gom graziosi

67
Verification of Numerical Simulations GOM October 17, 2014

Upload: micheledisclafani

Post on 20-Nov-2015

31 views

Category:

Documents


2 download

DESCRIPTION

Gom Graziosi

TRANSCRIPT

  • Verification of Numerical Simulations GOM October 17, 2014

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 2 Verification of Numerical Simulations GOM

    GOM Industrial 3D Measuring Techniques Measurement systems

    Full-field 3D Digitizing

    3D Shape and Dimension Inspection

    Material Testing

    Dynamic Component Testing

    Full-field 3D Strain Measurement

    Deformation Analysis in Sheet Metal Forming

    Mobile Optical CMM

    Dynamic 3D Analysis

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 3 Verification of Numerical Simulations GOM

    GOM Industrial 3D Measuring Techniques Measurement systems

    Material Testing 3D Coordinate Measurement Component Testing

    ATOS

    ATOS ScanBox

    TRITOP

    ARAMIS

    PONTOS

    PONTOS

    ARAMIS

    TRITOP ARGUS

    Viewing and evaluation software

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 4 Verification of Numerical Simulations GOM

    GOM Industrial 3D Measuring Techniques Measurement systems and results

    Material Testing 3D Coordinate Measurement Component Testing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 5 Verification of Numerical Simulations GOM

    GOM Industrial 3D Measuring Techniques Company Overview

    Benefits of optical metrology

    Optical metrology enables and supports High information density Fast measurement and provision of results High degree of flexibility regarding task, place and parts High process safety

    Optical metrology is used complementary or as an alternative to

    3D CMM Checking fixtures, gauges Displacement- and acceleration sensors Extensometers Strain gauges

  • Verification of Numerical Simulations Webinar Overview

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 7 Verification of Numerical Simulations GOM

    Following topics will be discussed during the Application Webinar Verification of Numerical Simulations

    Introduction in GOMs optical measuring systems

    Determination of input parameters for numerical simulations

    Verification procedures for numerical simulations

    Including example applications in

    Sheet metal forming Composite component testing Biomedical applications Fluid dynamics in the Automotive and Aerospace industry

    Supported numerical simulation software packages and formats

    Verification of Numerical Simulations Overview

  • Verification of Numerical Simulations Optical Measuring Techniques

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 9 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Example Applications

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 10 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 11 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations 3D-Shape Measurements

    Reverse Engineering

    FEA-Simulation

    RevRev

    CFD-Analysis

    3D-Shape / STL-mesh

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 12 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Dynamic Deformation and Strain Analysis

    FEA-Verification

    Material Parameters

    Shape / Displacement / Strain

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 13 Verification of Numerical Simulations GOM

    Boundary Conditions

    Verification of Numerical Simulations Dynamic Deformation Analysis

    Position / Displacement Dynamic

    FEA-Verification

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 14 Verification of Numerical Simulations GOM

    Boundary Conditions

    Verification of Numerical Simulations Static 3D-Coordinate Measurements and Deformation Analysis

    Position / Displacement Static

    FEA-Verification

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 15 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Sheet Metal Forming Analysis

    FEA-Verification

    Shape / Strain

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 16 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations GOM System Applications

    Results Application for FEA

    ATOS Geometry / Shape 3D coordinates

    Full field, static Input for Mesh Generation, Verification of Shape Spring-back, Thickness

    ARAMIS Deformation Coordinates, Displacements, Strain

    Full field, dynamic Material Parameter Verification of Shape, Displacement, Strain

    ARGUS Forming Analysis Coordinates, Displacements, Strain

    Full field, static

    Verification of Shape, Displacement, Strain

    PONTOS Deformation Coordinates, Displacements, Velocity

    Point wise, dynamic Boundary conditions, Verification of Position, Displacements

    TRITOP Deformation Coordinates, Displacements

    Point wise, static

    Boundary conditions, Verification of Position, Displacements, (Geometry)

  • Verification of Numerical Simulations Determination of Input Parameters

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 18 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 19 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

    Input Geometry

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 20 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Input geometry for numerical simulation

    Numerical simulations are initially depending on 3D input geometries which are usually taken from construction models (CAD)

    Due to differences in the 3D shape of CAD data sets and prototypes the reliability of numerical simulations are sometimes questionable

    Thus the accuracy and reliability of numerical simulations can be improved using the real parts geometry

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 21 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Input geometry for numerical simulation

    Numerical simulations are initially depending on 3D input geometries which are usually taken from construction models (CAD)

    Due to differences in the 3D shape of CAD data sets and prototypes the reliability of numerical simulations are sometimes questionable

    Thus the accuracy and reliability of numerical simulations can be improved using the real parts geometry

    Generation of input geometries for numerical simulations

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 22 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Input geometry for numerical simulation

    Numerical simulations are initially depending on 3D input geometries which are usually taken from construction models (CAD)

    Due to differences in the 3D shape of CAD data sets and prototypes the reliability of numerical simulations are sometimes questionable

    Thus the accuracy and reliability of numerical simulations can be improved using the real parts geometry

    Generation of input geometries for numerical simulations

    Section based reverse engineered CAD model from scan data

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 23 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Input geometry for numerical simulation

    Numerical simulations are initially depending on 3D input geometries which are usually taken from construction models (CAD)

    Due to differences in the 3D shape of CAD data sets and prototypes the reliability of numerical simulations are sometimes questionable

    Thus the accuracy and reliability of numerical simulations can be improved using the real parts geometry

    Generation of input geometries for numerical simulations

    Computational fluid dynamics

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 24 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 25 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

    Material Parameters

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 26 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Material parameter models as input for numerical simulation

    The accuracy and reliability of numerical simulations are strongly depending on accurate material parameter models

    With optical measuring techniques advanced material parameter models are developed utilizing different applications and testing procedures, such as

    Tensile tests (quasi-static, high speed, etc.) Youngs modulus, R-value, N-value, Poisson ratio, etc.

    Nakajima and bulge tests Forming limit curves and bi-axial yield curves

    Torsion tests Bending tests Compression tests ...

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 27 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 28 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

    Boundary Conditions

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 29 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 30 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

    Inhomogeneous / unknown material behavior

    E.g. Bones

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 31 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

    Inhomogeneous / unknown material behavior

    E.g. Bones

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 32 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

    Inhomogeneous / unknown material behavior

    E.g. Bones

    PONTOS Measurement

    FEA Input Geometry

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 33 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

    Inhomogeneous / unknown material behavior

    E.g. Bones

    FEA Result Meshes

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 34 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Determination of Input Parameters

    Boundary conditions as input for numerical simulations

    Numerical simulations strongly depend on the input of boundary conditions which represent manufacturing and testing conditions

    Inhomogeneous / unknown material behavior

    E.g. Bones

    Process parameters

    Tool behavior and press motion during stamping, cutting, etc.

  • Verification of Numerical Simulations Common Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 36 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Verification Procedures

    Point wise comparisons used for

    Displacement transducers

    Accelerometers

    Strain gauges

    Etc.

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 37 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Verification Procedures

    Point wise comparison

    Section based comparison

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 38 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Verification Procedures

    Point wise comparison

    Section based comparison Visual comparison of color plots

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 39 Verification of Numerical Simulations GOM

    Summary

    No automatism, manual work

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 40 Verification of Numerical Simulations GOM

    Summary

    No automatism, manual work

    Due to user interaction very fault-prone Definition of points, sections, etc. in correct corresponding positions in FEA and measurement results

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 41 Verification of Numerical Simulations GOM

    Summary

    No automatism, manual work

    Due to user interaction very fault-prone Definition of points, sections, etc. in correct corresponding positions in FEA and measurement results

    Limitations

    Comparison only possible for local areas

    Points Sections

    Visual comparison of color plots

    Inaccurate matching between FEA and measurement results

    Verification of Numerical Simulations Verification Procedures

  • Verification of Numerical Simulations Verification Procedure using 3D Data

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 43 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 44 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

    FE Verification

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 45 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 46 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 47 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    The result data set from the simulation need to be exported into the correct format from the numerical simulation software package

    Direct export functions available in LS-Dyna, Pamstamp and Autoform

    Export scripts are available for ANSYS, ABAQUS and NASTRAN

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 48 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Usually the 3D coordinate system is not aligned between results from numerical simulation and measurement

    Manual pre-alignment

    Best-fit alignment

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 49 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Surface Comparison

    Deviations between FEA and measurement

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 50 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Surface Comparison

    Deviations between FEA and measurement

    With small enough deviation between the two surfaces the comparison of further result data, such as displacement and strain, is useful

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 51 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Surface Comparison

    Result data comparison

    Due to the issues that the nodes in the simulation are not at the same 3D positions as the measured 3D coordinates from the measurement a mapping of these two datasets is required to enable the direct comparison between FEA and measurement

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 52 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Surface Comparison

    Result data comparison

    Due to the issues that the nodes in the simulation are not at the same 3D positions as the measured 3D coordinates from the measurement a mapping of these two datasets is required to enable the direct comparison between FEA and measurement

    Verification of Numerical Simulations Verification Procedures

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 53 Verification of Numerical Simulations GOM

    Verification procedure in ARAMIS and ARGUS

    Import of result data set from numerical simulation

    3D coordinate system alignment

    Surface Comparison

    Result data comparison

    Further post-processing and reporting functions are available in ARAMIS for measurement and FEA data

    Point evaluations Section Statistics Interpolation Filtering etc.

    Verification of Numerical Simulations Verification Procedures

  • Verification of Numerical Simulations Application Examples Rotor Blade

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 55 Verification of Numerical Simulations GOM

    Test Specimen Carbon fiber rotor Blade length: 1540mm

    Numerical simulation Linear simulation model Used to define positions for the application of strain gauges

    ARAMIS is used in this application to

    Verify the numerical simulation Verify strain gauge positions Replace strain gauges

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 56 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Positions of strain gauges

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 57 Verification of Numerical Simulations GOM

    Rotor blade bending test Full-field strain evaluation in X-direction of coordinate system

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 58 Verification of Numerical Simulations GOM

    Rotor blade bending test Full-field strain evaluation in X-direction of coordinate system

    Strain gauge positions not in maximum strain areas

    Non homogeneous strain distribution in root area of the rotor blade

    Further measurement only focused on the root area

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 59 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Measurement of rotor blade root using a smaller measuring area to raise the local resolution for a better understanding of the local deformation behavior

    Strain in X-direction

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 60 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Measurement of rotor blade root using a smaller measuring area to raise the local resolution for a better understanding of the local deformation behavior

    Strain in X-direction

    Non homogeneous local deformation behavior

    Strain gauges were not applied on the areas of maximum deformation as predicted in the numerical simulation

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 61 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Strain gauge were applied to measure in X-direction

    Comparison ARAMIS against strain gauges

    Verification of Numerical Simulations Application: Rotor Blade Bending test

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 62 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Verification of numerical simulation from rotor blade

    Alignment

    Verification of Numerical Simulations Application: Rotor Blade Bending test

    Initial Shape from FEA

    incl. measurement results

    (measurement projected to FEA surface)

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 63 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Verification of numerical simulation from rotor blade

    Alignment Import FEA Strains

    Verification of Numerical Simulations Application: Rotor Blade Bending test

    Result from ANSYS simulation Result from ARAMIS measurement

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 64 Verification of Numerical Simulations GOM

    Rotor blade bending test

    Verification of numerical simulation from rotor blade

    Difference between ANSYS simulation and ARAMIS measurement result

    Verification of Numerical Simulations Application: Rotor Blade Bending test

    Difference between Simulation (ANSYS) and measurement (ARAMIS)

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 65 Verification of Numerical Simulations GOM

    FEA-comparison module

    Included in ARAMIS and ARGUS

    Comfortable alignment and mapping

    Determination of full field deviations for Geometry Displacements Strains (Major, Minor, )

    Easy and comfortable FEA verification including result evaluation and reporting

    Verification of Numerical Simulations Summary

  • 2-Frame Setup / Frame 2 2-Frame Setup / Frame 1

    3-Frame Setup / Frame 1 3-Frame Setup / Frame 2 3-Frame Setup / Frame 3

    Page 66 Verification of Numerical Simulations GOM

    Verification of Numerical Simulations Overview Finite Element Simulation

    Input Geometry (Mesh)

    Material Parameters

    FE Verification

    Boundary Conditions

    Shape

    Displacement

    Strain

    Position

    FE Optimization

    Meshing

  • Thank you for your attention

    [email protected] www.gom.com