hiller rotor cycle info

17
NASA TECHNICAL NOTE d z + 4 w 4 z FLIGHT TESTS OF A ONE-MAN HELICOPTER AND A COMPARISON OF ITS HANDLING QUALITIES WITH THOSE OF LARGER VTOL AIRCRAFT by Terrell W. Feistel and Fred J. Drinkwater III Ames Research Center Moffett Field, Cali$ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1965

Upload: mjs6029

Post on 28-Nov-2014

265 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Hiller Rotor Cycle Info

N A S A TECHNICAL NOTE

d z + 4 w 4 z

FLIGHT TESTS OF A ONE-MAN HELICOPTER A N D A COMPARISON OF ITS HANDLING QUALITIES WITH THOSE OF LARGER VTOL AIRCRAFT

by Terrell W. Feistel and Fred J. Drinkwater III

Ames Research Center Moffett Field, Cali$

N A T I O N A L AERONAUTICS A N D SPACE A D M I N I S T R A T I O N WASHINGTON, D. C. OCTOBER 1965

Page 2: Hiller Rotor Cycle Info

TECH LIBRARY KAFB, NM

FLIGHT TESTS O F A ONE-MAN HELICOPTER AND A COMPARISON

O F ITS HANDLING QUALITIES WITH THOSE O F

LARGER VTOL AIRCRAFT

By Terrell W. Feistel and Fred J. Drinkwater I11

Ames Resea rch Center Moffett Field, Calif.

NATIONAL AERONAUT ICs AND SPACE ADMlN I STRAT I ON

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00

Page 3: Hiller Rotor Cycle Info

FLIGHT TESTS OF A ONE- i " HELICOPTER AND A COMPARISON

OF ITS HANDLING QUALITIES WITH THOSE OF

LARGER VTOL AIRCRAFT

By Ter re l l W. F e i s t e l and Fred J. Drinkwater I11 Ames Research Center

SUMMARY

A l imi ted f l i g h t t e s t program has been accomplished with a one-man H i l l e r YROE-1 "Rotorcycle" (gross wt 2 500 l b ) t o help determine c r i t e r i a f o r t h e handling q u a l i t i e s i n hover of WOL a i r c r a f t as a f f ec t ed by gross weight.

The genera l ly high orders of longi tudina l and la teral con t ro l power and damping inherent w e r e found t o be sa t i s f ac to ry . The high d i r e c t i o n a l con t ro l s e n s i t i v i t y , combined w i t h high yaw response i n one d i rec t ion , w a s considered p o t e n t i a l l y dangerous. The la te ra l con t ro l power f o r t h i s c r a f t i s approxi- mately t h e same as tha t found necessary f o r s a t i s f a c t o r y con t ro l with similar damping i n t e s t s of two other VTOL a i r c r a f t w i t h s u b s t a n t i a l l y g rea t e r gross weight.

INTRODUCTION

The NASA has, i n recent years , been studying handling q u a l i t i e s c r i t e r i a f o r V/STOL a i r c r a f t ( ref . 1). A major question i s , how do s a t i s f a c t o r y and unsa t i s fac tory l i m i t s f o r hovering con t ro l power and damping vary with s i z e and gross weight? One form of sca l ing c r i t e r i a i s presented i n reference 2. Only l imi ted f l i g h t v e r i f i c a t i o n of these c r i t e r i a i s ava i lab le , ch i e f ly w i t h vehicles i n the 3000-4000 pound gross weight category (see, e.g., ref. 3 ) . The H i l l e r YROE-1 Rotorcycle, with a gross weight of approximately 500 pounds, i s a t the bottom end of the weight spectrum f o r manned a i r c r a f t and an order of magnitude away f r o m t h e X-14A (used i n re f . 3 ) . inves t iga t ing con t ro l power requirements a t low gross weights i n hope t h a t , thereby, some l i g h t would be shed on the inf luence of s i z e and weight.

It w a s s e l ec t ed f o r

DESCRIPTION OF TEST A R T I C U

The H i l l e r YROE-1 Rotorcycle ( f i g . 1) w a s o r i g i n a l l y designed f o r t h e Armed Services as a simple, co l l aps ib l e , one-man he l icopter f o r observation and l i a i s o n purposes. flown, i t s gross weight w a s 515 pounds. 2-cycle, Nelson engine of 43 hp. ences 4 and 5 and resul ts of previous Navy f l i g h t tes ts are given i n refer- ences 6 and 7.

Figure 2'shows a three-view sketch of t h e vehicle . The power p l a n t i s a 4-cylinder,

A s

The craft i s described i n d e t a i l i n refer-

- _ - F ~~ .___- - -

'Figure 2 was supplied by the H i l l e r A i r c ra f t COT., Inc.

I

Page 4: Hiller Rotor Cycle Info

ll11l1l11llIl1l1111111l I II I1 I I

For the NASA f l i g h t t es t s a small instrumentation package w a s hung i n a box underneath t h e p i l o t as shown i n f i g u r e 1. The package contained a high- frequency t r ansmi t t e r t h a t telemetered information on three channels, and a s ingle-ax is rate-measuring gyro which could b e or ien ted along any one of the three axes. A potentiometer was a l so included f o r measuring t h e pos i t i on of t h e con t ro l being considered and a but ton on t h e con t ro l s t i c k allowed t h e p i l o t t o s i g n a l the start of a maneuver.

METHOD OF DATA mDUCTION

The maneuver f o r obtaining the con t ro l power-damping da ta consis ted of a con t ro l reversal input t o t h e con t ro l a f f ec t ing t h e axis being considered ending i n a f i x e d con t ro l def lec t ion held f o r 1-2 seconds. Thus, t h e f i r s t der iva t ive of the r e s u l t a n t angular ve loc i ty abaut t h e given axis, as t h i s ve loc i ty passes through zero a f t e r the reversal, represents the angular acce l - e r a t ion corresponding t o the cont ro l def lec t ion . The m a x i m excursion of t h e angular ve loc i ty (wi th t h e con t ro l s t i l l he ld f ixed ) , when compared t o the previously determined angular accelerat ion, i nd ica t e s t h e approximate ve loc i ty damping, 1/~, about t h e axis. See reference 8 f o r an ana lys i s of th i s method. The angular acce le ra t ion corresponding t o t o t a l con t ro l def lec t ion w a s de te r - mined by p l o t t i n g acce lera t ions measured aga ins t percent def lec t ion and fair- ing a s t r a i g h t l i n e through a l l t he poin ts (assuming a l i n e a r va r i a t ion of i n i t i a l angular acce le ra t ion with con t ro l de f l ec t ion ) . based on t a sks described i n the P i l o t Comments sec t ion .

The p i l o t r a t i n g s were

RESULTS AND DISCUSSION

Since t o t a l con t ro l power required f o r a given t a s k includes t h a t f o r cor rec t ing d is turb ing inputs , it w i l l depend on t h e type of VTOL a i r c r a f t because of inherent d i f fe rences i n gust s e n s i t i v i t y , e t c . I n s p i t e of th i s it i s of i n t e r e s t t o examine con t ro l power requirements f o r a wide range of VTOL aircraft t o observe any gross t rend of t h e e f f e c t of s ize .

Table I i s a summary of t h e pe r t inen t parameters determined. It shows m a x i m u m con t ro l power ( i n terms of i n i t i a l angular acce lera t ion) , angular rate damping ( i n terms of t h e r ec ip roca l of the t i m e constant, l / - i - ) , con t ro l sens i - t i v i t y ( i n terms of i n i t i a l acce le ra t ion per inch of con t ro l de f l ec t ion ) , and t h e p i l o t r a t i n g f o r the visual hovering t a s k ( f o r both maximum con t ro l power and s e n s i t i v i t y , where ava i lab le) on t h e Cooper Scale ( t a b l e I1 and ref. 9) f o r each of t he three axes (two p i l o t r a t i n g s are shown; p i l o t A being t h e p ro jec t p i l o t and p i l o t B a v i s i t i n g NASA p i l o t who made only one f l i g h t ) . For the d i r e c t i o n a l case values are shown f o r r i g h t yaw only. Al so shown are the implied values of t h e cont ro l power, damping, and s e n s i t i v i t y ca l l ed out i n the proposed V/STOL spec i f ica t ions ( r e f . 2) . from t h e response values l i s t e d by assuming a "step" input t o the cont ro l . For comparison similar da ta are shown, i n paral le l grouping, f o r t he minimal s a t i s f a c t o r y (P.R. = 3.5) r a t i n g i n the va r i ab le s t a b i l i t y X-14A (used i n ref . 3 ) . Al so shown i n t h e "damping" column are t h e nominal moments of i n e r t i a of t he two c raf t i n s lug-f t2 .

These have been converted

Page 5: Hiller Rotor Cycle Info

Lateral Character is t ic s

Figure 3 shows a p l o t of t he i n i t i a l acce le ra t ion i n roll f o r f u l l con- t r o l def lec t ion ( i .e . , cont ro l power) and f o r one inch of cont ro l t r a v e l ( i .e . , s e n s i t i v i t y ) versus gross weight f o r four vehicles: ( W = 515 l b ) , t he X-14A def lected j e t VTOL ( W = 3880 l b , r e f . 3 ) , t he Hawker P-1127 def lected j e t VTOL ( W = 12,500 l b ) , and t h e XC-142A t i l t -wing VTOL t ranspor t ( W = 37,500 l b , r e f . 10). Data f o r t h e la t ter two were supplied by t h e manufacturer. P i l o t r a t i n g s f o r t h e v i sua l hovering task , where ava i lab le , a r e shown i n parentheses next t o the data points ; f o r t he YROE-1, t h e r a t i n g s of t h e p ro jec t p i l o t only a r e shown. The lack of va r i a t ion with gross weight of cont ro l power required t o obtain a sa t i s f ac to ry (P.R. = 3-1/2) r a t i n g f o r t h i s important "X" a x i s i s of i n t e r e s t . For t he YROE-1, t he p i l o t r a t i n g of unsa t i s fac tory f o r s e n s i t i v i t y i n roll (and a l s o i n p i t c h ) w a s given because of t o o l i t t l e s e n s i t i v i t y ( too much s t i c k t r a v e l , +7 in . i n roll). P i l o t r a t ings f o r s e n s i t i v i t y i n the P-1127 and f o r t he XC-142A a r e not avai lable . Reference 11 w a s used t o derive a p i l o t r a t i n g f o r the s e n s i t i v i t y of t he X-14A i n roll; t he s e n s i t i v i t y shown corresponds t o t h e 3-1/2 boundary f o r cont ro l power.

t he YROE-1 hel icopter

Figure 4 i s another p l o t showing handling q u a l i t i e s information i n roll, with some of t h e same data . (P.R. = 6-1/2) boundaries f o r lateral cha rac t e r i s t i c s axe shown as determined with the var iable s t a b i l i t y X-14A ( ref . 3 ) . t o t a l cont ro l power as the abscissa and r a t e damping ( the rec iproca l of t he t i m e constant) as the ordinate . t e r i s t i c s of the YROE-1 as determined by the subject tes ts ; it i s seen t o pos- sess , with a p i l o t r a t i n g of 3, approximately t h e same control power and damp- ing i n roll as w a s required by t h e X-14A f o r a s a t i s f a c t o r y p i l o t ra t ing . The values shown f o r the P-1127 correspond t o t h e configuration flown by a NASA p i l o t when the r a t i n g of 3-l/2 w a s assigned. f o r t he unaugmented configuration and a r e estimates only.

The "sa t i s fac tory" (P.R. = 3-l/2) and "acceptable"

The boundaries are p lo t t ed with

Superimposed i s a point showing the charac-

The values f o r t he X C - 1 4 u l are

Longitudinal Charac te r i s t ics

Figures 5 and 6 show the handling q u a l i t i e s i n p i t ch . It can be seen tha t the YROE-1 ( w i t h a P.R. of 2-3) possesses much higher values of cont ro l power and damping about t he Y a x i s than were necessary f o r s a t i s f ac to ry (P.R. = 3-l/2) cha rac t e r i s t i c s i n the X-14A or t h e P-1127. This combination of control power and damping w a s too high t o be evaluated i n the X-14A, but it i s s ign i f i can t that the p i l o t r a t ing ind ica tes l i t t l e improvement over t h e r a t i n g s obtained a t t h e lower l e v e l s of cont ro l power and damping along t h e 3.5 boundary of reference 3. A s i n t he l a t e r a l case, t he longi tudinal cont ro l s e n s i t i v i t y w a s r a t ed at 5 because of the la rge (+_8 i n . ) s t i c k t r ave l . The values shown f o r t he XC-142A a re estimates f o r t h e unaugmented configuration.

Direct ional Charac te r i s t ics

Because of t he unusual circumstances involved, no comparison p l o t s a r e shown f o r t he d i r ec t iona l cha rac t e r i s t i c s . Too much cont ro l power

3

Page 6: Hiller Rotor Cycle Info

I l1l11l1l1l1l111l11111 I I I I l l l l l I _ . . . . .

(approximately 6 radians/sec2 i n hover near sea l e v e l ) i s ava i lab le t o t h e r i g h t (a iding r o t o r torque) along with an extremely high s e n s i t i v i t y (approxi- mately 3 radians/sec2/in. corresponding t o 2 in . pedal t r a v e l ) , which were given p i l o t r a t i n g s of 6 and 7, respect ively. The p i l o t must be highly compe- t e n t t o f l y t h e vehicle successful ly because of t h i s high s e n s i t i v i t y and cont ro l power i n yaw. I n t h e opposite d i r ec t ion ( t o the l e f t , countering ro to r torque) no accurate measurements could be taken since cont ro l power i s marginal and va r i e s considerably with f l i g h t condition as a r e s u l t of t he varying power input t o t h e ro to r accompanied by t h e varying t a i l r o t o r thrust required and ava i lab le ( i n ref. 8, f i g . 2, it i s shown tha t , f o r densi ty a l t i - tudes i n excess of approximately 3000 f t , i n su f f i c i en t d i r ec t iona l cont ro l e x i s t s t o counteract ro to r torque) .

PILOT COMMENTS

The p i l o t r a t ings of control power, s e n s i t i v i t y , and damping provided i n t h i s repor t a r e based on the vehicle c h a r a c t e r i s t i c s when hovering and maneuvering a t l o w speeds i n a r e l a t i v e l y confined area.

Lateral-control power i s not t he same f o r l e f t and r i g h t inputs , and ro l l -p i t ch cross coupling e x i s t s f o r abrupt cont ro l displacements. P i t c h and r o l l cyc l ic cont ro l displacements a r e excessive and t h e low cont ro l sens i t iv - i t y contr ibutes t o a f ee l ing of sluggish p i t c h and roll response, f e e l s as though the re i s a delay i n the cont ro l response from the time a s tep input i s applied t o t h e time the response i s f e l t . of ten used i n roll r eve r sa l maneuvers about t h e hover condition; however, p rec is ion hovering over a spot w a s accomplished wit'n very s m a l l l a t e r a l - cont ro l inputs.

It a l s o

F u l l lateral cont ro l w a s

Longitudinal cont ro l power w a s never l imi t ing i n any maneuver. F u l l cont ro l w a s used for t h e most abrupt quick stops, bu t , as w a s noted f o r t he l a t e r a l control , t he re w a s a l ag i n the response of t he hel icopter t o abrupt cont ro l inputs. These effects , which a re s i m i l a r t o those of the l a rge r H i l l e r 12E, a r e reportedly due t o the c h a r a c t e r i s t i c s of t he servo-paddle- ro to r cycl ic-control system. The p i t c h cycl ic-control displacement i s uncom- for tab ly la rge , p a r t i c u l a r l y f o r an overhead cyc l i c s t i ck . t ionable f r i c t i o n i n t h e cyc l i c cont ro l and t h e forces were very des i rab le . Adequate cont ro l centering was avai lable , and t h e ro to r feedback through t h e cyc l ic s t i c k w a s only noticed when abrupt cont ro l inputs were used.

There w a s noobjec-

P i t ch and roll damping appeared high and considerable s t a b i l i t y i n t e r m s of a roll o r p i t c h res tor ing moment as a funct ion of forward or sideward speed w a s present .

Yaw cont ro l power during hovering w a s high t o t h e r i g h t but just adequate t o t he l e f t a t normal rpm. It w a s easy t o lose a l l d i r ec t iona l cont ro l power t o the l e f t i f t he ro to r rpm w a s allowed t o decay t o t h e lower ro to r speed normal operating l i m i t . Yaw cont ro l w a s t o o sens i t ive i n normal hover and w a s considered t o be dangerous for general use because of t he rocker-plate type

4

Page 7: Hiller Rotor Cycle Info

of rudder pedals and t h e very high pedal s e n s i t i v i t y , appeared t o be high enough and usable yaw r a t e s were not l imi ted by t h e rate damping or cont ro l power a t high ro to r rpm.

Yaw rate damping

I n general , t he re w a s a tendency t o operate t h i s s m a l l he l icopter i n a much t i g h t e r p a t t e r n than even t h e UH-12E ( three p lace , 2800 l b gross w t ) hel icopter . Transi t ions t o and from a hover were easily done a t high rates and t h e s m a l l s i ze of t h e he l icopter minimized the judgment needed t o keep a safe dis tance from obstacles. Operating and observing t h i s small he l icopter f l y i n confined areas indica tes t h a t it w a s being flown d i f f e r e n t l y than a he l icopter of even 2 8 0 0 - p o ~ d gross weight. Turns and t r a n s i t i o n s t o and from hover were done much quicker than i s normally done with t h e l a r g e r hel icopters . The cycl ic-control power and rate damping d id not l i m i t t h e maneuverability of t h e YROE-1 i n and about t he v i s u a l hover condition. The high yaw cont ro l sen- s i t i v i t y required more than normal p i l o t a t t e n t i o n and considerable familiar- i za t ion time.

CONCLUDING REMEiRKs

The m o s t s i gn i f i can t da ta obtained i s tha t representing the l a t e r a l cha rac t e r i s t i c s . This ind ica tes t h a t approximately t h e same l a t e r a l cont ro l power i s required f o r t h i s vehicle as f o r those of much higher gross weights t o achieve a sa t i s f ac to ry p i l o t ra t ing . minimum cont ro l power requirements should be based pr imar i ly on the t a sk t o be performed r a the r than on the gross weight o r s ize , as such.

The ind ica t ion would seem t o be t h a t

The da ta obtained about t h e other two axes i s l e s s conclusive. Appar- en t ly , t h e high cont ro l power ava i lab le longi tudinal ly i s ine f fec t ive because of t he la rge s t i c k movements necessary with consequent low s e n s i t i v i t y . Direct ional ly , t he low cont ro l power i n the d i rec t ion opposing ro to r torque and high cont ro l power i n the opposite d i rec t ion , combined w i t h extremely high cont ro l s e n s i t i v i t y , a r e e s s e n t i a l l y pecul ia r t o t h i s vehicle and make the r e s u l t s inapplicable i n any general sense.

It i s t o be noted t h a t undue emphasis should not be placed on making comparisons of t o t a l cont ro l power requirements between d iss imi la r types of VTOL vehicles ( i . e . , he l icopter , def lected j e t , tilt wing, e t c . ) , because of inherent differences i n self-dis turbing cha rac t e r i s t i c s , ground e f f e c t s , gust s e n s i t i v i t y , t r im requirements, e t c . The comparisons made here a r e presented pr imar i ly t o provide a convenient cataloging of ava i lab le da ta on VTOL air- c r a f t covering a wide range of gross weights and t o po in t out t h a t no gross t r end of varying cont ro l power requirements with increasing weight i s obvious.

Ames Research Center National Aeronautics and Space Administration

Moffett Field, C a l i f . , March 16, 1965

5

Page 8: Hiller Rotor Cycle Info

REFERENCES

1.

2.

3.

4.

5.

6.

7 .

8 .

9.

10.

11.

Anderson, Seth B.: An Examination of Handling Qualit ies Criteria f o r V/STOL Ai rc ra f t . NASA TN D-331, 1960.

Anon. : Recommendations f o r V/STOL Handling Qualities. AGARD Rep. 408, oc t . 1962.

Rol l s , Stewart L.; and Drinkwater, Fred J., 111: A F l igh t Determination of t he At t i tude Control Power and Damping Requirements f o r a Visual Hovering Task i n t h e Variable S t a b i l i t y and Control X-14A Research Vehicle. NASA TN D-1328, 1962.

Anon.: Detail Spec i f ica t ions f o r Model YROE-1 Rotorcycle. NAVORD Rep. SD-5l.B (Aer-AC-0411, June 23, 1959, rev. Oct. 1960, H i l l e r A i r c ra f t Cory.).

H a l l , F. : Charac ter i s t ics and Performance Report. Eng. Rep. 60-46, H i l l e r A i r c ra f t Corp., May 4, 1960.

Anon.: A i rc ra f t and Engine Performance and S t a b i l i t y and Control T r i a l s of t h e Model YROE-1 Rotorcycle. Rep. 1, Projec t TED PTR F&-42102.2, FT 23-390, Naval A i r Test Center, Patuxent River, Md. , Oct. 13, 1960.

Taylor, F. W.; Hamilton, C. B.; and Segner, D. R . : Contractor 's Struc- tural and Aerodynamic Demonstration of Model YROE-1 Rotorcycle. Rep. 1, F i n a l Report, Pro jec t TED PTR AC-42102.1, FT 36-556, Naval A i r T e s t Center, Patuxent River, Md., Dee. 28, 1959.

Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; and Drinkwater, A P i l o t Opinion Study of La te ra l Control Requirements Fred J., 111:

f o r Fighter-Type Aircraf t , Appen. A. NASA MEMO 1-29-59A, 1959.

Cooper, George E . : Understanding and In t e rp re t ing P i l o t Opinion. Aero. Engr. Rev., vol. 16, no. 3, March 1957, pp. 47-51, 56.

Shields , M. E. : Transport. May 22, 1964.

Estimated Flying Qual i t ies XC-142A V/STOL Assault LTV Rep. 2-53310/4R939, LTV Vought Aeronautics Div.,

Rol ls , Stewart L.; Drinkwater, Fred J., 111; and Innis , Robert C . : E f f ec t s of Late ra l Control Charac te r i s t ics on Hovering a Je t L i f t VTOL A i r c r a f t . NASA TN D-2701, 1965.

6

Page 9: Hiller Rotor Cycle Info

TAB= I.- SUMMARY OF THE PERTINENT PARAIVlETERS DETERMINED

1

I

I P i l o t ra t ings Control power, Damping, Sensi t ivi ty , -radians/sec2 -1/T = l / sec -radians/secZ/in. , Control 'ens'-

i power t i v i t y

t e s t spec. A B A B

I' Mode A/C I

Flight AGARD Fl ight

value ' ( re f . 2) value value I ( r e f . 2) , 1.7 1 3.9 0.24 ' 1.3 3 4 5 4 '

YROE- 1 T - L ̂ _^^ 1 I

t o r que high)

X-14A - 5 .7 1.0 2.4 .17 .23 (3-1/2) (n.a.> (minimal

sa t i s fac tory ) ("Izz 3 2920)

(-In'? 1170) i

I 2.4 , 'e .25 .6 i2-1/2 5 ' E

sat isfactory )

2.0 ( t o o low]

-25 (3-1/2)

YROE-1 I ( - I ~ z 80)

.11 I

l Longitudinal/ (-Pitch) ' X- 1 4 A

I I --

I Directional ( -Yaw)

Page 10: Hiller Rotor Cycle Info

TABU 11.- PIL9T OPINION RATING SCHEDULE

r a t i n g r a t ing

I 1 2 3

Unsatisfactory operat ion

l 4

1 I

I I. 7 I

8 9

No 1 Unsatisfactory ' operation

?ailwe of a s t a b i l i t y augmenter

Description

Excellent, includes optimum Good, pleasant t o f l y Sat isfactory, but with some mildly

unpleasant cha rac t e r i s t i c s

Primary mission

ac c omp 1 i shed

Yes Yes

Yes I

~~~

Can be landed

Yes Yes

Yes

Acceptable, bu t with unpleasant

Unacceptable f o r normal operation Acceptable f o r emergency condition

cha rac t e r i s t i c s

only*

Yes Doubtful

Doubtful

Yes Yes

Yes

Unacceptable even f o r emergency

Unacceptable - dangerous Unacceptable- unc ont r o l lab l e

condition*

Page 11: Hiller Rotor Cycle Info

A-31028 Figure 1.- YROE-1 Rotorcycle in hovering flight.

\D

Page 12: Hiller Rotor Cycle Info

Figure 2.- Three-view drawing of test vehicle.

Page 13: Hiller Rotor Cycle Info

P P

I o2 2 4

Figure 3 .-

I

i I

i-

i I

t I R O E - I I I 1 ~ x - 1 4 ~ I

P.R.- 4 RR .N 5 i (Too low)

6 8 IO3 2 4 6 8 Gross weight, W, Ib

@ Full deflect ion

One inch

(- Total control power)

( w Control sensitivity) I I

i lo4 2 4

Lateral control characteristics ( - visual hovering task).

6 8 1

Page 14: Hiller Rotor Cycle Info

-4

- 3

- 2

- I

0

I 0 I 2 3 4

L a t e r a l cont ro l power, 6, r a d i a n s / s e c 2

Figure 4.- Lateral handling characteristics.

5

12

Page 15: Hiller Rotor Cycle Info

3

(u 0 a, UJ > 0 2 E

C 0

L

:8

C 0

.. .- .I-

E a,

F Y R O E - I '

I

Z3 P.R.- 5 (Too low)

I 1 1 1 1

I I I 0 Full deflection

(- Total control power)

(-Control sensitivity) E One inch

I

IO2 2 4 6 8 IO3 2 4 6 8 IO' 2 4

Gross weight, W, Ib

Figure 5.- Longitudinal control charac te r i s t ics ( - visua l hovering task) .

6 8 1

Page 16: Hiller Rotor Cycle Info

- 2.4

- 2.0

- 1.6

- 1.2

I I I f R O E - I ( P . R . m 2 - 3 ) -

I m P - 1 1 2 7 ( P . R . - 3 2 ) - U7

(Est . d a m p i n g ) I

- X - 1 4 A ( R e f . 3 ) I I

Unaug.

(P.R.I.. 4) - @ X C - 1 4 2 A ( E s t . ) -

0 .4 .8 I .2 I .6 .. 2

Figure 6.- Longitudinal handling characteristics.

Longi tudinal control power, 8 , r a d i a n s / s e c

2 .o

14 NASA-Langley, 1965 A-857

Page 17: Hiller Rotor Cycle Info

“The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human RnowI- edge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof .”

-NATIONAL AERONAUTICS A N D SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri- bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con- nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results .of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Scientific and technical information considered

Information less broad in scope but nevertheless

Details on the availability o f these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. PO546