group report final version

34
Engineering Design and Structural Analysis Methods SESG2005 3D Printer Group Design Project Group 14 Berkeley, Jamie 24659975 Flinton, Alan 24750522 Huntingford, Joshua 24789518 Knight, Robert 24604216 Krueger, Hannes 24959308 Olivier, Isabel 24702269 Sunder, Shriram 24946222 Tress, Dee 24797367 Urbsas, Mikas 24268518 Warmington, Joseph 24730157 Submission Deadline: 7 th May 2013

Upload: dee-tress

Post on 09-Nov-2014

115 views

Category:

Documents


0 download

DESCRIPTION

Engineering Design Year Two Semester Two 3D Printer Product Design Group 14

TRANSCRIPT

Page 1: Group Report Final Version

Engineering  Design  and  Structural  Analysis  Methods  SESG2005    

     3D  Printer  Group  Design  Project  

             

Group  14        

  Berkeley,  Jamie       24659975  Flinton,  Alan         24750522      Huntingford,  Joshua       24789518  Knight,  Robert       24604216  Krueger,  Hannes       24959308  Olivier,  Isabel         24702269  Sunder,  Shriram       24946222  Tress,  Dee         24797367  Urbsas,  Mikas     24268518  Warmington,  Joseph       24730157  

                   

Submission  Deadline:  7th  May  2013            

Page 2: Group Report Final Version

Introduction      Overall  Perspective    This   project   aims   to   investigate   the   potential   for   bringing   the   capability   of   3D   printing   to   a  domestic  scale.    This  technology  has  been  revolutionary  in  the  field  since  its  introduction  in  1987,  providing  flexible  and  efficient  methods  of  prototyping  and  producing  simple  3D  parts,  allowing  complex   modules   to   be   produced   quickly   and   easily.   This   is   achieved   by   layering   the   chosen  composite,   resulting   in   a   solid,   accurate,   low   cost  working  parts,   however   although   the   cost   of  manufacture   is   dramatically   reduced   by   use   of   this   technology,   the   units   themselves   are  extremely   expensive   and   require   a  huge   initial   outlay  –  which  must  be   factored  back   in   to   the  overall  cost  of  the  product.  A  need  has  therefore  arisen  for  a  low-­‐cost,  high-­‐performance  additive  manufacture  machine  that  could   fill   this  void   in  the  market  and  make  3D  printing  more  widely  accessible.   This   is   essential   for   developing   countries   and   a   wide   range   of   educational   and  industrial   sectors   if   they   wish   to   continue   to   be   able   to   compete   with   the   larger   commercial  companies   and   dominating   worldwide   producers.   Due   to   the   diverse   applications   of   such   a  device,   the   target   consumers   for   this   product   is   overwhelming,  with  practical   uses   required   in  multiple  industries,  including  architecture,  healthcare,  education  and  retail.    Literature  Review      Our   first   point   of   research  was   to   establish   the  main   technologies   used   3D   printing,   selective  laser   sintering,   fused   deposition   modelling,   and   stereo   lithography,   for   which   we   utilised   the  website   ‘3ders’1.    This  website  follows  the  news,  trends  and  resources  of  the  3D  printing  world  and  therefore  provided  us  with  a  basis  to  begin  our  own  project.    Due  to  the  low  budget  of  this  project,  we  established  that  fused  depositional  modelling  was  the  most  appropriate  method  as  it  is   the  cheapest,  however  each  of   the   three  methods  are  evaluated   in  more  detail   in   the  critical  review.    Another  useful  feature  of  this  particular  website  was  an  in  depth  discussion  on  the  applications  of   3D   printing,   which   was   essential   when   establishing   our   target   market.   One   of   the   most  prominent  uses  of  this  technology  is  in  the  medical  industry,  however  due  to  the  high  standards  required   in   such   a   field,   it   is   unlikely   that   our   own   design   will   be   suitable.   A   more   realistic  application   is   the   construction   of   aerofoil   sections   for   use   in   wind   tunnels,   or   prototypes   for  working   parts,   where   quality   constraints   are   not   so   strict.   Such   applications   exploit   the  main  advantage  of  a  3D  printer;  it’s  ability  to  entirely  form  a  part  from  a  wide  range  of  materials  in  a  matter  of  hours.      Our   research   then   directed   us   to   investigate   RepRap   technologies,   found   on   RepRapWiki2.  RepRap  is  a  3D  printer  made  from  plastic  parts,  which  in  turn  is  able  to  print  plastic  components,  -­‐   in  essence  a  self-­‐replicating  machine.  Therefore   if  our   final  design   is  predominately  plastic,   it  would  be  possible  for  us  to  utilise  this  feature  for  the  production  of  spare  parts,  an  advantage  for  the  consumer.  Furthermore,  this  strategy  would  be  extremely   low  cost,  an  important  feature  of  our   product   and   design   process.   RepRap   is   also   an   open   source   community   project,   allowing  anyone  to  manufacture  their  own  3D  printer,  resulting  in  a  wealth  of  available  information  and  previous  research.      Due  to  the  wide  range  of  styles  and  designs  currently  available  for  3D  printers,  it  was  important  to   compare   each   concept   in   order   to   focus   our   design   process   towards   the   most   appropriate  outcome.   The   3D   printer   comparison   chart   (see   appendix   1)   from   ‘makershed’3   compares   5  different  low  cost  3D  printers.  These  all  fall  within  the  category  that  our  own  printer  should  be  designed   around;   low   cost,   small   and   for   personal   use,   and   therefore   provided   useful   insights  into  our  own  research.  All  of  the  printers  use  fused  deposition  modelling,  and  use  only  a  single  extruder,   but   across   the   range   provide   a   wide   range   of   print   volumes,   from   100x100x100  (Printbot  Jr)  up  to  250x152x152  for  the  Makerbot.  This  does  however  have  cost  implications,  as  prices   range   from   $499   to   $2199.   It   can   therefore   be   seen   that   if   the   budget   used   in   this  

Page 3: Group Report Final Version

production  is  accurate,  our  own  design  is  likely  to  be  limited  to  a  small  print  volume.  The  chart  also   implies   that  print   speed  and   resolution  are  both   closely   linked   to   the  price  of   the  printer,  which  is  expected  as  investing  in  better  parts  will  yield  a  higher  quality  print.  For  a  low  budget  printer,  print  speed   is   likely   to  be  about  70mm  per  sec.  All  main  operating  systems  (Windows,  Mac  and  Linux)  are  supported  by  all  of  the  printers,  an  important  design  feature  to  consider,  and  most  can  use  both  ABS  and  PLA  as  a  filament  for  printing.    Additive3d4   provides   another   3D   printer   comparison   chart   (appendix   2)   comprising   of   many  variants   of   printer.   By   examining   the   pros   and   cons   of   each   printer   it   is   again   evident   that  cheaper   printers   (under   £1000)   will   suffer   from   poor   surface   finishes   and   slow   print   speeds,  such   as   in   RepRap.   PP3DP   is   a   low   cost   printer   which   benefits   from   a   low   operating   sound,  another  design  parameter  we  decided   to   consider  within  our  design.  The  Leapfrog  printer   can  use  a  WIFI  computer  connection,  however  this  could  lead  to  slow  data  transmission  and  is  seen  as   a   gimmick   simply   raising   the   cost   of   the   printer   and  was   a   feature  we   therefore   discarded.  Many  printers  use  a  heated  platform  to  avoid  the  print  warping,  an  essential  property  if  FDM  is  used.   A   further   advantage   of   certain   printers   is   their   ability   to   be   modified   allowing   easy  upgrades.  This  is  essential  to  keep  up  with  future  developments,  and  accommodate  changes  for  unique  print  projects.  Although  after  careful  analysis  of  the  existing  market  there  does  not  seem  to  be  a  distinct  niche,  due   to   the   highly   modifiable   nature   of   3D   printers   it   will   be   simple   to   make   a   3D   printer  optimised  to  suit  our  needs.  As  the  budget  for  the  printer  is  low  it  is  likely  that  the  quality  of  any  prints  will  be  limited,  but  none  the  less  satisfactory  for  our  needs.    Our  final  point  of  primary  research  was  into  stepper  motors,  a  common  type  of  motor  used  in  the  robotics   industry   (see   appendix   35).   Their   characteristics   make   them   suitable   for   use   in   3D  printing  as  they  move  a  known  interval  for  each  pulse  of  powder  they  receive.  As  each  step  is  a  known  distance  they  are  useful  for  repeatable  positioning.  Stepper  motors  can  be  either  unipolar  or   bipolar,  with   unipolar  motors   being   the  more   cost   effective   and   therefore   used   for   simpler  applications6.  They  are  powered  by  stepper  drivers  which  allows  them  to  be  digitally  controlled,  another   vital   design   feature.  We  were   also   able   to  utilise  previous   research7   to   establish  black  box  dimensions  for  the  stepper  driver  (appendix  4).    Critical  Review  of  Design  Alternatives      The  design  of  a  3D  printer  can  vary  in  many  ways  due  to  the  numerous  solutions  to  the  design  challenge   available   through   advancing   technologies.   These   can   be   summarised   into   3   main  categories:   laser   sintering,   stereo   lithography,   and   fused   deposition   modelling.   As   can   be  expected  each  of  these  methods  will  have  its  advantages  and  disadvantages8.      Laser   sintering,   also   known  as   SLS,   uses   a   laser   to   heat   powder   (usually  white   nylon9).   As   the  powder   is  heated,  neighbouring  particles   fuse   together   forming  a   cohesive  a   solid.  A   computer  separates   the   desired  model   into   slices,   which   are   recreated   by   the   layer   by   layer,   eventually  building   a   complete   3D   model.   When   printing   is   finished,   the   model   is   encased   in   a   block   of  powder,   which   is   often   removed  manually.   This   allows   for   extra   support   for   parts   during   the  print  process,  allowing  the  design  to  be  more  complex.  Powder  that  is  not  used  can  be  collected  and  used   in   the  next  print   to  avoid  waste  and  reduce  production  costs.  The  major   limitation  of  this  process   is  a  restricted  ability   to  produce  hollow  parts,  as   there  would  have   to  be  a  hole   to  allow  the  powder  trapped  inside  to  be  removed.  SLS  is,  however,  capable  of  producing  snap  fits  and  hinges,  which  are  of  great  benefit  as  to  make  them  externally,  would  add  to  the  complexity  of  the  project.  Additionally,  parts  made  by   laser  sintering  are  usually  heat  and  chemical   resistant.  Due   to   the   manufacturing   methods   used   within   laser   sintering,   the   model   often   has   a   rough  surface   finish,  which   can   be   expensive   and   time   consuming   to   remedy.   Further   disadvantages  include  the  limited  colour  choices  associated  with  SLS,  an  issue  almost  uniquely  associated  with  this  method,  due  white  nylon  powder  being  the  most  common  input.  Additionally,  SLS  printing  is  generally  messy  and  unsuited  for  personal  use  due  to  the  need  for  the  powder  to  be  swept  away  and  peeled  from  the  finished.  10    Stereo  lithography,  also  known  as  SLA,  is  somewhat  similar  to  laser  sintering  due  to  its  use  of  a  laser11.   In   this   case,   however,   it   is   a   beam   of   ultra   violet   light   and   the   principles   of  

Page 4: Group Report Final Version

photochemistry  that  are  applied.  Instead  of  powder,  the  laser  beam  of  UV  light  is  shone  into  a  vat  of  photopolymer  whose  properties  alter  when  exposed  to  UV  light  -­‐  in  this  case,  hardening.  Once  again,   the  model   is   sliced  by  a   computer   and  built  up   layer  by   layer  until   complete.  Out  of   the  three  printing  methods,  SLA  is  the  best  technique  to  manufacture  water  resistant  materials,  and  usually   provides   a   good   surface   finish12.   This   does   however   have   detrimental   effects   in   other  areas,  as  this  capability  requires  the  printer  to  be  watertight  in  order  to  contain  the  liquid  resin,  increasing  complexity,  and  the  price  of  the  resin  (a  minimum  of  $80  per  litre),  combined  with  the  added  expense  of  a  laser,  makes  it  far  more  costly  than  other  methods.13    Fused  deposition  modelling  (FDM)  utilises  different  technologies,  creating  a  3D  model  by  heating  the   model   material   (the   filament)   and   then   feeding   it   though   an   extruder14.   By   heating   the  filament,   it   becomes   less   viscous   and   easier   to   extrude   and  manipulate,   allowing   the  model   is  built  layer  by  layer  from  the  bottom  up  -­‐  similar  to  laser  sintering.    The  path  the  extruder  follows  must  be  extremely  precise  due  to  filament  cooling,  and  is  often  allocated  by  a  computer  to  obtain  the  optimal  route.  It   is  possible  to  change  the  filament  type  to  create  support  structures  for  the  model,   creating   potential   for   greater   design   complexity.   These   support   structures   are   soluble,  usually   in  water,   so  when  extrusion   is   finished   it  can  be  simply  placed   in  a   tank   to  remove   the  supports.   Two   main   types   of   filaments   are   used   when   applying   fused   deposition   modelling:  polylactide  (PLA)  or  acrylonitrile  butadiene  styrene  (ABS).  Each  of  these  filament  types  will  have  implications  on  the  characteristics  of  the  model.  Both  PLA  and  ABS  can  be  used  as  filament  if  an  extruder   is   used   as   a   construction   method   with   each   type   having   individual   characteristics  (appendix  5),  however  due   to   their  differences,   the  printer   is  often  optimised   to  accommodate  only   one   type.   PLA   is   plant   based,   and   subsequently   rich   in   starch.   As   a   result,   it   is   100%  biodegradable   and   won’t   produce   any   toxic   material   when   decomposing,   an   important  environmental   factor.   Conversely,  ABS   is   petroleum  based,   limiting   its   commercial   uses  due   to  toxin  levels.  Economically  there  is  no  difference  between  the  two15.  The  extrusion  temperatures  of  the  two  types  of  filament  are  also  different.  PLA  has  a  glass  transition  temperature  of  58°C,  and  ABS  100°C,  and  as  a  result  a  higher  temperature  is  required  to  extrude  ABS  effectively.  When  PLA  is   used   a   cooling   system   is   therefore   required16   to   cool   the  model   quickly   before   it   droops.   In  contrast,   ABS   systems   frequently   use   a   heat   bed   to   ensure   that   the   first   layer   of   the   model  adheres  to  the  plate17,  and  also  to  prevent  rapid  cooling,  which  would  also  result  in  warping,  Both  filament  types  incur  size  limitations,  as  large  parts  will  take  longer  to  cool,  often  leading  to  drooping.  All  of  the  above  methods  were  explored  when  generating  concepts  to  meet  the  design  challenge.      Engineering  Design  Methods      Customer  Requirements      After  carefully  analysing  our  research  and  the  information  above,  and  investigating  the  success  of  a  number  of  printers  with  varying  features,  we  decided  on  the  10  parameters  we  wanted  to  use  as   a   design   basis   for   our   own   project.   These   decisions   were   aided   by   our   own   personal  experiences  with  numerous  3D  printers  and  establishing  which  features  would  make  our  product  most   appealing   to   our   target   market,   whilst   still   being   feasible   within   our   budget.   Our  requirements,  set  out  below,  are  formalised  in  appendix  6.     1. Print  resolution  

2. Print  size  3. Print  speed  4. Robust  5. Ease  of  assembly  6. Ease  of  maintenance  7. Lightweight  8. Low  cost  9. Ability  on  different  terrains  

Page 5: Group Report Final Version

 Once  selected,  it  was  then  essential  that  the  features  were  prioritised  appropriately  to  direct  our  concept  generation,   for  which  a  Binary  weighted  matrix  was  used.  From  our  matrix  (as  seen  in  appendix   six),   each   requirement  was  compared  directly   to  each  other   to  determine   the  overall  importance   with   respect   to   our   final   design.   The   results   of   this   can   be   seen   graphically   in  appendix  7.      From  analysis  of  this  graph  it  was  immediately  evident  that  the  primary  function  of  the  printer  (to  produce  3D  models)  was  the  most  important  capability,  closely  followed  by  robustness,  and  ease  of  assembly.  Using  this  information,  we  were  able  to  produce  a  simple  design  brief  which  we  were  able  to  utilise  for  our  design  concept  generation.    Design  Concept  Generation      The   information   above   was   collaborated   and   in   order   to   generate   the   most   diverse   and  innovative   selection  of   concepts  possible,   each  member  of   the  group  designed  and  evaluated  a  design,   which   was   then   put   forward   along   with   a   detailed   explanation   and   evaluation.   This  allowed  for  multiple  approaches  and  features  to  be  considered  and  was  thought  to  be  the   least  limiting  method  of   concept   generation.  As   a   result,   the   range  of   potential   options   available   for  further  development  was  exceptionally  broad  and  thought  provoking.  Our  designs  can  be  found  in  the  appendix,  labelled  figures  8-­‐17.    Design  Concept  Selection      Our  concepts  designs   from  above  were  analysed  carefully   to  assess   their   individual  merits  and  positive  features,  and  evaluate  which  we  thought  were  worthy  of  further  consideration.  A  large  amount  of  this  critical  assessment  can  be  seen  on  the  drawings  themselves,  however  below  is  a  concise  assessment  of  each  concept.    Concept  One  (appendix  8):  

Advantages:  -­‐ Separable  parts,  cheap  and  easy  to  repair  -­‐ Pre-­‐existing  control  mechanism  (cheaper,  already  tested/viable)  -­‐ Lightweight,  easy  to  move  -­‐ Stable  base  -­‐ Easy  to  monitor/access  plate  

Disadvantages:  -­‐ Large  amount  of  moving  parts,  high  potential  for  degradation/wear  -­‐ Large  housing  area  required  (bulky,  storage  issues)  -­‐ Requires  extra  space  below  for  teeth  mechanism  

 Concept  Two  (appendix  9):  

Advantages:  -­‐ Less  complex  housing  -­‐ Small  compact  design  -­‐ Fewer  moving  parts  (less  potential  for  wear)  -­‐ Simple  control  elements  

Disadvantages:  -­‐ Effect  of  rotation  on  part  must  be  considered,  may  be  fragile  -­‐ Commands  must  be   converted   into   cylindrical   coordinates   (more   complex  

commands)  -­‐ Potential  for  material  ‘clogging’  in  tube  -­‐ Inefficient  (lots  of  material  melted  even  when  quantity  required  is  small)  

 Concept  Three  (appendix  10):  

Advantages:  -­‐ Simplistic  design  (easy  to  manufacture)  -­‐ Closely  linked  to  many  other  designs  (easily  sourced  material)  

Page 6: Group Report Final Version

-­‐ Cartesian  operating  system  (able  to  use  existing  coding  programmes)  -­‐ Compact  and  stable  design,  simple  stress  analysis  -­‐ Easy  to  locate,  access  and  repair  damaged  parts  

Disadvantages:  -­‐ High  volume  (storage  issues)  -­‐ Limited  support  structure,  may  be  challenging  to  move  -­‐ Wiring  could  interrupt  print  area  

 Concept  Four  (appendix  11):  

Advantages:  -­‐ Minimal  amount  of  materials  required    -­‐ Compact  -­‐ Potential  to  be  self  replicating  

Disadvantages:  -­‐ Multiple  moving  parts,  more  complex  programming  -­‐ Potentially  weak  structure  -­‐ May  be  unstable  -­‐ No  obvious  location  to  store  filament  

 Concept  Five  (appendix  12):  

Advantages:  -­‐ Stable  base  to  prevent  moving  -­‐ More  accurate/precise  than  other  methods  -­‐ Few  mechanical  parts  reduces  failure  risk  -­‐ Retractable  for  easy  storage  

Disadvantages:  -­‐ Bulky  and  may  be  heavy/hard  to  move  -­‐ Expensive  -­‐ Parts  may  be  difficult  to  make/source  -­‐ Complex  controller  system  required  -­‐ Often  requires  further  setting  of  model  

 Concept  Six  (appendix  13):  

Advantages:  -­‐ Easily  collapsible  for  simple  storage  -­‐ Lightweight  and  compact  -­‐ Potential  for  self  replication  of  many  parts  -­‐ Pre-­‐existing  controller  system  

Disadvantages:  -­‐ Would  require  feet  to  accommodate  mechanism,  potentially  unstable  -­‐ Multiple  moving  systems  may  be  difficult  to  align  (different  rates)  -­‐ Moving  plate  could  disturb  already  deposited  material  

 Concept  Seven  (appendix  14):  

Advantages:  -­‐ Innovative  design,  likely  to  generate  interest  -­‐ Very  few  moving  marts,  low  likelihood  of  mechanical  failure  -­‐ Moving  parts  cheap  and  simple  to  replace  

Disadvantages:  -­‐ No  existing  models,  difficult  to  analyse/  develop  operating  system  -­‐ Rollers  and  moving  system  will  be  heavy,  difficult  to  manoeuvre  -­‐ Very  complex  housing,  fractional  errors  could  be  disastrous  -­‐ Laser  component  very  expensive  

 Concept  Eight  (appendix  15):  

Advantages:  -­‐ Very  small,  lightweight  design  -­‐ Extremely  precise  mechanism  -­‐ Easy  to  access  parts  

Page 7: Group Report Final Version

-­‐ Few  parts  so  reliable/  inexpensive  -­‐ Uses  pre-­‐existing  control  systems  

Disadvantages:  -­‐ Very  basic  functionality  -­‐ Potentially  unstable  -­‐ Requires  2  mechanisms  to  work  in  unison  

 Concept  Nine  (appendix  16):  

Advantages:  -­‐ Complete  freedom  of  movement,  allows  for  more  complex  design  -­‐ Heated  plate  for  uniform  cooling  -­‐ Very  stable  base  -­‐ Potentially  collapsible  for  easy  storage  -­‐ Independently  moving  bearings,  fast  ad  precise  

Disadvantages:  -­‐ Requires  production  of  complex  bearings/sliders  -­‐ Complex  design,  high  potential  for  error  

 Concept  Ten  (appendix  17):  

Advantages:  -­‐ Very  compact,  easily  moved  and  stored  -­‐ Highly  portable  as  no  need  for  housing  -­‐ Theoretically  unlimited  range  of  movement  

Disadvantages:  -­‐ Complex  movements,  difficult  to  build/repair  -­‐ Potentially  requires  new  control  system  -­‐ Must  be  carefully  aligned  

 Careful   consideration   of   all   of   these   factors   was   essential,   which   was   assisted   by   use   of   an  effectiveness-­‐versus-­‐degree   of   difficulty   graph   (appendix   18),   which   allowed   us   to   quickly  eliminate  the  least  appropriate  concepts,  and  focus  our  attention  on  the  benefits  on  the  concepts  with  the  most  potential.  An  analysis  of  these  most  suitable  designs  was  then  required,  achieved  by  considering  how  each  design  complied  with  our  customer  requirements  (see  appendix  19).  A  ranking  system  was  adopted  based  on  these  results,  which  took  a  user  decided  ranking  of  how  well   each   design   matched   our   customer   requirements,   and   multiplied   that   value   by   the  requirement   weightings   established   in   our   original   matrix.   This   established   concept   3   as   our  chosen   design   due   to   it   being   ranked   highest,   and   having   the   most   potential   for   further  development.  A  number  of   factors   contributed   to   this,   such  as   its   efficient  use  of  design   space,  high  levels  of  stability,  relatively  simple  make-­‐up,  and  a  high  availability  of  similar  open  source  designs.   It  was  however  decided  that  a  selection  of   the  most  prominent  and  beneficial   features  from   certain   other   designs   would   be   incorporated   into   our   final   concept   to   attain   the   most  effective  and  superior  design.    Design  Matrices    We   did   however   identify   a   conflict   in   our   design   regarding   a   need   to   improve   the   stability,  however  this  would  have  negative  implications  on  the  weight  of  the  non-­‐moving  object.  To  find  a  solution  to  this,  we  utilised  the  TRIZ  matrix18,  which  identified  possible  solutions  of:    1:   Segmentation  26:   Copying  39:   Inert  Atmosphere  40:   Composite  Materials  Further  details  of  which  can  be  found  in  appendix  20.  After  analysis  of  these,  it  was  determined  that  the  best  solution  for  our  own  model  would  be  to  use  a  composite  material.      Following  the  section  and  implementation  of  our  customer  requirements,  it  was  then  required  to  identify   the   design   parameters,   which  would   need   to   be   considered   to   enable   us   to  meet   our  specification.  These  key  parameters  were  as  follows.    

Page 8: Group Report Final Version

 • Weight  of  moving  object  • Weight  of  stationary  

object  • Length  of  moving  object  • Length  of  stationary  

object  • Area  of  moving  object  • Area  of  stationary  object  • Volume  of  moving  object  • Volume  of  stationary  

object  • Speed  • Force  • Tension/Pressure  

• Shape  • Stability  • Durability  of  moving  

object  • Durability  of  stationary  

object  • Temperature  • Energy  spent  by  moving  

object  • Power  • Energy  lost  • Substance  wasted  • Information  lost  • Time  lost  

• Substance  mass  • Reliability  • Measurement  accuracy  • Manufacturing  accuracy  • Manufacturability  • Convenience  of  use  • Reparability  • Adaptability  • Device  complexity  • Control  complexity  • Automation  level  • Productivity  

 These  particular  parameters  were  selected  as  we  believed  that  they  were  thorough  and  covered  all  the  essential  components  and  considerations  of  our  design,  including  performance,  aesthetics,  practicality  and  environmental  impact.  These  parameters  were  tabulated  along  with  our  chosen  customer   requirements   and   a   matrix   of   mappings   was   used   generate   a   normalised   set   of  weightings.   The   information   provided   by   the   table   (located   in   full   on   the   enclosed   CD-­‐R)  was  displayed  graphically,  as  seen  in  appendix  21,  and  evaluated  to  form  a  comprehensive  parameter  ranking  which   could  be  used   to   evaluate  our   chosen  design.   From   the   results   of   this,   it   can  be  seen   that   although   the   majority   of   outcomes   largely   accord   with   logical   judgement,   such   as  complexity,  accuracy,  manufacturability  and  substance  volume  being  the  most  essential  points  to  consider,   there   are   a   number   of   variables   that   were   unexpectedly   located   in   the   ranked  outcomes.  ‘Shape’  was  considered  to  be  in  the  top  25%  of  important  parameters,  a  factor  which  would  previously  not  have  been  regarded  with  a  great  deal  of  importance,  whereas  factors  such  as  energy  consumption  and  efficient  usage  were  considered  largely  irrelevant  when  compared  to  other  factors.  This  allowed  us  to  consider  minor  alterations  within  our  own  design,  and  take  the  necessary   actions   to   ensure   all   of   our   customer   requirements   and   design   specifications   were  being  met  as  closely  as  possible.  As  a  result,  we  integrated  threaded  rods  into  the  frame  making  it  easier  to  build  due  to  the  reduction  in  required  parts,  and  far  more  aesthetically  pleasing,  which  was   a   factor   brought   to   our   attention   by   the   matrix.   Although   this   will   be   more   complex   to  execute,  it  was  identified  as  a  unique  solution,  providing  us  with  an  original  selling  point,  and  is  a  far  more  advanced  design  that  requires  less  operating  space.  It  is  clear  from  this  that  analysis  of  key  parameters  is  a  vitally  important  part  of  the  design  process,  allowing  the  focus  of  customer  requirements  to  be  quantified  and  re-­‐evaluated  continually  throughout  the  project  to  ensure  that  the  best  possible  product  was  created.    Value  Analysis        Once  the  final  alterations  to  our  design  had  been  made  in  accordance  with  the  design  parameters  above,   the  overall  weighted  design  merit  of  each  customer  requirement  had   to  be  evaluated   to  assist   in   determining   the   success   of   our   design.   This   was   achieved   by   creating   a   CODA  spreadsheet,  as  seen  in  appendix  22,  and  on  the  enclosed  CD-­‐R,  and  the  parameters  were  ‘solved’  via   excel   to   establish   our   overall   design  merit.   From   this   it   was   possible   to   perform   a   design  optimisation   to  determine   the  optimum  values   for  our  engineering  design  variables.  These  are  displayed  in  appendix  23,  with  separated  graphs  found  on  the  CD-­‐R.  This  provided  the  optimum  numerical  values  for  each  individual  point  of  consideration,  and  gave  us  a  set  of  ideal  conditions  to  work  towards.  Although  these  may  not  be  practically  achievable,  it  allows  our  calculations  and  finite   analysis   to   be   far   more   accurate,   and   therefore   increase   the   likelihood   of   developing   a  successful  product  that  is  suitable  for  our  target  market.    Cost  Estimation      A  cost  analysis  was  carried  out  using  the   information  generated  above  which  would  eventually  result   in  a  comparison  between  the  merit  and  cost  of  each  parameter.  This  was  achieved  using  

Page 9: Group Report Final Version

Vanguard,  from  which  we  were  able  to  develop  a  chart  of  total  costs,  with  the  components  of  the  printer  as  a  whole  further  separated  into  their  independent  constituents,  allowing  a  breakdown  of  costs  if  something  were  to  be  overpriced.  This  can  be  seen  in  appendix  24.  All  the  elements  to  the  left  hand  side  have  been  calculated  by  multiplying  the  elements  to  the  right  with  each  other,  and   the   cost   of   each   of   the   aspects   of   the   merit   have   been   calculated   individually   as   a  combination  of  either  of  the  4  elements  that  make  up  the  entire  cost  of  the  3D  printer.    A  number  of  calculations  based  on  merit  and  cost  were  carried  out  as  a  result  of  this  (appendix  25),  which  resulted  in  the  production  of  the  Merit  vs.  Cost  Plot  seen  in  appendix  26.  This  enabled  us  to  evaluate  each  components  cost/value  trade  off,   from  which   it  was  ascertained  that   it  was  not  in  our  interest  to  improve  on  certain  aspects,  as  the  benefit  we  would  achieve  from  it  would  be  outweighed  by  the  cost  of  its  implementation.  An  obvious  example  of  this  is  the  printer  speed,  which  is  one  of  the  most  expensive  features,  but  has  an  extremely  low  merit  value  of  only  0.74.  This  had  a  large  impact  on  many  of  our  later  decisions  such  as  the  inclusion  of  threaded  rods  (see  Finite  Element  Analysis).        Engineering  Calculations      Basic  Calculations      Due  to  the   large  volume  of  components  required  for  the  building  of  a  3D  printer,  and  the   large  amount  of  sources  already  available,  it  was  decided  that,  although  we  were  capable  of  making  a  high  quantity  of  the  necessary  parts,  a  select  few  would  be  both  cheaper  and  easier  to  purchase  directly.  The  extruder  we  are  using   is   largely  based  on  the  Wade  geared  extruder19  selected  for  both   its  design   simplicity   and  ease  of   implementation  and   integration.  This   type  of   extruder   is  also  capable  of  relatively  high-­‐speed  printing,  which  is  easily  controllable  through  internal  gear  manipulation  (appendix  27).  Some  alterations  to  this  design  were  necessary  however  to  ensure  the  extruder  fitted  on  our  own  carriage.    As  our  printer  was  designed  to  be  largely  self  replicating,  many  of  the  key  components  –  such  as  the  body  and  the  gears,  can  be  formed  via  3D  printing,  resulting  in  cheaper  and  lighter  parts  than  if  they  were  cast  from  metal.  This  has  the  added  benefit  of  requiring  a  lower  amount  of  torque  to  drive  the  machine  and  a  dramatic  decrease  on  the  working  loads.  Our  design  also  utilises  many  standard   issue   components   such   as   screws   and   bolts,   these   can   be   easily   and   economically  sourced  without  issue,  again  reducing  workload  and  product  cost.    We  are  also  using  the  J-­‐head  Mk  V  nozzle20  sources  from  the  site.  There  is  very  little  difference  between  each  version  with  respect  to  our  limited  usage;  therefore  we  selected  this  one  based  on  its   lightweight   properties   and   durable   aluminium   nozzle.   It   is   also   one   of   the   most   recent  versions,  offering  a  more  compact  body  and  increased  melt  zone  length.          We   opted   to   design   and   produce   our   own   heating   bed   based   on   the   design   in   appendix   2821,  which  offered  all  of   the  required  features,  such  as  preventing  warp  on  cooling  and  allowing  for  adhesion  to  the  surface,  but  was  an  inadequate  size  to  be  incorporated  in  our  own  product.  Our  required   print   area   is   290mmx275mmwhereas   the   area   for   this   product   is   200mm   x   200mm,  meaning  this  design  can  simply  be  up  scaled  to  suit  our  specification.        The  software  required   to  run   the  3D  printer   is  all  open-­‐sourced,  making   it  easily  available  and  free  of  cost,  providing  both  a  practical  and  economical  solution  to  the  operating  conditions.  It  is  simple   to   design   a   3D   model   in   any   CAD   software   (such   as   SolidWorks),   which   the   printer  software   converts   into   a   printable   file   format.   Our   chosen   software  was   ‘Blender’22,   due   to   its  wide  range  of  features  and  strong  user  recommendations23.      To  drive  the  printer  motion  in  all  three  directions,  a  stepper  motor  was  determined  to  be  the  best  solution,   as   these   convert   the   motors   rotational   motion   into   fixed   translational.   The   most  appropriate   product  we   located  was   the   STP-­‐DRV-­‐8010024   as   the   company  was   reputable   and  this  was  the  most  suitable  motor  they  provide.  

Page 10: Group Report Final Version

 The  printer  also  requires  a  set  of  belts/pulleys  in  order  to  operate  which  were  the  most  difficult  of  all  our  components   to  source  due  to  our  design  requiring  them  to  have  an  M10  thread.  As  a  result  of  this,  we  opted  to  design  our  own  based  on  the  most  suitable  existing  product  available25.  By  doing  this,  it  is  possible  to  match  our  specification  precisely,  but  still  use  the  belt  compatible  with  the  pulleys  ours  are  modelled  on.    Finite  Element  Analysis      To  allow  the  construction  of  the  printer  to  be  manageable,  it  was  broken  down  into  2  main  parts  that  could  be  created  separately  and  then  recombined  to  produce  the  finished  article.  Although  each   required   a   combination   of   numerous   sub-­‐parts,   this   was   seen   to   be   the   most   practical  approach.    The  primary  structure  and  framework  formed  one  component,  and  although  initially  designed  to  the  final  concept  design,  the  following  alterations  were  made  to  ensure  its  functionality.  

 • The  position  of  plate   and  extruder   is   controlled  using   threaded   rods   instead  of  belts   for  

better  precision.  Although  this  results  in  a  reduction  of  printing  speed,  the  improvement  in  quality  supersedes  this.    

• The   replacement  M12   rods  will   be   connected   to  motors   using   belt-­‐pulley   systems  with  varying  pulley  sizes  to  increase  production  speed  without  losing  precision.    

• For  better  aesthetics,  easier  assembly  and  to  minimise  the  number  of  parts  required,  some  of  the  threaded  rod  incorporated  into  the  frame.  This  particular  feature  was  considered  to  be  revolutionary  as  none  of  our  researched  features  employed  this  as  a  solution.  

• The  frame  itself  is  made  out  of  M12  threaded  rods,  connected  with  plastic  parts  printed  by  another  3d  printer  (self-­‐replicating)  

 This   produced   the   frame  model   seen   in   appendix   29,   for   which   a   full   parts   list   of   the   plastic  elements  can  be  found  in  appendix  30,  and  the  metal  elements  in  appendix  31.      The   second   main   component   is   formed   of   the   extruder   (appendix   32),   which   controls   the  movement   in   the   x   plane.     Although   this   is   made   up   of   significantly   less   components,   their  construction  and  operation  is  significantly  more  complex.  The  main  improvement  related  to  this  was   positioning   the   extruder   fixing   plate   sideways,   further   increasing   the   maximum   printing  area.      As  with  the  frame,  one  of  the  rods  is  an  M8  threaded  rod  that  moves  the  extruder,  with  the  other  remaining  a  8mm  smooth  rod  to  provide  stability.  Again,  the  threaded  rod  slows  down  printing,  but  increases  precision.    The  two  plastic  components  and  the  slider  are  3d  printed  to  further  the  printer’s   ability   to   self-­‐replicate,  whereas   the   extruder   is   an   open   source  model   of   the   one  we  would  purchase  if  the  printer  were  ever  built  (appendix  33).  The  only  variation  incorporated  into  this   part   would   be   to   increase   the   separation   distance   of   the   mounting   holes   from   50mm   to  75mm  in  order  to  be  compatible  with  our  framework.        These   were   then   combined   to   form   the   complete   SolidWorks   model   of   our   finalised   printer  (appendix  34).   Its  operation   is   explained   further   in  appendix  35.   It   is   this  model  which  was   to  undertake  Finite  Element  Analysis.    The   aim   of   this   testing   was   to   ensure   that   the   frame   of   our   printer   can   withstand   the   forces  applied.  Since  an  FE  analysis  of  our  whole  design  would  be  too  complex  and  time  consuming  we  created  another  model  with  certain  assumptions:  

1)   Frame  parts  do  not  move  2)   Threaded   rods   used   in   the   real   design   replaced   by   solid   bars   (with   inner  

diameter  of  the  threads)  3)   The  extruder  can  be  replaced  by  a  point  mass  pointing  vertically  downwards  4)   The  printer  is  fixed  to  a  perfectly  rigid  ground  5)   For  the  simulation  the  frame  is  transformed  into  a  single  solid  object  out  of  only  

one  material  (plain  carbon  steel)  Due  to  the  high  impact  of  these  simplifications  on  the  accuracy  of  our  results  (especially  No.  5),  the   absolute   values   obtained   from   the   simulations   (e.g.   for   stresses,   displacements)  were   very  

Page 11: Group Report Final Version

inaccurate  and  of  limited  use.  We  can  however  use  those  values  to  compare  the  performance  of  different  design  geometries.    As   well   as   the   above,   a   draft   quality   mesh   was   used   to   enable   us   to   simulate   the   required  situations  with   the   limited  amount  of  computational  power  available.  3  different   test  scenarios  were  evaluated  with  varying  amounts  of  reinforcement.  Each   frame   is  meshed  with   the  default  SolidWorks  mesh  size  (medium),  leading  to  a  meshing  time  of  around  3  to  5  minutes  per  frame  on  the  University  PCs.  The  follow  up  simulations  take  around  5  to  8  minutes  each.  Therefore  the  mesh  size  chosen  seems   to  be  a  good  compromise  between  accuracy  and  calculation   time.  The  results  of  these  tests  can  be  found  in  appendix  36.      This  allowed  us  to  evaluate  the  component  in  a  number  of  different  ways:  -­‐  Bending:   From  the  simulations  we  can  see  that  the  maximum  stress  in  the  frame  without  

any   supports   is   by   far   the   largest;  more   than  3   times   as   large   as   in   the   frame  with   double   reinforcements.   The   max   stress   in   the   frame   with   single  reinforcements  is  around  2/3  of  that  in  the  unsupported  frame.  The   displacement   values   for   all   3   versions   are   negligibly   low.   Under   normal  operation   the   printer   would   probably   not   experience   any   force   of   higher  magnitude,   therefore   reinforcing   the   frame  because  of   possible  bending   is   not  necessary.  

-­‐  Twisting:   Similar   results  were   seen   here   to   those   in   the   bending   test.   The   deformation,  although  still  very  small,  becomes  far  more  significant  due  to  its  directions.  As  a  result,  any  moving  parts  (such  as  the  printing  plate)  could  jam  and  cause  serious  damage  during  operation.  While  it  is  relatively  unlikely  that  twisting  will  occur  during  normal  operation,  reinforcements  would  be  required  if  signs  of  twisting  appeared.  

-­‐  Buckling   The   buckling   test   shows   that   the   buckling   factor   for   the   reinforced   frame  versions   is  about  twice  the   factor  of   the  unsupported  version.  Even  though  we  applied  a  relatively  large  force  of  100  N,  we  can  see  that  the  load  factors  are  very  high   (above  200).  Of   course   the   load   factors   for   the   real   printer  will   be   lower  than   this,   but   it   indicates   that   buckling   is   not   really   an   issue   for   the   printer  during  a  normal  operation.  Even  the  unsupported  frame  will  be  strong  enough  to   withstand   all   forces   occurring   in   normal   use.   Buckling   is   therefore   not   a  reason  for  us  to  add  supports.  

 From  the  simulations  we  ran  on   the  different   frame  versions,  we  can  conclude   that  supporting  the  frame  is  not  required  provided  the  printer  will  be  used  under  normal  conditions.  To  prevent  potential  twisting  induced  damages,  a  solution  would  be  the  addition  of  supports.  For  our  design  this   means   that   we   should   only   add   supports   where   their   inclusion   does   not   have   negative  implications  elsewhere,  such  as  if  they  were  to  block  access  to  the  printer  area.  As  a  result  it  was  decided  that  the  impact  of  adding  support  on  both  cost  and  complexity  would  be  too  large  to  be  beneficial  to  us,  and  the  supports  were  not  incorporated.      Summary,  Conclusions  and  Future  Work      Summary      There  were  a   large  number  of   considerations   that  had   to  be   accounted   for   in  undertaking   this  project,  which  required  a  diverse  and  in  depth  range  of  research  and  development  methods.  This,  combined   with   the   deign   choices   in   an   already   large   market,   has   led   to   an   extensive   project  which  exploits  numerous  techniques  in  research,  management,  design  development  and  product  analysis.      Our   initial   task   was   to   research   the   product   market   and   evaluate   existing   designs   and   their  suitability   to   our   own   project   restraints.   Although   the   technologies   at   hand   and   the   project  budget  were  both  quickly  established  as   limiting   factors,   through  restricting  our   target  market  and   lowering  our   expectations  of  quality  we  were   able   to   identify   a   likely   line  of  development  and  ascertain  an  appropriate  and  relevant  target  market.  This  was  a  vital  stage  within  our  project  

Page 12: Group Report Final Version

as   it   allowed   us   to   focus   the   following   stages   of   development   and   direct   our   decision-­‐making  processes.      It  was  clear   from  our  market   research   that  different  consumers  have  varying  expectations  and  criteria   regarding   their   choice  of  printer,  and   therefore   that  our  customer  requirements  would  have  to  be  carefully  tailored  for  the  product  to  be  a  success.  In  light  of  this,  and  our  own  personal  thoughts  on  the  matter  (as  our  product  is  designed  for  personal  use),  we  developed  a  collection  of  variables  that  we  found  to  be  of  most  value  to  an  independent  user  of  the  printer.  These  were  ranked   using   a   collection   of   industry-­‐accredited   techniques   to   further   direct   our   focus   and  allowed  for  the  generation  of  several  potential  concepts.    Despite   our   designs   being   centred   around   these   pre-­‐decided   characteristics,   there  were   still   a  number  of   issues  surrounding  many,  highlighting   them  as  unsuitable   for   further  consideration.  This  led  us  to  employ  a  selection  of  analysis  techniques,  including  TRIZ,  CODA  and  QFD  analysis,  to  narrow  down  and  improve  our  concepts  until  only  one  remained.  This  was  to  form  the  basis  of  our  final  design.    Although  supposedly   the  most  appropriate  solution   to  our  design  problem  regarding  customer  satisfaction,   it  was  by  no  means  complete  or  optimised.  Far  more  extensive  consideration  of   its  features  and  practicalities,   as  well   as   individual   components,  was   therefore   required.  This  was  broken  down  into  3  main  areas  –  functionality,  cost  and  build  practicality.  These  were  evaluated  using  extensive  parameter  optimisations  and  cost  estimations  to  establish  the  exact  functionality  level  attainable  and  how  economically  viable  it  would  be  to  reach  these  targets.  Following  this,  if  found  to  be  feasible,  the  design  was  altered  to  incorporate  it,  if  however  the  optimisation  would  be   too   costly,   or   designing   the   component   was   impractical   and   overly   complex,   a   purchased  alternative  was  required.    This   identified   a   new   series   of   issues,   as   any   pre-­‐existing   components  would   not   only   have   to  meet   the   feature   specifications   and   cost   requirements,   but   also   be   compatible   with   the  framework   and  model   we  would   be   building   ourselves.   A   large   amount   of   research   time  was  allocated  to  this,  as  the  success  of  the  project  depended  on  the  parts  coming  together  correctly.  As  a  result,  appropriate  products  were  found  for  almost  every  section,  and  even  where  this  was  not  the  case,  solutions  to  the  design  problems  were  found.    Having   finalised  and  optimised   the  design,   and  obtained   the  CAD  drawings   for  any  outsourced  parts,   a   SolidWorks  model   of   our   final   product  was   developed   and   assembled   in   full   working  order.  From  here,  finite  element  analysis  was  carried  out  using  estimations  of  the  expected  loads  to  determine  whether  our  printer  would  function  and  operate  in  the  expected  manner,  and  allow  for  any  necessary  corrections   to  be  made.  Fortunately,  our  design  was   found  to  be  structurally  sound,  and  was  therefore  at  a  suitable  stage  to  be  put  into  production  if  required.    Conclusions      Overall   we   believe   our   project   has   been   successful,   as   the   product   we   designed   provided   an  adequate   solution   to   the  design  problem,   and  met  with   the   entire   initial   criterion.   The  market  and   product   research   we   worked   from   confirms   that   our   final   design   is   suitable   for   product  release  and  the  testing  we  carried  out  on  the  structure  itself  verifies  that  building  the  printer  is  practically   achievable,   and  would   result   in   a   fully   functional  3D  printer   capable  of  meeting   the  requirements   of   an   individual   user.   If   our   design   is   evaluated   against   our   initial   customer  requirements  and  design  parameters,  they  are  met  (in  general)  to  the  highest  degree  achievable  within   our   budget   and   time   constraints.   The   final   version   of   our   product   can   still   be   seen   to  closely   replicate   the   concept   drawing   we   initially   selected,   demonstrating   that   our   concept  generation   methods   were   carried   out   effectively.   The   fact   that   some   alterations   and  improvements  were  implemented  is  also  a  positive  indication  of  our  project  as  it   illustrates  on-­‐going  thought  and  optimisation,  which  is  vital  for  product  development.    There  were   however   issues  with   the   project   as   a  whole   due   to   an   overestimation   of   our   own  capabilities   and   the   practicalities   associated   with   the   building   of   a   3D   printing   device.   These  limitations  were  not  recognised  at  an  early  stage,  and  resulted  in  a  large  amount  of  wasted  time  and  a   lack  of  directed   research,  which  had  negative   consequences  on  our  progress.  As   soon  as  these  issues  were  overcome,  our  project  ran  relatively  smoothly,  as  each  task  was  undertaken  in  stages   to  ensure  all   relevant  and  necessary  undertakings  were  completely  correctly  and   in   full.  On   the   few   occasions   that   we   did   not   adhere   to   this   schedule,   it   did   cause   problems   as   it  

Page 13: Group Report Final Version

generated  confusion  with  the  finer  details,  resulting  in  2  different  values  being  used  for  heat  bed  dimensions,   and   therefore   certain   sections   had   to   be   entirely   redrafted.   We   were   fortunate  however   in   the   outcome   of   this,   and   also   in   locating   compatible   parts   that  we   had   previously  failed   to   realise   could   not   be   self   produced,   an   oversight   that   could   have   sacrificed   the   entire  project.   With   the   exception   of   these   drawbacks,   which   in   many   cases   actually   benefitted   the  project  by  encouraging  us   to  re-­‐evaluate  certain  areas   to  attain  even  better  results,  our  project  ran   smoothly   and   produced   a   fully   producible   3D   printer   capable   of   every   feature  we   desired  from  it.    Future  Work  Sources:  26-­‐35    3D   printing   presides   at   the   forefront   of   technology;   it   is   set   to   revolutionise   the   production  process   within   manufacturing,   allowing   product   innovation   and   customisation   to   occur   at  increasing   speed.   Research   within   the   field   is   vast,   with   innumerable   applications,   including  advancement   regarding   the   input   materials.   Examples   of   such   include   bio-­‐printing   (including  nano-­‐medicine),  in  which  bones,  cartilage,  organs  and  synthetic  tissues  for  drug  distribution  and  tissue  scaffolding  are  created.  Moreover,  there  is  research  into  materials  and  machines  that  will  allow  the  application  of  4D  printing  in  the  future  (appendix  37),  however,  the  current  capability  of   3D   printing   on   a   widely   applied   scale   is   found   in   the   production   of   prototypes   within  manufacturing,  rather  than  objects  of  professional  quality  or  of  biological  importance.    Due  to  the  design  criterion,  the  printer  described  within  this  report  is  a  very  basic  representation  of  the  revolutionary  technology  currently  being  produced  and  adapted;  the  design  is  incapable  of  such   innovative   concepts   described   above,   without   a   design   overhaul   being   implemented.  Significant   improvements/alterations   could   however   be   applied   so   as   to   extend   its   working  capabilities.    Firstly,   general   improvements   include   increasing   the   feed   rate   so   as   to   produce   a   more   time  efficient   design;   implementation   includes   redesigning   the   extruder   so   that   the   number   of   gear  teeth  is  either  reduced  for  the  driven  gear  or  increased  for  the  driver  gear.  Furthermore,  the  step  size   could   be   decreased   so   as   to   improve   the   finish   and   accuracy   of   the   design;   allowing   the  creation  of  intricate  designs.  Other  general  improvements  include  incorporating:  filament  spools  so   as   to   increase   the   smoothness   of   the   filament   feeding   into   the   extractor   whilst   reducing  manual  input,  a  ‘blanket’  to  place  over  the  heating  bed  whilst  it  is  warming  so  as  to  increase  the  speed   of   heating   and   thus   time   efficiency,   a   form   of   alarm   so   as   to   show  when   the   bed   is   of  working  temperature  and  finally  the  attachments  of  fans.  The  use  of  a  fan  to  cool  the  top  of  the  hot-­‐end  and  extruder  reduces  damage  of   the  ABS  components   that  make  up   the  extruder,   thus  increasing   the   extruder   and   x-­‐carriage   component   lifetime.   Furthermore,   a   fan   which   can   be  controlled   to   cool   the   printed   PLA   will   allow   for   more   intricate   designs   to   be   created;   the  overhang   performance   is   improved   as  well   as   the   overall   general   quality   as   even   smaller   step  sizes  may  also  be  implemented.      Currently,   printers   are   only   capable   of   producing   a   product   of   constant   colour/material.   This  constraint   may   be   removed   by   altering   the   extraction   process   so   that   the   extruder   can   be  programmed   to  create  a  mixture  of   colours  or  materials   subject   to   the  designer’s   specification.  Although  this  technology  is  under  experimentation  for  low  cost  printers,  various  designs  can  be  found  on  ‘thingiverse’  that  already  implement  this.  One  already  tested  example  involves  creating  a  multiple   extractor   setup  with   a   single   hot-­‐end   combining   nozzle,   allowing   for   a   blend   of   the  filament   materials   to   be   produced   (appendix   38).   For   a   design   that   requires   two   unmixed  materials,   a   dual   extruder   may   be   utilised.   Another   design   (appendix   39)   allows   for   the  extraction  of  PLA  and  PVA  -­‐  PVA  can  be  used  as  a  support  for  any  overhang  within  the  design  and  dissolved   in  water   to   leave  the   final  product,   thus  allowing   for  more  complicated  designs  to  be  created.      All  of  the  alterations  described  above  would  require  research  and  experimentation  in  order  to  be  implemented,   thus   increasing   the   cost   of   the   3D   printer.   Despite   this,   a   combination   of  improvements  (including  those  stated  above),  as  well  as  many  more  general  alterations,  could  be  considered  within  optimising  the  design,  so  as  to  allow  for  the  most  relevant  and  cost  effective  solutions.   In   summary,   3D   printing   is   an   ever-­‐evolving   technology,   for   which   the   design  described  within  this  report  represent  only  the  very  early  stages.  

Page 14: Group Report Final Version

References      1.  Source:  3ders.org  -­‐  3D  printer  and  3D  printing  news,  trends  and  resources..  2013.3ders.org  -­‐  3D   printer   and   3D   printing   news,   trends   and   resources..   [ONLINE]   Available   at:  http://www.3ders.org/index.html.  [Accessed  06  April  2013].    2.   Source:   RepRap   -­‐   RepRapWiki.   2013.   RepRap   -­‐   RepRapWiki.   [ONLINE]   Available  at:http://www.reprap.org/wiki/Main_Page.  [Accessed  06  April  2013].    3.  Source:  3D  Printer  Comparison  Chart.  2013.  3D  Printer  Comparison  Chart.  [ONLINE]  Available  at:  http://www.makershed.com/Articles.asp?ID=301.  [Accessed  24  April  2013].    4.   Source:   3   Dimensional   Printers   Below   $20,000   -­‐   Comparison   Chart.   2013.   3   Dimensional  Printers   Below   $20,000   -­‐   Comparison   Chart.   [ONLINE]   Available   at:  http://www.additive3d.com/3dpr_cht.htm.  [Accessed  24  April  2013].    5.   Source:  RepRap.org  –  LDO  Motors   co.  CAD  drawing  of   stepper  motor   [ONLINE]  Available  at:  http://reprap.org/mediawiki/images/1/11/LDO-­‐42STH47-­‐1684A_RevA.pdf     [Accessed  06  April  2013]    6.   Source:  Nanotech  plug  and  drive  –  FAQ  –  Stepper  Motors  –  Difference  between   the  unipolar  and   bipolar   circuit.   [ONLINE]   Available   at:   http://en.nanotec.com/support/faq/   [Accessed   24  April  2013]    7.   Source:   Avrstmd   –   Stepper   Drivers   [ONLINE]   Available   at:  http://www.avrstmd.com/Photos/Full%20Size/Board_Dimensions.gif    [Accessed  19  April  2013]    8.   Source:   MIT   Open   University   –   Prototyping   2013   [ONLINE]   Available   at:  http://ocw.mit.edu/courses/sloan-­‐school-­‐of-­‐management/15-­‐783j-­‐product-­‐design-­‐and-­‐development-­‐spring-­‐2006/lecture-­‐notes/cls8_prototyping.pdf  [Accessed  24  April  2013].    9.   Source:   Selective   Laser   Sintering   (SLS).   2013.   Selective   Laser   Sintering   (SLS).   [ONLINE]  Available   at:   http://production3dprinters.com/sls/selective-­‐laser-­‐sintering.   [Accessed   24   April  2013].    10.  Source:  3D  Printing  Basics:  Materials.  2013.  3D  Printing  Basics:  Materials.  [ONLINE]  Available  at:  http://www.additivefashion.com/3d-­‐printing-­‐basics-­‐materials/.  [Accessed  29  April  2013].    11.   Source:   Rapid   Prototyping   |   SLA   |   SLS   |   FDM   |  MJM   |   Print   a   Part   |  Met-­‐L-­‐Flo.   2013.Rapid  Prototyping   |   SLA   |   SLS   |   FDM   |   MJM   |   Print   a   Part   |   Met-­‐L-­‐Flo.   [ONLINE]   Available   at:  http://www.met-­‐l-­‐flo.com/prototypes.htm.  [Accessed  24  April  2013].    12.   Source:   Rapid   Prototyping:   SLS   or   SLA?.   2013.   Rapid   Prototyping:   SLS   or   SLA?.   [ONLINE]  Available   at:   http://martello-­‐rapid-­‐prototyping.blogspot.co.uk/2008/05/sls-­‐or-­‐sla.html.  [Accessed  24  April  2013].    13.   Source:   Stereolithography   -­‐   Wikipedia,   the   free   encyclopedia.   2013.   Stereolithography   -­‐  Wikipedia,   the   free   encyclopedia.   [ONLINE]   Available   at:  http://en.wikipedia.org/wiki/Stereolithography.  [Accessed  29  April  2013].    14.   Source:   Fused   Deposition   Modelling   (FDM)   |   Rapid   Prototyping   |   Quickparts.com   .   2013.  Fused  Deposition  Modelling  (FDM)  |  Rapid  Prototyping  |  Quickparts.com  .  [ONLINE]  Available  at:  http://www.quickparts.com/LowVolumePrototypes/FDM.aspx.  [Accessed  24  April  2013].    15.  Source:  Compare  3D  Printer  PLA  and  ABS  Filament.  2013.  Compare  3D  Printer  PLA  and  ABS  Filament.   [ONLINE]   Available   at:   http://www.tridprinting.com/Compare-­‐PLA-­‐ABS/.   [Accessed  24  April  2013].    16.   Source:   PLA   -­‐   Ultimaker   Wiki.   2013.   PLA   -­‐   Ultimaker   Wiki.   [ONLINE]   Available   at:  http://wiki.ultimaker.com/PLA.  [Accessed  24  April  2013].    

Page 15: Group Report Final Version

17.  Source:  4.1  First   layer  doesn't   stick   to   the  bed   -­‐  Leapfrog  3D  Printers.  2013.  4.1  First   layer  doesn't   stick   to   the   bed   -­‐   Leapfrog   3D   Printers.   [ONLINE]   Available   at:  https://www.lpfrg.com/faqs/4-­‐1-­‐first-­‐layer-­‐doesnt-­‐stick-­‐to-­‐the-­‐bed/.  [Accessed  29  April  2013].    18.   Source:   TRIZ   40,   Interactive   TRIZ   Matrix   &   40   Principles,   [ONLINE]   Available   at:  http://www.triz40.com/  [Accessed  on  30  April  2013]    19.   Source:   RepRap   [ONLINE]   Available   at:   http://reprap.org/wiki/Wade's_Geared_Extruder  [Accessed  28  April  2013].    20.  Source  RepRap   J  head  Nozzle   [ONLINE]  Available  at:  http://reprap.org/wiki/J_Head_Nozzle  [Accessed  28  April  2013]    21.   Source:   Panucatt,   Helios   heated   bed   platform   [ONLINE]   Available   at:  http://files.panucatt.com/datasheets/helios_user_guide.pdf  [Accessed  29  April  2013]    22.   Source:   Blender,   User   Downloads   [ONLINE]   Available   at:  http://www.blender.org/download/get-­‐blender/  [Accessed  27  April  2013]    23.   Source:   3Ders   software   review   [ONLINE]   Available   at:   http://www.3ders.org/3d-­‐printing-­‐basics.html#3d-­‐software-­‐for-­‐beginners  [Accessed  on  27  April  2013]    24.   Source:   Automation   Direct,   Products   [ONLINE]   Available   at:  http://www.automationdirect.com/static/specs/surestepdrive.pdf  [Accessed  on  28  April  2013]    25.   Source:   RepRap   Discount,   Belts   and   Pulleys   [ONLINE]   Available   at:  http://www.reprapdiscount.com/home/32-­‐2-­‐x-­‐gt2-­‐belt-­‐2-­‐x-­‐pulleys-­‐ordbot-­‐upgrade.html  [Accessed  on  29  April  2013]    26.  Source:  Explaining  the  future-­‐  a  future  shapers  toolbox  by  Christopher  Barnatt.  March  2013  [ONLINE]   Available   at:   http://www.explainingthefuture.com/bioprinting.html     [Accessed   27  April  2013]          27.  Source:  University  of  Oxford-­‐  3D  printer  can  build  synthetic  April  2013  [ONLINE]  Available  at:  http://www.ox.ac.uk/media/news_stories/2013/130405.html  [Accessed  27  April  2013]            28.   Source:   SJET-­‐SJET@MIT   2013.   [ONLINE]   Available   at:  http://www.sjet.us/MIT_4D%20PRINTING.html  [Accessed  24  April  2013]    29.   Source:   Wades   Gear   Extruder-­‐   Reprap   Wiki   [ONLINE]   Available   at:   media:feedrates.xls,  http://reprap.org/wiki/Wade's_Geared_Extruder  [Accessed  27  April  2013]    30.   Source:   Marginally   Clever-­‐robotics   2013   [ONLINE]   Available   at:  http://www.marginallyclever.com/blog/tag/better-­‐quality-­‐prints/  [Accessed  27  April  2013]    31.  Source:  RepRap-­‐  Building  your  own  3D  printer-­‐  Printing  spare  parts  by  Steven  Devijer  2011  [ONLINE]  Available  at:  http://reprapbook.appspot.com/#d0e1403  [Accessed  27  April  2013]    32.   Source:   Deezmaker   –Bukobot-­‐open   source   3D   by   buildrob   2013   [ONLINE]   Available   at:  http://bukobot.com/pla-­‐print-­‐cooling-­‐fan  [Accessed  27  April  2013]    33.   Source:   Makerbot-­‐Thingiverse-­‐3-­‐way   quick   fit   extruder   and   colour   blending   nozzle   by  RichRap  2013  [ONLINE]  Available  at:  http://richrap.com/?p=121  [Accessed  27  April  2013],    34.   Source:   Make-­‐3D   printing   FAQ   by   Eric   Weinhoffer   2012   [ONLINE]   Available   at:  http://blog.makezine.com/magazine/make-­‐ultimate-­‐guide-­‐to-­‐3d-­‐printing/3d-­‐printing-­‐faqs/[Accessed  27  April  2013],    35.   Source:   Makerbot-­‐Thingiverse-­‐Jim’s   flying   motor   mount   dual   extruder   2012   [ONLINE]  Available  at:  http://www.thingiverse.com/thing:34821.  [Accessed  27  April  2013]    

 

Page 16: Group Report Final Version

 Appendix        

 Figure  1  -­‐  Comparison  Chart  of  3D  printers  (Markershed)  

 

 

 Figure  2  -­‐  Snippet  of  3D  printer  comparison  chart  showing  only  DIY  systems  (additive  3d)  

Page 17: Group Report Final Version

 Figure  3  -­‐  EDMC  Design  Template  for  a  Hybrid  Stepper  Motor  (reprap.com)  

 

 Figure  4  -­‐  Stepper  Driver  dimensions  (avrstmd.com)  

 

Page 18: Group Report Final Version

 Figure  5  -­‐  Comparison  of  filament  types  for  FDM  (tridprinting)  

                                                1   2   3   4   5   6   7   8   9   10   Scores   Biased  

Scores  Normalized  

Scores                1   Able  to  print  in  3  dimensions   1   x   1   1   1   1   1   1   1   1   1   9   10   18.18%  

 2   Print  resolution    

2   0   x   1   1   0   0   0   0   1   0   3   4   7.27%    3   Print  size  

   3   0   0   x   1   0   0   0   0   1   0   2   3   5.45%  

 4   Print  speed    

4   0   0   0   x   0   0   0   0   0   0   0   1   1.82%    5   Robust  

   5   0   1   1   1   x   1   1   1   1   1   8   9   16.36%  

 6   Ease  of  assembly    

6   0   1   1   1   0   x   1   1   1   1   7   8   14.55%    7   Ease  of  maintenance  

 7   0   1   1   1   0   0   x   0   1   1   5   6   10.91%  

 8   Lightweight    

8   0   1   1   1   0   0   1   x   1   1   6   7   12.73%    9   Low  cost  

   9   0   0   0   1   0   0   0   0   x   0   1   2   3.64%  

 10   Ability  on  different  terrains   10   0   1   1   1   0   0   0   0   1   x   4   5   9.09%    

                         Totals   45   55   1  

                                       Figure  6  -­‐  Formalised  binary  weighting  of  customer  requirements  

Page 19: Group Report Final Version

 Figure  7  -­‐  Graphical  display  of  binary  weighted  customer  requirement  matrix  

 Figure  8  -­‐  Design  Concept  1  

 

0.00%  

5.00%  

10.00%  

15.00%  

20.00%  

Normalised  Score  

Customer  Requirement  

Page 20: Group Report Final Version

 Figure  9  -­‐  Design  Concept  2  

 Figure  10  -­‐  Design  Concept  3  

Page 21: Group Report Final Version

 Figure  11  -­‐  Design  Concept  4  

 Figure  12  -­‐  Design  Concept  5  

Page 22: Group Report Final Version

 Figure  13  -­‐  Design  Concept  6  

 Figure  14  -­‐  Design  Concept  7  

Page 23: Group Report Final Version

 Figure  15  -­‐  Design  Concept  8  

Figure  16  -­‐  Design  Concept  9  

Page 24: Group Report Final Version

 Figure  17  -­‐  Design  Concept  10  

 

Figure  18  -­‐  Design  Comparison  Chart  

     

Page 25: Group Report Final Version

Concept      

Customer  Requirement  

Total  Score  

Able  to  print  in  3  

dimensions  

Print  resolution   Print  size   Print  

speed   Robust   Ease  of  assembly  

Ease  of  maintenance   Lightweight   Low  cost  

Ability  on  different  terrains  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weighted  

Score  

Weigh

ted  

Score  

Weigh

ted  

3   10   1.82   8   0.58   10   0.55   8   0.15   8   1.31   10   1.46   10   1.09   8   1.02   9   0.33   9   0.82   9.11  

4   10   1.82   6   0.44   7   0.38   8   0.15   6   0.98   8   1.16   8   0.87   10   1.27   9   0.33   6   0.55   7.95  

6   10   1.82   9   0.65   8   0.44   9   0.16   7   1.15   7   1.02   8   0.87   8   1.02   8   0.29   6   0.55   7.96  

Figure  19  -­‐  Spreadsheet  ranking  design  concepts  

 

   

   Figure  20  -­‐  Selection  of  potential  TRIZ  solutions  (source:  University  of  Southampton,  http://www.southampton.ac.uk/~jps7/Lecture%20notes/TRIZ%2040%20Principles.pdf)  

Page 26: Group Report Final Version

   

Figure  21  -­‐  Graphical  representation  of  results  from  QFD  analysis  

 Figure  22  -­‐  Optimisation  model  of  customer  requirement  design  merit  

   

Figure  23  -­‐  Graph  showing  parameter  optimisation  curves  

0%  1%  2%  3%  4%  5%  6%  7%  

Weight  of  m

oving  object  

Weight  of  nonmoving  object  

Length  of  m

oving  object  

Length  of  nonmoving  object  

Area  of  m

oving  object  

Area  of  nonmoving  object  

Volume  of  moving  object  

Volume  of  nonmoving  object  

Speed  

Force  

Tension,  pressure  

Shape  

Stability  of  object  

Strength  

Durability  of  moving  object  

Durability  of  nonmoving  

Temperature  

Energy  spent  by  moving  

Power  

Waste  of  energy  

Waste  of  substance  

Loss  of  information  

Waste  of  time  

Amount  of  substance  

Reliability  

Accuracy  of  m

easurement  

Accuracy  of  m

anufacturing  

Manufacturability  

Convenience  of  use  

Repairability  

Adaptability  

Complexity  of  device  

Complexity  of  control  

Level  of  autom

otion  

Productivity  

Normalised  Im

portance  

Design  Variables  

0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  

0   0.2   0.4   0.6   0.8   1  

RelativeImportance  

Parameter  value  as  a  ratio  of  upper  constraint  

Print  area  

Print  Height  

Extruder  diameter  

Page 27: Group Report Final Version

   

 

Figure  24  -­‐  Vanguard  Model  of  Cost  Analysis  

               

Page 28: Group Report Final Version

cost   merit  

Able  to  print  in  3  dimensions   119.52   13.74      Print  resolution   143.45   3.6  Print  size   81.468   3.48  Print  speed   143.45   0.74  Robust   89.45   14.56  Ease  of  assembly   208.97   13.8  Ease  of  maintenance   31.92   10.43  Lightweight   175.37   6.72  Low  cost   81.46   2.08  Ability  on  different  terrains   57.53   4.84  

Figure  25  -­‐  Table  of  Merit/Value  Calculations  

 

 Figure  26  -­‐  Cost/Merit  Trade-­‐Off  Plot  

 

 

 

 

 

       

13.74  

3.6  3.48  

0.74  

14.56  13.8  

10.43  

6.72  

2.08  

4.84  

0  

2  

4  

6  

8  

10  

12  

14  

16  

0   50   100   150   200   250  

Merit  

Cost  

Page 29: Group Report Final Version

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure  27  -­‐  Spreatsheet  calculating  print  speed  from  gear  data  (RepRap.com  source:  ref  18)  

 

 Figure  28  -­‐  Heated  bed  platform  design  (panucatt)  

Description Value Units Inputs: Stepper # of steps 200 steps Full/half stepping 0.5

Drive Gear Teeth 11 teeth Driven Gear Teeth 39 teeth Diameter of Pinchwheel 6.2 mm

Feedstock Diameter 3 mm Filament Diameter 1 mm

Motor Speed 10 rpm Motor Speed 66.66666667 steps/s

Outputs: Steps/mm of feedstock 72.8120334 steps/mm Steps/mm of filament 8.090225934 steps/mm

Flow rate of feedstock 6.471801129 mm^3/s Ideal Head Feedrate 8.240396154 mm/s Ideal Head Feedrate 494.4237692 mm/min

Page 30: Group Report Final Version

 Figure  29  -­‐  SolidWorks  drawing  of  printer  framework  

 

   

Part                

No.  Required   2   2   2   1   1   1   5  

Figure  30  -­‐  Plastic  part  list  for  printer  framework  

 type   Length,mm   amount  M12   496   2  M12   376   2  M12   551   2  M10   460   2  M10   356   2  M8   404   1        12mm  diam  rod   376   2  8mm  diam   404   1  M8   475   2  M8   225   1       Total  –  17  pieces  Figure  31  -­‐  Metal  part  list  for  printer  framework  

 

Page 31: Group Report Final Version

 Figure  32  -­‐  SolidWorks  model  of  extruder  

         

   

   Figure  33  -­‐  Parts  required  for  extruder  section  

Page 32: Group Report Final Version

 Figure  34  -­‐  Final  combined  SolidWorks  model  

 

 Figure  35  -­‐  Flow  Chart  describing  operating  mechanism  of  our  printer  

There  are  4  stepper  motors  in  the  3d  printer,  3  to  control  movement  in  X,  Y  and  Z  directions  and  one  to  feed  the  wire.  In  the  extruder  (left)  the  motor  drives  a  bolt  which  then  forces  plastic  through  heating  coil  onto  the  plate.  

X  Direction  Motor  drives  threaded  rod  (light  green)  which  moves  extruder  (pic  above)  dark  black  rod  is  smooth  rod  to  increase  stability  of  the  extruder.  Pulley  mounted  on  a  motor  is  2  times  larger  than  pulley  on  the  rod  (in  diameter,  and  number  of  teeth)  therefore  increasing  the  speed.  

Y  Direction  Motor  is  driving  threaded  rod  (  same  as  X  direction),  pulley  on  the  motor  is  2.5  times  bigger  than  one  of  the  rod  for  increased  velocity.  

Then,  through  another  set  of  pulleys,  motion  is  transferred  to  another  threaded  rod.  Both  pulleys  are  the  same  in  this  case,  as  we  want  both  of  rods  to  move  at  same  velocity.  

Z  direction:  

Exactly  the  same  as  as  in  Y  direction,  but  this  time  pulley  on  motor  is  SMALLER  than  pullkey  on  rod  because  that  increases  precision,  and  we  don’t  need  high  velocity  in  vertical  direction  (just  to  lift  the  plate  step  by  step)  

Page 33: Group Report Final Version

 Figure  36  -­‐  Tabulated  Results  of  Finite  Element  Analysis  

 

Page 34: Group Report Final Version

 

 Figure  37  -­‐  Multiple  extractors  with  single  combining  nozzle  

 

 Figure  38  a  and  b  -­‐  Examples  of  colour  blending  in  3D  printing  

   

 

       

4D  printing  includes  multi-­‐material  prints  which  have  the  ability  to  transform  to  a  desired  shape,  directly  after  the  printing  process;  this  is  essentially  self-­‐assembly  of  programmable  materials  so  as  to  allows  for  optimization  for  design  constraints  and  joint  folding.  

Figure  37  -­‐  Explanation  of  4D  Printing