finite elements methods - tuhhcoc8522/formelsammungen/07...finite elements methods ... finite...

20

Upload: others

Post on 29-May-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Finite Elements Methods

Formulary for Prof. Estor�'s exam

Page 2: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Finite Element Method in General

One wants to obtain the equilibrium eqautions for the body, discretized by �niteelements in the form

M · U + C · U +K · U = R

Displacement of the nodes:

U =[U1 U2 . . . Un

]Tn: degrees of freedom

Displacement within the element m:

u(m)(x, y, z) = H(m)(x, y, z)U

H(m) : Displacement interpolation matrix

Strain inside the element m:

ε(m)(x, y, z) = B(m)(x, y, z)U

B(m) : Verzerrungs-Verschiebungs-Matrix

Play around with those matrices and from the priciple of virtual displacement´V

εT τ dV =´V

UT fBdV +´S

UST fS dS +∑i

U iTF i it follows:

System of equations (stationary case KU = R)[∑m

´v(m)

B(m)TC(m)B(m) dV (m)

]U =

∑m

´v(m)

H(m)T fB(m) dV (m)

+∑m

´S(m)

HS(m)T fS(m) dS(m) +∑m

´v(m)

B(m)T τ I(m) dV (m) + F

1

Page 3: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

From that one can obtain a formular to calculate each of the matrices in theequlibrium equasions:

Sti�ness matrix: K =∑m

´V (m)

B(m)TC(m)B(m)dV (m) =∑K(m)

Volume forces: RB =∑m

´V (m)

H(m)T fB(m) dV (m) =∑mR

(m)B

Surface forces: RS =∑m

´S(m)

HS(m)T fS(m) dS(m) =∑mR

(m)S

Initial stresses: RI =∑m

´v(m)

B(m)T τ I(m) dV (m) =∑mR

(m)I

Single forces: RC = F

With d'Alembert Principle the matrices for the time dependent case follow:

Mass matrix: M =∑m

´V (m)

ρ(m)H(m)TH(m) dV (m) =∑mM (m)

Damping matrix: C =∑m

´V (m)

κ(m)H(m)TH(m) dV (m) =∑mC(m)

According to the choosen elements one has to concidere only certain componentsof stress, strain and displacement:

2

Page 4: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

(Isoparametric) Truss Elements

Displacement of the nodes:

Global: U =[u1 v1 u2 v2 . . . vn

]TLocal: U =

[u1 v1 u2 v2 . . . vn

]Tn: number of nodes in element

U can be linked with the overall node displacement vector of the system (has thesame orientation).

Interpolation:

Coordinates: x(r) =∑hixi Displacements: u(r) =

∑hiui

In the following, an element with 2 nodes is considered.

Displacement interpolation matrix:

H =[h1 0 h2 0

]=[

12 (1− r) 0 1

2 (1 + r) 0]with

x(r) = H · Xu(r) = H · U

Setting up the strain displacement matrix:

εx = dudx

ε = B · U=⇒ B =

[h1x 0 h2x 0

]=[− 1

L 0 1L 0

]because hix = ∂hi

∂x = ∂hi

∂r∂r∂x = ∂hi

∂r

(∂x∂r

)−1= ∂hi

∂r

(L2

)−1

Setting up the sti�ness matrix:

K =´V

BTCB dV = AEL

0

BT B dx with A: Cross-sectional area of truss

It follows: K = EAL

1 0 −1 00 0 0 0−1 0 1 00 0 0 0

Transformed to global directions:

K = TT KT = EAL

cos2α cosα sinα −cosα cosβ −cosα sinβ

cosα sinα sin2α −sinα cosβ −sinα sinβ−cosα cosβ −sinα cosβ cos2β sinβ cosβ−cosα sinβ −sinα sinβ sinβ cosβ sin2β

3

Page 5: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

4

Page 6: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Isoparametric Plate Elements

Displacement of the nodes:

U =[u1 . . . un v1 . . . vn

]Tn: number of nodes in element

U can be linked with the overall node displacement vector of the system.

Interpolation:

Coordinates: x(r, s) =∑hixi; y(r, s) =

∑hiyi

Displacements: u(r, s) =∑hiui; v(r, s) =

∑hivi

In the following formulars, an element with 4 nodes is concidered.

Displacement interpolation matrix:

H =

[h1 h2 h3 h4 0 0 0 00 0 0 0 h1 h2 h3 h4

]with

X(r, s) = H · XU(r, s) = H · U

Match H with the vector of displacements of all nodes U to obtain the globalsti�ness matric H(m) for the element.

Setting up the strain displacement matrix:

εx = dudx εy = dv

dy

εxy = dudy + dv

dx

ε = B · U=⇒ B =

h1x h2x h3x h4x 0 0 0 00 0 0 0 h1y h2y h3y h4y

h1y h2y h3y h4y h1x h2x h3x h4x

Match B with the vector of displacements of all nodes U to obtain the global sti�-ness matric B(m) for the element.

Calculating derivatives of hi:[hixhiy

]=

[ ∂hi

∂x∂hi

∂y

]= J−1 ·

[∂hi

∂r∂hi

∂s

]with J =

[∂x∂r

∂y∂r

∂x∂s

∂y∂s

]Inverse 4x4 matrix: A =

[a bc d

]−→ A−1 = 1

det(A)

[d −b−c a

]Setting up the sti�ness matrix:

K =´V

BTCB dV = t ·1

−1

1

−1

BTCB dr ds t: thickness of the element

Match K with the vector of displacements of all nodes U to obtain the globalsti�ness matric K(m) for the element.

5

Page 7: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

6

Page 8: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Beam Elements

Displacement of the nodes:

U =[w1 ϕ1 w2 ϕ2

]Tfor an element with 2 nodes

Displacement interpolation matrix (Hermite Beam):

w(x) = HU

H =[

1− 3 x2

L2 + 2 x3

L3 x− 2x2

L + x3

L2 3 x2

L2 − 2 x3

L3 −x2

L + x3

L2

]

=⇒ K = EI

12L3

6L2

4L

− 12L3 − 6

L212L3

6L2

2L − 6

L24L

For di�erent H the strain displacement matrix B has to be determined �rst tocalculate K =

´V

BTCB dV .

Isoparametric:

Displacement of the nodes:

U =[w1 . . . wq ϕ1 . . . ϕq

]Tq: number of nodes in element

Interpolation:

w(r) =∑hiwi ϕ(r) =

∑hiϕi

Use the interpolation functions for a 1D element.

For displacement interpolation matrix H and strain interpolation matrix B con-cider displacement and rotation seperatly:

Hw =[h1 . . . hq 0 . . . 0

]Hϕ =

[0 . . . 0 h1 . . . hq

]Bw = J−1

[∂h1

∂r . . .∂hq

∂r 0 . . . 0]

Bϕ = J−1[

0 . . . 0 ∂h1

∂r . . .hq

∂r

]with the Jacobian J = ∂x

∂r

7

Page 9: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Material Matrices

8

Page 10: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Calculating Loads

In general RS =´S

HST q(x) dS for distributed loads q(x).

In the following a load acting between note 1 and 2 of a 4-node-isoparametricelement where s = const = 1 is considered.

Set up HS matrix

Consider only the displacements of the two nodes contained in the surface theload is working on:[uSvS

]= HSUS mit US =

[u1 u2 v1 v2

]HS =

[12 (1 + r) 1

2 (1− r) 0 00 0 1

2 (1 + r) 12 (1− r)

]Integrate

Rewrite q(x) in local coordinates to obtain q(r) and integrate over the surface:

R =[Rx1 Rx2 Ry1 Ry2

]T= t ·

1

−1

HST q(r) det(JS) dr

with q(r) =

[qx(r)qy(r)

]=fS and t: thickness of the plate

Jabobian matrix

Since s = const here, the Jacobian degenerates to JS =[

∂x∂r

∂y∂r

].

Because JS is not quadratic anymore, one has to use the Gramian determinant:

det(JS) =√JSJST =

√(∂x∂r

)2+(

∂y∂r

)2

Load in one direction (after the other)

For a vertical load with qx(x) = 0 only the vertical displacement and forces haveto be concidered:

vS = HS

[v1

v2

]=⇒ HS =

[h1 h2

]=[

12 (1 + r) 1

2 (1− r)]

R =

[Ry1

Ry2

]= t ·

1

−1

HST qy(r) det(J) dr

Always try set up single forces that representate the distributed load �rst!

9

Page 11: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Setting up Mass Matrices

M (m) =´

V (m)

ρ(m)H(m)TH(m) dV (m)

Consistent mass matrix:

1D: M (m) =L

0

A(x)ρ(m)H(m)TH(m) dx =1

−1

A(r)ρ(m)H(m)TH(m)det(J) dr

2D: M (m) =1

−1

1

−1

t(x)ρ(m)H(m)TH(m)det(J) dr ds

Lumped mass matrix:

M (m) =

mn 0 0

0. . . 0

0 0 mn

with m: Mass of the element; n: Number of

nodes in element

Calculating Stresses

In general: σ = C ·BU

Truss: σ = Cε = E∆LL with ∆L = u2 − u1

Plate (at s = s∗, r = r∗): σ = C ·B |r∗, s∗ U

10

Page 12: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Jacobian Matrix

Transformation of coordinates / chain rule /...:

J =

∂x∂r

∂y∂r

∂z∂r

∂x∂s

∂y∂s

∂z∂s

∂x∂t

∂y∂t

∂z∂t

so that

∂∂r∂∂s∂∂t

= J

∂∂x∂∂y∂∂z

Used to calculate: ∂h

∂x∂h∂y∂h∂z

= J−1

∂h∂r∂h∂s∂h∂t

and´V

. . . dV =1

−1

1

−1

1

−1

. . . det(J) dr ds dt

Rules for Variational Operator

δ dudx = d

dxδu δb

a

f(x) dx =b

a

δf(s) dx

Integration by Parts

b

a

u′(x)v(x) dx = [u(x)v(x)]ba −

b

a

u(x)v′(x) dx

Variation of the Total Potential

Total potential: Π = U −WU : Strain energy W : Potential of external loads

Obtain natural boundary conditions and partial di�erential equation by solvingδΠ = 0, where Π is the (hopefully given) potential of the system.

Ritz Method

Insert an approximation function for displacement with coe�cients a1, a2,a3, ...and solve ∂Π

∂a1, ∂Π

∂a2, ...

Note that ∂∂a1

b

a

f(ai) dx =b´

a

∂∂a1

f(ai) dx.

11

Page 13: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

More stu�...

12

Page 14: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Gauss Integration

K =´V

F (r, s, t) dr ds dt mit F (r, s, t) = BTCB det(J)

Gauss:b

a

F (r) dr = α1F (r1) + α2F (r2) + ...+ αnF (rn)

Polynomials up to the order (2n− 1) can be integrated axactly.

Example

The integral1

−1

F (r) dr shall be approximated using

just one approximation point:1

−1

F (r) dr = 2 · F (0)

two approximation points:1

−1

F (r) dr = 1 · F (−0.57735) + 1 · F (0.57735)

13

Page 15: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Newton-Cotes Integration

K =´V

F (r, s, t) dr ds dt mit F (r, s, t) = BTCB det(J)

Newton-Cotes:b

a

F (r) dr = (b− a)n∑

i=0

Cni Fi +Rn

with Cni : Newton-Cotes constants; Rn: Remainder (error estimation)

The approximation points Fi are linearly distributed, for the distance betweento points h = b−a

n holds.

Example

The integral1

−1

F (r) dr shall be approximated using

just one interval:1

−1

F (r) dr = 2 ·(

12F (−1) + 1

2F (1) +R1

)two intervals:1

−1

F (r) dr = 2 ·(

16F (−1) + 4

6F (0) + 16F (1) +R2

)

14

Page 16: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Centrale Di�erences Method

tU = 1∆t2

(t−∆tU − 2 tU +t+∆t U

)tU = 1

2∆t

(−t−∆tU +t+∆t U

)Error is of order (∆t)2.

System of equations at time t:

M tU + C tU +K tU =t R

Because the system is concidered at time t, not at time t+∆t the method is calledand explicit integration method.

Insert approximations for tU and tU :(1

∆t2M + 12∆tC

)t+∆tU =t R−

(K − 2

∆t2M)tU −

(1

∆t2M −1

2∆tC)t−∆tU

Since 0U , 0U and 0U are known, one only needs to calculate −∆tU to start thecalculation of one time step after another.

From the equations for tU and tU one obtains: −∆tU =0 U −∆t0U + ∆t2

20U

Now one can calculate ∆tU and respectivly t+∆tU and then tU and tU for everytime step.

15

Page 17: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

Newmark Integration

Assumptions:

t+∆tU =t U +[(1− δ) tU + δt+∆tU

]∆t

t+∆tU =t U + tU∆t+[(

12 − α

)tU + αt+∆tU

]∆t2

Obtain t+∆tU from second equation, insert in �rst equation.

Insert the resulting eqations for t+∆tU and t+∆tU in the euation of motion attime t+ ∆t.

M t+∆tU + C t+∆tU +K t+∆tU =t+∆t R

Because the system is concidered at time t+∆t, not at time t the method is calledand implicit integration method.

16

Page 18: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

More stu�

17

Page 19: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

More stu�

18

Page 20: Finite Elements Methods - TUHHcoc8522/Formelsammungen/07...Finite Elements Methods ... Finite Element Method in General One wants to obtain the equilibrium eqautions for the body,

All �gures and tables are taken from the book �Finite-Element-

Procedures� by Klaus-Jürgen Bathe. It is the only source I used...

SoSe 11, Lars Radtke