gounder research laboratory: chemistry and catalysis of

15
Gounder Research Laboratory: Chemistry and Catalysis of Nanoscale Materials SITE DISTRIBUTION Si M O O Si ~1 nm ACTIVE SITE 10 μm CONFINING POCKET Nanoscale catalysts with tunable site and structural properties CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE ~1 nm Rajamani Gounder [email protected] Larry and Virginia Faith Associate Professor of Chemical Engineering, Purdue University Purdue Process Safety and Assurance Center (P2SAC) Meeting May 17, 2021 – West Lafayette, IN

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gounder Research Laboratory: Chemistry and Catalysis of

Gounder Research Laboratory: Chemistry and Catalysis of Nanoscale Materials

SITE DISTRIBUTION Si M

O O Si

~1 nm

ACTIVE SITE

10 µm!

CONFINING POCKET

Nanoscale catalysts with tunable site and structural properties CRYSTAL HABIT AND SIZE CRYSTAL STRUCTURE

~1 nm

Rajamani Gounder [email protected]

Larry and Virginia Faith Associate Professor of Chemical Engineering, Purdue University

Purdue Process Safety and Assurance Center (P2SAC) Meeting May 17, 2021 – West Lafayette, IN

Page 2: Gounder Research Laboratory: Chemistry and Catalysis of

Overview of today’s presentation

•  Overview of research group, interests and capabilities, collaborations

•  Overall project vision: Prevention through design (PTD) concepts in catalysis and reaction engineering (CRE)

•  Brief summary of first project in P2SAC (safer (ep)oxidation catalysis)

•  Current project in P2SAC: solid acid alternatives to alkylation (motivation, goals)

•  Catalytic chemistry: complementarity of alkylation and oligomerization catalysis

•  Olefin chain-growth (e.g., oligomerization) is a coupled reaction-diffusion process

•  Technical progress: •  Synthetic methods to influence catalyst properties •  Data on oligomerization at low conversion (fundamental studies) •  Data on oligomerization at high conversion (process feasibility data)

•  Current workplan for CY 2021, future ideas in CRE/PTD

Page 3: Gounder Research Laboratory: Chemistry and Catalysis of

Crude oil Jet fuel

Gasoline

Diesel

Fuel oils

Lubes

Coke Asphalt

Light naphtha

Naphtha

Kerosene

Middle distillates

PSA Gas

HDT Isomerization

HDT Reforming

HDT

HDT

Atm

osph

eric

di

still

atio

n R

esid

.

Gas oil

Fluid Catalytic Cracking

Coking, Deasphalting

Hydrodecyclization

HDT, Dewaxing, etc.

Gas oil

Desulfurization

Vacu

um

dist

illat

ion

Alkylation

Etherification, Condensation

H2, LPG

Petrochemical refining is driven by zeolite-based technologies

Adsorption/Purification

Separation

Catalysis

W. Vermeiren, J-P. Gilson,

Top. Catal. 52 (2009) 1131

Page 4: Gounder Research Laboratory: Chemistry and Catalysis of

Energy and environmental applications driven by zeolite catalysis

ABUNDANT FEEDSTOCKS

VALUED PRODUCTS

Crude oil

Chemicals

Fuels

Methane Oxidation to Methanol

Methane Dehydroaromatization to Ethene and Benzene

Ethane and Propane Dehydrogenation

Ethene and Propene Oligomerization

Aromatics Alkylation / Isomerization

OH

Biomass Plastics

Alcohols (Ethanol) to Fuels

Biomass (Sugars) to Chemicals

Plastics “Upcycling” Food/Pharma

Monomers Plastics

Fuels

NO, NO2

N2 H2O

(Inerts)

Selective Catalytic Reduction of NOx with NH3 (Diesel, Gasoline)

Passive NOx Adsorption for Low Temperature and Hybrid Engines

Shale gas

Page 5: Gounder Research Laboratory: Chemistry and Catalysis of

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

LONG-TERM GOAL: A collaborative project that can leverage the expertise of more than 1 faculty in Purdue ChE

Courtesy of Chris Marshall (Argonne)

PhD-level projects

Raj Gounder

Fabio Ribeiro

Jeff Greeley

Jeff Miller

Brian Tackett (new assistant professor joining fall 2021) electrochemistry/catalysis, CO2 reduction

Page 6: Gounder Research Laboratory: Chemistry and Catalysis of

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

CHEMICALS: Synthesis of solid Lewis acids for safer catalytic oxidation reactions

Example: Propylene oxide (PO) monomers §  7.7 million tons/yr produced

worldwide in 2012 (9.5/yr in 2016) §  BASF/Dow Chemical make PO

using Ti-zeolites (HPPO process)

Propylene epoxidation occurs on isolated Lewis

acidic Ti centers in zeolites Unwanted H2O2 decomposition to O2 occurs on non-framework TiO2 sites, potential overpressures / explosions

TiO2

SnO2

TiO2

SnO2

Ti

Ti

Ti

framework Ti desired non-framework TiO2 undesired

Page 7: Gounder Research Laboratory: Chemistry and Catalysis of

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

CHEMICALS: Synthesis of solid Lewis acids for safer catalytic oxidation reactions

Major accomplishments of this project

Research Products •  Publications (10) •  Presentations (67) •  U. S. Patents (1 issued, 1 patent pending) Mentoring / Education Outcomes •  Postdoctoral scholars (1) •  PhD students (4) -> 1 faculty, 3 postdocs (1 NL, 2 academia) •  PhD student (1) affiliated with project and engaged with P2SAC •  Undergraduate students (5) -> 2 are now PhD students Other Outcomes •  Internal (Purdue) and External Research Collaborations •  Laboratory/Instrumentation Safety (Publications, and Instrument

Design Adopted at Other Universities)

Page 8: Gounder Research Laboratory: Chemistry and Catalysis of

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

REFINING: Synthesis of solid Brønsted acids to practice carbon chain growth chemistry

Example: Alkylation for high-octane gasoline §  2 million barrels/day produced

worldwide in 2016 §  Several refiners make alkylate

using H2SO4 or HF liquid acids §  Last major refinery/petrochemical

process using strong liquid acids

§  Some potential alternatives are emerging: §  Solid Lewis-Brønsted superacids §  AlkyClean® (Albermarle, CB&I, Neste Oil): 2700 barrels/day §  ISOALKY (Chevron -> Honeywell UOP): ionic liquids

§  Numerous well-documented process safety incidents with HF acid handling, storage/release, usage that motivate a PTD approach

Page 9: Gounder Research Laboratory: Chemistry and Catalysis of

P2SAC Project: Prevention through catalyst design for applications in the petrochemical industry (PI: Raj Gounder)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

REFINING: Synthesis of solid Brønsted acids to practice carbon chain growth chemistry

Example: Alkylation for high-octane gasoline §  2 million barrels/day produced

worldwide in 2016 §  Several refiners make alkylate

using H2SO4 or HF liquid acids §  Last major refinery/petrochemical

process using strong liquid acids

§  Project Goals: Basic research on solid acid hydrocarbon chain-growth catalysts §  Research needs: Synthesis methods and structure-property relations to design catalysts with

higher stability (lifetime) and selectivity §  Minimize coke precursors (deactivation) §  Improve hydride transfer selectivity (toward alkylate)

§  Track 1: Design of solid Brønsted acid catalysts (zeolites, oxides) §  Controlled local active site distributions (proximity) and densities (Si/Al) §  Controlled diffusion properties (crystallite size, Thiele moduli, …)

§  Track 2: Catalyst Testing (low conversion for fundamental work, high conversion for feasibility)

Page 10: Gounder Research Laboratory: Chemistry and Catalysis of

Alkylation Catalysis: Background and Motivation

§  Alkylation Mechanism (simplified):

§  Reaction: §  Alkylation of isobutane with light (C3-C5) olefins to make multiply-branched

C7-C9 alkanes with high octane number (gasoline)

!"# $%&'( )*!*&+$!, (-# !% !"# &%. %&#/0 )%0)#0!1*!'%0#2#1+."#1# '0 !"'$ 1#*)!%13

4! '$ 2#1+ ('5/)-&! *0( 61%7*7&+ !%% #*1&+ !% 5%1#)*$!'5 8*0( ."#09 !"# 61%)#$$ (#2#&%6:#0!$ '0 ;*7&# < .'&&7# ':6&#:#0!#( %0 * )%::#1)'*& $)*&#3

!" #$%&'(& )'* +,$ -$%.+/0%+/'( %(- &$1$.+/0/+21'&& ') &'1/- %1321%+/'( .%+%12&+&

;"# $':6&#$! :#)"*0'$: %0# )*0 '02%=# 5%1 !"#*)'(>)*!*&+?#( 8#3@3, ?#%&'!#>)*!*&+?#(9 *&=+&*!'%0 %5'$%7-!*0# .'!" A>7-!#0# '$ (#6')!#( '0 B'@3 C3 ;"#(%-7&# 7%0( %5 !"# *&=#0# *(($ !% !"# 6%$'!'2#&+)"*1@#( )*17%0 *!%: %5 !"# !#1!'*1+>7-!+& )*!'%0 )"#>

:'$%17#( %0 *0 *)'( $'!# 8!"'$ %&#/0 *(('!'%0, '3#3, $!#644 '0 B'@3 C, '$ $%:#!':#$ 1#5#11#( !% *$ !"# *&=+&*!'%0$!#6 '0 !"# 0*11%.#1 $#0$#93 4! )*0 #*$'&+ 7# $##0 !"*! *"'@"&+ 71*0)"#(, $#)%0(*1+ %)!+& )*!'%0 .'!" !"#$=#&#!%0 %5 A,A,C>!1':#!"+&6#0!*0# #:#1@#$ 51%: !"'$%&#/0 *(('!'%03 D#E!, *0 !"#$%:%&#)-&*1 "+(1'(# !1*0$>5#1 8$!#6 4449 )*0 7# #02'$*@#( ."')" @'2#$ !"# !#1!'*1+)*!'%0 .'!" !"# $*:# )*17%0 $=#&#!%03 F-)" !#1!'*1+)*17#0'-: '%0$ )*0 -0(#1@% *)'(>)*!*&+?#( !"#&$:%>&#)-&*1 "+(1'(# !1*0$5#1 8$!#6 G '0 B'@3 C9, #3@3, 51%: *0'$%7-!*0# :%&#)-&#, ."')" &'7#1*!#$ !"# 61%(-)! :%&#>)-&# A,A,C>!1':#!"+&6#0!*0#, *0( *! !"# $*:# !':#,)&%$#$ !"# )*!*&+!') )+)&#3

4! '$ 7#+%0( !"# $)%6# %5 !"'$ *))%-0! !% ('$)-$$, '05-&& (#6!", !"# 2*&'('!+ %5 !"'$ :#)"*0'$: 5%1 '$%7->!*0#HA>7-!#0# *&=+&*!'%0 %0 $%&'( *)'($3 4! '$ %72'%-$,"%.#2#1, !"*! '! $-55#1$ 51%: *! &#*$! !.% $#2#1# $"%1!>)%:'0@$I 8'9 '! 5*'&$ !% #E6&*'0 !"# 5%1:*!'%0 %5 !"#%!"#1 !1':#!"+&6#0!*0#$, '3#3, A,A,J>, A,C,C> *0( A,C,J>!1':#!"+&6#0!*0#, %5 !"# ('71*0)"#( *0( :%0%>71*0)"#( '$%%)!*0#$, *0( %5 !"# '$%*&=*0#$ .'!" &#$$*0( :%1# !"*0 #'@"! )*17%0 *!%:$ 8&'@"! *0( "#*2+#0($93 ;% *))%-0! 5%1 !"# 5%1:*!'%0 %5 !"# %!"#1!1':#!"+&6#0!*0#$, *)'(>)*!*&+?#( 1#*11*0@#:#0!$ %5!"# )*17%0 $=#&#!%0 *! !"# &#2#& %5 !"# )"#:'$%17#('$%%)!+& )*!'%0$ *1# -$-*&&+ '02%=#( 8#2#0 '5 !"'$ '$*))#6!#(, '! 1#:*'0$ %6#0 ."+ $% &'!!&# A,A,C>!1'>:#!"+&6#0!*0# '$ 5%1:#( '0 '$%7-!*0#HA>7-!#0# *&=+>&*!'%093 ;"#1# '$ 0% .*+, "%.#2#1, !% '0!#161#! !"#

;*7&# <4$%7-!*0#H*&=#0# *&=+&*!'%0 %0 $%&'( )*!*&+$!$3 K-11#0! 61%)#$$ (#2#&%6:#0!$ *! !"# 6'&%! 6&*0! $!*@#

D%3 L#2#&%6#1H&')#0$#1 K*!*&+$! M#*)!%1 !+6# N&=+&*!#)*6*)'!+8=@H(9

M#5#1#0)#$

< O*&(%1 ;%6$P# NHF ;1'5&-%1%:#!"*0#$-&5%0') *)'(%0 * 6%1%-$ $-66%1!

B'E#( 7#(, *)'( :%2#$ *&%0@7#(, 61%61'#!*1+ 61%)#$$ 5%1*)'( 1#@#0#1*!'%0

QQ R<S,<TU

A K*!*&+!')*, D#$!# V+,K%0%)%

W1%61'#!*1+ X0=0%.0, .'!" 1#)+)&# *0()*!*&+$! 1#@#0#1*!'%0

TYZ R<Y,<[U

C K"#:')*& M#$#*1)" \]')#0$'0@, K"#21%0

N0!':%0+6#0!*5&-%1'(# %0*)'(>.*$"#( $'&')*

F&-11+ 1#*)!%1 <<<Z R<Y,<[U

J XVW W1%61'#!*1+, 1#$#:7&#$ !1*('!'%0*&"+(1%)*17%0 )%02#1$'%0 )*!*&+$!$

X0=0%.0, .'!" )%0!'0-%-$ )*!*&+$!1#@#0#1*!'%0 -$'0@ "+(1%@#0

X0=0%.0 R<Y,<[U

B'@3 C3 F':6&#$! )*!*&+!') )+)&# 5%1 !"# *&=+&*!'%0 %5 '$%7-!*0# .'!"A>7-!#0#3

<[S '( )&!#*%+,- .( /$%% 0 1%#%234!4 /56%3 78 9:888; :8<=:88

Propagated by intermolecular hydride transfer reactions

Promoted by stronger acids, higher acid site densities

Complementarity between alkylation/oligomerization reactions: connections in fundamental knowledge (kinetics/mechanisms, site requirements, etc.)

Weitkamp and Traa, Catal. Today 49 (1999) 193-199

§  Catalyst deactivation: loss in conversion / selectivity to alkylate (and formation of oligomers)

!""# $% &'()*$+,-.+ /*0.%1234)"5 !"6# 7.%. 8$9:+4$ ;<4<12=. ,3$094<:.>094.:. <1?21<4,$: <3 7.11@ /+.4<,1.+ <;;$9:4 $: 4A. 3.<%;A 8$% 3$1,+ <1?21<4,$:;<4<12343 A<3 0..: B901,3A.+ %.;.:412 !"#@

!" #$%&'() *'$)+,'- .* &-./+)$(' $%01%$)&.( .(-.%&2 $3&2-

C: 4A. 1<4. "DEF3G H.,4?<*B +.I.1$B.+ 3B.;,<11<0$%<4$%2 4.;A:,J9.3 4<,1$%.+ 8$% < 4,*.)%.3$1I.+,:I.34,K<4,$: $8 ,3$094<:.><1?.:. <1?21<4,$: $: 3$1,+;<4<12343@ LA. *<,: 8.<49%.3 $8 4A.3. 4.;A:,J9.3 7.%.B%$+9;4 3<*B1,:K ,: 3A$%4 ,:4.%I<13 MNN,:34<:4<:.$93OO$% NN+,88.%.:4,<1OO 3<*B1,:KP ;$*0,:.+ 7,4A A,KA)%.3$)194,$: <:<123,3 $8 4A. ;$*B1.Q B%$+9;4 *,Q49%.3 02;<B,11<%2 K<3 ;A%$*<4$K%<BA2@ L2B,;<1 %.39143$04<,:.+ $: <: <;,+ 8$%* $8 =.$1,4. R <%. +.B,;4.+,: ',K@ 6@

/3 3A$7: ,: 4A. 1.84)A<:+ B<%4 $8 ',K@ 6G 4A. <1?.:.,3 ;$*B1.4.12 ;$:I.%4.+ <4 4A. 0.K,::,:K $8 4A. .QB.%,)*.:4G ,@.@G <3 1$:K <3 4A. ;<4<1234 ,3 8%.3A@ /84.% <;.%4<,: 4,*.)$:)34%.<* M,: 4A. .Q<*B1. ;A$3.: ,:',K@ 6 <84.% ;<@ (F *,:PG 4A. 094.:. ;$:I.%3,$: 0.K,:34$ +%$B <:+ -:<112 34<0,1,=.3 <4 < 1$7 1.I.1 M,: 4A..Q<*B1. ;A$3.: <4 ;<@ (FSP@ C4 3A$91+ 0. :$4.+ 4A<4 4A.094.:. ;$:I.%3,$: ,:4$ A2+%$;<%0$:3 7,4A -I. $% *$%.;<%0$: <4$*3 7<3 ;$:3,+.%.+ $:12 ,: ',K@ 6G ,@.@G 4A.+$901.)0$:+ ,3$*.%,=<4,$: $8 ")094.:. ,:4$ !"#) <:+$%&'#)6)094.:. ,3 :$4 ,:;19+.+@

T%$0<012 *9;A *$%. 3.%,$93 4A<: 4A. 1$33 $8 ;<4)<1234 <;4,I,42 3A$7: ,: 4A. 1.84)A<:+ B<%4 $8 ',K@ 6 ,34A. 1$33 $8 3.1.;4,I,42G <3 +.B,;4.+ 8$% 4A. 3<*. .QB.%,)*.:4 ,: 4A. %,KA4)A<:+ B<%4 $8 4A. 3<*. -K9%.U ,4 ;<: 0..<3,12 3..: 4A<4G ,:,4,<112G 4A. VW B%$+9;4 8%<;4,$:;$:3,343 $8 <1?<:.3 .Q;193,I.12@ LA,3 ,3 4A. %.K,$:7A.%. <: <1?21<4. ,3 8$%*.+ $: 4A. =.$1,4.@ /BB%$Q,)*<4.12 <4 4A. 4,*.G 7A.: 4A. 094.:. ;$:I.%3,$: 0.K,:34$ +%$BG 4A. B%$+9;4 J9<1,42 +.4.%,$%<4.3 +%<*<4,;<112G<:+ <3 3A$7: 8$% 4A. VW B%$+9;4 8%<;4,$: ,: ',K@ 6G*$%. <:+ *$%. <1?.:.3 <%. 8$%*.+@ X<4. ,: 4A..QB.%,*.:4G :$ <1?21<4,$: 4<?.3 B1<;. <:2 *$%.G,:34.<+ 4A. =.$1,4. ;<4<12=.3 :$4A,:K .13. 4A<: 4A.$1,K$*.%,=<4,$: $8 4A. 094.:.@

Y9<1,4<4,I.12G 4A. 9:3<4,38<;4$%2 4,*.)$:)34%.<*0.A<I,$% 3A$7: ,: ',K@ 6 ,3 42B,;<1 8$% <11 3$1,+ <;,+33;%94,:,=.+ <3 ;<4<12343 8$% ,3$094<:. <1?21<4,$:G <:+4A,3 A<3 3$ 8<% B%.I.:4.+ 3$1,+ ;<4<12343 8%$* 0.,:K.*B1$2.+ ,: ;$**.%;,<1 ,3$094<:.>094.:. <1?21<4,$:B%$;.33.3@ LA.%. A<3G A$7.I.%G 0..: 3$*. B%$K%.33 ,:<:<12=,:K 4A. %.<3$:3 8$% 4A. B$$% 4,*.)$:)34%.<*0.A<I,$% $8 3$1,+ <1?21<4,$: ;<4<12343@ / 1,*,4.+ :9*)0.% $8 B%$;.33 +.I.1$B*.:43 A<I. .I.: 0..: +%,I.: 4,114A. B,1$4 B1<:4 34<K.@

4" 5,.3'-- 2'6'%.78'()- $) )9' 7&%.) 7%$() -)$:'

X,34.+ ,: L<01. " <%. 4A. B%$;.33 +.I.1$B*.:437A,;A %.12 $: 3$1,+ ;<4<12343 8$% 4A. *<:98<;49%. $8<1?21<4,$: K<3$1,:.@ LA. *$34 +.4<,1.+ ,:8$%*<4,$: A<30..: %.1.<3.+ ,: 4A. 1,4.%<49%. $: 4A. Z<1+$% L$B3[.B%$;.33 7A,;A *<?.3 93. $8 4%,\9$%$*.4A<:.3918$:,;<;,+ M4%,\,; <;,+G '(V]^(ZP $: < B$%$93 39BB$%4 ,: <-Q.+)0.+ %.<;4$%@ ^:. 8.<49%. $8 4A,3 B%$;.33 ,3 4A<44A. 1,J9,+ <;,+ $% < %.<;4,$: ,:4.%*.+,<4. MB.%A<B3 <:.34.% $8 4%,\,; <;,+P ,3 3$1901. 4$ 3$*. .Q4.:4 ,: 4A.A2+%$;<%0$: BA<3. <:+ *,K%<4.3 31$712 <1$:K 4A.-Q.+)0.+@ L$ 3$*. .Q4.:4G 4A. <;,+ +.<;4,I<4.3 7A,1.<;4,:K <3 <: <1?21<4,$: ;<4<1234G $: <;;$9:4 $8 $,13+,33$1I,:K ,: 4A. <;,+@ LA. +.<;4,I<4.+ <;,+ 1.<I,:K 4A.<1?21<4,$: %.<;4$% ,3 3.:4 4$ < 3.;$:+ %.<;4$% 7A.%. 4A.3B.:4 <;,+ ,3 %.K.:.%<4.+ $% %.;$I.%.+ <;;$%+,:K 4$B%$B%,.4<%2 4.;A:,J9.@

C4 ,3 ,:4.%.34,:K 4$ :$4,;. 4A<4 < 319%%2 %.<;4$% ,3.*B1$2.+ ,: <4 1.<34 $:. $8 4A. B%$;.33 +.I.1$B*.:431,34.+ ,: L<01. "@ / 319%%2 %.<;4$% B%$0<012 A.1B3 4$31$7 +$7: 4A. +.<;4,I<4,$: <:+ NN+.3.1.;4,I<4,$:OO $8

',K@ 6@ V$:I.%3,$: $8 < 1,J9,+ ,3$094<:.>")094.:. *,Q49%. $: <V.R)DW =.$1,4. ,: < 8,Q.+)0.+ %.<;4$% M(!WF!VG )!(" 0<%G 1,J9,+8..+ %<4.!E@5 ;*(>AG *<33 $8 ;<4<1234!"@_ KG !',3$094<:.! !'""094.:. !"" " "PG <84.% !"(`"5#@

*+ ,-"$.&/)0 1+ (%&& 2 3&$&45#"# (67&5 89 :;999< ;9=>;99 "D5

Page 11: Gounder Research Laboratory: Chemistry and Catalysis of

Olefin oligomerization (and chain-growth processes) in acid zeolites are inherently a coupled reaction-diffusion process

Initial Conversion / %

Initi

al S

elec

tivity

/ %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3

H-MFI (0.5 nm diam.)

Si/Al = 13 dashed lines to guide the eye

= S9

= S6

= Sβ

PRIMARY DELPLOT (Bhore, Klein, Bischoff – 1990)

SnO2

Al

Al

Al

503 K, 165 kPa C3H6

PRIMARY PRODUCTS

Page 12: Gounder Research Laboratory: Chemistry and Catalysis of

Fundamental experimental investigations of coupled reaction-diffusion phenomena in zeolites

10 µm

= [H+] L2

De

Catalyst properties

× k

Reaction property

Thiele Modulus

Reaction Rate

Diffusion Rate =

Crystallite length, active site density influence diffusion

Material “Diffusion

Parameter” = [H+] L2

SnO2

Al

Al

Al

H-MFI (0.5 nm diam.)

Si/Al = 13

Materials design approaches:

•  Vary crystallite size •  Al spatial distribution (toward

crystallite exterior)

MFI 12 unique T-Sites

10-MR channels (~0.55 nm) Intersections (~0.70 nm)

𝚽2

(n = 1)

Page 13: Gounder Research Laboratory: Chemistry and Catalysis of

Current progress to date: Installation and safety / performance validation of a high pressure/conversion reactor in FlexLab

•  Status update

•  Installed and validated a benchtop-scale reactor (1-10 gram catalyst scale) to perform hydrocarbon reactions at industrial conditions and high conversions

•  Housed in FlexLab, primarily designed for olefin oligomerization (CISTAR)

•  Also capable of other hydrocarbon chemistries

•  Goals

•  Assess the practical functionality (and generate data for patents) of Purdue-developed catalysts for hydrocarbon reactions

•  Characterize the product slate from catalysts at high conversions

•  Evaluate long-term (eg, days-to-weeks) catalyst behavior (deactivation, time-on-stream product profiles) and regeneration

Page 14: Gounder Research Laboratory: Chemistry and Catalysis of

Current progress to date: Installation and safety / performance validation of a high pressure/conversion reactor in FlexLab

•  Operational Features

•  Automated and programmable for long-term unintended operation

•  Max P: 100 bar, Max T: 800 oC

•  Heated enclosure and transfer lines to prevent liquid condensation and send effluent to GC-MS (online analysis)

•  Gas-liquid-liquid separator capable of separating two immiscible liquids (offline analysis)

•  Safety Features (will automatically shut-off temperature / flow)

•  Flammable gas detectors (2 for H2, 2 for hydrocarbons) to identify leaks inside and outside the heated box

•  Loss of air-flow in lab room and exhaust/ventilation system

•  Over-temperature and over-pressure alarms and safety shut-offs

Page 15: Gounder Research Laboratory: Chemistry and Catalysis of

Acknowledgements

§  Jason Bates (alumni) §  Bereket Bekele §  Elizabeth Bickel §  Brandon Bolton §  Bonn Cao §  Tania Class Martinez §  Michael Cordon (alumni) §  John Di Iorio (alumni) §  Ricem Diaz Arroyo §  Sopuruchukwu Ezenwa §  Jamie Harris (alumni) §  Casey Jones §  Ravi Joshi (alumni) §  Phil Kester (alumni) §  Siddarth Krishna (postdoc) §  Trevor Lardinois §  Songhyun Lee (postdoc)

Financial Support and Discussions

§  Fabio Ribeiro, Jeff Miller, Nick Delgass, Viktor Cybulskis (grad)

§  Jeffrey Greeley, Brandon Bukowski (grad)

§  David Flaherty (Illinois) §  Christophe Copéret (ETH-Zürich) §  Jackie Hall (UG alumni)

§  Alisa Henry (UG alumni) §  YoonRae Cho (UG alumni)

§  Yury Zvinevich

§  Andrew Mikes §  Claire Nimlos (alumni) §  Ángel Santiago Colon §  Juan Carlos Vega-Vila

(alumni)

§  Laura Wilcox §  Young Gul Hur (PD alumni)

(Oxidation project) (Alkylation project) (Other P2SAC research) (ARSST)