high performance ssd memory application with compressible tim- based on phase change technology

26
Vendor Workshop SEMI-THERM 2016 March 16 th , 2016

Upload: honeywell-electronic-materials

Post on 23-Feb-2017

2.269 views

Category:

Business


1 download

TRANSCRIPT

Page 1: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

Vendor Workshop SEMI-THERM 2016

March 16th, 2016

Page 2: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

High Performance SSD Memory Application utilizing compressible TIM

based on Phase Change Technology

Stewart Dunlap - Micron &

Chris Lee, Hyo Xi, Linda Shen – Honeywell

Page 3: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

OUTLINE

1.  Thermal Trends 2.  Compressible TIM Overview 3.  PCM Technology 4.  Application and Methods 5.  Results & Summary

Page 4: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

INDUSTRY TREND: ACCELERATING POWER DENSITIES

•  Greater Functionality •  Increase Power consumption •  Device / Package shrink

•  Higher Power densities •  Greater density board layout •  Increasing Device Temperatures

Rising Power densities drives greater thermal needs

TIM Thermal Management -  Lower Thermal Impedance -  Harsher Test Conditions -  Increased Thermal Stability and

Reliability

Server and Telecom

ASIC Power in Networking Applications

Heat Load

Page 5: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

SATA II (2010-2011) •  ONFI 2.0 •  Toggle 1.0

25nm Class

•  NAND Flash

SATA III (2012-2013) •  ONFI 2.0 •  Toggle 1.0

20nm Class

•  NAND Flash

PCIe G2 (2014-2015) •  ONFI 3.0 •  Toggle 2.0

1xnm Class

•  NAND Flash

PCIe G3 (2016-2017) •  ONFI 4.0 •  Toggle 3.0

15/16mm Class/3D

•  NAND Flash

SSD Technology Trends

New Technology Drives High Thermal Needs

5

Faster, Stable Read / Writing Speed

Higher Packaging Density

NAND tech node development

Higher Storage Volume

2Dà2.5Dà3D (TSV, V-NAND. 3D X-point,etc.)

Page 6: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

TIM CONFIGURATIONS Dedicated Heat Sink •  Power Levels >50W •  TIM 1 and TIM 2 for each device •  THIN Bond line <50um •  Thermal Impedance <0.1 cm2-C/W •  Key Needs: Thin Bond Lines and Low

thermal Impedance IC

TIM 2

substrate

PC board

TIM 1

PC board

TIM 1.5

Heat Spreader

Shared Heat Spreader •  Power Levels <50W •  THICK Bond line 0.5 – 3 mm •  One TIM type across several devices •  Thermal Impedance >0.1 cm2-C/W •  Key Needs: high compliance and

compression properties to support multiple thicknesses

DEDICATED Heat Sink

SHARED Heat Sink/Spreader

Heat Sink

Compressible TIM

Page 7: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

COMPRESSIBLE TIM EXAMPLES 7

All NAND and Controllers

Require TIM

Page 8: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

Lower Contact Resistance and Impedance is critical to Thermal Performance

THERMAL PATH

•  TIM: 3 Thermal Paths of Resistance 1.  Contact Resistance @ Device/TIM 2.  Thermal Path of TIM 3.  Contact Resistance @ TIM/Heat Sink Interface

•  Compressible TIM thick bond lines -  High Thermal Conductivity >3 W/mK -  Critical path is low contact resistance at the interfaces

•  Thermal Impedance is key

Heat Sink

Thermal Path of TIM

IC Device PC board

SHARED Heat Sink/Spreader

0.5 mm 3.0 mm RTIM =

Contact Resistance at Interface

Rc1

Rc2

BLT KTIM BLT

TIM Thermal Impedance: TIT = BLT/K + RC

TIT = Total Thermal Impedance BLT = Bond Line Thickness of TIM K = Bulk Thermal Conductivity of TIM RC = Thermal Contact Resistance at the Interfaces

Contact Resistance at Interface

heat origin

Page 9: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved.

© 2015 by Honeywell International Inc. All rights reserved . PMT STRAP 2016-2020

Thermal Conductivity is only one measure

THERMAL CONDUCTIVITY AND THERMAL IMPEDANCE

•  Low Contact Resistance •  Lower Thermal

Impedance • Thick Bond lines

ASTM D5470 1 mm bond line

3.00 3.00

3.50 4.00

4.00

2.84

2.09

0.30

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Gap Pad Putty Gel HON Compresible PCM

Ther

mal

Impe

danc

e (C

-cm

2 /W)

Ther

mal

Con

duct

ivity

(W/m

-K)

Compressible Materials vs. Thermal Conductivity &Thermal Impedance

Thermal Conductivity Thermal Impedance

Page 10: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

Visc

osity

Melt temp

Solid

Liquid/gel state •  Optimal Surface wetting •  Low Contact Resistance •  Low Thermal Impedance

Temperature ! 45 °C

Theoretical Curve: PCM Viscosity vs. Temperature

Page 11: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved.

© 2015 by Honeywell International Inc. All rights reserved . PMT STRAP 2016-2020

PCM Polymer Structure Enables Low contact resistance and thermal stability

PCM TECHNOLOGY

PCM: Long Chain Si-O-Si structure “Less Rigid Structure”

PCM: C-C-C with H steric hindrance “Rigid Structure”

steric hindrance

• High molecular weight • Stable and consistent filler-polymer Matrix • Minimizes filler migration and separation •  Increase Reliability Performance

Page 12: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

12

Honeywell PCM

Initial 1000 cycles

Silicone Grease

Thermal Cycling Test Condition: •  -55°Cx10min + 125°Cx10 min, for 500 to 1000 cycles •  Sandwich PCM & grease between aluminum and glass plates set at 200µm gap •  TI Test : ASTM D5470

Thermal Cycle (-55 °C to 125 °C) vs. Grease

HEM PCM vs. Silicone Grease

Grease breaks down Grease TI degrades

Silicone Grease

Honeywell PCM

PCM Stable Polymer Structure with No Pump-Out Issue

Page 13: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 200 400 600 800 1000

Ther

mal

Impe

danc

e (°

C-c

m2/

W)

Hours

High Temperature Bake at 150 °C TI vs. Hours of exposure

PTM3180

Grease A

Grease B

PCM THERMAL RELIABILITY

Test Condition: 150°C continuous baking Test Method: Laser Flash, ASTM E1461

Significantly better reliability than leading competitors

PTM5000

Page 14: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved.

0.12 0.09

0.52

0.11 0.09 0.09 0.09 0.11

0.00

0.10

0.20

0.30

0.40

0.50

0.60

AC 96hrs 120hrs 192hrs 240hrs

PTM3180 Avg PTM6000 Avg

TI/('

C.c

m2 /W

) ENHANCED RELIABILITY

150’C HTS: TI vs. Hrs

HAST: TI vs. Hrs

Sample Size = 4

Sample Size = 12

PTM5000 Avg

0.00

0.10

0.20

0.30

0.40

0.50

0.60

T0 600x 1000x 2000x 2400x 3200x 4000x 4400x TI

(℃.c

m2/

W)

PTM6000 Stdev PTM6000 Avg

Sample Size = 8

T/C-B (-55~+125’C): TI vs. Hrs

0.12 0.09 0.09 0.09 0.09 0.09

0.22

0.11 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.11

0.00

0.05

0.10

0.15

0.20

0.25

TI (AC) 200hr 400hr 600hr 800hr 1000hr 1300hr 1500hr 1800hr 2000hr 2200hr 2400hr 2600hr 2800hr 3000hr 3200hr

PTM3180 Stdev PTM6000 Stdev PTM3180 Avg PTM6000 Avg

TI/('

C.c

m2 /W

)

PTM5000 Stdev PTM5000 Avg

New PCM formulation demonstrate significantly improved reliability

Page 15: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

PCM delivers High Compressibility & Thermal Performance

COMPRESSIBLE PCM •  Phase Change Based •  Molecular Weight & polymer

formulation enables compressibility •  Low Thermal Impedance < 0.12 C-

cm2/W

Compressibility TCM11 TCM12

30% 10psi 7psi

40% 14psi 8psi

50% 19psi 10psi

70% 49psi 21psi

0

10

20

30

40

50

60

70

-10% 0% 10% 20% 30% 40% 50% 60% 70%

Stre

ss(p

si)

Strain(%)

Compression-Deflection of TCM vs Gap Pad

TCM11 TCM12 Gap Pad A

ASTM D575 1in2 sq ;2mm thickness;0.25mm/min test speed

4.0

3.3

0.12 0.15

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.0

1.0

2.0

3.0

4.0

5.0

6.0

HON Compresible TCM11

HON Compresible TCM12

Ther

mal

Impe

danc

e (C

-cm

2 /W)

Ther

mal

Con

duct

ivity

(W/m

-K)

Compressible PCM

Thermal Conductivity Thermal Impedance

ASTM D5470 0.05 mm bond line

Page 16: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

Phase Change Polymer Structure enables thermal stability

COMPRESSIBLE RELIABILITY

16

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

TI (A

C)

200h

rs

400h

rs

600h

rs

800h

rs

1000

hrs

TI (A

C)

200h

rs

400h

rs

600h

rs

800h

rs

1000

hrs

TCM11 TCM12

TI('C

cm2/

W)

HTB-150◦C Baking 1000hrs ASTM E1461

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

TI (AC)

200x 400x 600x 800x 1000x TI (AC)

200x 400x 600x 800x 1000x

TCM11 TCM12

TI('C

cm2/

W)

Temp Cycle Condition B (-55◦C-125◦C, 1000 cycles)

ASTM E1461

Page 17: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

©2014 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron’s production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

17   |          ©2014  Micron  Technology,  Inc.          |        Micron  Confiden:al    

Applica:on:  Micron  PCie  SSD  

17

Page 18: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

18   |          ©2014  Micron  Technology,  Inc.          |        Micron  Confiden:al    

Mechanical  Stress  Tes:ng  (MST)  

Mechanical  stress  tes:ng  is  a  family  of  accelerated  test  that  are  intended  to  find  intrinsic  mechanical  capabili:es  of  an  SSD  to  withstand  various  environmental  condi:ons.  In  this  case,  the  tests  used  for  the  study  were  Shock,  Temperature  cycle  tes:ng  and  Temperature  &  Humidity  tes:ng.  

•  Shock  

"  Precondi:on:  48  hour  oven  bake  at  125°  

"  Shock  condi:on:  1500g  /  0.5ms  half-­‐sine  pulse,  5  drops  each  axis  (+/-­‐  x,  +/-­‐  y,  +/-­‐  z)  (total  30  drops)  

"  JESD22-­‐B110  condi:on  B  

•  Temperature  cycle  tes:ng  

"  TC-­‐N:  -­‐40C  to  85C,  2cyc/hr,  1000cycles  

"  JESD22-­‐A104,  condi:on  N    

•  Temperature  &  humidity  tes:ng  

"  THB  85C/  85%  RH,  for  1008  hours  

"  JESD22-­‐A101C  

April  7,  2016  

Page 19: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

19   |          ©2014  Micron  Technology,  Inc.          |        Micron  Confiden:al    

Honeywell  TIM  Experimental  Results  PCie  SSD  

April  7,  2016  

 • PTM7000:  had  great  thermal  results.  Thermal  performance  is  top  :er  for  pad  thermal  interface.    It  was  combined  with  a  dispensable  thermal  interface  material  because  of  thicknesses  needed  on  sample  drive.    Test  will  be  run  in  future  applica:ons  of  pad  thermal  interface,  with  pad  interface  only.  Passed  Mechanical  Stress  Tes:ng  (MST).    Rework  was  achieved.      

• Compressible  TCM11:  had  great  thermal  results;  however,  viscosity  flow  is  low  and  recommended  for  thin  gaps  

• Compressible  TCM12:  had  great  thermal  results.  Ideal  for  larger  gaps.  Passed  MST.  Dispensing  in  line  with  other  thermal  interface  materials.      •     No  silicone  bleed  issue      

Honeywell  TIM  Study  (  ◦C  )  

Bond  Line  (mm)   PTM7000   TCM  11   TCM  12  

Ambient  air                    55.0                  55.0                55.0    

ASIC     1.0  -­‐  1.3                70.6                  71.9                71.0    

NAND   1.40  -­‐  1.65                67.7                  68.8                67.8    

Page 20: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

20   |          ©2014  Micron  Technology,  Inc.          |        Micron  Confiden:al    

Environmental  Tes:ng  

April  7,  2016  

Drop  

Temperature  Cycle  Temperature  Humidity  Bias  

Page 21: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

21   |          ©2014  Micron  Technology,  Inc.          |        Micron  Confiden:al    

Environmental  Tes:ng  

April  7,  2016  

Drop  50X  magnifica:on   THB  50X  magnifica:on   Temperature  cycle  50X  magnifica:on  

Page 22: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

SUMMARY

• Increasing power densities and board layout drive higher temperatures

• Gap Pads and Putty delivery compressibility and compliance

• Formulating PCM enables compressibility, low thermal impedance and thermal stability

• Tested in SSD Memory Application

22

Page 23: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

THANK YOU QUESTIONS?

Page 24: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

•  Per Fourier’s Law of Heat Conduction:

Connect to data acquisition set-up

Cooling Block (maintain constant low temp.)

Lower Intermediate Block

Test Sample

Upper Intermediate Block

Heater Block (provide constant heat)

T1

T3 T2

T4

T6 T5

AqTTI

xTkAq

Δ=

Δ

Δ=

q = heat flux

K = thermal conductivity

Δx = thickness of sample

ΔT = temperature difference across sample

A = cross-sectional area of sample

THERMAL IMPEDANCE TEST METHOD: CUT BAR

•  ASTM D5470 -  Destructive, one time test only -  Fast test for immediate results -  Most common test method

Page 25: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

THERMAL IMPEDANCE TEST METHOD: LASER FLASH

ASTM E1461 •  Thermal Impedance Between Si, Ni-plated Cu Surfaces

-  Includes the CTE mismatch -  includes actual surface finish

•  Typical Coupons: -  Ni-plate copper, 0.5”X0.5”X0.03” -  Si, 0.5”X0.5”X0.02”

•  Suitable for Accelerated Life Test

Die TIM Spreader

Flash

IR Sensor

Time

Tem

pera

ture

Laser Pulse

Netzsch Laser Flash™

k = (α)(Cp)(ρ)

k = Thermal Conductivity (W/cmK) α  = Thermal Diffusivity (cm2/s)

α =0.13879L2 /t1/2

L=specimen thickness, meter t1/2=the time required for the temperature rise to reach 50% percent of ΔTmax

Cp = Specific Heat Capacity (J/gK) ρ = Density (g/cm3)

•  Determines Thermal Diffusivity •  Thermal Conductivity/Resistance Calculated

Page 26: High Performance SSD Memory Application with Compressible TIM- Based On Phase Change Technology

© 2015 by Honeywell International Inc. All rights reserved. Additional Disclaimers As Needed (Consult Legal)

RELIABILITY TEST CONDITION • Highly-Accelerated Temperature and Humidity Stress

Test (HAST) - Standard: JESD22-A110-B - Testing Condition: 130°C, 85%RH, 96 hours - Objective: Accelerate corrosive impact of high humidity and

temperature on the thermal performance of the test structure

•  Temperature Cycling Test - Standard: JESD22-A104C - Testing Condition: -55°C to 125°C (TCB), 1000 cycles - Objective: Determine the resistance of TIM to extremes of high

and low temperatures, and its ability to withstand cyclical stresses

•  High Temperature Storage - Standard: JESD22-A103 - Testing Condition: 150°C, 1000 hours - Objective: Accelerate changes in TIM’s material and

performance characteristics relative to prolonged and elevated temperature

HAST chamber

TC chamber

Oven