green week 2012 - europa

84
Green Week 2012 4.3 « Seting targets for efficient and sustainable water use » Definition and implementation of scenarios and targets for Sustainable Water Resource Management at River Basin Scale by Joaquin Andreu (Universitat Politecnica de Valencia – Spain) [email protected]

Upload: others

Post on 25-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Green Week 2012 4.3 « Seting targets for efficient and sustainable water use »

Definition and implementation of scenarios and targets for Sustainable Water Resource Management at River Basin Scale

by

Joaquin Andreu (Universitat Politecnica de Valencia – Spain) [email protected]

SUSTAINABILITY CONCEPT(S) -General concept: A sustainable society is a society that “meets the needs of the present generation without compromising the ability of future generations to meet their own needs, in which each human being has the opportunity to develop itself in freedom, within a well-balanced society and in harmony with its surroundings” (UN 1987).

-Simple concept: “Improving the quality of life of humans while living within the carrying capacity of supporting ecosystems” (Van de Kerk and Manuel 2008;IUCN, UNEP and WWF 1991).

-Sust. Water Resources Systems: “those systems designed and

-managed to contribute fully to the objectives of society, now and in the future, while maintaining their ecological, environmental and hydrological integrity.” (Loucks, 1997).

SUSTAINABILITY CONCEPT(S) -Intuitively easy to conceive. But

-Practically difficult to define and assess (measure)

-Many attempts by institutions & programs

- Levels of sustainablility:

-General

-Sectorial:

-Water. Space scales:

-Basin

-WRS

-Element (e.g., city)

- Does aggregation of sistainable elements ensure sustainability of upper levels? And vice-versa.

INDICATORS OF SUSTAINABLE DEVELOPMENT: GUIDELINES AND

METHODOLOGIES (CSD, 1995): social, environmental, economic and

ionstitutional indicators, among them:

THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011):

-From probabilistic performance criteria (e.g., reliability, resilience, vulnerability, max. Deficit, …)

-Define Sustainability Index as:

THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011):

-SI for: user, environment, group, ¿why not basin?

-Compute SI for future scenarios using models (WEAP) in Rio Grande:

THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011):

-Useful for comparison between alternatives, BUT:

-Not explicit representation of trade-offs

-No targets (or minimum acceptable values)

-Not easily understood by stakeholders. (not clear physical meaning)

-Subjectivity in weightings, and environmental “demands”

THEORETICAL APPROACHES 2. Sustainability of Urban Water Cycle (van Leeuwen et al., 2012):

-Propose 24 indicators grouped in Water Security, Water Quality, Drinking water, Sanitation, Infrastructures, Climate Robustness, Biodiversity, and Governance

-Results are shown for a given situation:

-Very intuitive picture

-Might be easy to obtain for cities, but not so for basins or WR Systems.

THEORETICAL APPROACHES Other:

3. Water footprint

4. Water Ecosystem Services

5. Water Accounting

What is needed:

-Avoid subjectivities

-Show explicitly the trade-offs

-Be easy to obtain by means of models or DSS

-Broadly accepted or in a methodological guide.

-Usefull for participatory decision making

PRACTICAL EXAMPLES (SPANISH BASINS)

WATER EXPLOITATION INDEX ≈1

12

Source: Libro Blanco del Agua (MIMA, 1998)

Aquifer over-exploitation / Spain

Pumping/recharge ratio in

hydrogeological units

EUROPEAN WATER

FRAMEWORK

DIRECTIVE (WFD)

Article 5:

Environmental

Analysis

Surface water bodies in risk

Groundwater bodies in risk

• PERFORMANCE CRITERIA RELATED TO DEMAND SATISFACTION

• Impossible to satisty 100% demand 100% of time

• Concept of FAILURE

• Failure: When supply < demand

– Intensity, duration, magnitude

• Reliability: Probability of satisfactory supply (not in failure).

• Risk es la probability of faiulre.

• Resiliency: Average probability of system recovering when in failure. (Related to the inverse of time to get back to satisfaction situation after a failure).

• Vulnerability: Expected value of the deficits (or of the costs associated) (average deficit or average cost).

VARIABLES RELATED TO FAILURE

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

Criterio Tipo Mensual

Fallo en un mes: déficit es mayor que A% (umbral) de la demanda mensual

Garantía Mensual (Gm): 100*º

º1 ÷

ø

öçè

æ-=

esmesestotaln

fallosnG

Criterio Tipo Anual:

Fallo en un año: déficit en un mes mayor que B% (umbral) de la demanda

mensual o el déficit total anual es mayor que C% (umbral)de la demanda

anual

Garantía Anual (Ga): 100*º

º1 ÷

ø

öçè

æ-=

sañostotalen

fallosnG

Valores habituales:

- B=25 y permitir un solo mes de fallo

- Ga= 95% abastecimiento, 85% riegos

• The reliability criteria based on failure frequency does not allow to capture:

– Magnitude of the failures (e.g., catastrophic)

– Duration of failure

• Criteria based on the deficit that can be assumed for given time periods.

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

• Deficit indexes:

– Max. Monthly def.

– Máx. def. in two consecutive months

– Probability (or frequency) estimation for different magnitudesof deficit (pdf of deficits).

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

Spanish IPH-2008

-Methodological guide for sustainable

integrated WRS `planning & management

-Each element (water body, demand, …) must

be sustainable

-The whole WRS must be sustainable

-Sets targets for performance criteria

-Sets procedures for obtaining trade-offs

between objectives

-Sets participatory processes

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

Spanish IPH-2008

Urban demands:

DEF1month <= 10% DEM1month

DEF10years <= 8% DEMannual

Agric. demands:

DEF1year <= 50% DEMannual

DEF2years <= 75% DEMannual

DEF10years <= 100% DEMannual

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

• FACTORS that AFFECT THE VALUES OF THE INDICATORS AND DEMAND SATISFACTION: – Hydrology (cantidad, varianza, …) – Ratio resources/demands – Infraestructures (regulación, conectividad, acuíferos, …) – MANAGEMENT OF THE W.R. SYSTEM (Operatin rules)

• Must be OPTIMAL (OPTIMIZACIÓN y/o SIMULACIÓN)

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

ENVIRONMENTAL FLOWS AT SPANISH LAW

LAW 46/1999: environmental flows are “restricction” over

all the other demands except human supply.

IPH-2008.

- Objective of this decret is to establish criteria to

develop Water Basin Plans (as a requirement of the

European Water Framework Directive).

- It establishes methods to estimate environmental

flows.

- Also it requires to estimate the effect of

environmental flows application over the other uses of

the system.

IPH-2008. METHODS TO ESTIMATE ENVIRONMENTAL FLOWS

0

100

200

300

400

500

600

0

0.3

0.6

0.9

1.2

1.8

2.4 3

4.2 5

6.5 8

8.5

9.5 11

14

17

20

Q (m3/s)

Curva SPU

STATISTICAL APPROACHES

HABITAT SIMULATION

100%

80%

50%

30

%

¿HOW TO ESTIMATE THE EFFECT OF NEW ENVIRONMENTAL FLOWS

OVER THE SYSTEM?

JUST DO IT

EXPERTISE

JUDGEMENT

DECISSION

SUPPORT SYSTEM

(MODELS)

¿HOW TO DEFINE NEW ENVIRONMENTAL FLOWS

WITHIN THE RANGE?

SPAIN

l Water adm. at basin scale since 1927: River

Basin Agencies (Authorities) across

administrative boundaries

l Users represented at the Agencies Decision

Boards: active participation

GALICIA

PRINCIPADO DEASTURIAS

CANTABRIA

PAISVASCO

NAVARRA

ARAGON

CATALUÑA

VALENCIA

CASTILLA-LA MANCHA

MADRID

EXTREMADURA

ANDALUCIA

MURCIA

BALEARES

CANARIAS

LA RIOJA

CEUTA

MELILLA

CASTILLA-LEON

Júcar

Valencia

Map of adminitrative autonomous regions Map of River Basin Authorities

Júcar River Basin Authority (CHJ)

Total demand by uses

79%

17%

3%

1%0% Irrigation

Urban supply

Industrial supply

Cattle

Recreation

Total Demand by source of water

42%

52%

4%

0%

2%

Surface water

Groundwater

Direct WasteWater

Reuse

Desalination

Imports (MCT)

Surface (km2) 43.000

Permanent population 4.792.528

Equivalent population due to tourism

367.322

Irrigation surface (ha) 347.275

Water demand (hm3/year) (Hm3/year = Gigaliters/year)

3.172

GALICIA

PRINCIPADO DEASTURIAS

CANTABRIA

PAISVASCO

NAVARRA

ARAGON

CATALUÑA

VALENCIA

CASTILLA-LA MANCHA

MADRID

EXTREMADURA

ANDALUCIA

MURCIA

BALEARES

CANARIAS

LA RIOJA

CEUTA

MELILLA

CASTILLA-LEON

Júcar

HALF OF THE AREA IS SEMIARID

+HIGHEST

VARIABILITY IN

EUROPE

(IN SPACE AND

TIME) Pdia/Paño (%)

• Aridity (climate)

• Scarcity (Human needs)

• Droughts (Fhigh hydrological

• Variability)

0 200 400 600 800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

19

40

/41

1

94

2/4

3

19

44

/45

1

94

6/4

7

19

48

/49

1

95

0/5

1

19

52

/53

1

95

4/5

5

19

56

/57

1

95

8/5

9

19

60

/61

1

96

2/6

3

19

64

/65

1

96

6/6

7

19

68

/69

1

97

0/7

1

19

72

/73

1

97

4/7

5

19

76

/77

1

97

8/7

9

19

80

/81

1

98

2/8

3

19

84

/85

1

98

6/8

7

19

88

/89

1

99

0/9

1

19

92

/93

1

99

4/9

5

19

96

/97

1

99

8/9

9

20

00

/01

2

00

2/0

3

20

04

/05

2

00

6/0

7

año

hm

3

Annual values Avegare contribution of historical Natural Regime Average since 1980 in Natural Regime

System Demand 2015 Nattura regime

resourcel Demand / Nattura regime resource

Cenia-Maestrazgo 117 312 0,38

Mijares 300 531 0,56

Palancia 101 117 0,87

Turia 666 496 1,34

Júcar 1.546 1.671 0,93

Serpis 125 190 0,66

Marina Alta 94 222 0,42

Marina Baja 75 74 1,01

Vinalopó - Alacantí 256 97 2,64

Total DHJ 3.280 3.711 0,88

In Spanish River Basin Plans for WFD, water licenses and ecological flows are key

issues

Need for tools and models • Process of making good decisions: information must be

managed and analyzed about – feasible alternatives,

– their impact on the multiple objectives,

– the tradeoffs among them, as well as

– risks associated with them.

• To elaborate and analyze such information, sound science, technology, and expertise have to be involved.

• Tools for data management and analysis, and models are needed to cope with the complexity, the basin scale scope, and the huge amount of information, alternatives, and scenarios.

Need for Decision Support Systems (DSS)

• We agree that the political process is important, but insist that debates must be on the basis of transparency and knowledge

• Frequently, decision makers, stakeholders and general public (Policy Making Actors -PMA), are not prepared to produce and understand such information.

• a transfer of technology and ideas from scientist to PMA is needed: effective transfer: PMA must be able to apply the technology easily and in a repeatable and scientifically defensible manner (NRC 2000).

• Development of DSS: best way to conduct this transfer & build a shared vision of the basin

DSS • suites of computer programs including, among others:

– geographically based design facilities,

– geographically based databases handling,

– integrated simulation and/or optimization models, including several aspects (rainfall-runoff, w.rights, w.allocation, quality, economics, …)

– capabilities for analyzing and displaying the results,

• essential feature: a unique and user friendly interface that provides easiness of data management, model use and results analysis.

WR Systems INTEGRATE at the BASIN SCALE:

WaterBodies, W.Uses (Demands), Infrastructures

AQUIFERS

Complex relationships that

affect water availability

both in SPACE &TIME

Implications on all aspects

(w. quality, environment,

economy, …) can only be

captured by means of

adequate integrated

modeling

Integrative DSS • In order to complete basin identification, and for the

development of further analysis activities, it is crucial to have

• a DSS integrating, in a single model and for the entire basin, all the relevant – surface water elements (e.g., river reaches, lakes, ...),

– aquifers,

– infrastructures (e.g., dams, reservoirs, diversions, returns, groundwater abstraction, ...),

– water uses (e.g., agricultural uses, urban uses, industrial uses, ...),

– environmental requirements on flows,

– water rights and priorities, and operating rules for the system.

DSS Shells (DSSS) • Generalized tools to build DSS,

• bring the possibility of relatively easy, systematic and homogeneous application of DSS over wide regions, as for instance many river basins in Spain

• provide guidance in the development of the DSS

• Example: AQUATOOL DSSS (Andreu et. al. 1996),

AQUATOOL: DSSS designed for integrated

management of complex water resource systems

J. Andreu, J. Capilla, y E. Sanchis, “Generalized

decision support system for water resources planning and management including conjunctive water use”, Journal of Hydrology, Vol. 177, pp.

269-291, 1996.

NODES

SW. INFLOWS

CONDUITS (stream &

canal reaches)

HYDROELECTRIC PLANTS

ARTIFICIAL RECHARGE

DEMAND INTAKES

Additional G.W.

PUMPING

RETURNS

AQUIFER MODELS

DEMANDS

RESERVOIRS

ELEMENTS

MANAGEMENT INDICATORS

The DSS allows the user to:

Input and modify the space configuration of a

water resource system

Edit and manage geo-referenced data

bases containing physical

characteristics, management

characteristics

RESERVOIRS

PHYSICAL CHARACTERISTICS

FILTRATION (INTO AN AQUIFER) AND EVAPORATION LOSSES

OPERATING RULES

AQUIFERS

Wide range of models available to embed aquifers in the basin model: – Lumped approaches:

» Reservoir

» Single cell connected to stream

» Single cell with spring

» Multiple cells connected to stream

– Distributed approaches:

» Analytical solution for homogeneous & rectangular shape

» Numerical solution for heterogeneous and/or irregular shape:

AQUIVAL module

Integrated Basin model: Jucar

Basin

integrating Physical properties

Water rights and priorities

Operating rules (normal &

Drought)

SIMULATION

V

máx

Vmí

n

V

obj V*= (V mín +

V obj) / 2

Zon.superio

r Zon.intermed

ia Zon.

inferior

Zona de

reserva

INTERNAL PROCESS:

In every month, a network flow optimization algorithm (Out-of-kilter) finds a flow solution which is compatible with the physical restrictions, and tries to minimize weighted deviations from operating rules (Target supplies, flows, and reservoir storage); respecting priorities.

Iteration is needed to take into account non-linearities and surface-groundwater relationships.

for given hydrologic inflows

scenarios

Integrative DSS • purpose of this model is to simulate the management of

the basin

• Once the system is completely defined, the user can perform simulation runs of the management for multiple different alternatives, time horizons and scenarios, using different hydrological data and also different operating policies.

• Easiness in changing the infrastructures, scenarios, etc., and getting and analyzing the results is essential

RESULTS

•Results for all model variables (flows and state) either in

graphical or numerical way. Exporting & printing capabilities.

Mean values.

•Complete reports (data and results) in files that can be

visualized, or printed.

•multi-objective performance indicators (reliability, resiliency

and vulnerability); and environmental requirements

indicators.

Integrative DSS • Useful for the evaluation of alternatives, to analyze

planning decisions in terms of the aspects included in the model and to assess tradeoffs between alternatives.

• Provide flow conditions for the assessment of integrated water quality, environmental, and economic analysis models.

PRE-PROCESSORS

HYDROLOGY

HYDROGEOLOGY

WATER MANAGEMENT

MODELLING

SIMGES

OPTIGES

SIMRISK

POSTPROCESORS

INTEGRATED MODELING

ACTVAL

AQUIVAL

MASHWIN

OPTIRISK

PLANNING STAGE

R. TIME MANAGEMENT

RISK ESTIMATION

GESCAL: WATER QUALITY

CAUDECO: ECOLOGICAL

ECOGES: ECONOMICAL

ASPECTS

AQUATOOL MODULES

Modular structure flexibility

Water quality model coupled with a simulation model.. SIMULATES W.Q. FOR THE ENTIRE SYSTEM

Mechanicistic model for rivers and reservoirs.

Conventional constituents.

o Temperature

o Arbitrary constituents

o DO + OM

o Nitrogen cycle

o Eutrophication problem.

WATER QUALITY SIMULATION MODULE

Norg

NH4+

NO3-

Min

Nitrif

DO

Chl-a

Organic C

OrgP

Inorg P.

Sed

Desnitrif

Sed

Grow Death/Resp

Sed

Reaireation

Sed

Degrad

Mineralización

SOD

Flux

Flux

W.Q. results used to modify constraints in simulation &

to predict the impact of corrective measures in an integrated way at basin scale and

assessing the real efficiency of the measures

EUTROPHICATION PROCESSES

0

2

4

6

8

10

12

oct

-80

sep

-81

ago

-82

jul-

83

jun

-84

may

-85

abr-

86

mar

-87

feb

-88

en

e-8

9

dic

-89

no

v-9

0

oct

-91

sep

-92

ago

-93

jul-

94

jun

-95

may

-96

abr-

97

mar

-98

feb

-99

en

e-0

0

dic

-00

no

v-0

1

oct

-02

sep

-03

ago

-04

jul-

05

m3/s

Caudales. Simulacion base

0

100

200

300

400

500

600

0

0.3

0.6

0.9

1.2

1.8

2.4 3

4.2 5

6.5 8

8.5

9.5 11

14

17

20

Q (m3/s)

Curva SPU

0

100000

200000

300000

400000

500000

600000

oct

-80

ago

-81

jun

-82

abr-

83

feb

-84

dic

-84

oct

-85

ago

-86

jun

-87

abr-

88

feb

-89

dic

-89

oct

-90

ago

-91

jun

-92

abr-

93

feb

-94

dic

-94

oct

-95

ago

-96

jun

-97

abr-

98

feb

-99

dic

-99

oct

-00

ago

-01

jun

-02

abr-

03

feb

-04

dic

-04

oct

-05

Hábitat Total. (Masa28.01/Barbo/Adulto)

Bioperiodos

Especie Etapa Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep

Barbo Alevín

Barbo Adulto

Cacho Alevín

Cacho Juvenil

Cacho Adulto

CAUDECO– Ecological flows module OBJECTIVE OF THE MODULE

•Estimation of Total Habitat Series in different water bodies, species and ages for different management alternatives.

INCORPORTAING ECOLOGICAL ASPECTS IN PLANNING AND MANAGEMENT

STUDIES

0

10

20

30

40

50

60

70

80

90

8100

8120

8140

8160

8180

8200

8220

8240

8260

8280

0 5 10 15 20 25 30 35 40 45

Pe

rce

nti

l de

75

% d

e s

up

era

ció

n d

e

hab

itat

. Ad

ult

o B

oga

Pro

du

cció

n M

ed

ia G

Wh

/añ

o

m3/s

Caudal ecológico: Duero en Toro

Producción media Energía Percentil Superacion Hábitat 75%

0

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

Per

cen

til d

e 75

% d

e su

per

ació

n

de

hab

itat

. Ad

ult

o B

oga

fici

t M

ed

io A

nu

al h

m3

/añ

o

m3/s

Caudal ecológico: Duero en Toro

Deficit medio demanda agraria Percentil Superacion Hábitat 75%0

50

100

150

200

250

300

350

8100

8120

8140

8160

8180

8200

8220

8240

8260

8280

0 5 10 15 20 25 30 35 40 45D

éfi

cit

Me

dio

An

ual

hm

3/a

ño

Pro

du

cció

n M

ed

ia G

Wh

/añ

o

m3/s

Caudal ecológico: Duero en Toro

Producción media Energía Deficit medio demanda agraria

TRADE-OFFS BETWEEN ENVIRONMENTAL

FLOWS, ECOLOGICAL HABITATS LEVEL, AND

ECONOMIC USES

ECONOMIC EVALUATION MODULE • ASSESS ECONOMIC VALUE OF AN ALTERNATIVE

• USED to estimate OPPORTUNITY COSTS of WATER USE and ENVIRONMENTAL FLOW increments

DSS in Planning Phase of ASA

• transparency, participation, negotiation, and conflict resolution are essential factors

• use of described Integrative DSS, for evaluation of alternatives, as shared vision of the system, generally as a result of joint model and DSS building, enhances very much this process: Jucar-Vinalopó participatory water conflict solution (CHJ, 2005b)

Technical Committee to assess the

JÚCAR-VINALOPÓ PROJECT

(CONFLICT)

Real case of application of DSS by

the

CONFEDERACIÓN HIDROGRÁFICA DEL JÚCAR

Jucar-Vinalopó Transfer under construction in 2003-2004:

- Intake in Muela de Cortes reservoir.

- Opposition from: - Lower Bassin

traditional irrigation farmers

- Ecologists

Jucar-Vinalopó conflict participatory solution

• Technical Committee: Policy Making actors + experts:

– Ministry of environment

– Regional Governments (Castilla La Mancha and Valencia)

– Jucar Basin Authority

– Traditional Farmers and industrial users of donor basin

– Farmers and urban users at receptor basin

– NGO’s (2)

– Experts from universities and other research institutions

• Working for 4 months

• Joint development of DSS

Fuente: Engineering News Record, 1993

DSS including a Simulation model of Júcar RB management

JOINT DSS DEVELOPMENT AND USE

Example of summary of results

for every single simulation (400

of these were produced)

Synthesis of results:

Trade-offs between urban water deficits and environmental requirements at

Jucar River and Albufera wetland.

Déficit medio Abastecimiento de Valencia (hm3/año). Media de la última serie de 25 años.

Modernización 2ª Fase. Simulación: Otras medidas racionales sin el Vinalopó. Valores para las

diferentes alternativas de asignación a La Albufera (hm3/año) y de caudales ecológicos (m3/s)

Environmental flow

Inflows to

Albufera Lake Urb. Def.

Déficit medio Ribera Baja (hm3/año). Media de la última serie de 25 años. Modernización 2ª Fase. Simulación:

Otras medidas racionales sin el Vinalopó. Valores para las diferentes alternativas de asignación a La Albufera

(hm3/año) y de caudales ecológicos (m3/s)

Environmental flow

Inflows to

Albufera Lake

Synthesis of results:

Trade-offs between agricultural water deficits and environmental requirements at

Jucar River and Albufera wetland.

Agr. Def.

CAUDECO PROGRAM

• To estimate HTS when data on WUA-flow curves are available

• The great advantage of CAUDECO is its linkage to the simulation model SIMGES

• HTS as well as the WUA, are specific for each species (species and size class in some cases); in each study site or water body

• Results in m2 or % over maximum WUA.

• Habitat Duration Curves (HDC, accumulated frequency curves), which provide a more comprehensive result for comparing alternatives,

• HTS curves can be accumulated or aggregated for a practical evaluation of the subsystem or basin status.

=

=m

j

j iCSILONGiBIOPiQWUAHTS1

)()()(

RESULTS: TOTAL SERIES OF HABITAT

Reasons of these stress habitat situations: too much water, too little?

0

100

200

300

400

500

600

700

800

900

1000

5%

15

%

25

%

35

%

45

%

55

%

65

%

75

%

85

%

95

%

bit

at

(m2)

Percentil

Carrión en Palencia/Bordallo/Adulto.Curva de duración de hábitat (m2)

DEFINING AND OPTIMIZING MINIMUM ENVIRONMENTAL FLOWS IN DUERO RIVER BASIN

“IMPLEMENTING ENVIRONMENTAL FLOWS IN COMPLEX WATER

RESOURCES SYSTEMS - CASE STUDY: THE DUERO RIVER BASIN, SPAIN.”

J. Paredes-Arquiola, F. Martinez-Capel, A. Solera, V. Aguilella.

River Research & Applications

OBJECTIVES

1. EFFECT. TO ASSES THE EFFCET OF 40 “NEW”

ENVIRONMENTAL FLOWS IN THE DUERO RIVER

BASIN OVER THE SUPPLY OF AGRICULTURAL

DEMANDS, HYDROELECTRIC PRODUCTION AND

HABITAT OF OTHER SPECIES.

2. OPTIMIZATION. TO DEFINE ENVIRONMENTAL

FLOWS IN THE BASIN THAT REPRESENT THE

MAXIMUM POTENCIAL HABITAT SITUATION

MAINTAINING RELIABILITY OF WATER SUPPLY

DEMANDS AND HYDROELECTRIC PRODUCTION

Water Resources Water Demands

Physical Habitat Simulation

(WUA vs. Flow curves)

Groundwater inputs (river-

aquifer, pumping, artificial

recharge)

Management Rules

Infrastructure

(dams, channels, etc.)

STEP 1. ASSESMENT OF E-FLOWS EFFECTS

Initial E-FLOWS (range and flow variation across months; n sites)

PUBLIC PARTICIPATORY PROCESS

E-FLOWS* (from public agreement)

STEP 2. E-FLOWS OPTIMIZATION

OPTIMIZATION AGRUPATION AND

ORDER OF INCREMENT FINAL E-FLOWS

INPUT DATA AQUATOOL INTERFACE

STEP 0. CONSTRUCTION OF WATER MANAGEMENT & HABITAT MODEL

Sistema Dotación anual (hm3)

Incrementos en % sobre Dotación anual Incremento en el nº de

Fallos UTAH

Déficit medio anual

Suma de déficit

máximo 1 año

Suma de déficit

máximo 2 años consec.

Suma de déficit

máximo 10 años consec.

Tera 133.90 1.44 18.19 21.33 21.33 0 Órbigo 432.78 0.52 0.72 0.93 7.33 0 Esla-Valderaduey 978.44 -0.16 -0.37 -0.84 -2.93 -25 Carrión 281.47 1.48 4.52 11.36 25.34 0 Pisuerga 212.26 1.43 2.92 4.19 15.39 1 Arlanza 63.25 0.04 1.14 1.14 1.14 0 Alto Duero 163.21 1.13 22.17 22.07 28.90 -2 Riaza 115.73 0.95 4.88 4.80 9.20 -5 Adaja-Cega 170.56 -1.95 -4.93 -8.07 -25.10 -14 Bajo Duero 130.07 0.04 0.19 0.25 0.46 0 Tormes 277.03 1.64 18.33 18.92 18.92 5 Águeda 15.65 0.22 5.65 5.65 5.65 0

WATER

MANAGEMENT

MODEL

Flows in water bodies (t)

Water volume aquifers (t)

Supply or Deficit (t)

Reliability/Resilency/vulnerability

Energy production (t)

HABITAT

MODEL

HTS & HDC:

Reliability/Resilency/vulnerability

of Habitat

SIMGES MODULE

CAUDECO MODULE

WATER

MANAGEMEN

T MODEL

HABITAT

MODEL

WATER

MANAGEMEN

T MODEL

HABITAT

MODEL

Environmental Flow Regime (12 monthly flows per site)

Reliability of Water Supply (at legal levels)

Q1: [Q*1,min; Q*1,max]

Qn: [Q*n,min; Q*n,max]

Q1/Q3/Q4

Q2/Q9/Q11

Q1: [Q1,min; Q1,max] → 10 intervals

Qn: [Qn,min; Qn,max] → 10 intervals

Deficit/Supply (t)

Reliability/Resiliency/vulnerability

Energy production (t)

Habitat indicators

7200

7250

7300

7350

7400

7450

7500

7550

7600

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

7 10.66 14.33 18 21.66 25.33 29 32.66 36.33 40

OUTPUT DATABASE

RESOURCES AND DEMANDS

0 5000 10000 15000

Demanda

Recurso natural

4883.64

12387.9

(hm3/año)

Tota

les

0

500

1000

1500

2000

2500

3000

Tera

Órb

igo

Esla

-Val

de

rad

ue

y

Car

rió

n

Pis

ue

rga

Arl

anza

Alt

o D

ue

ro

Ria

za

Ad

aja-

Ce

ga

Baj

o D

ue

ro

Torm

es

Águ

ed

a

175

651921

486 362117 246 290 254

662 672

49

17701436

2724

614904 844 818

219

612360

1229

857

(hm

3/a

ño

)Demanda Recurso natural

RESOURCES AND DEMANDS

0

200

400

600

800

1000

1200

1400

1600

1800

Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep

Demanda agraria y recursos hídricos (hm3/año).Variabilidad temporal

Demandas Recursos

INITIAL ASSUMPTIONS

Studies about environmental flows (INFRAECO, JAN 2009)

Statistical and Habitat Simulation Results

40 environmental flows

Range of

environmental flows

Tramos analizados Rango m3/s Correspondecia modelo aquatool

general Duero

Adaja en Arévalo De 0.5 a 2 r. Adaja 452

Águeda, en Castillejo De 0.5 a 2 r. Águeda 525

Arlanzón en Villasur de Herreros De 0.5 a 2 r. Arlanzón 184

Duero en Toro De 7 a 40 r. Duero 408_b

Duero, en Quintanilla de Onésimo De 5 a 10 r. Duero 344

Duratón, aguas debajo de Las Vencias De 0.5 a 2 r. Duratón 407

Eresma, debajo de Segovia De 0.5 a 2 r. Eresma 544

Esgueva en Villanueva de los Infantes De 0.2 a 1 r. Esgueva 311

Esla, antes del Porma De 4 a 8 r. Esla 38 c

Órbigo, en La Bañeza De 2 a 10 r. Órbigo 46

Pisuerga, en Herrera de Pisuerga De 2 a 4 r. Pisuerga 57

Porma, antes del Esla De 2 a 5 r. Porma 829

Riaza, aguas abajo del embalse de Linares de Arroyo

De 0.2 a 1 Puede ser en r. Riaza 372_b o r. Riaza 372_c

Tera, en Quiruelas de Vidriales De 2 a 5 r. Tera 258

Tormes, debajo de La Almendra De 0.5 a 5 r. Tormes 412

Tuerto, en Astorga De 0.2 a 2 r. Tuerto 102

LOCATIONS

Duero en Toro

Órbigo en Cebrones

Tormes en Contiensa

Porma en Secos de Porma

Rituerto en Sauquillo de Boñices

Esgueva en Villanueva de los Infantes

Esla en Villomar

Duero en Peñafiel

Tormes aguas abajo de Villagonzalo

Zapardiel antes del DueroTormes aguas abajo de Almendra

Pisuerga entre Arlanza y Carrión

Águeda en Castillejo Martín Viejo

Duratón aguas abajo de Las Vencías

Riaza aguas abajo de Linares del Arroyo

Esla en Villalcampo

Duero en Aldeadávila

Tuerto antes de Duerna

Guareña en Toro

Adaja en Arévalo

Huebra en Puente Resbala

Esla en Bretó

Voltoya en Coca

Duero en Garray

Eresma en Segovia

Carrión en Palencia

Tera en Mozar de Valverde

Pisuerga en Herrera de Pisuerga

Arlanzón en Villasur de Herreros

Valderaduey en Santervás de Campos

Arlanza en Quintana del Puente

Duero después del río Riaza

Localización de tramos de estimación del HPU

simulado

no simulado

0 50 100 150 20025km

±Locations where E-flows were annalyzed

INITIAL ASSUMPTIONS

SIMGES model for whole Duero basin

CAUDECO DEVELOPMENT MODEL

Agregation by location

Agregation by sizes

TSH (284)

STH for location

and species (125)

STH in location (32)

STH by species (7)

agregation by species

Duero en Toro/Barbo/Adulto

Duero en Toro/Barbo

Barbo Duero en Toro

WUA Curves: 284 curves at 40 locations

DEFINING CRITERIA:

- PERCENTILE

- ACCUMLATION 80%

- RESILENCY

DEFINING ACCUMULATION:

Aproach: estimation of effect of environmental flows

Range of environmental

flows

DATA BASE OF RESULTS

1 flow

Results: Reliability of water supply (urban and agricultural) and

Energy production

RESULTS. E-FLOWS WITH EFFECT ON THE WHOLE SYSTEM

RESULTS. E-FLOWS WITH EFFECT ON RELIABILITY OF WATER SUPPLY

RESULTS. E-FLOWS WITH EFFECT AT LOCAL SCALE

DSS in Planning • DSS are essential for the purpose of providing

– Integration,

– Transparency

– easiness of use by PMA and

– shared vision for conflict resolution.

• They are also very valuable for – sensitivity analysis

– risk assessment

– Trade-off assessment

– Sustainabililty assessment

DSS USE DURING NEGOTIATIONS PROVIDES MANY

ADVANTAGES:

Development of MODELS, SHARED by the technicians,

stakeholders, and policy makers: SHARED VISION OF the

SYSTEM

OBJECTIVE FRAMEWORK AND REFERENCE that allows

each group to evaluate the consequences of the alternatives that

are proposed by them and by the others.

TOOL FOR the RATIONAL ANALYSIS OF MANAGEMENT

AND OPERATION POLICIES of resulting systems (CRUCIAL

FOR REACHING AGREEMENTS AND TO AVOID FUTURE

CONFRONTATIONS)

OBJETIVITY OF TECHNICAL ASPECTS that allows

negotiations to be developed IN SOCIAL AND POLITICAL

TERMS THAT ALLOW EQUITABLE AGREEMENTS.

DSS in Planning

CONCLUSIONS

• Defining e-flows in complex basins is a difficult and

multidisciplinary task because any decision affects

many aspects of the system.

• A methodology to define e-flows in water systems is

used in Spanish basins.

• Targets for demand satisfaction and environment

satisfaction are incorporated

• It estimates the trade-offs between the environment

and hydropower production and water supply.

• Sustainability assessment is achieved indirectly by

these results. In case of agreed indicator, it could be

easily incorporated.

• Economic aspects could also be incorporated.

• Sustainability assessment must be tailored to each

case

Thank you for

your attention!