entrainment and chaos in the hodgkin-huxley...

42
Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/klin Courant Institute, New York University Mostly Biomath - 2005.4.5 – p.1/42

Upload: others

Post on 26-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Entrainment and Chaos in theHodgkin-Huxley Oscillator

Kevin K. Lin

http://www.cims.nyu.edu/∼klin

Courant Institute, New York University

Mostly Biomath - 2005.4.5 – p.1/42

Page 2: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Overview (1)

Goal: Show that the Hodgkin-Huxley neuron

model, driven by a periodic impulse train, can

exhibit entrainment, transient chaos, and fully

chaotic behavior.

Mostly Biomath - 2005.4.5 – p.2/42

Page 3: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Overview (2)

Why?

1. Suggested by general, rigorous

perturbation theory of kicked oscillators

(Qiudong Wang & Lai-Sang Young).

2. Hodgkin-Huxley is a paradigm for

excitable biological systems where

pulse-like inputs and outputs are natural.

Mostly Biomath - 2005.4.5 – p.3/42

Page 4: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Overview (3)

Results:

1. Entrainment and chaos are readily

observable in the pulse-driven

Hodgkin-Huxley system.

2. The pulse-driven Hodgkin-Huxley

system prefers entrainment.

3. Strong expansion is caused by

invariant structures.

Mostly Biomath - 2005.4.5 – p.4/42

Page 5: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.5/42

Page 6: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Squid giant axon

http://hermes.mbl.edu/publications/Loligo/squid

Mostly Biomath - 2005.4.5 – p.6/42

Page 7: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Schematic (rest state)

References:

Abbott and Dayan, Theoretical Neuroscience, MIT Press 2001

Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge

University Press 1987

Mostly Biomath - 2005.4.5 – p.7/42

Page 8: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Hodgkin-Huxley equations

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

m = αm(v)(1− m)−βm(v)m

n = αn(v)(1− n)−βn(v)n

h = αh(v)(1− h)−βh(v)h

αm(v) = Ψ(

v+2510

)

, βm(v) = 4 exp (v/18) ,

αn(v) = 0.1Ψ(

v+1010

)

, βn(v) = 0.125 exp (v/80) ,

αh(v) = 0.07 exp (v/20) , βh(v) = 11+exp( v+30

10 ),

Ψ(v) = vexp(v)−1

.

Mostly Biomath - 2005.4.5 – p.8/42

Page 9: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Equivalent circuit

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

http://www.syssim.ecs.soton.ac.uk/vhdl-ams/examples/hodhuxneu/hh2.htm

Mostly Biomath - 2005.4.5 – p.9/42

Page 10: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Parameters

In this study:

All parameters take on original squid

values except the injected current I

This guarantees stable oscillations

Mostly Biomath - 2005.4.5 – p.10/42

Page 11: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Parameters (cont’d)

vNa = −115 mV, gNa = 120 mΩ−1/cm2,

vK = +12 mV, gK = 36 mΩ−1/cm2,

vleak = −10.613 mV, gleak = 0.3 mΩ−1/cm2,

C = 1 µF/cm2, I = −14.2211827403

Mostly Biomath - 2005.4.5 – p.11/42

Page 12: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Parameters (cont’d)

-100

-80

-60

-40

-20

0

20

6 7 8 9 10 11 12 13 14-I

V

Unstable fixed pointStable fixed point

Limit cycle

Unstable cycle

Mostly Biomath - 2005.4.5 – p.12/42

Page 13: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Dynamicswithout kicks

40.030.020.010.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

0.0-20.0-40.0-60.0-80.0

v

0.7

0.65

0.6

0.55

0.5

0.45

n

Mostly Biomath - 2005.4.5 – p.13/42

Page 14: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.14/42

Page 15: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Kicked oscillators

A stable, nonlinear oscillator is a flow with

a limit cycle γ (period=Tγ) and basin of

attraction U.

A kick instantaneously changes the

system’s state:

Mostly Biomath - 2005.4.5 – p.15/42

Page 16: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Examples of kicked oscillators

Circadian rhythm, phase reset

experiments (Winfree).

Possible approach to disrupting

synchronous firing of neuron (Tass).

Mostly Biomath - 2005.4.5 – p.16/42

Page 17: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Simple Example

2.01.00.0-1.0

x

1.0

0.0

-1.0

y

r = (µ −αr2)r+1

2sin(3θ) · ∑

n∈Z

δ(t − nT)

θ = ω + βr2

Mostly Biomath - 2005.4.5 – p.17/42

Page 18: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Effect of Kick-and-Flow on Phase Space

1.00.80.60.40.20.0-0.2-0.4-0.6-0.8

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

-1.51.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

t = 0 t = 0 (after kick) t = 1

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

1.00.0-1.0

1.0

0.5

0.0

-0.5

-1.0

-1.5

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

t = 2 t = 2 (after kick) t = 4

Mostly Biomath - 2005.4.5 – p.18/42

Page 19: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Discrete time map

Define FT : R4 → R

4 by FT(x) = ΦT(K(x)), where

K(x) represents kicks

ΦT(x) = flow map

T = period of kicks.

Continuous time ⇔ Discrete time

Entrainment ⇔ FT has sinks

Chaos ⇔ FT chaotic

Mostly Biomath - 2005.4.5 – p.19/42

Page 20: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Reduction to 1-D

Wang and Young start with FT and

1. Reduces from the map FT on Rn to a circle

map fT:

limn→∞

FT+nTγ(x)

induces a map fT on γ ∼ S1. We refer to fT

as the singular limit or the phase resetting

curve.

2. Analyze fT and infer properties of FT.

Mostly Biomath - 2005.4.5 – p.20/42

Page 21: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Wang-Young Conditions

If

1. Kicks do not send limit cycle to “bad

places,” i.e. K(γ) does not go outside the

basin of γ

2. Kicks are in the “right” directions (e.g. not

along Wss(x)) to take advantage of shear

Mostly Biomath - 2005.4.5 – p.21/42

Page 22: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Wang-Young Consequences

Then for different kick amplitude A & kick

period T the discrete-time system FT can have

1. Rotation-like behavior (small A)

2. Sinks and sources (for all A large enough)

3. Transient chaos / “horseshoes” (for large

A & T)

4. Strange attractor & chaos (for large A &

T ≫ 1)

Mostly Biomath - 2005.4.5 – p.22/42

Page 23: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Wang-Young Theory (cont’d)

Notes:

1. The conditions are satisfied for the simple

example.

2. For Hodgkin-Huxley there is not too much

choice if we want to stay close to physical

interpretation of model.

Mostly Biomath - 2005.4.5 – p.23/42

Page 24: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Lyapunov exponents

The largest Lyapunov exponent λ of FT is

useful for distinguishing different scenarios

numerically:

Rotations ⇔ λ = 0

Sinks ⇔ λ < 0

Chaos ⇔ λ > 0

Mostly Biomath - 2005.4.5 – p.24/42

Page 25: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Outline

Classical Hodgkin-Huxley neuron model

Kicked nonlinear oscillators &

Wang-Young theory

Pulse-driven Hodgkin-Huxley neuron

model

Mostly Biomath - 2005.4.5 – p.25/42

Page 26: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Hodgkin-Huxley equations

v = C−1[

I − gKn4(v − vK) − gNam3h(v − vNa) − gleak(v − vleak)]

+A ∑n∈Z δ (t − nT)

m = αm(v)(1− m)−βm(v)m

n = αn(v)(1− n)−βn(v)n

h = αh(v)(1− h)−βh(v)h

Prior work: Winfree, Best on “null space” and

degree-change.

Mostly Biomath - 2005.4.5 – p.26/42

Page 27: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Entrainment

A = 10, T = 81.0

150.0100.050.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

1500.01000.0500.00.0

t

60.0

40.0

20.0

0.0

-20.0

-40.0

-60.0

v

Mostly Biomath - 2005.4.5 – p.27/42

Page 28: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Entrainment (cont’d)

A = 10, T = 81.0

150.0100.050.00.0

t

0.0

-20.0

-40.0

-60.0

-80.0

v

1500.01000.0500.00.0

t

100.0

50.0

0.0

-50.0

-100.0

v1(t)-v2(t)

Mostly Biomath - 2005.4.5 – p.28/42

Page 29: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Entrainment (cont’d)

Time-T map: FT = ΦT K

20.010.00.0

Multiple of T (n)

20.0

0.0

-20.0

-40.0

v1(n)-v2(n)

Mostly Biomath - 2005.4.5 – p.29/42

Page 30: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Chaos

A = 10, T = 80.8

6000.04000.02000.00.0

t

100.080.060.040.020.00.0

-20.0-40.0-60.0-80.0

v

6000.04000.02000.00.0

t

2.0

0.0

-2.0

-4.0

-6.0

Log10(dist)

Mostly Biomath - 2005.4.5 – p.30/42

Page 31: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

λ (FT) versusT

8.07.06.05.04.03.02.0

T / T_gamma

0.0

-2.0

-4.0

-6.0

-8.0

Largest Lyapunov exponent of F_T

Mostly Biomath - 2005.4.5 – p.31/42

Page 32: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

λ (FT) versusA

40.030.020.010.0

Drive amplitude

1.0

0.8

0.6

0.4

0.2

0.0

SINKS

CHAOS

ROTATIONS

UNKNOWN

Chaos: Prob(λ > 3ǫ) Sinks: Prob(λ < −3ǫ)

Rotations: Prob(∣

∣λ∣

∣ < ǫ/3) Unknown: everything else

Mostly Biomath - 2005.4.5 – p.32/42

Page 33: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Phase resetting curves (fT)

12.510.07.55.02.50.0

20.0

15.0

10.0

5.0

0.0

A=5, T=101.5

12.510.07.55.02.50.0

15.0

10.0

5.0

0.0

A=10, T=80.8

12.510.07.55.02.50.0

15.0

10.0

5.0

0.0

A=20, T=101.5

Mostly Biomath - 2005.4.5 – p.33/42

Page 34: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Plateau and fixed points

The first return map R fTto the interval [4, 10]

(enclosing the plateau), for A = 10 and

T = 17.6.

10.09.08.07.06.05.04.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

Mostly Biomath - 2005.4.5 – p.34/42

Page 35: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Plateau and fixed points

10.09.08.07.06.05.04.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

Drive amplitude A Probability of sink near plateau

5 41%

10 58%

20 68%

30 76%

Mostly Biomath - 2005.4.5 – p.35/42

Page 36: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Zooming into the kink

1.00.80.60.40.20.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

Mostly Biomath - 2005.4.5 – p.36/42

Page 37: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Why the kink?

-2.0-4.0-6.0-8.0-10.0-12.0-14.0

v

0.38

0.36

0.34

0.32

h

0.180.160.140.120.1

m

0.45

0.44

0.43

0.42

n

But Hodgkin-Huxley lives in R4...

Mostly Biomath - 2005.4.5 – p.37/42

Page 38: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Why the kink? (cont’d)

Approaching critical Acrit ≈ 13.5895...:

10.510.09.59.0

30.0

20.0

10.0

0.0

A=13.58

10.510.09.59.0

40.0

30.0

20.0

10.0

0.0

A=13.589

10.510.09.59.0

50.0

40.0

30.0

20.0

10.0

0.0

A=13.5895

10.510.09.59.0

40.0

30.0

20.0

10.0

0.0

A=13.5896

10.510.09.59.0

30.0

20.0

10.0

0.0

A=13.59

10.510.09.59.0

20.0

10.0

0.0

A=13.6

Mostly Biomath - 2005.4.5 – p.38/42

Page 39: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Why the plateau?

Graph of fT for A = 10, around plateau.

9.08.07.06.05.0

phase

9.0

8.0

7.0

6.0

5.0

f_T

9.08.07.06.05.0

phase

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

Black: log10 | f ′ | Blue: log10 |∠(Ess(K(γ(θ)), γ(θ)))|

Mostly Biomath - 2005.4.5 – p.39/42

Page 40: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Finding horseshoes

Horseshoes can produce transient chaos:

A = 10, T = 81

0.70.60.50.40.3

12.0

10.0

8.0

6.0

4.0

2.0

Mostly Biomath - 2005.4.5 – p.40/42

Page 41: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

Summary

Can observe entrainment and chaos in the

pulse-driven Hodgkin-Huxley neuron

model.

The pulse-driven Hodgkin-Huxley model

prefers entrainment. This can be

explained.

Complex phase response can arise from

kicks going near invariant structures.

Mostly Biomath - 2005.4.5 – p.41/42

Page 42: Entrainment and Chaos in the Hodgkin-Huxley Oscillatormath.arizona.edu/~klin/downloads/courant.pdf · Overview (1) Goal: Show that the Hodgkin-Huxley neuron model, driven by a periodic

References

1. Eric N. Best, “Null space in the Hodgkin-Huxley equations,” Biophys. J. 27

(1979)

2. Kevin K. Lin, “Entrainment and chaos in the Hodgkin-Huxley oscillator,” in

preparation

3. Qiudong Wang and Lai-Sang Young, “Strange attractors in

periodically-kicked limit cycles and Hopf bifurcations,” Comm. Math. Phys.

240 (2003)

4. Arthur Winfree, The Geometry of Biological Time, 2nd Edition,

Springer-Verlag (2000)

Acknowledgements I am grateful to Lai-Sang Young for her help

with this work, and to Eric Brown, Adi Rangan, Alex Barnett, and Toufic Suidan for

critical comments. Many thanks to Charlie Peskin for the invitation. This work is

supported by the National Science Foundation.

Mostly Biomath - 2005.4.5 – p.42/42