gounder research laboratory: chemistry and catalysis of ......crystal habit and size crystal...

20
Gounder Research Laboratory: Chemistry and Catalysis of Nanoscale Materials SITE DISTRIBUTION Si M O O Si ~1 nm ACTIVE SITE 10 μm CONFINING POCKET Nanoscale catalysts with tunable site and structural properties CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder [email protected] Larry and Virginia Faith Associate Professor of Chemical Engineering, Purdue University Purdue Process Safety and Assurance Center (P2SAC) Meeting December 12, 2018 – West Lafayette, IN

Upload: others

Post on 21-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Gounder Research Laboratory: Chemistry and Catalysis of Nanoscale Materials

SITE DISTRIBUTION Si M

O O Si

~1 nm

ACTIVE SITE

10 µm!

CONFINING POCKET

Nanoscale catalysts with tunable site and structural properties CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE

~1 nm

Rajamani Gounder [email protected]

Larry and Virginia Faith Associate Professor of Chemical Engineering, Purdue University

Purdue Process Safety and Assurance Center (P2SAC) Meeting December 12, 2018 – West Lafayette, IN

Page 2: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

LONG-TERM GOAL: A collaborative project that can leverage the expertise of more than 1 faculty in Purdue ChE

Courtesy of Chris Marshall (ANL)

PhD-level project

Raj Gounder

Fabio Ribeiro

Jeff Greeley

Jeff Miller

Page 3: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

CHEMICALS: Synthesis of solid Lewis acids for safer catalytic oxidation reactions

Example: Propylene oxide (PO) monomers §  7.7 million tons/yr produced

worldwide in 2012 (9.5/yr in 2016) §  BASF/Dow Chemical make PO

using Ti-zeolites (HPPO process)

Propylene epoxidation occurs on isolated Lewis

acidic Ti centers in zeolites Unwanted H2O2 decomposition to O2 occurs on non-framework TiO2 sites, potential overpressures / explosions

TiO2

SnO2

TiO2

SnO2

Ti

Ti

Ti

framework Ti desired non-framework TiO2 undesired

Page 4: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Project: Development of Catalysts for Safer Oxidation Reactions

Technical Achievements (to date)

“Controlled Insertion of Tin Atoms into Zeolite Framework Vacancies and Consequences for Glucose Isomerization Catalysis”

J. C. Vega-Vila, J. W. Harris, R. Gounder Journal of Catalysis, 344 (2016) 108-120

“Methods to Synthesize Stannosilicate Materials with Controlled Tin Coordination”

R. Gounder, J. C. Vega-Vila, J. Harris U. S. Patent Application No. 15/686,235

Filed Aug. 2017

Circumvent HF-assisted synthesis

of hydrophobic zeolites

Page 5: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Project: Development of Catalysts for Safer Oxidation Reactions

Counting Lewis acidic Sn sites in zeolites using four Lewis base titrants

“Titration and Quantification of Open and Closed Lewis Acid Sites in Sn-Beta Zeolites that Catalyze Glucose Isomerization”

J. W. Harris, M. J. Cordon, J. R. Di Iorio, J. C. Vega-Vila, F. H. Ribeiro, R. Gounder Journal of Catalysis 335 (2016) 141-154

IR and TPD methods for quantifying Lewis acid active sites

Technical Achievements (to date)

Page 6: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Project: Development of Catalysts for Safer Oxidation Reactions

“A Transmission Infrared Cell Design for Temperature-Controlled Adsorption and Reactivity Studies on Heterogeneous Catalysts”

V. J. Cybulskis, J. W. Harris, Y. Zvinevich, F. H. Ribeiro, R. Gounder Review of Scientific Instruments 87 (2016) 103101

Lab Safety Achievements (to date)

IR

LN2 inlet LN2 inlet

Gas inlet Gas outlet

(isolation valve) Over T thermocouple

Safer handling of liquid

cryogens in the laboratory

Page 7: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Project: Development of Catalysts for Safer Oxidation Reactions

“Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores”

M. J. Cordon, J. W. Harris, J. C. Vega-Vila, J. S. Bates, J. T. Miller, R. Gounder, et al.

JACS, 140 (2018) 14244-14266

Catalytic effects of hydrophilic pores

on reaction rates in liquid solvents

Technical Achievements (to date)

Page 8: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Project: Development of Catalysts for Safer Oxidation Reactions

“Cooperative Effects Between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen-Bonding

on Alkene Epoxidation in Zeolites” D. T. Bregante, A. M. Johnson, A, Y. Patel, E. Z. Ayla, M. J.

Cordon, B. C. Bukowski, J. Greeley, R. Gounder, D. W. Flaherty, JACS, (2018) under review

Technical Achievements (to date)

Catalytic effects of hydrophilic pores

on reaction rates in liquid solvents

Page 9: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

REFINING: Synthesis of solid Brønsted acids to practice carbon chain growth chemistry

Example: Alkylation for high-octane gasoline §  2 million barrels/day produced

worldwide in 2016 §  Several refiners make alkylate

using H2SO4 or HF liquid acids §  Last major refinery/petrochemical

process using strong liquid acids

§  Technical challenges with solid catalysts: §  Catalyst lifetime (deactivation and fouling) and regeneration

§  Some potential alternatives are emerging: §  Solid Lewis-Brønsted superacids §  AlkyClean® (Albermarle, CB&I, Neste Oil): 2700 barrels/day §  ISOALKY (Chevron -> Honeywell UOP): ionic liquids

Page 10: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Mechanism (simplified):

§  Reaction: §  Alkylation of isobutane with light (C3-C5) olefins to make multiply-branched

C7-C9 alkanes with high octane number (gasoline)

§  Refinery Motivation: §  Worldwide capacity: 1.6 million BBL/day §  Total gasoline demand shrinking, but high octane (and clean) demand increasing §  Current alkylation units have reached capacity §  Butanes and pentanes (lighter HCs) are being excluded from the gasoline pool

due to Reid Vapor Pressure (RVP) limits §  New opportunities from increasing supply of light hydrocarbons in shale oil,

heavier hydrocarbons are attractive energy carriers

!"# $%&'( )*!*&+$!, (-# !% !"# &%. %&#/0 )%0)#0!1*!'%0#2#1+."#1# '0 !"'$ 1#*)!%13

4! '$ 2#1+ ('5/)-&! *0( 61%7*7&+ !%% #*1&+ !% 5%1#)*$!'5 8*0( ."#09 !"# 61%)#$$ (#2#&%6:#0!$ '0 ;*7&# < .'&&7# ':6&#:#0!#( %0 * )%::#1)'*& $)*&#3

!" #$%&'(& )'* +,$ -$%.+/0%+/'( %(- &$1$.+/0/+21'&& ') &'1/- %1321%+/'( .%+%12&+&

;"# $':6&#$! :#)"*0'$: %0# )*0 '02%=# 5%1 !"#*)'(>)*!*&+?#( 8#3@3, ?#%&'!#>)*!*&+?#(9 *&=+&*!'%0 %5'$%7-!*0# .'!" A>7-!#0# '$ (#6')!#( '0 B'@3 C3 ;"#(%-7&# 7%0( %5 !"# *&=#0# *(($ !% !"# 6%$'!'2#&+)"*1@#( )*17%0 *!%: %5 !"# !#1!'*1+>7-!+& )*!'%0 )"#>

:'$%17#( %0 *0 *)'( $'!# 8!"'$ %&#/0 *(('!'%0, '3#3, $!#644 '0 B'@3 C, '$ $%:#!':#$ 1#5#11#( !% *$ !"# *&=+&*!'%0$!#6 '0 !"# 0*11%.#1 $#0$#93 4! )*0 #*$'&+ 7# $##0 !"*! *"'@"&+ 71*0)"#(, $#)%0(*1+ %)!+& )*!'%0 .'!" !"#$=#&#!%0 %5 A,A,C>!1':#!"+&6#0!*0# #:#1@#$ 51%: !"'$%&#/0 *(('!'%03 D#E!, *0 !"#$%:%&#)-&*1 "+(1'(# !1*0$>5#1 8$!#6 4449 )*0 7# #02'$*@#( ."')" @'2#$ !"# !#1!'*1+)*!'%0 .'!" !"# $*:# )*17%0 $=#&#!%03 F-)" !#1!'*1+)*17#0'-: '%0$ )*0 -0(#1@% *)'(>)*!*&+?#( !"#&$:%>&#)-&*1 "+(1'(# !1*0$5#1 8$!#6 G '0 B'@3 C9, #3@3, 51%: *0'$%7-!*0# :%&#)-&#, ."')" &'7#1*!#$ !"# 61%(-)! :%&#>)-&# A,A,C>!1':#!"+&6#0!*0#, *0( *! !"# $*:# !':#,)&%$#$ !"# )*!*&+!') )+)&#3

4! '$ 7#+%0( !"# $)%6# %5 !"'$ *))%-0! !% ('$)-$$, '05-&& (#6!", !"# 2*&'('!+ %5 !"'$ :#)"*0'$: 5%1 '$%7->!*0#HA>7-!#0# *&=+&*!'%0 %0 $%&'( *)'($3 4! '$ %72'%-$,"%.#2#1, !"*! '! $-55#1$ 51%: *! &#*$! !.% $#2#1# $"%1!>)%:'0@$I 8'9 '! 5*'&$ !% #E6&*'0 !"# 5%1:*!'%0 %5 !"#%!"#1 !1':#!"+&6#0!*0#$, '3#3, A,A,J>, A,C,C> *0( A,C,J>!1':#!"+&6#0!*0#, %5 !"# ('71*0)"#( *0( :%0%>71*0)"#( '$%%)!*0#$, *0( %5 !"# '$%*&=*0#$ .'!" &#$$*0( :%1# !"*0 #'@"! )*17%0 *!%:$ 8&'@"! *0( "#*2+#0($93 ;% *))%-0! 5%1 !"# 5%1:*!'%0 %5 !"# %!"#1!1':#!"+&6#0!*0#$, *)'(>)*!*&+?#( 1#*11*0@#:#0!$ %5!"# )*17%0 $=#&#!%0 *! !"# &#2#& %5 !"# )"#:'$%17#('$%%)!+& )*!'%0$ *1# -$-*&&+ '02%=#( 8#2#0 '5 !"'$ '$*))#6!#(, '! 1#:*'0$ %6#0 ."+ $% &'!!&# A,A,C>!1'>:#!"+&6#0!*0# '$ 5%1:#( '0 '$%7-!*0#HA>7-!#0# *&=+>&*!'%093 ;"#1# '$ 0% .*+, "%.#2#1, !% '0!#161#! !"#

;*7&# <4$%7-!*0#H*&=#0# *&=+&*!'%0 %0 $%&'( )*!*&+$!$3 K-11#0! 61%)#$$ (#2#&%6:#0!$ *! !"# 6'&%! 6&*0! $!*@#

D%3 L#2#&%6#1H&')#0$#1 K*!*&+$! M#*)!%1 !+6# N&=+&*!#)*6*)'!+8=@H(9

M#5#1#0)#$

< O*&(%1 ;%6$P# NHF ;1'5&-%1%:#!"*0#$-&5%0') *)'(%0 * 6%1%-$ $-66%1!

B'E#( 7#(, *)'( :%2#$ *&%0@7#(, 61%61'#!*1+ 61%)#$$ 5%1*)'( 1#@#0#1*!'%0

QQ R<S,<TU

A K*!*&+!')*, D#$!# V+,K%0%)%

W1%61'#!*1+ X0=0%.0, .'!" 1#)+)&# *0()*!*&+$! 1#@#0#1*!'%0

TYZ R<Y,<[U

C K"#:')*& M#$#*1)" \]')#0$'0@, K"#21%0

N0!':%0+6#0!*5&-%1'(# %0*)'(>.*$"#( $'&')*

F&-11+ 1#*)!%1 <<<Z R<Y,<[U

J XVW W1%61'#!*1+, 1#$#:7&#$ !1*('!'%0*&"+(1%)*17%0 )%02#1$'%0 )*!*&+$!$

X0=0%.0, .'!" )%0!'0-%-$ )*!*&+$!1#@#0#1*!'%0 -$'0@ "+(1%@#0

X0=0%.0 R<Y,<[U

B'@3 C3 F':6&#$! )*!*&+!') )+)&# 5%1 !"# *&=+&*!'%0 %5 '$%7-!*0# .'!"A>7-!#0#3

<[S '( )&!#*%+,- .( /$%% 0 1%#%234!4 /56%3 78 9:888; :8<=:88

Weitkamp and Traa, Catal. Today 49 (1999) 193-199

Intermolecular hydride transfer

reactions are critical

Promoted by stronger acids and

higher acid site densities

Page 11: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Several process safety and hazard issues with liquid acid catalysts:

§  Catalyst consumption (H2SO4) is high §  Catalyst aftertreatment: spent acid contains tarry hydrocarbons and water §  Alkylate quality is lower from H2SO4 catalysts than HF §  HF is toxic and corrosive, safety hazards with handling and operation §  1960s-1986: HF plants >> H2SO4 plants

§  Liquid acid catalysts for alkylation:

§  1932: Vladimir Ipatieff (UOP): Aluminum Chloride (AlCl3/HCl, BF3/HF) §  1930s (late): Sulfuric acid (H2SO4) §  1942: Hydrofluoric acid (HF) plants built by Phillips

§  Demand for high-octane aviation gasoline for World War II (5M gallons/day) §  1952: Demand increased again during Korean War (14M gallons/day) §  1980s: Demand increase due to phase-out of leaded gasoline (50M gallons/day)

Page 12: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Several process safety and hazard issues with liquid acid catalysts:

§  Catalyst consumption (H2SO4) is high §  Catalyst aftertreatment: spent acid contains tarry hydrocarbons and water §  Alkylate quality is lower from H2SO4 catalysts than HF §  HF is toxic and corrosive, safety hazards with handling and operation §  1960s-1986: HF plants >> H2SO4 plants

§  Liquid acid catalysts for alkylation:

§  1932: Vladimir Ipatieff (UOP): Aluminum Chloride (AlCl3/HCl, BF3/HF) §  1930s (late): Sulfuric acid (H2SO4) §  1942: Hydrofluoric acid (HF) plants built by Phillips

§  Demand for high-octane aviation gasoline for World War II (5M gallons/day) §  1952: Demand increased again during Korean War (14M gallons/day) §  1980s: Demand increase due to phase-out of leaded gasoline (50M gallons/day)

Marathon Refinery, Texas City, TX October 31, 1987

“On the fateful Friday, October 31, 1987, according to Marathon spokesman William

Ryder, refinery workers were using a crane to lift a 40-ton heat exchanger convection section from a hydrofluoric acid heater. At about 5:20 PM, the crane

failed and the piece fell. As it fell, and severed a 4″ loading line containing hot acid and a 2″ pressure relief line to an HF alkylation reactor settler drum. Hydrogen

fluoride vapors were emitted under pressure for about two hours and the vessel was plugged and drained approximately 44 hours later.

An extensive analysis was conducted to determine the total inventory loss and to

model the blowdown process and the concentrations of HF in the plume. Since the discharge rate was decreasing with time, a peak concentration of HF in the

emitted vapors occurred just before the water spray mitigation system became fully operative. Consequently, the mitigation efforts were more effective

late in the response when concentrations were already low.”

3000 people evacuated from homes (52-block area)

1000 people treated

Page 13: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Liquid acid catalysts for alkylation:

§  1932: Vladimir Ipatieff (UOP): Aluminum Chloride (AlCl3/HCl, BF3/HF) §  1930s (late): Sulfuric acid (H2SO4) §  1942: Hydrofluoric acid (HF) plants built by Phillips

§  Demand for high-octane aviation gasoline for World War II (5M gallons/day) §  1952: Demand increased again during Korean War (14M gallons/day) §  1980s: Demand increase due to phase-out of leaded gasoline (50M gallons/day)

ExxonMobil Refinery, Torrance, CA September 6, 2015 (HF near miss)

Page 14: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Liquid acid catalysts for alkylation:

§  1932: Vladimir Ipatieff (UOP): Aluminum Chloride (AlCl3/HCl, BF3/HF) §  1930s (late): Sulfuric acid (H2SO4) §  1942: Hydrofluoric acid (HF) plants built by Phillips

§  Demand for high-octane aviation gasoline for World War II (5M gallons/day) §  1952: Demand increased again during Korean War (14M gallons/day) §  1980s: Demand increase due to phase-out of leaded gasoline (50M gallons/day)

Husky Energy Refinery, Superior, WI April 26, 2018 (HF near miss)

Page 15: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Several process safety and hazard issues with liquid acid catalysts:

§  Catalyst consumption (H2SO4) is high §  Catalyst aftertreatment: spent acid contains tarry hydrocarbons and water §  Alkylate quality is lower from H2SO4 catalysts than HF §  HF is toxic and corrosive, safety hazards with handling and operation §  1960s-1986: HF plants >> H2SO4 plants §  1987: Marathon Texas City accidental HF release, (3000 evacuated, 1000 treated) §  Extensive mitigation systems required for HF §  New installations are not even commissioned for HF

§  Can solid acids be developed to avoid the use of liquid acids?

... a brief history

§  Liquid acid catalysts for alkylation:

§  1932: Vladimir Ipatieff (UOP): Aluminum Chloride (AlCl3/HCl, BF3/HF) §  1930s (late): Sulfuric acid (H2SO4) §  1942: Hydrofluoric acid (HF) plants built by Phillips

§  Demand for high-octane aviation gasoline for World War II (5M gallons/day) §  1952: Demand increased again during Korean War (14M gallons/day) §  1980s: Demand increase due to phase-out of leaded gasoline (50M gallons/day)

Page 16: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Background and Motivation

§  Solid acid catalysts for alkylation:

§  1960s: Rare earth-exchanged FAU zeolites (Mobil, Sun Oil)

§  1974: Pt incorporation into zeolites for regeneration (Union Carbide)

§  1970s (late): Solid acids and zeolites (J. Weitkamp)

§  Supported liquid acids (triflic acid) on porous solids (Haldor-Topsoe)

§  Sulfated zirconia, heteropolyacids, organic resins

§  Some catalysts themselves also exhibit environmental and health hazards

International Zeolite Association Database (iza-online.org)

Faujasite (FAU)

Page 17: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Main Challenges with Solid Acid Alkylation

§  Technical challenges with solid catalysts:

§  Catalyst lifetime (deactivation and fouling) §  Catalyst regeneration §  Loss in conversion + loss of selectivity to alkylate (and formation of oligomers)

Weitkamp and Traa, Catal. Today 49 (1999) 193-199

!""# $% &'()*$+,-.+ /*0.%1234)"5 !"6# 7.%. 8$9:+4$ ;<4<12=. ,3$094<:.>094.:. <1?21<4,$: <3 7.11@ /+.4<,1.+ <;;$9:4 $: 4A. 3.<%;A 8$% 3$1,+ <1?21<4,$:;<4<12343 A<3 0..: B901,3A.+ %.;.:412 !"#@

!" #$%&'() *'$)+,'- .* &-./+)$(' $%01%$)&.( .(-.%&2 $3&2-

C: 4A. 1<4. "DEF3G H.,4?<*B +.I.1$B.+ 3B.;,<11<0$%<4$%2 4.;A:,J9.3 4<,1$%.+ 8$% < 4,*.)%.3$1I.+,:I.34,K<4,$: $8 ,3$094<:.><1?.:. <1?21<4,$: $: 3$1,+;<4<12343@ LA. *<,: 8.<49%.3 $8 4A.3. 4.;A:,J9.3 7.%.B%$+9;4 3<*B1,:K ,: 3A$%4 ,:4.%I<13 MNN,:34<:4<:.$93OO$% NN+,88.%.:4,<1OO 3<*B1,:KP ;$*0,:.+ 7,4A A,KA)%.3$)194,$: <:<123,3 $8 4A. ;$*B1.Q B%$+9;4 *,Q49%.3 02;<B,11<%2 K<3 ;A%$*<4$K%<BA2@ L2B,;<1 %.39143$04<,:.+ $: <: <;,+ 8$%* $8 =.$1,4. R <%. +.B,;4.+,: ',K@ 6@

/3 3A$7: ,: 4A. 1.84)A<:+ B<%4 $8 ',K@ 6G 4A. <1?.:.,3 ;$*B1.4.12 ;$:I.%4.+ <4 4A. 0.K,::,:K $8 4A. .QB.%,)*.:4G ,@.@G <3 1$:K <3 4A. ;<4<1234 ,3 8%.3A@ /84.% <;.%4<,: 4,*.)$:)34%.<* M,: 4A. .Q<*B1. ;A$3.: ,:',K@ 6 <84.% ;<@ (F *,:PG 4A. 094.:. ;$:I.%3,$: 0.K,:34$ +%$B <:+ -:<112 34<0,1,=.3 <4 < 1$7 1.I.1 M,: 4A..Q<*B1. ;A$3.: <4 ;<@ (FSP@ C4 3A$91+ 0. :$4.+ 4A<4 4A.094.:. ;$:I.%3,$: ,:4$ A2+%$;<%0$:3 7,4A -I. $% *$%.;<%0$: <4$*3 7<3 ;$:3,+.%.+ $:12 ,: ',K@ 6G ,@.@G 4A.+$901.)0$:+ ,3$*.%,=<4,$: $8 ")094.:. ,:4$ !"#) <:+$%&'#)6)094.:. ,3 :$4 ,:;19+.+@

T%$0<012 *9;A *$%. 3.%,$93 4A<: 4A. 1$33 $8 ;<4)<1234 <;4,I,42 3A$7: ,: 4A. 1.84)A<:+ B<%4 $8 ',K@ 6 ,34A. 1$33 $8 3.1.;4,I,42G <3 +.B,;4.+ 8$% 4A. 3<*. .QB.%,)*.:4 ,: 4A. %,KA4)A<:+ B<%4 $8 4A. 3<*. -K9%.U ,4 ;<: 0..<3,12 3..: 4A<4G ,:,4,<112G 4A. VW B%$+9;4 8%<;4,$:;$:3,343 $8 <1?<:.3 .Q;193,I.12@ LA,3 ,3 4A. %.K,$:7A.%. <: <1?21<4. ,3 8$%*.+ $: 4A. =.$1,4.@ /BB%$Q,)*<4.12 <4 4A. 4,*.G 7A.: 4A. 094.:. ;$:I.%3,$: 0.K,:34$ +%$BG 4A. B%$+9;4 J9<1,42 +.4.%,$%<4.3 +%<*<4,;<112G<:+ <3 3A$7: 8$% 4A. VW B%$+9;4 8%<;4,$: ,: ',K@ 6G*$%. <:+ *$%. <1?.:.3 <%. 8$%*.+@ X<4. ,: 4A..QB.%,*.:4G :$ <1?21<4,$: 4<?.3 B1<;. <:2 *$%.G,:34.<+ 4A. =.$1,4. ;<4<12=.3 :$4A,:K .13. 4A<: 4A.$1,K$*.%,=<4,$: $8 4A. 094.:.@

Y9<1,4<4,I.12G 4A. 9:3<4,38<;4$%2 4,*.)$:)34%.<*0.A<I,$% 3A$7: ,: ',K@ 6 ,3 42B,;<1 8$% <11 3$1,+ <;,+33;%94,:,=.+ <3 ;<4<12343 8$% ,3$094<:. <1?21<4,$:G <:+4A,3 A<3 3$ 8<% B%.I.:4.+ 3$1,+ ;<4<12343 8%$* 0.,:K.*B1$2.+ ,: ;$**.%;,<1 ,3$094<:.>094.:. <1?21<4,$:B%$;.33.3@ LA.%. A<3G A$7.I.%G 0..: 3$*. B%$K%.33 ,:<:<12=,:K 4A. %.<3$:3 8$% 4A. B$$% 4,*.)$:)34%.<*0.A<I,$% $8 3$1,+ <1?21<4,$: ;<4<12343@ / 1,*,4.+ :9*)0.% $8 B%$;.33 +.I.1$B*.:43 A<I. .I.: 0..: +%,I.: 4,114A. B,1$4 B1<:4 34<K.@

4" 5,.3'-- 2'6'%.78'()- $) )9' 7&%.) 7%$() -)$:'

X,34.+ ,: L<01. " <%. 4A. B%$;.33 +.I.1$B*.:437A,;A %.12 $: 3$1,+ ;<4<12343 8$% 4A. *<:98<;49%. $8<1?21<4,$: K<3$1,:.@ LA. *$34 +.4<,1.+ ,:8$%*<4,$: A<30..: %.1.<3.+ ,: 4A. 1,4.%<49%. $: 4A. Z<1+$% L$B3[.B%$;.33 7A,;A *<?.3 93. $8 4%,\9$%$*.4A<:.3918$:,;<;,+ M4%,\,; <;,+G '(V]^(ZP $: < B$%$93 39BB$%4 ,: <-Q.+)0.+ %.<;4$%@ ^:. 8.<49%. $8 4A,3 B%$;.33 ,3 4A<44A. 1,J9,+ <;,+ $% < %.<;4,$: ,:4.%*.+,<4. MB.%A<B3 <:.34.% $8 4%,\,; <;,+P ,3 3$1901. 4$ 3$*. .Q4.:4 ,: 4A.A2+%$;<%0$: BA<3. <:+ *,K%<4.3 31$712 <1$:K 4A.-Q.+)0.+@ L$ 3$*. .Q4.:4G 4A. <;,+ +.<;4,I<4.3 7A,1.<;4,:K <3 <: <1?21<4,$: ;<4<1234G $: <;;$9:4 $8 $,13+,33$1I,:K ,: 4A. <;,+@ LA. +.<;4,I<4.+ <;,+ 1.<I,:K 4A.<1?21<4,$: %.<;4$% ,3 3.:4 4$ < 3.;$:+ %.<;4$% 7A.%. 4A.3B.:4 <;,+ ,3 %.K.:.%<4.+ $% %.;$I.%.+ <;;$%+,:K 4$B%$B%,.4<%2 4.;A:,J9.@

C4 ,3 ,:4.%.34,:K 4$ :$4,;. 4A<4 < 319%%2 %.<;4$% ,3.*B1$2.+ ,: <4 1.<34 $:. $8 4A. B%$;.33 +.I.1$B*.:431,34.+ ,: L<01. "@ / 319%%2 %.<;4$% B%$0<012 A.1B3 4$31$7 +$7: 4A. +.<;4,I<4,$: <:+ NN+.3.1.;4,I<4,$:OO $8

',K@ 6@ V$:I.%3,$: $8 < 1,J9,+ ,3$094<:.>")094.:. *,Q49%. $: <V.R)DW =.$1,4. ,: < 8,Q.+)0.+ %.<;4$% M(!WF!VG )!(" 0<%G 1,J9,+8..+ %<4.!E@5 ;*(>AG *<33 $8 ;<4<1234!"@_ KG !',3$094<:.! !'""094.:. !"" " "PG <84.% !"(`"5#@

*+ ,-"$.&/)0 1+ (%&& 2 3&$&45#"# (67&5 89 :;999< ;9=>;99 "D5

Page 18: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Main Challenges with Solid Acid Alkylation

§  Requirements for any solid acid (zeolite) catalyst:

§  At least as durable as liquid acids §  Low sensitivity to feedstock composition, impurities §  Higher quality (octane) alkylate than liquid acids (very evolved/optimized processes) §  (Regulation / legislation) away from liquid acids §  One Breakthrough: More than 1 paraffin activated per olefin (… or no olefins)

Weitkamp and Traa, Catal. Today 49 (1999) 193-199

T. F. Degnan, Curr. Opin. In ChE 9 (2015) 75-82

§  Shell strategy (K. P. de Jong), 1990s:

§  Beta zeolite shows optimal shape selectivity §  Want lower Si/Al (higher concentrations of acid sites)

§  Gives higher alkylate quality, longer lifetime §  Novel synthesis techniques needed

§  No halogens or other additives

§  Albermarle strategy (AlkyStar®), 1990s-present:

§  Pt/USY

Page 19: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Alkylation catalysis: Main Challenges with Solid Acid Alkylation -1

-

AlkyClean!!!!

Solid Acid Alkylation

October 6, 2006

Development of a Solid Acid Catalyst Alkylation Process

http://crelon-web.eec.wustl.edu/files/CRELMEETINGS/2006/AlkyClean.pdf

§  1994: ABB Lummus (now CB&I) starts research effort to displace HF and H2SO4 using zeolite-catalyzed alkylation

§  1996: Akzo Nobel (now Albemarle) joins effort to develop catalyst

§  2001: Neste Oil joins venture to test this

§  2002: 10 BBL/day demonstration in Neste’s Porvoo refinery in Finland

§  ……

§  2013: Shandong Wonfull Petrochemical Group Ltd. (China) licenses this technology

§  2015: Zibo Haiyi Fine Chemical Co. (a subsidiary of Wonfull) constructs a unit (2700 BBL/day) and starts up §  RON: 96-98

T. F. Degnan, Focus on Catalysts, April 2016

Page 20: Gounder Research Laboratory: Chemistry and Catalysis of ......CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder rgounder@purdue.edu Larry and Virginia Faith Associate

Acknowledgements

§  Jason Bates §  Elizabeth Bickel §  Brandon Bolton §  Michael Cordon (former) §  John Di Iorio (former) §  Sopuru Ezenwa §  Jamie Harris (former) §  Casey Jones §  Ravi Joshi §  Phil Kester §  Trevor Lardinois §  Andrew Mikes §  Claire Nimlos

Financial Support and Discussions

§  Fabio Ribeiro, Jeff Miller, Nick Delgass, Viktor Cybulskis (grad)

§  Jeffrey Greeley, Brandon Bukowski (grad)

§  David Flaherty (Illinois) §  Christophe Copéret (ETH-Zürich)

§  Jackie Hall (former UG) §  Alisa Henry (former UG) §  YoonRae Cho (current UG)

§  Yury Zvinevich

§  Arunima Saxena §  Juan Carlos Vega-Vila

(current)

§  Laura Wilcox §  Young Gul Hur (postdoc)