farkli teknİklerle gÜÇlendİrİlmİŞ betonarme kİrİŞlerİn eĞİlme davraniŞi · 2017. 10....

9
4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı 11-13 Ekim 2017 ANADOLU ÜNİVERSİTESİ ESKİŞEHİR FARKLI TEKNİKLERLE GÜÇLENDİRİLMİŞ BETONARME KİRİŞLERİN EĞİLME DAVRANIŞI İ. Dalyan. 1 , B. Doran 2 , S. Aktan 3 ve H.O. Köksal 4 1 İnş. Yük. Müh., Deprem Dairesi, T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara 2 Doç. Dr., İnşaat Müh. Bölümü, Yıldız Teknik Üniversitesi, İstanbul 3 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale 4 Prof. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale Email: [email protected] ÖZET: Yapıların güçlendirilmesinde, geleneksel tekniklere ek olarak yeni teknikler geliştirilmekte ve yapı sektöründe yaygın olarak kullanılmaktadır. Lifli polimer (LP) malzemeler ile güçlendirme de bu alandaki yeni teknikler arasında yer almaktadır. Bu çalışmada betonarme kirişlerin eğilme dayanımını arttırmak için bir tür güçlendirme tekniği olan karbon lifli polimer (KLP) ile güçlendirme tekniği araştırılmıştır. Bu amaçla 8 adet betonarme kirişin 4 noktalı eğilme testleri gerçekleştirilmiştir. İki kiriş kontrol kirişi olarak bırakılırken KLP ile kısmi sargılama şu şekilde yapılmıştır: a) sadece kirişin alt yüzeyine, b) kirişin alt yüzeyine ve eğilme donatısı ve net beton örtüsünü içine alacak şekilde iki yan yüzeye 50 ve 70 mm uzunlukta, c) U şeklinde. Kirişlerin boyutları 150×250×2600 mm olup 1.nci grup ve 2.nci grup deney kirişlerinin net beton örtüleri sırasıyla 20 mm ve 40 mm’dir. Sonuç olarak, kirişlere ait yük-yer değiştirme davranışları ile göçme mekanizmaları tartışılmış, farklı örtü betonunun deney kirişlerinin eğilme davranışına etkisi irdelenmiştir. ANAHTAR KELİMELER: Betonarme Kirişler, Güçlendirme, Karbon Lifli Polimer FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH DIFFERENT TECHNIQUES ABSTRACT: In addition to traditional strengthening of constructions, new technologies in construction sector are being developed and applied in a widespread manner. Strengthening with fiber reinforced polymer (FRP) materials is among the new techniques in this field. In this study, reinforced technique as a methodology for strengthening technique with carbon fiber reinforced polymer (CFRP) sheets to increase the flexural resistance of reinforced concrete beams has been investigated. For this purpose, four-point bending tests on eight reinforced concrete beams were conducted. Two beams was un-retrofitted and used as the control specimen, while partial CFRP wrapping was applied to the remaining specimens as follows: a) applied only to the bottom surface area of the beam, b) applied to the bottom surface and lateral sides surfaces area together with 50 and 70 mm height including the tensile reinforcement and the concrete cover, c) U-wrapping. The dimensions are, 150×250×2600 mm and concrete cover of first and second group test beams are 20 mm, 40 mm, respectively. Finally, load-displacement behavior with the failure mechanism of the test beams have been discussed and the effect of different concrete cover on the flexural behavior has been investigated. KEYWORDS: RC Beams, Strengthening, Carbon Fiber Reinforced Polymer

Upload: others

Post on 07-Feb-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    FARKLI TEKNİKLERLE GÜÇLENDİRİLMİŞ BETONARME

    KİRİŞLERİN EĞİLME DAVRANIŞI

    İ. Dalyan.1, B. Doran2, S. Aktan3 ve H.O. Köksal4

    1 İnş. Yük. Müh., Deprem Dairesi, T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara

    2 Doç. Dr., İnşaat Müh. Bölümü, Yıldız Teknik Üniversitesi, İstanbul

    3 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale

    4 Prof. Dr., İnşaat Müh. Bölümü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale

    Email: [email protected]

    ÖZET:

    Yapıların güçlendirilmesinde, geleneksel tekniklere ek olarak yeni teknikler geliştirilmekte ve yapı sektöründe

    yaygın olarak kullanılmaktadır. Lifli polimer (LP) malzemeler ile güçlendirme de bu alandaki yeni teknikler

    arasında yer almaktadır. Bu çalışmada betonarme kirişlerin eğilme dayanımını arttırmak için bir tür güçlendirme

    tekniği olan karbon lifli polimer (KLP) ile güçlendirme tekniği araştırılmıştır. Bu amaçla 8 adet betonarme kirişin

    4 noktalı eğilme testleri gerçekleştirilmiştir. İki kiriş kontrol kirişi olarak bırakılırken KLP ile kısmi sargılama şu

    şekilde yapılmıştır: a) sadece kirişin alt yüzeyine, b) kirişin alt yüzeyine ve eğilme donatısı ve net beton örtüsünü

    içine alacak şekilde iki yan yüzeye 50 ve 70 mm uzunlukta, c) U şeklinde. Kirişlerin boyutları 150×250×2600 mm

    olup 1.nci grup ve 2.nci grup deney kirişlerinin net beton örtüleri sırasıyla 20 mm ve 40 mm’dir. Sonuç olarak,

    kirişlere ait yük-yer değiştirme davranışları ile göçme mekanizmaları tartışılmış, farklı örtü betonunun deney

    kirişlerinin eğilme davranışına etkisi irdelenmiştir.

    ANAHTAR KELİMELER: Betonarme Kirişler, Güçlendirme, Karbon Lifli Polimer

    FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAMS

    STRENGTHENED WITH DIFFERENT TECHNIQUES ABSTRACT:

    In addition to traditional strengthening of constructions, new technologies in construction sector are being

    developed and applied in a widespread manner. Strengthening with fiber reinforced polymer (FRP) materials is

    among the new techniques in this field. In this study, reinforced technique as a methodology for strengthening

    technique with carbon fiber reinforced polymer (CFRP) sheets to increase the flexural resistance of reinforced

    concrete beams has been investigated. For this purpose, four-point bending tests on eight reinforced concrete

    beams were conducted. Two beams was un-retrofitted and used as the control specimen, while partial CFRP

    wrapping was applied to the remaining specimens as follows: a) applied only to the bottom surface area of the

    beam, b) applied to the bottom surface and lateral sides surfaces area together with 50 and 70 mm height including

    the tensile reinforcement and the concrete cover, c) U-wrapping. The dimensions are, 150×250×2600 mm and

    concrete cover of first and second group test beams are 20 mm, 40 mm, respectively. Finally, load-displacement

    behavior with the failure mechanism of the test beams have been discussed and the effect of different concrete

    cover on the flexural behavior has been investigated.

    KEYWORDS: RC Beams, Strengthening, Carbon Fiber Reinforced Polymer

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    1.GİRİŞ

    Deprem etkisi altında gerekli dayanım, süneklik ve rijitlik koşullarını sağlayamayan betonarme yapılar çeşitli

    yöntemlerle güçlendirilmektedir. Güçlendirme yöntemlerinin genel amacı eleman ya da sistemin dayanımını,

    sünekliğini ve rijitliğini istenilen düzeye getirmektir (Tanarslan, 2007). Yapıların güçlendirilmesinde, geleneksel

    tekniklere ek olarak yeni teknikler geliştirilmekte ve yapı sektöründe yaygın olarak kullanılmaktadır. Karbon lifli

    polimer (KLP) malzemeler ile güçlendirme de bu yeni teknikler arasında yer almaktadır. KLP malzeme,

    uygulamasının kolay olması, ağırlığının hafif olması, korozyona karşı dayanıklı olması gibi nedenlerden dolayı

    betonarme ve yığma yapı elemanlarının güçlendirilmesi amacıyla geniş kullanım alanına sahiptir(Dündar, 2008).

    Betonarme ve yığma yapı elemanlarında yük taşıma kapasitesini büyük oranda arttıran bu malzeme, Türkiye’de

    mevcut Deprem Yönetmeliği’nde (DBYBHY-2007) uygulanabilir güçlendirme yöntemi olarak gösterilmektedir Kirişlere dıştan yapıştırılan KLP malzemelerin kirişlerin eğilme ve/veya kesme kapasitesini arttırdığı birçok

    araştırmacı tarafından deneysel ve sayısal çalışmalarla incelenmiştir (Karakoç vd., 2013; Kim vd., 2015;

    Mostofinejad ve Khozaei, 2015; Khalifa ve Nanni, 2000; Sayed vd., 2014). ACI Committee 440.2R-08 (2008)

    kılavuzunda lifli polimer (LP) ile güçlendirilmiş betonarme kesitlerde araştırılması tavsiye edilen göçme biçimleri

    verilmiştir. Donatının akmasından önce basınç bölgesindeki betonun ezilmesi, lifli polimer tabakanın kopmasını

    takiben çekmede donatının akması, betonun ezilmesini takiben çekmedeki donatının akması, pas payındaki kesme

    ve çekme tabakalanması (örtü tabakalanması) ve lifli polimer malzemenin beton yüzeyden sıyrılması, anılan

    göçme biçimlerine örnek olarak verilebilir.

    Literatürde yer alan çalışmalar incelendiğinde betonarme kirişlerin güçlendirilmesi amacıyla dıştan yapıştırılan

    karbon lifli polimer tabakaların kirişin dayanım, rijitlik, süneklik ve sismik performansını etkilediği görülmüştür.

    Çalışmalar incelendiğinde kiriş yüzeyine yapıştırılarak yapılan güçlendirmede KLP tabakaların beton yüzeyinden

    sıyrılması ve KLP’nin kopması, KLP tabakalarda görülen göçme mekanizmalarıdır. KLP’ nin beton yüzeyden

    sıyrılması iki şekilde olmaktadır. Bunlar orta açıklıktaki sıyrılma ve tabaka sonundaki sıyrılmadır (Aram vd., 2008;

    Ha vd., 2015; Niu ve Wu, 2005; Wang vd., 2013).

    Bu çalışmada kiriş yüzeyine dıştan farklı biçimlerde yapıştırılan KLP’nin betonarme kirişlerin eğilme

    performansına olan etkileri deneysel olarak incelenmiştir. Kirişlere ait yük-yer değiştirme davranışları ile göçme

    mekanizmaları tartışılmış ve kiriş davranışında etkili olduğu düşünülen farklı kalınlıklı örtü betonunun deney

    kirişlerinin eğilme davranışına etkisi irdelenmiştir.

    2. DENEYSEL ÇALIŞMA

    Deneysel çalışmada 20 mm ve 40 mm net beton örtüsüne sahip 8 adet betonarme kiriş test edilmiştir. Kirişlerin

    geometrik boyutları ve donatı detayları Şekil 1’de verilmiştir. Kiriş numunelerinde C20 beton ve S420 donatı sınıfı

    kullanılmıştır. KLP kumaşın yapıştırılacağı yüzeyde mekanik taşlama ile düzeltme ve pürüzlendirme yapıldıktan

    sonra yapışma yüzeyleri temizlenmiştir. Daha sonra yüzeye astar sürülmüş, astar prizini aldıktan sonra epoksi

    sürülerek KLP kumaş yapıştırılmıştır. Deneysel çalışmada kullanılan astar, epoksi ve KLP’nin özellikleri Tablo

    1’de verilmiştir.

    Toplam 8 adet dikdörtgen kesitli betonarme kiriş numunesi her grupta güçlendirilmeyen 1 adet referans kirişi ve

    KLP’nin dıştan üç farklı biçimde yapıştırılmasıyla güçlendirilmiş 3 adet numune olmak üzere 2 gruba ayrılarak

    test edilmiştir. Deney numunelerinin güçlendirme biçimleri Şekil 2’de görülmektedir. Her iki grupta da

    güçlendirme biçimlerinin ilkinde kirişin sadece eğilme (alt) yüzeyine KLP kumaş yapıştırılmıştır (150x2600 mm)

    (Şekil 2(a)). Bu yöntem, kirişlerin eğilme kapasitesinin KLP malzeme ile iyileştirilmesinde en çok kullanılan

    yöntemlerinden biridir.

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    Şekil 1. Geometrik boyutlar ve donatı detayı

    Tablo 1. Astar, epoksi ve CFRP malzemenin özellikleri

    Astar Malzemesi (MasterBrace P 3500) Epoksi Malzemesi

    (MasterBrace SAT 4500)

    Özellik Değer Çekme Özellikleri Kalınlık 0.075 mm Özellik Değer

    Çekme Özellikleri Akma Dayanımı 54 MPa

    Özellik Değer Elastisite Modülü 3034 MPa

    Akma Dayanımı 14.5 MPa En Büyük Dayanım 55.2 MPa

    Elastisite Modülü 717 MPa Poisson oranı 0.40

    En Büyük Dayanım 17.2 MPa

    KLP Malzeme (MasterBrace FIB 300/50 CFS)

    Özellik Değer Toplam Lif Ağırlığı 300 g/m2

    Tasarım Kesit Kalınlığı 0.166 mm

    Lif Çekme Dayanımı 4900 MPa

    Elastisite Modülü 230.000 MPa

    *Bu değerler BASF Türk Kimya San. ve Tic. Ltd. Şti.’den temin edilmiştir.

    İkinci uygulama biçiminde ise, KLP kumaş, kirişin alt yüzeyi ile birlikte çekme donatılarını içine alacak şekilde

    iki yan yüzeye yapıştırılmıştır. 1. grup deney numunesinde yan yüzeylerde 50 mm’lik bir kısımda 2. grup deney

    numunesinde ise 70 mm’lik bir kısımda bu uygulama yapılmıştır (250x2600; 290x2600) (Şekil 2 (b)). Üçüncü

    uygulama biçiminde ise, KLP kumaş kirişin alt yüzeyle birlikte yan yüzeylerinin büyük bir kısmına yapıştırılmıştır

    (500x2600mm) (Şekil 2 (c)). Kirişin yan yüzeylerinde basınç bölgesinde yapılacak güçlendirmenin eğilme

    performansına etkisinin fazla olmayacağı dikkate alındığında, deneylerde yapılan bu uygulama biçiminin eğilme

    performansının incelenmesinde gerçekçi bir uygulama olduğu kabul edilebilir. Ayrıca, genişliği 500 mm olan

    KLP kumaşın ayrı parçalar halinde kullanılması durumunda malzemede kopmalar olabileceği ve tek parça

    davranışı gösteremeyeceği olasılığı da bu uygulamayla önlenmiştir.

    KLP malzemenin kirişin yan yüzeylerinin bir kısmına yapıştırılmasıyla yapılan güçlendirme yöntemi, yan

    yüzeylerinin tamamına yapıştırılmasıyla yapılan güçlendirme yöntemi ile karşılaştırıldığında kullanılan malzeme

    miktarında önemli bir azalma söz konusudur. KLP malzeme ve malzemeyi kiriş yüzeyine yapıştırmak için gerekli

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    olan yapıştırıcı malzemenin maliyeti de dikkate alındığında ikinci yöntemin ekonomik olarak avantajlı olduğu

    söylenebilir.

    a) Deney numunesi K20KG00 ve K40KG00

    b) Deney numunesi K20KG50 ve K40KG70

    c) Deney numunesi K20KGU ve K40KGU

    Şekil 2. Deney numunelerinin güçlendirme biçimleri

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    Şekil 3’de görüleceği üzere kiriş numuneleri mesnet noktalarından 0.375L=900 mm kadar uzaklıkta etkiyen

    simetrik iki tekil yük altında test edilmiştir. Yükleme monotonik olarak göçme meydana gelene kadar artırılarak

    uygulanmıştır. Yükleme 400 kN kapasiteli bir hidrolik pompa aracılığı ile uygulanmış ve 400 kN kapasiteli bir

    yük hücresi ile yük değerleri ölçülmüştür. Yükleme 2mm/dak hızında uygulanmıştır. Kirişin orta noktasındaki,

    yükün uygulandığı noktalardaki ve mesnetlerdeki düşey yer değiştirmeler LVDT ile ölçülmüştür.

    Şekil 3. Deney düzeneği

    2.1. Deney numunelerinin betonarme kesit hesabı

    Basit eğilme etkisindeki bir betonarme kirişin davranışını ifade etmekte kullanılan bağıntı gruplarından birincisi

    çekme ve basınç donatılarındaki birim şekil değiştirmelerin uygunluk bağıntıları yardımıyla hesaplamalarını

    içermektedir:

    s0.003.(d x)

    εx

    (1)

    Bu denklemde x tarafsız eksen derinliğini ve d etkili derinliği göstermektedir.

    Diğer bağıntı grubu ise kesit boyunca oluşacak iç gerilme ve kuvvetlerin dengesidir:

    ' 's yd cd w s s1A .f 0.85.f .b . +A .σk .x (2)

    Burada sA toplam çekme donatısı alanını, '

    sA basınç donatısı miktarını, '

    s basınç donatısındaki gerilmeyi, wb

    kiriş genişliğini, cdf ise beton basınç dayanımını göstermektedir.

    Net beton örtüsü 20 mm ve 40 mm olan referans kirişlerde sε değerleri sırasıyla 0.0125 ve 0.0098 olarak

    hesaplanmıştır. Net beton örtüsü 20 mm ve 40 mm olan KLP malzemeyle güçlendirilmiş kirişlerde ise sε değerleri

    sırasıyla 0.0075 ve 0.0058 olarak hesaplanmıştır. Bu değerler, sdε =0.0021 değerinden büyük olduğu için kirişler

    denge altı bir davranış sergileyerek göçmektedir.

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    3. DENEY SONUÇLARI

    Deney numunelerinin yük-orta nokta yer değiştirme grafikleri Şekil 4 ve Şekil 5’te verilmiştir. Grafikler

    incelendiğinde 1. grup kiriş numunelerinde 45 kN yük düzeyine kadar; 2. grup kiriş numunelerinde ise 40 kN yük

    düzeyine kadar tüm deney numunelerinin yaklaşık aynı yer değiştirmeyi yaptığı gözlenmiştir. Deney

    elemanlarında bu yük düzeylerine kadar kiriş yüzeyinde oluşan kılcal çatlaklar bu yük düzeyinden sonra

    genişlemeye başlamıştır. Deney elemanlarının maksimum yük kapasiteleri KLP kumaşın uygulanma biçimine

    göre değişiklik göstermektedir. Şekil 4 ve Şekil 5’te görüldüğü gibi deneylerde kirişin alt yüzeyi ile çekme

    donatısını içine alacak şekilde KLP malzeme ile yapılan güçlendirmede, sadece kirişin alt yüzeyine yapıştırılan

    KLP malzeme ile yapılan güçlendirme yöntemine göre yük taşıma kapasitesi artmıştır. Deney sonuçları Tablo 2’de

    sunulmuştur.

    Tablo 2. Deney sonuçları

    Grup No Numune

    Numarası Özellik Maksimum

    Yük (kN) Göçme Mekanizması

    1

    K20R Referans numunesi1 51.97 Eğilme göçmesi ve betonun ezilmesi

    K20KG00 Güçlendirilmiş2 80.43 KLP’nin sıyrılması ve kopması

    K20KG50 Güçlendirilmiş3 93.56 KLP’nin sıyrılması ve kopması

    K20KGU Güçlendirilmiş4 108.19 KLP’nin sıyrılması ve kopması

    2

    K40R Referans numunesi1 45.87 Eğilme göçmesi ve betonun ezilmesi

    K40KG00 Güçlendirilmiş2 76.78 KLP’nin sıyrılması ve kopması

    K40KG70 Güçlendirilmiş3 91.43 KLP’nin sıyrılması ve kopması

    K40KGU Güçlendirilmiş4 98.95 KLP’nin sıyrılması ve kopması 1Herhangi bir güçlendirme yapılmamış referans numunesidir. 2Kirişin sadece alt yüzeyine KLP kumaş yapıştırılarak güçlendirilmiştir. 3KLP kumaşın, kirişin alt yüzeyi ile birlikte çekme donatılarını içine alacak şekilde yapıştırılması ile güçlendirilmiştir. 4KLP kumaşın, kirişin alt yüzeyi ile birlikte yan yüzeylerinin büyük bir kısmına yapıştırılması ile güçlendirilmiştir.

    3.1. 1. grup deney numune deney sonuçları

    Deney sırasında 1. gruptaki referans deney numunesi (K20R), 51.97 kN maksimum yük seviyesinde 99.76 mm

    yer değiştirme yapmıştır. Kirişin taşıdığı yük yaklaşık bu değerde sabit kalırken yer değiştirme artarak maksimum

    139.35 mm olmuştur. Numune yükün uygulandığı noktalarda meydana gelen eğilme çatlaklarının genişlemesi ile

    eğilme kırılması sergileyerek göçmüştür. Deney esnasında yük altındaki kirişte eğilme çatlaklarının genişliği

    artarken, basınç bölgesindeki betonda ezilme gözlemlenmiştir.

    Deney numunesi K20KG00, 80.43 kN maksimum yük seviyesinde 35.72 mm yer değiştirme yapmıştır. Kirişin

    taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 36.93 mm olmuştur. Deney numunesi

    K20KG50, 93.56 kN maksimum yük seviyesinde 33.88 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük

    miktarında azalma olurken, yer değiştirme artarak maksimum 39.15 mm olmuştur. Deney numunesi K20KG00’nin

    maksimum yük kapasitesi referans deney kirişinden %54.8 ve deney numunesi K20KG50’ün maksimum yük

    taşıma kapasitesi referans deney kirişinden %80.0 daha fazladır. Deney numunesi K20KGU referans deney

    numunesinin iki katı daha fazla yük taşıyarak maksimum 108.19 kN yük değerine ulaşmıştır. Deney numunesi

    K20KGU’nun bu yük seviyesinde 43.15 mm yer değiştirme yaptığı gözlenmiştir. Kirişin taşıdığı yük miktarında

    azalma olurken yer değiştirme artarak maksimum 63.07 mm olmuştur. Deney kirişi K20KG00, K20KG50 ve

    K20KGU’da KLP tabaka yüzeyden sıyrılmış ve kopmuştur.

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    (a) (b)

    Şekil 4. (a)1. Grup deney numunelerinin yük-orta nokta yer değiştirme grafiği (b) Kirişlerin göçme biçimleri

    3.1. 2. grup deney numune deney sonuçları Deney esnasında 2. grup referans deney kirişi (K40R), 45.87 kN maksimum yük seviyesinde 79.32 mm yer

    değiştirme yapmıştır. Kirişin taşıdığı yük yaklaşık olarak bu değerde sabit kalırken yer değiştirme 117.13 mm

    olmuştur. Numune yükün uygulandığı noktalarda meydana gelen eğilme çatlaklarının genişlemesi ile eğilme

    kırılması sergileyerek göçmüştür. Deney esnasında yük altındaki kirişte eğilme çatlaklarının genişliği artarken,

    basınç bölgesindeki betonda ezilme gözlemlenmiştir.

    (a) (b) Şekil 5. (a) 2. grup deney numunelerinin yük-orta nokta yer değiştirme grafiği (b) Kiriş göçme biçimleri

    Deney numunesi K40KG00, 76.78 kN maksimum yük seviyesinde 34.63 mm yer değiştirme yapmıştır. Kirişin

    taşıdığı yük miktarında azalma olurken, yer değiştirme artarak maksimum 36.51 mm olmuştur. Deney numunesi

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    K40KG70, 91.43 kN maksimum yük seviyesinde 33.82 mm yer değiştirme yapmıştır. Kirişin taşıdığı yük

    miktarında azalma olurken, yer değiştirme artarak maksimum 34.56 mm olmuştur. Deney numunesi K40KG00’ın

    maksimum yük kapasitesi referans deney kirişinden % 67.4 ve deney numunesi K40KG70’in maksimum yük

    taşıma kapasitesi referans deney kirişinin yaklaşık iki katıdır. Deney numunesi K40KGU referans deney

    numunesinin iki katı daha fazla yük taşıyarak 98.95 kN yük değerinde ulaşmıştır. Deney numunesi K40KGU’ün

    bu yük seviyesinde 40.04 mm yer değiştirme yaptığı gözlenmiştir. Kirişin taşıdığı yük miktarında azalma olurken

    yer değiştirme miktarı artarak maksimum 41.82 mm olmuştur. Deney kirişi K40KG00, K40KG70 ve K40KGU’da

    KLP tabaka yüzeyden sıyrılmış ve kopmuştur.

    4. SONUÇLAR

    Yapılan deneysel çalışmada aşağıdaki sonuçlara ulaşılmıştır.

    Betonarme kirişlerin eğilme davranışını iyileştirmek için kullanılan LP kumaşların kirişe dıştan yapıştırılması sonucunda; kirişlerde ölçüm yapılan açıklık ortasında maksimum yer değiştirmelerde referans kirişlere oranla

    kayda değer bir azalma meydana gelmiştir. Bu oran K20KG00, K20KG50 ve K20KGU kirişlerinde sırasıyla

    %73.5, %71.9 ve %54.7, K40KG00, K40KG70 ve K40KGU kirişinde ise sırasıyla %68.8, %70.5 ve %64.3’

    dür.

    Ancak kirişlerin yük taşıma kapasiteleri söz konusu olduğunda, referans kirişlere oranla kayda değer bir artış meydana gelmiştir. Bu oran K20KG00, K20KG50 ve K20KGU kirişlerinde sırasıyla %54.8, %80.0 ve %108.2,

    K40KG00, K40KG70 ve K40KGU kirişinde ise sırasıyla %67.4, %99.3 ve %115.7’dir. Bu sonuçlar sadece

    LP’nin kiriş alt yüzeyine yapıştırılmasıyla yapılan güçlendirme biçimine göre diğer iki güçlendirme biçiminin

    taşıma gücü açısından son derece etkin olduğunu göstermektedir.

    Net beton örtüsü 20 mm ve 40 mm olan referans kirişlerin taşıdığı maksimum yüklerin oranı (K20R, K20KG00, K20KG50 ve K20KGU kirişlerinin K40R, K40KG00, K40KG70 ve K40KGU kirişlerine oranı) sırasıyla

    %11.7, %4.5, %2.3 ve % 8.5’dur. Yalın kirişler için gözlenen %10’luk fark, 216 mm ve 196 mm olarak seçilen

    etkili derinlik değerlerindeki farklılıktan kaynaklanmaktadır. Aynı kirişlerin sadece alt ve çekme donatısı

    üzerine kadar yapılan sargılama durumlarında ise bu farklılığın önemli oranda ortadan kalktığı gözlenmiştir.

    Alt yüzeye LP yapıştırılarak yapılan güçlendirme ve sargılama, kirişin eğilme momenti taşıma gücünü

    artıracaktır. Nitekim yaklaşık olarak düşey yükün 30 kN civarında arttığı deneysel olarak belirlenmiştir. Ek

    olarak donatı altında kalan zayıf beton örtüsünün sargılanması durumunda ise yalın kirişe oranla artışın 40 ila

    45 kN arasında olduğu saptanmıştır. Bunun en önemli nedeni, daha önceki bir çalışmada irdelendiği üzere

    (Köksal vd., 2017) alt yüzeye yapıştırılan LP’nin kapasitesinin artması olduğu belirlenmiştir. Bu ise zayıf beton

    örtüsü boyunca yapılan sargılamanın LP sargının betondan sıyrılmasını önemli oranda geciktirmiş olmasıdır.

    Bu noktadan yola çıkılarak, beton örtüsünü içine alan sargılamanın depreme karşı güçlendirilecek olan kirişler

    için etkin ve başarılı bir yöntem olacağı sonucuna ulaşılmıştır. Bu şekilde maliyeti yüksek olan LP sargılama

    da etkin kullanım ve ekonomik açıdan optimum bir çözüm seçilmiş olacaktır. Süneklik ve yer değiştirmeler

    açısından ise neredeyse hiçbir fark gözlenmemiştir.

    Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik kapsamında depreme dayanıklı betonarme bina tasarımında genellikle süneklik düzeyi yüksek kirişlerin tasarlandığı göz önüne alındığında kirişlerin çekme

    bölgesinde kullanılan LP malzeme miktarına sınır getirilmesinin uygun olacağı düşünülmektedir. Getirilecek

    sınır konusunda deneysel verilerin çoğalması ve daha ileri düzeyde analitik çalışma yapılması gerekmektedir.

  • 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı

    11-13 Ekim 2017 – ANADOLU ÜNİVERSİTESİ – ESKİŞEHİR

    Teşekkür : Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince

    desteklenmiştir. Proje numarası: 2016-05-01-DOP06. Ayrıca yazarlar, projede kullanılan KLP kumaş, epoksi ve

    astar malzemelerin tedarik edilmiş olduğu OTS İnşaat Mühendislik Mimarlık Danışmanlık Ar-Ge Yazılım San.

    Tic. Ltd. Şti.’ne teşekkürü bir borç bilir.

    KAYNAKLAR

    ACI Committee 440.2R-08 (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for

    Strengthening Concrete Structures. American Concrete Institute, Detroit, Michigan.

    Aram, M.R., Czaderski, C., Motavalli, M., (2008). Debonding failure modes of flexural FRP-strengthened RC

    beams. Composites:Part B, 826-841.

    (DBYBHY 2007). Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı.

    Dündar B. (2008). Kesme Yönünden Yetersiz Dikdörtgen Kesitli Betonarme Kirişlerin CFRP ile Güçlendirilerek

    Kesme Kapasitelerinin Arttırılması. Yüksek Lisans Tezi, Yapı Eğitimi, Gazi Üniversitesi, Ankara.

    Ha, S.K., Khalid, H.R., Park, S.M., Lee, H.K., (2015). Interfacial crack-induced debonding behavior of sprayed

    FRP laminate bonded to RC beams. Composite Structures 128, 176-187.

    Karakoç, C., Aktan, S., Doran, B., Köksal, H.O., (2013). Nonlinear Behaviour of RC Beams Wrapped with FRP

    Composites. Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Austria.

    Kim, N., Shin, Y.S., Choi, E., Kim, H.S., (2015). Relationships between interfacial shear stresses and moment

    capacities of RC beams strengthened with various types of FRP sheets. Construction and Building Materials 93,

    1170-1179.

    Khalifa, A. ve Nanni, A., (2000). Improving shear capacity of existing RC T-section beams using CFRP

    composites. Cement And Concrete Composites 22, 165-174.

    Köksal, H.O., Altınsoy, F., Aktan, S., Karahan, Ş., Çankaya, R., (2017). Efficient Use of Carbon Fiber Reinforced

    Polimer for Reinforced Concrete Beams in Three-Point Bending. Çanakkale Onsekiz Mart Üniversitesi Fen

    Bilimleri Enstitüsü Dergisi (basıma kabul edildi).

    Mostofinejad D. ve Khozaei K., (2015). Effect of GM patterns on ductility and debonding control of FRP sheets

    in RC strengthened beams. Construction and Building Materials 93, 110-120.

    Niu, H. ve Wu, Z., (2005). Numerical Analysis of Debonding Mechanisms in FRP-Strengthened RC Beams.

    Computer –Aided Civil and Infrastructure Engineering 20, 354-368

    Sayed, A.M., Wang, X., Wu, Z., (2014) .Finite element modeling of the shear capacity of FC beams strengthened

    with FRP sheets by considering different failure modes. Construction and Building Materials 59, 169-179.

    Tanarslan, H.M. (2007). CFRP Şeritlerle Kesmeye Karşı Güçlendirilmiş Betonarme Kirişlerin Tersinir-Tekrarlı

    Yükler Altında Davranışı. Doktora Tezi, Fen Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir.

    Wang, W., Dai, J. ve Harries K.A., (2013). Intermediate crack-induced debonding in RC beams externally

    strengthened with prestressed FRP laminates. Journal of Reinforced Plastics&Composites 32(23) 1842–185.