foundation for mb1

Upload: venkatesha-hebbar

Post on 04-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Foundation for Mb1

    1/27

    0FOR

    APPROVAL

    Rev Initials Sign Initials Sign Initials Sign

    No Approved by

    DateDescriptio

    nPrepared by Reviewed by

    DRAWING /

    DOCUMENT NOA1-12-499-GA-02

    CLEINT RAMGAD MINERALS AND MINING LTD

    CONSULTANT

    PROJECT 1000 TPD GOLD ORE PROCESSING PLANT

    DOCUMENT

  • 7/30/2019 Foundation for Mb1

    2/27

    COMPUTATION OF CG OF LOADS AND CG OF FOOTING

    1) FOR AREA (WHEN LOAD IS ON MB1)

    FOOTING L B H A=L*B Xi Yi A*XiA1 6.4 6 1.5 38.4 3.2 3 122.88

    38.4 122.88

    A*Xi / A 3.2 m

    A*Yi / A 3 m

    PEDESTAL L B H WEIGHT Xi Yi

    P1 1.1 4 4.4 48.400 2.8 3

    P2 0.5 0.5 2.45 1.531 4 3

    2) FOR LOADS

    Xi Yi P*Xi P*Yi

    MB1 200 2.8 3 560 600

    MJ1 10 4 3 40 30

    FOOTING A1 144 3.2 3 460.8 432

    P1 48.400 2.8 3 135.52 145.2

    P2 1.531 4 3 6.125 4.594

    403.931 1202.45 1211.79

    P*Xi / P 2.977 m

    P*Yi / P 3 m

    L 6.4 m

    B 6 m

    ECCENTRICITY IN x ex 0.223 m

    ECCENTRICITY IN Y ey 4.44089E-16 m

    ECCENTRICITY IN % ex 3.49 % OK

    ey 7.40149E-17 % OK

    Zxx 38.400 m3

    Zzz 40.960 m3

    P 403.931 T

    LOADS IN T

  • 7/30/2019 Foundation for Mb1

    3/27

    Mxx 118 T-m

    Mzz 118 T-m

    P1 16.47281901 T/m2

    P2 10.71110026 T/m2

    P3 10.32698568 T/m2

    P4 4.565266927 T/m2

    Pmax 16.473

    safe

  • 7/30/2019 Foundation for Mb1

    4/27

    1) FOR AREA (WHEN LOAD IS ON MJ1)

    A*Yi FOOTING L B H A=L*B Xi Yi115.2 A1 6.4 6 1.5 38.4 3.2 3

    115.2 38.4

    A*Xi / A 3.2 m

    A*Yi / A 3 m

    PEDESTAL L B H WEIGHT Xi Yi

    P1 1.1 4 4.4 48.400 2.8 3

    P2 0.5 0.5 2.45 1.531 4 3

    2) FOR LOADS

    Xi Yi P*Xi P*Yi

    MB1 0 2.8 3 0 0

    MJ1 100 4 3 400 300

    FOOTING A1 144 3.2 3 460.8 432

    P1 48.400 2.8 3 135.52 145.2

    P2 1.531 4 3 6.125 4.594

    293.931 1002.45 881.79

    P*Xi / P 3.410 m

    P*Yi / P 3 m

    L 6.4 m

    B 6 m

    ECCENTRICITY IN x ex 0.210 m

    ECCENTRICITY IN Y ey 0 m

    ECCENTRICITY IN % ex 3.29 % OK

    ey 0 % OK

    Zxx 38.400 m3

    Zzz 40.960 m3

    P 293.931 T

    LOADS IN T

  • 7/30/2019 Foundation for Mb1

    5/27

  • 7/30/2019 Foundation for Mb1

    6/27

    A*Xi A*Yi122.88 115.2

    122.88 115.2

  • 7/30/2019 Foundation for Mb1

    7/27

  • 7/30/2019 Foundation for Mb1

    8/27

    BLOCK FOUNDATION

    operting speed of engine (fm) 17 rpm

    horizontal unbalanced force in the direction of the piston(px) 10 t

    weight of machine 0 t

    density of concrete 2.5 t/m3

    C 34600 t/m3

    C 10000 t/m3

    L (m) 6.4 m

    B (m) 6 m

    fatigue factor 2

    COMPUTATION FOR CENTRE OF GRAVITY AND MASS MOMENTS OF INERTIA

    L x (m) L y (m) L z (m) xi (m) yi (m)

    MB1 0 0 0 200 20.387 2.8 3

    MJ1 0 0 0 10 1.019 4 3

    FOOTING A1 6.4 6 1.5 144 14.679 3.2 3

    P1 1.1 4 4.4 48.4 4.934 2.8 3

    P2 0.5 0.5 2.45 1.531 0.156 4 3

    403.93 41.175

    X = (mi xi) / mi 2.977 m

    Y = (mi yi) / mi 3 m

    Z = (mi zi) / mi 3.788 m

    Eccentricity in x direction 3.487 %

    Eccentricity in y direction -7.40149E-15 %

    DESIGN PARAMETERS

    mass of foundation (m) mi 41.175

    operating frequency of the machine (fm) 17

    circular frequency (wm) 1.780

    horizontal unbalanced force acts at a height of1.95m above the

    top of the foundation (level +0.0)

    element

    part

    dimensionsweight (t)

    Mass

    (t.sec2/m)

    coordinates of cg of ele

    moment (My) caused by the horizontal exciting force (Px) acting at a height of

    1.95m above the top of foundation (My)42.23

    momemt of inertia (Iy) of the base area about the axis passing through its cg and

    perpendicular to the plane of v ibration Iy=(L*B3/12)131.07

  • 7/30/2019 Foundation for Mb1

    9/27

    the ratio (y) is given by y=y/oy 0.33

    limiting frequency wy2=(CIy-WZ)/oy 5115.30

    wx2=(CA)/m 9325.94

    coupled natural frequency (wn1)2 39735.26

    (wn2)2 3602.912

    corresponding natural frequencies f= sqrt(wn1)2/(2*3.142) f1 31.72

    f2 9.55

    Amplitudes

    the coefficient f(wm2)=my(wni)2-(wm)2)(wn2)2-(wm)2) 1.74E+12

    x=*(CIy-WSCAS2-ywm2)Px(CAS)My+(1/f(wm)2) 0.1508

    Rational amplitude y=(CAS/f(wm2)Px CA-mwm2/f(wm)2My 0.0260

    Net amplitude at base level = x - Sy 0.0521

    Net horizontal amplitude at top of the foundation = x (H-S)y 0.1550

    Dynamic forces

    taking fatigue factor of2, horizontal dynamic force (Fd) 40.039

    dynamic moment (Md) 236.28

    check for soil stresses

    W 403.93

    max 16.288

    min 4.751

    structural design-longitudinal direction

    static loads intensity of soil reaction 10.519

    (Mst)I

    (Mst)II

    (Mst)III

    dynamic loads

    The largest ordinate of the varying distributed loading 12.373

    mass moment of inertia y of the whole system about the y axis passing through

    the common cg and perpendicular to plane of vibration y=

    (1/12)mi(lx2lz2)mi(xo2zo2)

    295.33

    the mass moment of inertia (o) about the axis passing through the centroid of

    the base area and perpendicular to the plane of vibration oy=ymZ2886.28

    net bending moment induced at various sections under the influence of

    staticloads and resulting soil pressure

  • 7/30/2019 Foundation for Mb1

    10/27

    inertial forces

    inertial force (Fm)x = mxwm2 0.039

    inertial moment (Mm)y = yy(wm)2 0.049

    substituting az 0

    xo=-az/y 0

    zo=-ax/y -5.79

    DYNAMIC MOMENTS AT BASE LEVEL

    I

    II

    III

    IV

    V

    Net moments (MstMd)

    M I #VALUE! #VALUE!

    M II #VALUE! #VALUE!

    M III #VALUE! #VALUE!

    dynamic moment which acts in the form of varying distributed load,

    the largest ordinate being34.611

    0

    0

    Sectionsmoments due to dynamic

    forces t-m

    moments due to exciting

    forces t-mNet dynamic m

    0

    0

    0

  • 7/30/2019 Foundation for Mb1

    11/27

    zi (m) mi*xi mi*yi mi*zi

    5.9 57.085 61.162 120.285 0 0.177 2.112 91.542

    5.9 4.077 3.058 6.014 0 1.023 2.112 5.612

    0.75 46.972 44.037 11.009 52.856 0.223 3.038 136.245

    3.7 13.814 14.801 18.255 8.457 0.177 0.088 0.193

    2.725 0.624 0.468 0.425 0.081 1.023 1.063 0.340

    122.573 123.526 155.989 61.395 233.932

    t sec2/m

    rpm

    sec-1

    mentm(xo2+zo2)

    static moment of massmi/12(Lx2+lz2) xo=X-xi zo=Z-zi

    t-m

    m4

  • 7/30/2019 Foundation for Mb1

    12/27

    sec-2

    sec-2

    sec-2

    sec-2

    cps

    cps

    mm

    mm

  • 7/30/2019 Foundation for Mb1

    13/27

    t

    t-m

    m

    t/m

    oment t-m

  • 7/30/2019 Foundation for Mb1

    14/27

    BLOCK FOUNDATION

    operting speed of engine (fm) 17 rpm

    horizontal unbalanced force in the direction of the piston(pz) 10 t

    weight of machine 0 t

    density of concrete 2.5 t/m3

    C 34600 t/m3

    C 10000 t/m3

    L (m) 6.4 m

    B (m) 6 m

    fatigue factor 2

    COMPUTATION FOR CENTRE OF GRAVITY AND MASS MOMENTS OF INERTIA

    L x (m) L y (m) L z (m) xi (m) yi (m)

    MB1 0 0 0 200 20.387 2.8 3

    MJ1 0 0 0 10 1.019 4 3

    FOOTING A1 6.4 6 1.5 144 14.679 3.2 3

    P1 1.1 4 4.4 48.4 4.934 2.8 3

    P2 0.5 0.5 2.45 1.531 0.156 4 3

    403.93 41.175

    X = (mi xi) / mi 2.977 m

    Y = (mi yi) / mi 3 m

    Z = (mi zi) / mi 3.788 m

    Eccentricity in x direction 3.487 %

    Eccentricity in y direction -7.40149E-15 %

    DESIGN PARAMETERS

    mass of foundation (m) mi 41.175

    operating frequency of the machine (fm) 17

    horizontal unbalanced force acts at a height of1.95m above the

    top of the foundation (level +0.0)

    coordinates of cg of eleelement

    part

    dimensionsweight (t)

    Mass

    (t.sec2/m)

    moment (Mx) caused by the horizontal exciting force (Pz) acting at a height of

    1.95m above the top of foundation (Mx)42.23

  • 7/30/2019 Foundation for Mb1

    15/27

    circular frequency (wm) 1.780

    the ratio (y) is given by x=x/ox 0.33

    limiting frequency wy2=(CIx-WZ)/ox 4509.60

    wx2=(CA)/m 9325.94

    coupled natural frequency (wn1)2 38479.27

    (wn2)2 3300.450

    corresponding natural frequencies f= sqrt(wn1)2/(2*3.142) f1 31.22

    f2 9.14

    Amplitudes

    the coefficient f(wm2)=my(wni)2-(wm)2)(wn2)2-(wm)2) 1.53E+12

    x=*(CIy-WSCAS2-ywm2)Px(CAS)My+(1/f(wm)2) 0.1644

    Rational amplitude y=(CAS/f(wm2)Px CA-mwm2/f(wm)2My 0.0296

    Net amplitude at base level = x - Sy 0.0521

    Net horizontal amplitude at top of the foundation = x (H-S)y 0.1692

    Dynamic forces

    taking fatigue factor of2, horizontal dynamic force (Fd) 40.043

    dynamic moment (Md) 236.31

    check for soil stresses

    W 403.93

    max 17.083

    min 3.955

    structural design-longitudinal direction

    momemt of inertia (Ix) of the base area about the axis passing through its cg and

    perpendicular to the plane of vibration Ix=(L3*B/12)115.20

    mass moment of inertia x of the whole system about the x axis passing through

    the common cg and perpendicular to plane of vibration x=(1/12)mi(ly2lz2)mi(yo2zo2)

    292.59

    the mass moment of inertia (o) about the axis passing through the centroid of the

    base area and perpendicular to the plane of vibration ox=xmZ2883.54

  • 7/30/2019 Foundation for Mb1

    16/27

    static loads intensity of soil reaction 10.519

    (Mst)I

    (Mst)II

    (Mst)III

    dynamic loads

    The largest ordinate of the varying distributed loading 12.373

    inertial forces

    inertial force (Fm)x = mxwm2 0.043

    inertial moment (Mm)y = yy(wm)2 0.055

    substituting az 0

    xo=-az/y 0

    zo=-ax/y -5.55

    DYNAMIC MOMENTS AT BASE LEVEL

    I

    II

    III

    IV

    V

    Net moments (MstMd)

    M I #VALUE! #VALUE!

    M II #VALUE! #VALUE!

    M III #VALUE! #VALUE!

    net bending moment induced at various sections under the influence of

    staticloads and resulting soil pressure

    dynamic moment which acts in the form of varying distributed load, the

    largest ordinate being34.615

    0

    Sectionsmoments due to dynamic

    forces t-m

    moments due to exciting

    forces t-mNet dynamic m

    0

    0

    0

    0

  • 7/30/2019 Foundation for Mb1

    17/27

    zi (m) mi*xi mi*yi mi*zi

    5.9 57.085 61.162 120.285 0 0.177 2.112 91.542 0

    5.9 4.077 3.058 6.014 0 1.023 2.112 5.612 0

    0.75 46.972 44.037 11.009 52.856 0.223 3.038 136.245 46.789

    3.7 13.814 14.801 18.255 8.457 0.177 0.088 0.193 14.538

    2.725 0.624 0.468 0.425 0.081 1.023 1.063 0.340 0.081

    122.573 123.526 155.989 61.395 233.932 61.408

    t sec2/m

    rpm

    mi/12(Ly2+lz2)ment

    m(xo2+zo2)mi/12(Lx2+lz2) xo=X-xi zo=Z-zi

    t-m

    static moment of mass

  • 7/30/2019 Foundation for Mb1

    18/27

    sec-1

    sec-2

    sec-2

    sec-2

    sec-2

    cps

    cps

    mm

    mm

  • 7/30/2019 Foundation for Mb1

    19/27

    t/m2

    =

    =

    =

    t/m

    t

    t-m

    m

    t/m

    oment t-m

  • 7/30/2019 Foundation for Mb1

    20/27

    0 90.904

    0 4.545

    0 135.514

    0 0.039

    0 0.177

    231.178

    m(yo2+zo2)yo=Y-yi

  • 7/30/2019 Foundation for Mb1

    21/27

  • 7/30/2019 Foundation for Mb1

    22/27

  • 7/30/2019 Foundation for Mb1

    23/27

    BLOCK FOUNDATION

    operting speed of engine (fm) 17 rpm

    horizontal unbalanced force in X direction 10 t

    horizontal unbalanced force in Z direction 10 t

    weight of machine 0 t

    density of concrete 2.5 t/m3

    C 34600 t/m3

    C 10000 t/m3

    L (m) 7.4 m

    B (m) 6 m

    Fatigue factor 2

    COMPUTATION FOR CENTRE OF GRAVITY AND MASS MOMENTS OF INERTIA

    L x (m) L y (m) L z (m) xi (m) yi (m) zi (m) mi*xi mi*yi mi*zi

    MB1 0 0 0 200 20.387 3.3 3 5.9 67.278 61.162 120.285 0 0.189 2.272 105.9

    MJ1 0 0 0 10 1.019 4.5 3 5.9 4.587 3.058 6.014 0 1.011 2.272 6.30

    OTING 7.4 6 1.5 166.5 16.972 3.7 3 0.75 62.798 50.917 12.729 80.633 0.211 2.878 141.3

    P1 1.1 4 4.4 48.4 4.934 3.3 3 3.7 16.281 14.801 18.255 8.457 0.189 0.072 0.20

    P2 0.5 0.5 2.45 1.531 0.156 4.5 3 2.725 0.702 0.468 0.425 0.081 1.011 0.903 0.28

    426.43 43.469 151.647 130.407 157.709 89.172 254.0

    X = (mi xi) / 3.489 m

    Y = (mi yi) / 3 m

    Z = (mi zi) / 3.628 m

    Eccentricity in x direction 2.856 %

    eccentricity in y direction -7E-15 %

    DESIGN PARAMETERS

    mass of foundation (m) mi 43.469 t sec2/m

    operating frequency of the machine (fm) 17 rpm

    circular frequency (wm) 1.780 sec-1

    horizontal unbalanced force acts at a height of1.95m

    above the top of the foundation (level +0.0)

    coordinates of cg of element

    momemt of inertia (Iy) of the base area about the axis

    i h h i d di l h l202.61 m4

    element

    part

    dimensions weight

    (t)

    Mass

    (t.sec2/

    m)

    static moment of mass mi/12(Lx

    2+lz2)xo=X-xi

    moment (Mx) caused by the vertical exciting force

    (Pz) acting at a height of1.95m above the top of45.438 t-m

    m(xo

    o2

    moment (Mz) caused by the horizontal exciting force

    (Px) acting at a height of1.95m above the top of45.438 t-m

    zo=Z-zi

    DOCUMENT TITLE

    DOCUMENT NO

    1000 TPD GOLD ORE PROJECT

    RAMGAD MINERALS AND MINIMG LIMITED

    PROMAC INDUSTRIES LIMITED

    CUBIZ DESIGN SOLUTIONS (P) LIMITED

    DESIGN OF MILL FOUNDATION

    PROJECT

    CLIENT

    CLIENT CONSULTANT

    VENDOR

    VENDOR CONSULTANT

  • 7/30/2019 Foundation for Mb1

    24/27

    the ratio (x) is given by x=x/ox 0.36

    limiting frequency wy2=(CIy-WZ)/oy 7656.15 sec-2 limiting frequency wx2=(CIx-WZ)/ox

    wx2=(CA)/m 10214.17 sec-2 wy2=(CA)/m

    coupled natural frequen (wn1)2 42783.06 sec-2 coupled natural frequency (wn1)2

    (wn2)2 4874.638 sec-2 (wn2)2

    corresponding natural frequencies f= sqrt( f1 32.92 cps corresponding natural frequencies f= sqrt(wn1)2/(2*3.1 f1

    f2 11.11 cps f2

    Amplitudes Amplitudes

    the coefficient f(wm2)=my(wni)2-(wm)2)( 3.11E+12 the coefficient f(wm2)=mx(wni)2-(wm)2)(wn2)2-(wm)2)

    Horizontal amplit x=*(CIy-WSCAS2-ywm2)Px(CAS)Mz+( 0.1062 mm Vertical amplitude y=*(CIx-WSCAS2-xwm2)Pz(C

    Rational amplitude y=(CAS/f(wm2)Px CA-mwm2/f(wm)2 0.0168 Rational amplitude x=(CAS/f(wm2)Pz CA-mwm2/f(wm

    Net amplitude at base level = x - Sy 0.0451 mm Net amplitude at base level = y - Sx

    Net horizontal amplitude at top of the foundation = x (H-S) 0.1116 H 3.95 m

    Net vertical amplitude at top of the foundation = y (H-S)

    Net ampli t 0.1840 safe

    Dynamic forces Dynamic forces

    taking fatigue factor of2, horizontal dynamic force (Fd) 40.029 t taking fatigue factor of 2, horizontal dynamic force (Fd)

    dynamic moment (Md) 236.19 t-m dynamic moment (Md)

    check for soil stresses check for soil stresses

    W 426.43 t W

    max 13.918 t/m2 max

    min 5.291 t/m2 min

    structural design-longitudinal direction structural design-longitudinal direction

    static loads intensity of soil reaction 9.604 t/m2 static loads intensity of soil reaction

    (Mst)I = (Mst

    (Mst)II = (Mst

    (Mst)III = (Mst

    dynamic loads dynamic loads

    The largest ordinate of the varying distributed loading 9.957 t/m The largest ordinate of the varying distributed loading

    inertial forces inertial forces

    inertial force (Fm)x = mxwm2 0.029 t inertial force (Fm)x = mxwm2

    inertial moment (Mm)y = yy(wm)2 0.037 t-m inertial moment (Mm)y = yy(wm)2

    substituting az 0 substituting az

    xo=-az/ 0 xo=-

    zo=-ax/ -6.30 m zo=-

    DYNAMIC MOMENTS AT BASE LEVEL DYNAMIC MOMENTS AT BASE LEVEL

    I I

    II II

    0

    0

    Sections moments dueto dynamic

    moments due toexciting forces t-m

    Net dynamicmoment t-m

    25.880 t/m

    Sections moments due todynamic forces t-m

    moments due toexciting forces t-m

    Net

    0

    0

    net bending moment induced at various sections under the

    influence of staticloads and resulting soil pressure

    dynamic moment which acts in the form of varying distributedload, the largest ordinate being

    net bending moment induced at various sections under

    the influence of staticloads and resulting soil pressure

    dynamic moment which acts in the form of varyingdistributed load, the largest ordinate being

  • 7/30/2019 Foundation for Mb1

    25/27

    0 RG OF

    REV DSGN BY REVD BY CHKD BY

    COMPUTATION OF CG OF LOADS AND CG OF FOOTING

    1) FOR AREA (WHEN LOAD IS ON MB1)

    FOOTING L B H A=L*B Xi Yi A*Xi A*Yi

    A1 7.4 6 1.5 44.4 3.7 3 164.280 133.2

    44.4 164.280 133.2

    A*Xi / A 3.7 m

    A*Yi / A 3 m

    PEDESTAL L B H WEIGHT Xi Yi

    P1 1.1 4 4.4 48.400 3.3 3

    P2 0.5 0.5 2.45 1.531 4.5 3

    2) FOR LOADS

    Xi Yi P*Xi P*YiMB1 200 3.3 3 660 600

    MJ1 10 4.5 3 45 30

    FOOTING A1 166.5 3.7 3 616.050 499.50

    P1 48.400 3.3 3 159.72 145.2

    P2 1.531 4.5 3 6.891 4.594

    426.431 1487.66 1279.29

    P*Xi / P 3.489 m

    P*Yi / P 3 m

    L 7.4 m

    B 6 m

    ECCENTRICITY IN x ex 0.211 m

    ECCENTRICITY IN Y ey 4.44089E-16 m

    ECCENTRICITY IN % ex 2.86 % OK

    LOADS IN T

    PROJECT 1000 TPD GOLD ORE PROJECT

    CLIENT RAMGAD MINERALS AND MINIMG LIMITED

    CLIENT CONSULTANT

    VENDOR

    DOCUMENT NO PAGE

    PROMAC INDUSTRIES LIMITED

    VENDOR CONSULTANT CUBIZ DESIGN SOLUTIONS (P) LIMITED

    DOCUMENT TITLE DESIGN OF MILL FOUNDATION

    25 OF 27

  • 7/30/2019 Foundation for Mb1

    26/27

    ey 7.40149E-17 % OK

    Zxx 44.400 m3

    Zzz 54.760 m3

    P 426.431 TMxx 118 T-m

    Mzz 118 T-m

    P1 14.41682265 T/m2

    P2 10.10710753 T/m2

    P3 9.101507335 T/m2

    P4 4.791792215 T/m2

    1) FOR AREA (WHEN LOAD IS ON MJ1)

    FOOTING L B H A=L*B Xi Yi A*Xi A*Yi

    A1 7.4 6 1.5 44.4 3.7 3 164.28 133.2

    44.4 164.28 133.2

    A*Xi / A 3.7 m

    A*Yi / A 3 m

    PEDESTAL L B H WEIGHT Xi Yi

    P1 1.1 4 4.4 48.400 3.3 3

    P2 0.5 0.5 2.45 1.531 4.5 3

    2) FOR LOADS

    Xi Yi P*Xi P*Yi

    MB1 0 3.3 3 0 0

    MJ1 100 4.5 3 450 300

    FOOTING A1 166.5 3.7 3 616.05 499.5

    P1 48.400 3.3 3 159.72 145.2

    P2 1.531 4.5 3 6.891 4.594

    316.431 1232.66 949.29

    P*Xi / P 3.896 m

    P*Yi / P 3 m

    L 7.4 m

    B 6 m

    ECCENTRICITY IN x ex 0.196 m

    ECCENTRICITY IN Y ey 8.88178E-16 m

    LOADS IN T

    26 OF 27

  • 7/30/2019 Foundation for Mb1

    27/27

    ECCENTRICITY IN % ex 2.64 % OK

    ey 1.4803E-16 % OK

    Zxx 44.400 m3Zzz 54.760 m3

    P 316.431 T

    Mxx 118 T-m

    Mzz 118 T-m

    P1 11.93934517 T/m2

    P2 7.629630052 T/m2

    P3 6.624029858 T/m2

    P4 2.314314737 T/m2