Functions: Even, Odd, or Neither - Welcome to Mrs ... viewTeacher – Mrs. Volynskaya Pre-Calculus Functions: Even, Odd, or Neither? NAME _____ A function is either even, odd, or neither. You can determine which a function is graphically or algebraically. Graph each function below. If

Download Functions: Even, Odd, or Neither - Welcome to Mrs ...  viewTeacher – Mrs. Volynskaya Pre-Calculus Functions: Even, Odd, or Neither? NAME _____ A function is either even, odd, or neither. You can determine which a function is graphically or algebraically. Graph each function below. If

Post on 02-Apr-2018

217 views

Category:

Documents

3 download

Embed Size (px)

TRANSCRIPT

<p>Functions: Even, Odd, or Neither</p> <p>Teacher Mrs. Volynskaya Pre-Calculus Functions: Even, Odd, or Neither?</p> <p>NAME _____________________</p> <p>A function is either even, odd, or neither. You can determine which a function is graphically or algebraically. </p> <p>Graph each function below. If the graph of the function is SYMMETRICAL over Y-axis, it represents an EVEN function. PROVE your answer ALGEBRAICALLY. If a function is even, then f(x)=f(-x). We can prove this by substituting x into the original function. If f(x) is equal to f(-x), then the function is even.</p> <p>1. f(x)= x2</p> <p>Is this function even?</p> <p>2. f(x)= </p> <p>3</p> <p>1</p> <p>x2</p> <p>Is this function even?</p> <p>3. f(x)= (x+2)2</p> <p>Is this function even?</p> <p>4. f(x)= x2 + 2</p> <p>Is this function even?</p> <p>5. f(x)= (x 2)2</p> <p>Is this function even?</p> <p>6. f(x)= x2 2 </p> <p>Is this function even?</p> <p>7. f(x)= </p> <p>x</p> <p>Is this function even?</p> <p>8. f(x)= </p> <p>x</p> <p>Is this function even?</p> <p>An even function is symmetric over the __________________________.</p> <p>In each of the following problems, a given function is shown on a graph.</p> <p>9) f(x)= x</p> <p>Is this function odd?</p> <p>10) f(x)= x3</p> <p>Is this function odd?</p> <p>11) f(x)= (x 2)3</p> <p>Is this function odd?</p> <p>12) f(x)= x3 -2</p> <p>Is this function odd?</p> <p>13) f(x)= 2x3</p> <p>Is this function odd?</p> <p>14) f(x)= </p> <p>x</p> <p>1</p> <p>Is this function odd?</p> <p>An odd function is symmetric over the ________________________. If a function is odd, then f(-x)= - f(x). We can prove this by substituting x into the original function. </p> <p>A function is either even, odd, or neither. Name which of these each parent function is:</p> <p>f(x)= x _____________________________</p> <p>f(x)= </p> <p>x</p> <p> ____________________________</p> <p>f(x)= x2 ____________________________</p> <p>f(x)= </p> <p>x</p> <p> ___________________________</p> <p>f(x)= x3 ____________________________</p> <p>f(x)= </p> <p>x</p> <p>1</p> <p> ____________________________</p> <p>DESIDE IF THE FOLLOWING FUNCTIONS ARE ODD, EVEN OR NEITHER:</p> <p>1) f(x)= </p> <p>3</p> <p>1</p> <p>x2</p> <p> 2) f(x)= (x+2)2 3) f(x)= x2 + 2</p> <p>4) f(x)= </p> <p>x</p> <p>5) f(x)= x 6) f(x)= x3 3 </p> <p> 7) f(x)= 2x3</p> <p>8) f(x)= </p> <p>x</p> <p>1</p> <p>_1281778387.unknown</p> <p>_1281778608.unknown</p> <p>_1281779308.unknown</p> <p>_1281779534.unknown</p> <p>_1281782745.unknown</p> <p>_1281778638.unknown</p> <p>_1281778572.unknown</p> <p>_1281777228.unknown</p> <p>_1281777267.unknown</p> <p>_1281776945.unknown</p>