas the distances provided do not take into consideration theconstraints imposed by the underlying road network. Queryprocessing on spatial networks is considered computation-ally expensive and processing such queries in a realistic timeframe remains a challenge.</p><p>We recently proposed the SILC framework [2], a datastructure that enables fast and efficient retrieval of the short-est paths and distances between objects on a spatial network.We demonstrate a system (Figure 1) that augments a generalpurpose spatial database with the SILC framework, therebyproviding the database with the necessary functionalities toperform spatial queries on spatial networks. The followingare the unique contributions of our system.</p><p>1. To the best of our knowledge, we believe that our sys-tem is the first to allow efficient processing of most spa-tial queries on spatial networks using a general purposespatial database engine.</p><p>2. Our system is the first to decouple the spatial objectsfrom the underlying spatial network. Thereby, SILCcan be integrated into any spatial database with anychoice of spatial indices.</p><p>The support of the National Science Foundation under Grant EIA-00-91474 and Microsoft Research is gratefully acknowledged.</p><p>1Such as Mappoint, Mapquest, Yahoo!, and Google Maps</p><p>3. The system performs real-time processing of both ap-proximate and exact spatial queries on spatial networks,with little or no modifications to existing spatial queryprocessing techniques, thus reusing existing knowledgeand code base rather than developing new techniques tohandle queries on spatial networks.</p><p>4. The system design and the concepts we demonstrate aregeneral enough to be applied to any spatial databasesystem.</p><p>Spatial queryresponse encoding</p><p>SILC</p><p>C. Spatial relation and spatial index</p><p>D. S</p><p>ILC</p><p> mo</p><p>du</p><p>le</p><p>Embedding</p><p>A. S</p><p>and</p><p> Sp</p><p>atia</p><p>l Bro</p><p>wse</p><p>r</p><p>Spatial query</p><p>B. SANDspatial database</p><p>Path</p><p>queriesdistance</p><p>spatial nonspatial</p><p>Figure 1. Block diagram representation of thedemonstrated system.</p><p>We have augmented SILC with the SAND [1] spatialdatabase system which is being developed at the Universityof Maryland. The demonstrated system performs shortestpath and distance queries, range and window queries, in-cremental nearest neighbor searches, incremental and non-incremental distance joins and semi-joins in real time on asuitably large road network dataset.</p><p>References</p><p>[1] H. Samet, H. Alborzi, F. Brabec, C. Esperanca, G. R. Hjalta-son, F. Morgan, and E. Tanin. Use of the SAND spatial browserfor digital government applications. Commun. ACM, 46(1):6366, Jan. 2003.</p><p>[2] J. Sankaranarayanan, H. Alborzi, and H. Samet. Effi cientquery processing on spatial networks. In ACM GIS, pages 200209, Bremen, Germany, Nov. 2005.</p><p>Proceedings of the 22nd International Conference on Data Engineering (ICDE06) 8-7695-2570-9/06 $20.00 2006 IEEE </p><p> /ColorImageDict &gt; /JPEG2000ColorACSImageDict &gt; /JPEG2000ColorImageDict &gt; /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 2.00333 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict &gt; /GrayImageDict &gt; /JPEG2000GrayACSImageDict &gt; /JPEG2000GrayImageDict &gt; /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.00167 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict &gt; /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False</p><p> /Description &gt;&gt;&gt; setdistillerparams&gt; setpagedevice</p></li></ul>


View more >