enetics% mrs$jones firstconsultation · f...

30
MCD: Genetics Usama Asif GENETICS 1: Mrs Jonesfirst consultation Dr Alexandra Blakemore ([email protected]) A 35yearold woman, Mrs Jones, comes in for a genetic consultation, because she is 7 weeks pregnant with her first child and is worried about her child. She has heard that 1 in 50 children born have a congenital malformation Her uncle has haemophilia and her husband’s first cousin has a child with cystic fibrosis She wants to know how at risk her child is, because her mother had four miscarriages and four normal children We can start by drawing a genetic tree, with Mrs Jones as the proband, the one we’re studying We can explore congenital abnormalities and chromosomal abnormalities Congenital abnormalities These are apparent at birth in 1 in 50 of all newborn infants, and account for 2025% of all deaths in the perinatal period and childhood up to 10 years Genetic factors contribute to about 40% of all congenital abnormalities We can class congenital abnormalities: o Malformation –a primary structural defect e.g. atrial septal defects, cleft lip. There is usually a single organ showing multifactorial inheritance o Disruption –a secondary structural defect of an organ or tissue e.g. amniotic band causing digital amputation. Usually caused by ischaemia, infection or trauma. Not genetic, but can be predisposed o Deformation – an abnormal mechanical force that distorts a structure e.g. club foot, hip dislocation. Usually occurs in late pregnancy and has good prognosis because the organ is normal in structure, just oddly shaped o Syndrome –a consistent pattern of abnormalities with a specific underlying cause e.g. Down syndrome – chromosomal abnormalities o Sequence multiple abnormalities initiated by a primary factor e.g. reduced amniotic fluid leads to Potter sequence. Initial factor could be genetic o Dysplasia – an abnormal organisation of cells in tissue e.g. thanatophoric dysplasia. Caused by a single gene defect, high recurrence risk for siblings/offspring, 1:60000 incidence, FGFR3 mutation, short flat bones, small thorax, large head o Association nonrandom occurrence of abnormalities not explained by a syndrome. Cause is unknown e.g. VATER association (vertebral, anal, tracheooesophageal, renal)

Upload: truongkhanh

Post on 03-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  1:  

Mrs  Jones’  first  consultation  Dr  Alexandra  Blakemore  ([email protected])    

-­‐‑ A   35-­‐‑year-­‐‑old   woman,   Mrs   Jones,   comes   in   for   a   genetic   consultation,   because   she   is   7   weeks  pregnant  with  her   first  child  and   is  worried  about  her   child.   She  has  heard   that  1   in  50   children  born  have  a  congenital  malformation  

-­‐‑ Her  uncle  has  haemophilia  and  her  husband’s  first  cousin  has  a  child  with  cystic  fibrosis  -­‐‑ She  wants   to   know  how  at   risk   her   child   is,   because  her  mother   had   four  miscarriages   and   four  

normal  children  -­‐‑ We  can  start  by  drawing  a  genetic  tree,  with  Mrs  Jones  as  the  proband,  the  one  we’re  studying  

                       

-­‐‑ We  can  explore  congenital  abnormalities  and  chromosomal  abnormalities    Congenital  abnormalities    

-­‐‑ These  are  apparent  at  birth  in  1  in  50  of  all  newborn  infants,  and  account  for  20-­‐‑25%  of  all  deaths  in  the  perinatal  period  and  childhood  up  to  10  years  

-­‐‑ Genetic  factors  contribute  to  about  40%  of  all  congenital  abnormalities  -­‐‑ We  can  class  congenital  abnormalities:  

o Malformation   –   a   primary   structural   defect   e.g.   atrial   septal   defects,   cleft   lip.   There   is  usually  a  single  organ  showing  multifactorial  inheritance  

o Disruption  –  a  secondary  structural  defect  of  an  organ  or  tissue  e.g.  amniotic  band  causing  digital  amputation.  Usually  caused  by  ischaemia,  infection  or  trauma.  Not  genetic,  but  can  be  predisposed  

o Deformation   –   an  abnormal  mechanical   force   that  distorts   a   structure   e.g.   club   foot,   hip  dislocation.  Usually  occurs  in  late  pregnancy  and  has  good  prognosis  because  the  organ  is  normal  in  structure,  just  oddly  shaped  

o Syndrome   –   a   consistent   pattern   of   abnormalities   with   a   specific   underlying   cause   e.g.  Down  syndrome  –  chromosomal  abnormalities  

o Sequence  –  multiple  abnormalities  initiated  by  a  primary  factor  e.g.  reduced  amniotic  fluid  leads  to  Potter  sequence.  Initial  factor  could  be  genetic  

o Dysplasia   –   an   abnormal   organisation   of   cells   in   tissue   e.g.   thanatophoric   dysplasia.  Caused  by  a  single  gene  defect,  high  recurrence  risk  for  siblings/offspring,  1:60000  incidence,  FGFR3  mutation,  short  flat  bones,  small  thorax,  large  head  

o Association  –  non-­‐‑random  occurrence  of  abnormalities  not  explained  by  a  syndrome.  Cause  is  unknown  e.g.  VATER  association  (vertebral,  anal,  tracheo-­‐‑oesophageal,  renal)  

Page 2: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Classification  is  not  mutually  exclusive,  e.g.  a  primary  malformation  of  the  kidneys  can  lead  to  the  same  sequence  of  events  as  Potter  sequence,  

 Chromosomal  abnormalities    

-­‐‑ Physical  characteristics  are  inherited  by  parental  genes  passing  down  to  the  offspring  -­‐‑ From  one  parent,  one  inherits:  

o Twenty-­‐‑two  autosomes  o One  sex  chromosome  o This  is  the  haploid  number  (23)  

-­‐‑ One   set   of   chromosomes   is   inherited   from  each  parent,   giving   a   total   of  46,  which   is   the  diploid  number  

-­‐‑ The  chromosome  looks  like  an  X  shape  during  metaphase  -­‐‑ The  centromere  is  the  point  of  attachment  of  the  sister  chromatids  

o If  the  centromere  is  exactly  in  the  middle,  it  is  called  metacentric  o If  the  centromere  is  just  off  middle,  it  is  called  submetacentric  o If   the   centromere   is  not  on   the  middle,   it   is   called  acrocentric,  with   the   small   ends  of   the  

chromatids  called  satellites                            

-­‐‑ The  normal  human  karyotype  is  one  that  consists  of  46  chromosomes  in  somatic  cells  and  23  in  sex  cells.   In  males,  the  23rd  pair  is  XY  and  in  females,   it   is  XX.  This  is  represented  as  46,XX   in  females  and  46,XY  in  males  

-­‐‑ When  they  are  stained,  chromosomes  become  banded.  The  short  arm  is  called  p  and  the  long  arm  is  called  q  

-­‐‑ Images  are  done  with  fluorescent  in-­‐‑situ  hybridisation  (FISH)  -­‐‑ There  are  different  types  of  chromosomal  abnormalities  

o Numerical  –  aneuploidy  –  loss  of  gain  of  a  chromosome  o Structural  –  translocations,  deletions,  insertions,  inversions,  rings  o Mosaicism  –  different  cell  lines  

-­‐‑ Chromosomal   abnormalities   are   present   in   60%   of   early   spontaneous  miscarriages,   4-­‐‑5%   of   still  births,  7.5%  of  all  conceptions  and  0.6%  of  live  births  

 Autosomal  aneuploidy  -­‐‑ This  is  a  numerical  abnormality  involving  the  loss  or  gain  of  one  or  more  chromosomes:  

o Monosomy  –  loss  of  a  single  chromosome,  is  almost  always  lethal  o Trisomy  –  gain  of  one  chromosome,  is  tolerable  o Tetrasomy  –  gain  of  two  chromosomes,  is  tolerable  

Page 3: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Loss  of  a  chromosome  gives  a  50%  reduction  of  all  fully  expressed  gene  products,  whereas  gain  of  a   chromosome   gives   a   33%   increase   of   all   fully   expressed   gene   products   –   This   is   dosage  compensation    

Partial  aneuploidy  -­‐‑  translocation  -­‐‑ This  is  when  part  of  a  chromosome  is  translocated  to  another  chromosome.  They  can  be  balanced,  

where  there  is  even  exchange  of  genetic  material  between  two  chromosomes  and  no  genetic  data  is  lost,   or  unbalanced,  where   there   is   not   even  genetic   exchange,   leading   to  gain   or   loss   of   genetic  data  

   

                         

-­‐‑ For  example:                                                    

Here,  we   can   see   that   there   is   translocation   of   genetic   data   from  chromosome  3  to  the  top  of  one  of  the  chromosome  2    Each  chromosome  3   is  normal,  one  chromosome  2   is  normal  and  one  chromosome  2  is  a  derivative,  i.e.  it  has  been  modified    The  chromosome  2  derivative  was   inherited   from  the  father  who  has   a   balanced   reciprocal   translocation   i.e.   the   father   had   this  translocation  too,  and  passed  it  down  to  the  child    This  results  in  trisomy  3,  but  not  total  trisomy,  only  trisomy  of  the  genes  that  are  present  on  the  chromosome  2  derivative      Also,   there   is  monosomy  2,   but   not   total  monosomy,   only  where  the  chromosome  3  has  replaced  the  genetic  data  of  chromosome  2    i.e.   Trisomy  3  (p24.2→pter)  

Monosomy  subtelomeric  Chr  2    [46,XX,der(2)t(2;3)(p25.3;p24.2)pat]      

Page 4: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    Examples  of  trisomy       Trisomy  21  –  Down  syndrome  

-­‐‑ Overall  incidence  is  1  in  650  to  700.  There  is  a  strong  association  between  incidence  and  advancing  maternal  age  

-­‐‑ Clinical  features  include:  o Newborn  period  –  severe  hypotonia,  sleepy,  excess  nuchal  skin  o Craniofacial   –   macroglossia   (big   tongue),   small   ears,   epicanthic   folds,   upward   sloping  

palpebral  fissures  (gap  between  the  upper  and  lower  eyelids),  Brushfield  spots  (white  spots  in  iris)  

o Limbs  –  single  palmar  crease,  wide  gap  between  first  and  second  toes  o Cardiac  –  atrial  and  ventricular  septal  defects  o Other  –  short  stature,  duodenal  atresia  –  abnormally  closed  

-­‐‑ They  present  with   IQs   ranging   from  25-­‐‑75,   are  happy  and  affectionate,  with   relatively  advanced  social  skills,  they  reach  a  short  height.  Cardiac  anomalies  causes  early  death  in  20%  and  they  have  increased  risks  of  leukaemia  and  Alzheimer’s  

-­‐‑ It  is  caused  by  Trisomy  21  in  95%  of  all  cases,  with  a  90%  maternal  origin  of  the  extra  chromosome.  Caused  by  non-­‐‑disjunction  of  homologous  chromosomes  in  meiosis  I  

                                 

-­‐‑ Can  also  be  caused  by  translocation  in  4%  of  all  cases.  It  is  a  Robertsonian  translocation,  with  the  breakage  of  the  acrocentric  chromosomes  (12,  14,  15,  21,  22)  and  fusion  of  their  long  arms    

-­‐‑ Two  thirds  have  translocation  as  de  novo  in  the  child  -­‐‑ The  other  third  have  their  parents  as  carriers  of  the  translocation  -­‐‑ This  causes  a  high  risk  of  further  Down  syndrome  babies  -­‐‑ 13q21q  and  14q21q  -­‐‑  10%  risk  of  Down  -­‐‑ 21q21q  -­‐‑  all  offspring  will  have  Down  

 -­‐‑ Can  also  be  caused  by  mosaicism  in  1%  of  all  cases.  Children  are  less  severely  affected,  and  caused  

by  mitotic  non-­‐‑disjunction  in  the  zygote:          

Page 5: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Mosaicism  is  where  not  all  cells  in  the  body  have  the  genotype  causing  the  affliction    

Examples  of  monosomy       Monosomy  X  –  Turner’s  syndrome  

-­‐‑ Incidence:  1  in  3000  live  female  births  -­‐‑ Can  be  detected  in  the  2nd  trimester,  where  generalised  oedema  and  swelling  in  neck  can  be  seen  -­‐‑ They  can  look  normal  at  birth,  or  have  puffy  extremities  and  intra-­‐‑uterine  oedema  -­‐‑ Low  posterior  hairline,  short  4th  metacarpals,  webbed  neck,  aorta  defect  in  15%  of  cases  -­‐‑ Normal  intelligence  -­‐‑ In  adults,  they  have  short  stature  and  ovarian  failure  (amenorrhoea  and  infertility)  -­‐‑ Treated   with   oestrogen   replacement   for   secondary   sexual   characteristics   and   prevention   of  

osteoporosis  -­‐‑ Caused  by  a  loss  of  the  X  or  Y  chromosome  in  paternal  meiosis  in  80%  of  cases  -­‐‑ Can  also  be  caused  by  ring  chromosome,  single  arm  deletion,  mosaicism  -­‐‑ A   ring   chromosome   is   when   there   are   breaks   that   occur   on   the   ends   of   the   two   arms   of   a  

chromosome   and   the   sticky   ends   are   then   joined   and   the   fragments   are   lost.   Often   unstable   at  mitosis  and  so  mosaicism  is  frequent.  Some  cells  have  the  ring  and  others  are  monosomic:  

                 Examples  of  sex  chromosome  aneuploidy    

-­‐‑ Dosage   compensation   is   different   in   sex   chromosomes   as   only   one  X   is   required   so   the   other   is  switched  off  in  females  (X-­‐‑inactivation)  

-­‐‑ Polysomy  X  in  females  –  1  in  1000  have  47,XXX  with  a  10-­‐‑20  point  decrease  in  IQ,  but  present  with  no   physical   abnormalities.   95%   have   an   extra  maternal  X   arising   in  meiosis   I,   they   have   normal  fertility.  There  are  also  48,XXXX  and  49,XXXXX  karyotypes,  these  show  mental  retardation  

-­‐‑ Polysomy  X  in  males  –    o Klinefelter’s  syndrome  –  47,XXY  

1   in  1000   live  male  births,   clumsiness,   verbal   learning  disability,   taller   than   average,   30%  develop  gynaecomastia   (breasts),  all  are   infertile,   increased  risk  of   leg  ulcers,  osteoporosis,  and  breast  carcinoma  in  later  life  The  extra  X  can  come  from  a  male  or  a  female  

o 48,XXXY  and  49,XXXXY  can  happen,  but  are  rare    Chromosomal  sex  and  phenotypic  gender    

-­‐‑ Usually,  males  are  XY  and  females  are  XX  -­‐‑ However,  it  is  possible  to  be  chromosomally  one  gender  phenotypically  the  opposite:  -­‐‑ The  SRY  gene  causes  the  development  of  testes.  This  can  be  translocated  to  the  X  chromosome  in  

SRY  recombination  -­‐‑ XX  males  develop   testes  but  are  sterile  because  some  genes  on   the  Y  chromosome  are  needed  for  

spermatogenesis.  XY  females  are  infertile    

Page 6: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif        

                                           Genomic  disorders       Di  George  syndrome  

-­‐‑ Velocardiofacial  (VCFS)/Sedlackova  syndrome  -­‐‑ Variable  symptoms  

o Congenital  Heart  Disease  o Palatal  abnormalities  o Thymic/Parathyroid  Hypoplasia  o Characteristic  Facies  o Learning  Difficulties  

-­‐‑ Commonest  microdeletion  disorder  -­‐‑ Approx  1/4000  live  births  -­‐‑ Hemizygous  Microdeletion  of  1.5-­‐‑3  Mb  of  22q11  -­‐‑ Detect  using  TUPLE1  gene  probe  and  FISH  

 Cri  du  Chat  syndrome  -­‐‑ Characteristic  Facies:  

o Microcephaly,  Hypertelorism,  Micrognathia,  Epicanthal  folds,  Low-­‐‑set  ears,  Hypotonia  -­‐‑ Severe  psychomotor  and  mental  retardation  -­‐‑ Characteristic  cat-­‐‑like  cry  in  newborns  -­‐‑ Rare  –  Approx  1  in  every  50000  live  births  -­‐‑ Deletion  varies  from  5p15.2  to  whole  of  5p  

 Mrs  Jones’  first  consultation,  results  

-­‐‑ She  has  elevated   risks  of  miscarriage  and  congenital   abnormalities  because  of  her  age  and   family  history.   We   need   to   further   investigate   the   fact   that   she   has   mentioned   haemophilia   and   cystic  fibrosis  within  her  family  

Page 7: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  2:  

Mrs  Jones  2:  

Risk  of  transmission  of  genetic  disease  Dr  Jess  Buxton  ([email protected])    

-­‐‑ A  genetic  disease  is  an  illness  with  a  genetic  component,  with  changes  in  the  germ  line  -­‐‑ Before  we  can  assess  Mrs  Jones’  risk  of  having  a  baby  with  either  cystic  fibrosis  or  haemophilia,  

we  need  to  take  a  family  history  and  see  the  pattern  of  inheritance  and  mechanisms  of  these  conditions  

-­‐‑ Genetic  diseases  can  be  either  monogenic  or  complex  o Monogenic   disorders   are   familial,   have   a  mode   of   inheritance   and   can   be   common   or  

rare  o Complex  disorders   are   sporadic  or   familial,   they   can  also  be   caused  by   environmental  

factors,  and  are  common  disorders  e.g.  type  II  diabetes,  obesity,  Parkinson’s  -­‐‑ Focus  on  monogenic  -­‐‑ Mendelian   Inheritance   is   the   process   whereby   individuals   inherit   and   transmit   to   their  

offspring,  one  out  of  the  two  alleles  present  in  their  homologous  chromosomes  -­‐‑ An  allele   is  an  alternate  form  of  a  gene  or  a  DNA  sequence  at  the  same  chromosome  location  

(locus)  -­‐‑ Homologous  chromosomes  are  a  matching   (but  non-­‐‑identical  pair)  or  chromosomes.  Different  

alleles  may  be  described  as  mutations  or  polymorphisms  -­‐‑ A  mutation  is  any  heritable  change  in  the  DNA  sequence  -­‐‑ A   polymorphism   is   a   >1%   frequency   of   a   mutation   in   a   given   population,   but   are   called  

mutations  if  they  cause  a  monogenic  disease.  They  may  contribute  to  complex  diseases  -­‐‑ Mutations   can  be  point  mutations   (missense   –  where   one   amino   acid   is   replaced  by   another;  

nonsense  –  where  the  polypeptide  is  stopped  prematurely)  -­‐‑ They  can  also  be  frameshift  mutations  (insertion  –  one  base  inserted  into  the  genome;  deletion  –  

one  base  deleted  from  the  genome)  and  affects  all  the  sequence  after.  It  is  put  out  of  frame    Taking  a  family  history    

-­‐‑ This  is  important  to:  o Identify  genetic  disease  running  in  family  o Identify  inheritance  patterns  o Aid  diagnosis  o Assist  in  management  of  condition  o Identify  relatives  at  risk  of  disease  

-­‐‑ We  can  do  this  by  drawing  a  family  pedigree  -­‐‑ Build  it  up  from  the  bottom,  starting  with  affected  child  and  siblings,  record  names  and  dates  of  

birth  -­‐‑ See  slides  for  the  rules  of  pedigree  diagram  

 Mendelian  inheritance  patterns  

-­‐‑ Autosomal  dominant  -­‐‑ Autosomal  recessive  -­‐‑ X-­‐‑linked  -­‐‑ Complications…  

Page 8: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

Autosomal  dominant  -­‐‑ At  least  one  parent  is  affected  -­‐‑ Can  be  transmitted  by  male  of  female  -­‐‑ Vertical  transmission  -­‐‑ Male  or  female  can  be  affected  -­‐‑ 50%  of  offspring  are  affected      For  example:  Huntington’s  disease  -­‐‑ Mean   age   of   onset   is   35-­‐‑44   years,   causes   motor,   cognitive   and   psychiatric   dysfunction   –  

hyperkinesia  -­‐‑ Median  survival  time  is  15-­‐‑18  years  after  onset  -­‐‑ Treatment  eases  symptoms,  no  cure  -­‐‑ Caused   by   inheritance  of   a  mutated  HTT   gene   on   chromosome  4   that   encodes   for   a   protein  

called  huntingtin.  This  mutated  gene  encodes  toxic  forms  of  huntingtin  that  form  clumps  in  the  brain.  There  is  cell  death  in  the  basal  ganglia  in  the  brain  eventually,  that  leads  to  symptoms  

-­‐‑ Dominant  anticipation  is  the  increase  in  severity  and/or  earlier  onset  of  symptoms  seen  in  some  diseases  e.g.  Huntington  and  myotonic  dystrophy  

-­‐‑ Huntington’s   disease   is   caused   by   an  unstable   triplet   repeat,   the   number   of   repeats   expand  with  each  generation                              

 -­‐‑ The  repeat  is  CAG,  codes  for  glutamine  

o 10-­‐‑35  repeats,  the  person  is  unaffected  o 27-­‐‑35,  unaffected,  but  at  risk  of  having  an  affected  child  o 35-­‐‑40,  sometimes  affected,  sometimes  not  o 40-­‐‑120  –  affected  

 Autosomal  recessive  -­‐‑ No  affected  parent  -­‐‑ Transmitted  and  affects  either  males  of  females  -­‐‑ Usually  no  family  history  -­‐‑ 25%  of  offspring  are  affected  -­‐‑ 50%  inherit  one  copy  of  the  defective  gene  

 -­‐‑ These  types  of  diseases  appear  more  frequently  in  consanguineous  families  due  to  the  fact  that  

the  proportion  of  the  allele  in  the  population  rises  

Page 9: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

For  example:  cystic  fibrosis  -­‐‑ A  multi-­‐‑system  progressive  and  variable  condition.   Individuals  are  differently  affected  by  the  

severity  of  its  symptoms  -­‐‑ Thick  mucus  in  lungs  causes  breathing  problems  and  repeated  infections  -­‐‑ Blockages  in  pancreas  affect  digestive  enzymes  -­‐‑ Treatment  consists  of  daily  enzymes  and  physiotherapy  -­‐‑ In  the  UK,  1  in  22  people  are  CF  carriers  -­‐‑ Caused  by  inheritance  of  a  mutated  form  of  the  CFTR  gene  on  chromosome  7  that  encodes  for  

a  protein  called  the  CF  transmembrane  conductance  regulator  -­‐‑ CF  patients   inherit   two  copies  of   the  mutated  form  of   this  gene,  which  causes   the  absence  of  

any  working  CFTR  protein.  This  affects  chloride  ion  channel  function  in  ‘wet’  epithelial  cells,  causing  disruption  of  salt/water  regulation  causes  lack  of  water  in  mucus,  causing  thick  mucus  and  hence  the  symptoms  

-­‐‑ There  are  over  1000  mutations  identified,  with  the  most  common  being  in  ΔF508    

                       

-­‐‑ Mutations  in  this  gene  can  cause  a  different  disease:  congenital  absence  of  the  vas  deferens,  is  a  condition  in  which  the  vas  deferentia  fail  to  form  properly.  This  causes  infertility,  and  affects  1  in  2500  men.  Most  cases  are  caused  by  a  mutation  in  the  CFTR  gene  

 X-­‐‑linked    -­‐‑ No  affected  parents  -­‐‑ Only  males  affected  -­‐‑ Transmitted  by  a  carrier  female  -­‐‑ 50%  of  sons  are  affected    -­‐‑ 50%  of  daughters  are  carriers    

 For  example:  Haemophilia  -­‐‑ This   is   a   blood   clotting   disorder,   and   affected   people   bruise   easily.   There   are   two   types:  

haemophilia   A   and   haemophilia   B.   Can   be   successfully   treated   with   injections   of   clotting  factor  

-­‐‑ Haemophilia   A   is   caused   by   the   inheritance   of   a  mutated   form   of   the   F8   gene   on   the   X-­‐‑chromosome   that   encodes   a   protein   called   coagulation   factor   VIII.   This   leads   to   a   lack   of  functioning  factor  VIII,  leading  to  the  symptoms  

-­‐‑ Haemophilia  B  is  caused  by  mutations  in  the  F9  gene,  also  on  the  X-­‐‑chromosome,  which  codes  for  a  protein  called  coagulation  factor  IX,  same  symptoms  as  haemophilia  A  but  is  much  rarer  

   

Page 10: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    Genetic  heterogeneity    

-­‐‑ Same  gene,   different  mutations,   different  diseases   –   e.g.   cystic   fibrosis   and  CAVD   are   both  caused  by  mutations  in  the  CFTR  gene  

-­‐‑ Same  disease,  different  genes  –  e.g.  Haemophilia  A  (mutations  in  F8  gene)  and  Haemophilia  B  (mutations  in  F9  gene)  

-­‐‑ Same   disease,   different   genes,   different   inheritance   patterns   –   e.g.   different   forms   of  epidermolysis  bullosa  can  be  autosomal  dominant  or  autosomal  recessive  

 Simple  Mendelian  inheritance  patterns  can  get  complicated    

-­‐‑ Penetrance   –   frequency   with   which   symptoms   are   present   in   an   individual   who   inherits   a  disease-­‐‑causing  mutation  

-­‐‑ Variable   expressivity   –   degree   of   severity   in   an   individual   who   inherits   a   disease   causing  mutation  

-­‐‑ Phenocopy  –  disease  with  the  same  phenotype  as  a  genetic  disease,  but  non-­‐‑genetic  -­‐‑ Epistasis  –  interaction  between  disease  gene  mutations  and  other  modifier  genes  can  affect  the  

phenotype    Mechanisms  of  genetic  disease    

-­‐‑ Dominant  conditions  are  usually  caused  by  genes  that  result  in  a  toxic  protein  (e.g.  huntingtin)  i.e.  the  effects  of  the  mutated  protein  mask  the  normal  copy.  Therefore,  one  needs  to  counter  the  effects  of  the  toxic  protein  or  neutralise  it,  or  switch  off  the  mutant  gene  

-­‐‑ Recessive  conditions  are  caused  by  the  absence  of  a  working  gene  (e.g.  CF,  haemophilia),   i.e.  the  effects  of   the  mutated  gene  are  only   seen  when   the  normal   copy   is  absent.  Therefore,  one  needs   to   restore   activity   of   the  missing   protein   by   replacing   genes,   protein,   or   the   affected  tissues  

-­‐‑ Co-­‐‑dominant  conditions  –  the  effects  are  both  apparent  in  people  e.g.  sickle  cell  trait    Mrs  Jones’  second  consultation,  results    

-­‐‑ Her  paternal  uncle  as  haemophilia,  so  the  chance  of  her  son  to  have  haemophilia  is  the  same  as  the  chance  it  would  take  to  cause  a  mutation  in  the  gene.  If  it  had  been  her  maternal  uncle,  she  could  have  been  a  carrier  

-­‐‑ Her  husband’s  first  cousin  has  a  child  with  cystic  fibrosis.  Thus,  her  husband  has  a  1  in  8  chance  of  being  a  carrier.  She  herself  has  a  1  in  22  chance  of  being  a  carrier,  so  if  both  are  carriers,  there  is  a  1  in  4  chance  the  child  is  affected.  The  over  all  chance  of  the  foetus  being  affected  with  cystic  fibrosis  is  thus  1  in  704  (1  in  22  times  4  times  8)  

                   

Page 11: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  3:  

More  stories  from  the  Genetics  Clinic  Dr  Jess  Buxton  ([email protected])    

1. Imprinting  Disorders  –  Prader-­‐‑Willi,  Angelman    

-­‐‑ A   few   genes   are   only   expressed   via   the   maternal   or   paternal   allele.   The   other   allele   is  permanently  switched  off.  The  genome  has  an  imprint  of  parental  origin  

-­‐‑ Parental   origins   of   chromosomes   are   important,   for   example,   46,XX,   where   the   genome   is  entirely   from   the   maternal   genome   forms   an   ovarian   teratoma,   whereas   if   the   genome   is  entirely  from  the  paternal  genome,  it  forms  a  hydatidiform  mole  

-­‐‑ Imprinting  is  a  reversible  epigenetic  effect,  DNA  methylation  is  the  mechanism  -­‐‑ Prader-­‐‑Willi   and   Angelman   syndromes   are   two   distinct   clinical   syndromes,   but   they   are  

caused  by  the  same  chromosomal  region  on  chromosome  15  -­‐‑ However,   they   are   distinct   in   that   they   result   from   the   loss   of   function   of   one   of   the   two  

parental  chromosomes  -­‐‑ If  the  paternal  chromosomal  region  is  damaged  or  not  present,  then  Prader-­‐‑Willi  syndrome   is  

phenotypically  presented.  If  it  is  the  maternal  chromosomal  region,  then  Angelman  syndrome  manifests  

 Prader-­‐‑Willi  syndrome    

-­‐‑ Symptoms  include:    

o Muscle  hypotonia  o Hyperphagia  o Obesity/diabetes  o Mental  retardation  o Short  stature  o Small  hands  and  feet  o Delayed/incomplete  puberty  o Infertile  

 -­‐‑ It  has  a  birth  incidence  of  1:10000  to  1:25000  -­‐‑ Hyperphagia  is  managed  by  diet  restriction  -­‐‑ Exercise  is  done  to  increase  muscle  mass  -­‐‑ Growth  hormone  is  given  to  treat  for  short  stature  -­‐‑ Hormone  replacement  is  given  for  puberty  -­‐‑ It  is  caused  by  a  lack  of  a  functional  paternal  copy  of  the  PWS  critical  region  on  chromosome  

15  (q11-­‐‑q13)  -­‐‑ It  happens  due  to  a  deletion  of  the  critical  region  on  the  paternal  chromosome  (70%)  -­‐‑ It  can  also  happen  due  to  inheritance  of   two  maternal  copies  of  chromosome  15  via  maternal  

uniparental  isodisomy  (25%)  -­‐‑ It  can  also  happen  due  to  translocations  and  point  mutations  (5%)  -­‐‑ It  is  diagnosed  with  methylation  specific  PCR  -­‐‑ With  Prader-­‐‑Willi  syndrome,  only  the  maternal  chromosomes  will  be  flagged  up  

   

Page 12: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

Uniparental  isodisomy  happens  when  there  is  non-­‐‑disjunction  in  meiosis  II.  This  causes  one  of  the  sex  cells   to  come  out  with  two  copies  of  the  chromosome  in  it,  and  one  without  any  copies  of   the  chromosome,   and   the   other   two   are   normal.   Fertilisation   of   the   gamete   with   two   copies   of   the  chromosomes  with   a   normal  monosomic   gamete   happens,   but   the   chromosome   from   the   parent  contributing  the  single  chromosome  is  lost,  resulting  in  uniparental  isodisomy  

                                       Angelman  syndrome    

-­‐‑ Symptoms  include:    

o Severe  developmental  delay  o Poor  or  absent  speech  o Gait  ataxia  o “Happy  demeanour”  o Microcephaly  o Seizures  

 -­‐‑ Prevalence  –  1:10000  -­‐‑ Treated  symptomatically  i.e.  with  anti-­‐‑convulsants,  physiotherapy  and  communication  therapy  -­‐‑ They  have  a  normal  life  span  -­‐‑ Same   cause,   same   area,   same   chromosome   as  Prader-­‐‑Willi   syndrome,   but   this   time,   involves  

paternal  uniparental  isodisomy      

2. Mitochondrial  Disorders  –  MELAS,  LHON    

-­‐‑ Mitochondria  are  inherited  from  the  mother,  because  the  egg  has  the  mitochondria.  The  sperm’s  mitochondria  are  all  focused  on  the  flagellum  that  propels  it.  This  means  that  all  mitochondria  that  the  child  develops  originate  from  the  mother  

-­‐‑ However,  both  males  and  females  are  affects,  because  all  people  need  mitochondria  

Page 13: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Cells  vary  in  the  number  of  mitochondria  they  need,    -­‐‑ Mitochondrial  diseases  are  variable  because  of  heteroplasmy,  as  not  all  mitochondria  may  not  

have  the  disease,  it  is  a  sort  of  mosaicism:                  

                                         

-­‐‑ Mitochondrial  disorders  include:  o MELAS  –  Mitochondrial  encephalomyopathy,  lactic  acidosis,  and  stroke-­‐‑like  episodes  o LHON  -­‐‑  Leber’s  hereditary  optic  neuropathy  (LHON)  o MERRF  –  Myoclonic  Epilepsy  with  Ragged  Red  Fibres  o DEAF  –  Non-­‐‑syndromic  hearing  loss  o NARP  –  Neuropathy,  Ataxia  and  Retinitis  Pigmentosa  

 MELAS    

-­‐‑ This   is   a  progressive  neurodegenerative  disorder,  presenting  with  muscle  weakness,   episodic  seizures  and  headache,  hemiparesis,  vomiting  and  dementia  

-­‐‑ There  is  a  prevalence  of  1:13000  -­‐‑ It  is  treated  symptomatically,  and  diagnosed  with  a  muscle  biopsy  -­‐‑ It  is  caused  by  single  point  mutations  in  several  genes:  

o MTTL1   –   tRNA   translates   codon   as   phenylalanine   instead   of   leucine   during  mitochondrial  protein  synthesis  

o MTND1,  MTND5  –  NADH  dehydrogenase  

-­‐‑ The  mitochondrial  genome  is  around  16kb  long.   It  has  37  genes  and   13   are   responsible   for   respiratory   chain   complex.   22   are  responsible  for  tRNA  and  2  are  responsible  for  rRNA.  There  are  two  to  ten  copies  of  the  genome  per  mitochondrion  

 

Page 14: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    LHON    

-­‐‑ This  is  optic  neuropathy,  loss  of  sight,  most  will  become  blind  -­‐‑ It  is  bilateral  and  painless.  There  is  loss  of  central  vision  and  optic  atrophy  -­‐‑ The  mitochondria  in  the  optic  nerve  are  dysfunctional  and  thus  the  optic  nerve  dies  -­‐‑ This  is  much  commoner  in  males  for  unknown  reasons  -­‐‑ Prevalence  –  1:50000  -­‐‑ Treated  symptomatically  -­‐‑ Diagnosis  is  based  on  ophthalmological  findings  and  a  blood  test  for  mtDNA  mutations  -­‐‑ It  is  caused,  over  90%  of  the  time,  by  mutations  in:  

o MTND1,   MTND4,   MTND5,   MTND6   and   MTCYB   –   these   code   for   NADH  dehydrogenase  subunits  1,  4,  5  and  6,  and  cytochrome  b  

   

3. Inborn  Errors  of  Metabolism  –  Phenylketonuria,  MCAD  deficiency    

-­‐‑ Most  inborn  errors  of  metabolism  are  autosomal  recessive  or  X-­‐‑linked  -­‐‑ A  few  a  dominant    -­‐‑ The  defective  proteins  are  manly  enzymes  -­‐‑ The  UK  Newborn  Screening  Programme  screens  newborns  for:  

o Phenylketonuria  o Congenital  Hypothyroidism  o Sickly  cell  Disorders  o Cystic  fibrosis  o Medium-­‐‑chain  acyl-­‐‑coA  dehydrogenase  deficiency  

 Phenylketonuria    

-­‐‑ This   is   caused   by   the   deficiency   of   the   enzyme   phenylalanine   hydroxylase,   causing  phenylalanine   to  accumulate.  This   is  converted  into  phenylpyruvate,  which  is  excreted  in  the  urine  

-­‐‑ It  also  causes  a  tyrosine  deficiency,  leading  to  reduced  melanin  -­‐‑ It  manifests  with  severe  mental  retardation,  and  convulsions  -­‐‑ Phenotypically,  people  have  blond  hair,  blue  eyes  and  eczema  

                       

-­‐‑ Early   detection   by   screening   for   elevated   levels   of   phenylalanine   in   foetal   blood   can   prevent  mental  retardation  by  removing  phenylalanine  from  the  diet,  but  it  is  a  difficult  diet  to  stick  to  as  aspartame  contains  phenylalanine.  Pregnant  women  need  to  go  back  on  a  diet  

Page 15: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    MCAD  deficiency    

-­‐‑ This  is  the  commonest  disorder  of  fatty-­‐‑acid  oxidation  -­‐‑ It  is  caused  by  a  deficiency  of  the  enzyme  medium-­‐‑chain  acyl-­‐‑coA  dehydrogenase  -­‐‑ It  causes  episodic  hypoketotic  hypoglycaemia,  and  presents  as  early  as  three  months  -­‐‑ Can  present  as  coma,  metabolic  acidosis,  encephelopahy  -­‐‑ Sudden  death  can  occur  –  25%  death  rate  in  undiagnosed  cases  -­‐‑ MCAD   is   the   enzyme   that   causes  dehydrogenation  of   the   acyl-­‐‑coA   species   in   the  β-­‐‑oxidation  

cycle  in  fatty  acid  metabolism  (See  metabolism)  -­‐‑ Thus  these  people  cannot  break  these  fats  down,  they  accumulate  and  cause  problems  -­‐‑ It   is   treated   by   maintaining   an   adequate   calorie   intake   to   prevent   the   switch   to   fatty   acid  

oxidation  -­‐‑ Fasting  is  avoided,  which  is  difficult  in  children  who  are  ill  –  they  need  glucose,  not  fats  

                                                                       

Page 16: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  4:  

Cancer  in  families  and  individuals  Dr  Alistair  Reid  ([email protected])    

1. Understand  why  genetic  changes  cause  cancer  and  describe  the  2  main  classes  of  cancer  gene    

-­‐‑ Cancer   is   a   genetic   disease,   it   is   driven   by   an   accumulation   of   genetic   changes   that   lead   to  altered  levels  of  transcription  or  aberrant  gene  transcripts  

-­‐‑ For   the   majority   of   cancers,   these   are   so   diverse   and   numerous,   only   a   fraction   have   been  discovered  

-­‐‑ The  resulting  proteins  change  signal  transduction  pathways  that  confer  a  selective  advantage  to  the  cell.  The  affected  pathways  include  those  that  control  cell  cycle,  apoptosis,  cell  proliferation  and  adhesion  

-­‐‑ Over  time,  mutations  accumulate  and  result  in  cancer  -­‐‑ There  are  two  classes  of  cancer  gene:  

o Oncogenes  –  cause  activation  or  amplification  of  the  cell  cycle  Normally,   oncogenes  are   responsible   for  growth  and  proliferation,   e.g.   growth   factors,  transcription  factors,  tyrosine  kinases  etc.  These  are  overexpressed  in  cancers  

o Tumour  suppressor  genes  –  cause  the  halting  of  the  cell  cycle  Normally,  they  regulate  cell  division,  check  for  DNA  damage  and  control  the  cell  cycle.  They   control   apoptosis   and   help   in   DNA   repair.   These   are   deleted   or   inactivated   in  cancers                        

-­‐‑ Changes  in  these  genes  can  occur  due  to:  o Mutations  in  the  promoter  

For   tumour   suppressor   genes,   they   reduce   transcription   and   for   oncogenes,   they  increase  transcription  

o Mutations  in  the  coding  region  They  truncate  or  inactivate   tumour  suppressor  genes  (this   is   the  main  inherited  type).  They  increase  activity  of  oncogenes  

o Genomic  amplification  or  whole  chromosome  gain  In   oncogenes,   they   increase   gene   copy   number   (aneuploidy   or   translocations)   and  therefore  transcription  

o Genomic  deletion  or  whole  chromosome  loss  In   tumour   suppressor   genes,   they   are   removed   (aneuploidy   or   translocations),   either  fully  or  partly,  and  therefore  transcription  is  reduced  

o Gene  fusion  via  chromosome  rearrangement  In  oncogenes,  this  can  cause  the  formation  of  a  novel  protein  

Page 17: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Techniques  are  used  to  detect  different  types  of  abnormalities:  o Cytogenetic   changes   are   detected   by   microscopy,   i.e.   translocations,   deletions,  

duplications  are  easily  seen  o Molecular  changes  are  detected  with  biochemical  tests  i.e.  PCR,  southern  blotting  etc.  

   

2. Understand  the  contribution  of  chromosome  rearrangements  to  the  formation  of  gene  fusions  and  their  contribution  to  oncogenesis    

-­‐‑ Chromosome   rearrangements   can   lead   to   gene   copy   number   changes   via   deletion   or  duplication    

                             

-­‐‑ They  can  also  cause  gene  fusion,  via  translocation  or  inversion                                  

-­‐‑ Most   tumour  suppressor  genes   require   inactivation  of  both   alleles   to   cause  malignancy.  The  first  mutation  is  often  caused  by  a  mutation  and  the  second  is  usually  caused  by  a  deletion  

-­‐‑ The   first   mutation   usually   reduces   the   transcription   level,   but   is   insufficient   to   produce   a  phenotypic  effect.  The  second  allele  needs   to  be   inactivated  also,  which  causes  a   total  loss  of  transcription  for  the  malignant  phenotype  to  be  conferred  

-­‐‑ Some  only  need  one  allele  to  be  effected  –  haploinsuffiency:  

Page 18: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif      

                         

-­‐‑ Loss  of  heterozygosity  (LOH)  is  has  several  related  meanings:  o A   historical   method   of   assessing   the   stability   of   cancer   genomes   and   looking   for   the  

location  of  TS  genes  o Another  term  for  deletion  o Unmasking  of  the  mutated  copy  of  a  TS  gene  

-­‐‑ LOH  describes   a   region   of   apparent  homozygosity,   probably   via   a  deletion   in   cancer   tissue,  that  may  mark  the  location  of  a  tumour  suppressor  gene  

                               

3. Explain  the  difference  between  somatic  and  germline  mutations    

-­‐‑ 99%  of  cancers  are  sporadic  or  non-­‐‑inherited.  The  remaining  1%  are  inherited  i.e.,  they  have  a  germline  component  

-­‐‑ The  vast  majority  of  cancer  cases  are  caused  by  acquired  changes  in  somatic  tissue  via  somatic  mutations  i.e.  mutations  acquired  via  the  environment  

-­‐‑ There  are  very  few  cancers  that  are  initiated  from  one  parent,  or  sometimes  both,  of  a  mutation  in   germline   tissue,   usually   a   tumour   suppressor   gene,   via  germline  mutations   i.e.   inherited  mutations.  In  inherited  cancers,  the  risk  is  cancer  is  higher  than  normal  but  not  100%,  because  additional   somatic   changes   are   needed,   i.e.   the   first   mutation   in   the   TS   gene   may   be   via   a  germline  mutation,  but  the  second  one  will  almost  always  be  a  somatic  mutation,  leading  to  the  cancer.  Thus,  one  can  be  predisposed  to  a  certain  type  of  cancer,  but  not  ever  get  it  

Page 19: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

4. Discuss   how   inherited   mutations   in   BRCA1   and   BRCA2   genes   influence   risk   of   breast   and   ovarian  cancer      

-­‐‑ 2-­‐‑4%  of  breast  cancer  cases  are  caused  by  a  germline  mutation  of  BRCA1  and  BRCA2  genes  i.e.  the  first  hit  is  a  germline  mutation  in  these  genes  

-­‐‑ 60%  of  these  are  at  risk  of  developing  cancer  by  age  90,  and  they  have  an  earlier  average  age  of  onset  than  those  without  this  germline  mutation  

-­‐‑ The  inactivation  of  the  second  allele  is  usually  by  a  somatic  deletion  -­‐‑ There  is  also  an  increased  risk  of  developing  ovarian  cancer  –  they  are  also  predisposed  to  this  -­‐‑ BRCA2  mutations  also  predispose  breast  cancer  to  men  -­‐‑ The  mutation   can   occur   anywhere   in   the   BRCA   exon   structure,   including   but   not   limited   to  

point  mutations.  They  result  in  a  truncated  non-­‐‑functional  protein  -­‐‑ BRCA1   and   BRCA2   normal   function   is   DNA   repair,   via   a   process   called   homologous  

recombination.   A   truncated   or   non-­‐‑functional   protein   causes   impaired   DNA   repair,   so  mistakes  or  damage  go  uncorrected  

   

5. Outline  how  defects  in  cell  division  or  DNA  repair  influence  risk  of  colorectal  cancer    

-­‐‑ There  are  two  common  colorectal  syndromes  that  are  caused  by  the  inheritance  of  one  mutated  allele  of  a  tumour  suppressor  gene:  

o Familial  adenomatous  polyposis  (FAP)  Characterised  by  the  growth  of  many  intestinal  polyps,  one  or  more  of  which  is  likely  to  become  cancerous.  It  accounts  for  >1%  of  all  colorectal  cancers.  Caused  by  a  mutation  in  the  APC  gene,  which  controls  cell  division.  This  mutation  almost  always  confers  cancer  in  later  life  

o Hereditary  non-­‐‑polyposis  colorectal  cancer  (HNPCC  or  Lynch  syndrome)  3%   of   all   cases,   this   is   the  most   common   inherited   form   (90%   of   familial   cases).   The  mutation  is   in  MLH1  and  MSH2  genes,  which  are  DNA  repair  genes,  and  comes  with  an  80%  risk  of  developing  cancer  in  later  life  

 -­‐‑ For   patients   with   inherited   cancer   syndromes,   they   can   be   given   genetic   screening   and  

counselling   to   see   if   they   are  mutation-­‐‑positive,   if   they   are,   they   can   be   prophylactically  treated,  surveyed  and  given  chemopreventative  medications  

   

6. Explain,   using   an   example,   how   chromosome   translocations   are   used   to   quantify   residual   disease   in  some  leukaemias    

-­‐‑ Sporadic  malignancies  are  acquired  chromosome  abnormalities  and  oncogenic  fusion  genes  are  disease  markers  in  patient  management  

-­‐‑ Cancer  genomes  have  cytogenetic  changes  as  well  as  molecular  changes  associated  with  them  -­‐‑ These  abnormalities  can  be  causal  or  accumulate  during  disease  progression  -­‐‑ Cytogenetic   changes   are   seen   in   malignant   tissues,   below   is   a   karyotype   of   a   cell   that   is  

abnormal:          

Page 20: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Haematological  malignancies  –  lymphomas  and  leukaemias  -­‐‑ Chronic  myeloid   leukaemia   –   this   is   a   clonal   myeloproliferative   disorder   of   the   pluripotent  

haematopoietic  stem  cell   leading  to  an  overproduction  of  mature  granulocytes  i.e.  neutrophils  and  monocytes  

-­‐‑ It  is  triphasic,  with  a  chronic  stage,  an  accelerated  stage  and  a  terminal  acute  stage  -­‐‑ The  consistent  pathogenic  marker  is  a  translocation  between  chromosomes  9  and  22  –  t(9;22)  –  

resulting  in  a  fusion  gene  called  BCR-­‐‑ABL1:    

-­‐‑                                

-­‐‑ This   is   the   hallmark   of   CML,   the   BCR-­‐‑ABL1   fusion   gene   resides   on   the   Philadelphia  chromosome  and  codes  for  a  tyrosine  kinase    

-­‐‑ To  treat  this  then,  a  tyrosine  kinase  inhibitor  is  needed  –  Imatinib  (Glivec)  -­‐‑ But  20-­‐‑30%  patients  lose  response  and  require  a  second  tyrosine  kinase  inhibitor,  so  monitoring  

is  important  for  disease  management  -­‐‑ Genetics  methods  can  be  used  to  detect  leukaemia  in  patients  using:  

o Conventional   cytogenetics   –   to   look   for   the  Philadelphia   chromosome   via   G-­‐‑banding  karyotypes  

o Fluorescent  in-­‐‑situ  hybridisation  (FISH)  –  to  look  for  the  juxtaposition  of  BCR  and  ABL  by   looking   at   different   colours   on   the   karyotype   that   are   highlighted.   Fusions   of   BCR  and  ABL  will  be  seen  as  BCR  positive  and  ABL  positive  very  close  together:  

o PCR  –  to  look  for  BCR-­‐‑ABL  mRNA  using  PCR  -­‐‑ Disease   burden   is   reduced   over   time,   so   there   are   certain   time   gaps   the  

methods  can  be  used  in  -­‐‑ This  can  be  used  to  indicate  when  a  new  therapy  method  is  needed  

 -­‐‑ Acute   promyelocytic   leukaemia   is   the   abnormal   accumulation   of   immature  

granulocytes  called  promyelocytes  -­‐‑ It  is  characterised  by  a  chromosomal  translocation  in  the  retinoic  acid  receptor  

(RARα)  gene  on   chromosome  17   and   the  promyelocytic   leukaemia  gene   on  chromosome  15  –  t(15;17)  (q22;q12)  

       

Page 21: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ RARα   is   a   member   of   the   nuclear   family   of   receptors.   Retinoic   acid,   its   ligand,   is   a   form   of  vitamin  A  and  acts  as  a  regulator  of  DNA  transcription  

-­‐‑ The  translocation  product  is  the  PML-­‐‑RARα  fusion  protein,  which  binds  too  strongly  to  DNA  via  an  enhanced  interaction  with  co-­‐‑repressor  molecules,  and  blocks  transcription,  so  can  affect  the  TS  genes  

-­‐‑ This   type   of   leukaemia   response   to   all   trans-­‐‑retinoic   acid   (ATRA)   therapy,   a   vitamin   A  derivative.   It   dissociates   co-­‐‑repressors   allowing   normal   translation   and   cell   differentiation.  ATRA  therapy  isn’t  the  same  as  other  chemotherapy;  it  does  not  kill  cells.  It  is  effectively  when  taken  continuously,  but  residual  stem  cells  remain  

-­‐‑ It  is  monitored  like  chronic  myeloid  leukaemia,  with  cytogenetics,  FISH  and  PCR      

7. Explain  with  examples  what  is  meant  by  a  “pharmacogenomic  marker”    

-­‐‑ Pharmacogenomics   is   an   emerging   branch   of   pharmacology   that   deals   with   the   influence   of  genetic  variation  on  drug  response  

-­‐‑ In  cancer  treatment,  pharmacogenomics  tests  are  used  to  identify  which  patients  are  most  likely  to  respond  to  certain  drugs  based  on  the  presence  or  absence  of  particular  somatic  mutations  

-­‐‑ For  example:  o KRAS  test  with  cetuximab  for  colorectal  cancer  

KRAS  mutation  =  less  likelihood  of  a  response  o EGFR  test  with  gefitinib  for  non  small-­‐‑cell  lung  cancer  

EGFR  mutation  =  greater  likelihood  of  response  o BCR-­‐‑ABL1  “T315I”  test  with  dasatinib  for  chronic  myeloid  leukaemia  

BCR-­‐‑ABL1  T315I  mutation  =  unlikely  to  respond                                                  

Page 22: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  5:  

Prenatal  diagnosis  of  genetic  diseases  Mr  Ruwan  Wimalasundera  ([email protected])    

1. Indications  for  Prenatal  Diagnosis    

-­‐‑ Prenatal   testing   is  done   for   the  benefit   of   the  mother.  Known  genetic  disorders   are   tested   for  with  Down  syndrome  being  the  most  common  genetic  defect  tested  for  

-­‐‑ Prenatal  testing  is  done  when  indicated  by  a  high  risk  of  aneuploidy,  as  shown  by:  o A  high  risk  on  Down  syndrome  testing  o A  previous  aneuploidy  foetus  o Maternal  request  

-­‐‑ It  is  also  done  when  indicated  by  a  known  genetic  disorder  e.g.  o Achondroplasia  o Cystic  fibrosis  o Haemoglobinopathies  o X-­‐‑linked  disorders  o Parental  balanced  translocation  

-­‐‑ And  finally,  it  is  also  done  when  there  is  a  structural  anomaly  detected  in  the  foetud  on  routine  ultrasound  screening      

2. Antenatal  Screening  for  Aneuploidy  (Down  Syndrome)    

-­‐‑ Down  syndrome  is  the  most  common  genetic  defect  and  is  incident  in  1  in  700  pregnancies,   it  isn’t  inherited  

-­‐‑ It  is  associated  with  birth  defects  -­‐‑ It  has  variable  severity,  and  is  not  predictable  -­‐‑ Caused  by  trisomy  21  caused  by  a  non-­‐‑disjunction,  translocation  or  a  mosaicism  -­‐‑ The  risk  increases  with  a  woman’s  age  because  the  ova  number  decreases  so  the  proportion  of  

abnormal  ova,  if  any,  increases  -­‐‑ Risk  of  Down  syndrome  increases  with  nuchal  translucency  also,  as  the  foetus  has  more  fluid  

below  its  neck  on  scanning,  which  is  indicative  of  Downs  -­‐‑ Down  screening  tests:  

o Triple   test   –   use  AFP,   unconjugated  oestriol   and  hCG   together  with  maternal   age   to  gauge  a  risk  

o Nuchal   translucency  test   (NT  scan)  –  measures   the   fold  of   the   skin  on   the  back  of   the  foetal  neck  with  the  maternal  age  to  gauge  a  risk  

o Quadruple  test  –  same  as  triple,  but  also  looks  at  inhibin-­‐‑A  for  a  measurement  of  risk  o Combined  test  –  NT  measurement  with  free  β-­‐‑hCG,  PAPP-­‐‑A  and  maternal  age  (all  signs  

of  Down  syndrome  risk)  to  measure  risk  o Integrated   test   –   Integrates   NT  measurement   and   PAPP-­‐‑A   in   the   first   trimester   with  

serum  AFP,  free  β-­‐‑hCG,  oestriol  and  inhibin  A  in  the  second  -­‐‑ The   combined   test   screens   the   earliest   and   most   accurate.   There   is   a   correction   factor   for  

monochorionic  and  dichorionic  -­‐‑ The  above  tests  are  high-­‐‑risk  tests  that  rest  for  a  risk  of  having  Downs  -­‐‑ One  can  test  invasively  if  someone  is  high  risk  

 

Page 23: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

3. Prenatal   Testing   –   amniocentesis,   chorionic   villus   sampling,   foetal   blood   sampling,   elective   late  karyotyping    Amniocentesis    

-­‐‑ Amniocentesis  is  the  extraction  of  amniotic  fluid  from  the  amniotic  sac  during  pregnancy.  The  fluid  contains  the  child’s  urine  and  cells  that  can  be  tested  

-­‐‑ This  is  performed  any  time  after  15  weeks  -­‐‑ Use  the  aseptic  technique,  and  try  to  avoid  the  placenta  -­‐‑ Complications  include:  

o Pregnancy  loss  –  1%  miscarriage  o Rh  sensitisation  –  see  later,  all  Rh  negative  women  get  Anti  D  within  72h  o Liquor  leakage  o Infection  o Late  diagnosis  

-­‐‑ Can  conduct  a  cytogenetic  analysis,  where  the  foetal  cells  are  concentrated  in  a  centrifuge  and  cultured  

-­‐‑ If  one   finds  mosaicism,  which   is   two  or  more  cell   lines   (cultures)  with  different   chromosomal  constitutions.  Need  to  make  sure,  so  it  needs  to  be  two  different  cultures.  Mosaicism  is  true  

-­‐‑ Need  to  look  at  multiple  chromosomes  using  quantitative  fluorescent  PCR    Chorionic  villus  sampling    

-­‐‑ This  takes  a  sample  from  the  placenta  and  can  be  used  before  15  weeks,  from  11  weeks  onward,  via  a  transabdominal  needle  or  cervical  

-­‐‑ Ideal  for  DNA  analysis  -­‐‑ Need  to  avoid  Rh  sensitisation  -­‐‑ Risk  of  miscarriage  =  0.5-­‐‑2%  -­‐‑ Can  lead  to  limb  defects  -­‐‑ Can   test   cytogenetically,   with   syncytiotrophoblast/cytotophoblast   cells   already   dividing,   so   a  

direct   culture   is   possible   in   72h,   they   are   cultured   for   14   days   and   used   to   check   for   any  abnormalities.  There  is  a  0.03%  false  negative  rate.  Mosaicism  is  confined  to  the  placenta  

 Foetal  blood  sampling    

-­‐‑ This  is  taking  a  blood  sample  from  the  foetus  directly.  This  tests  for  foetal  anaemia  and  needs  to  be  done  in  aseptic  conditions  

-­‐‑ The  mode  of  entry  is  into  the  intrahepatic  vein  or  into  the  umbilical  cord  -­‐‑ Loss  rate  is  0.9%  

 Rhesus  sensitisation  

-­‐‑ The  foetus  may  be  Rhesus  positive  and  the  mother  may  be  Rhesus  negative.  The  baby  will  become  anaemic  is  the  antibodies  from  the  mother  get  into  the  baby,  so  the  mothers  are  given  anti-­‐‑D  to  prevent  this  

-­‐‑ The  antibodies  that  the  mothers  produces  against  the  Rhesus  protein  if  it  gets  into  her  blood  will  pass  into  her  baby’s  blood  and  they  will  bind  to  the  baby’s  Rhesus  protein  on  its  red  blood  cells.  This  will  be  attacks  by  the  baby’s  immune  system,  rendering  them  anaemic  

   

Page 24: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

4. Cytogenetic  Techniques    

-­‐‑ Can  use  fluorescent  in  situ  hybridisation  (FISH)  using  fluorescently  labelled  DNA  probes.  It  is  chromosome  specific    

-­‐‑ And  PCR  -­‐‑ Genetic  prenatal  diagnoses  need  to  be  balanced  between  the  risk  of  the  condition  and  the  risk  

of  the  procedure  -­‐‑ For   example,   elective   late   karyotyping,   avoids   the   risk   of   miscarriage   and   allows   antenatal  

diagnosis,  but  it  is  late  and  has  low  utility,  and  can  cause  iatrogenic  prematurity  -­‐‑ Foetal  cells  in  maternal  blood  -­‐‑ Placental  RNA  produced  by   the   foetus  can  be   tested   for  an   increase   in  production  of  proteins  

located  on  say  chromosome  21,  an  overexpression  may  be  an  indicator  of  trisomy  21        

5. Management  options    

-­‐‑ Managed  by  counselling  or  termination  -­‐‑ Termination   is   done   if   it   fulfils   the   Abortion   Act   1967   and   the   Human   Fertilisation   and  

Embryonic  Act  1990:  -­‐‑ Clause  A    

The  continuance  of  the  pregnancy  would  involve  risk  to  the  life  of  the  pregnant  women  greater  than  if  the  pregnancy  were  terminated  

-­‐‑ Clause  B  The  termination  is  necessary  to  prevent  permanent  injury  to  the  physical  or  mental  health  of  the  woman  

-­‐‑ Clause  C  The   pregnancy   has   NOT   exceeded   its   24th   week   and   that   the   continuance   of   the   pregnancy  would  involve  risk,  greater  than  if  the  pregnancy  were  terminated,  of  injury  to  the  physical  or  mental  health  of  the  pregnant  women  

-­‐‑ Clause  D  The   pregnancy   has   NOT   exceeded   its   24th   week   and   that   the   continuance   of   the   pregnancy  would  involve  risk,  greater  than  if  the  pregnancy  were  terminated,  of  injury  to  the  physical  or  mental  health  of  any  existing  children  of  the  family  of  the  women  

-­‐‑ Clause  E  There   is   substantial   risk   that   if   the   child  were   born   it   would   suffer   from   physical   or  mental  abnormalities  as  to  be  seriously  handicapped,    

-­‐‑ Most  are  done  under  C  and  D  (93%)  -­‐‑ Some  are  done  under  E  (e.g.  96%  of  cases  of  trisomy  21  and  spina  bifida)  -­‐‑ If  the  pregnancy  is  chosen  to  continue,  then  parents  are  supported,  and  are  offered  monitoring.  

They  make  detailed   plans   for   delivery,   labour,   neonatal   resuscitation,   post-­‐‑mortem,   postnatal  care  etc.  

-­‐‑ They   are   also   offered   genetic   counselling   to   be   informed   of   the   risk   of   recurrence   and  management  of  future  pregnancies,  and  implications  to  other  family  members    

             

Page 25: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  6:  

Complex  genetic  diseases  –  can  genes  make  us  fat?  Dr  Alexandra  Blakemore  ([email protected])    

1. Introduction  to  genetics  of  obesity:  syndromic,  monogenic,  common  obesity    

-­‐‑ Fat  is  a  necessary  storage  of  energy  and  water  -­‐‑ It  provides  insulation  and  supports  and  protects  vital  organs  -­‐‑ It  is  a  source  of  hormones,  and  is  a  regulator  of  reproduction.  It  is  especially  important  in  sexual  

signalling  -­‐‑ It  also  has  a  role  in  the  immune  system  and  aids  wounds  healing  -­‐‑ Not   having   enough   fat   is   a   bad   thing,   and   leads   to   infertility,  miscarriage,   and   death   from  

infections  etc.  -­‐‑ We  have  a  complex  system  to  regulate  our  body  fat  levels,  it  is  called  the  adipostat  -­‐‑ BMI  is  used  to  calculate  where  one  is  on  the  obesity  scale  -­‐‑ Ethnicity  is  important  as  Asians  have  a  lower  BMI  but  a  higher  percentage  body  fat  compared  to  

Caucasians  -­‐‑ Body  weight  is  affected  by  muscle/fat  ratio  as  muscle  is  heavier  than  fat  -­‐‑ Obesity  is  defined  has  having  a  BMI  of  over  30  and  morbid  obesity  is  over  40  -­‐‑ There  are  increasing  obesity  rates  -­‐‑ Not  everyone  is  overweight  though  -­‐‑ There  are  syndromic  obesities,  monogenic  obesities  and  common  obesities  -­‐‑ Genetics  affects  individual  responses  to  the  obesogenic  environment  -­‐‑ Obesity  is  caused  by  a  number  of  factors:  

o Lack  of  physical  activity  o Gene  variations  o Stress  o High  density  calorie  diet  

-­‐‑ Essentially,  we  get  fat  by  our  behaviour,  our  physiology   (metabolism  etc.)  and  it   is  controlled  by  our  genes  that  control  our  adipostat  

-­‐‑ To  gain  1lb  of  fat  a  year,  we  only  need  10  extra  calories  a  day,  which  isn’t  gluttony,  it’s  that  our  appetites  need  to  be  very  highly  regulated  to  be  perfect  

 Syndromic  obesity  

-­‐‑ There   are   around   30   known   syndromic   forms   of   obesity,   i.e.   those   that   are   usually  accompanied  by  mental  retardation,  and  particular  dysmorphic  or  clinical  features  

o Prader-­‐‑Willi  syndrome  is  the  most  common  –  imprinting  defect,  see  earlier  lecture    Monogenic  obesity  

-­‐‑ All  monogenic  forms  of  obesity  known  so  far  affect  appetite  regulation  -­‐‑ Monogenic  obesity  are  dominant  or  recessive  single  gene  disorders  -­‐‑ Leptin  –  the  first  obese  gene.  This  is  a  blood-­‐‑borne  factor  that  controls  appetite  and  stops  people  

eating.  The   levels  of   this  protein   in   the  blood  are  an   indicator  of  how  much   fat   there   is   in   the  body  

-­‐‑ Leptin  causes  a  reduced  food  intake,  reduced  insulinaemia  and  reduced  blood  sugar  

Page 26: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Obese  mice  were  shown  to  have  a  lack  of  or  fewer  leptin  or  leptin  receptors  in  the  body  -­‐‑ No  leptin  in  children  causes  hunger,  obesity,  no  puberty,  poor  growth,  low  thyroid  function  and  

immune  problems                            

-­‐‑ Most  fat  people  have  lots  of  leptin  but  may  lack  or  have  less  receptors  than  less  fat  people  -­‐‑ The  adipostat  is  the  leptin-­‐‑melanocortin  system:    

                                     

-­‐‑ Other  genes  in  the  same  pathway  also  cause  single-­‐‑gene  obesity  e.g.  o PC1  –  recessive  obesity  o MC4R  –  most  common  single-­‐‑gene  form  of  obesity  

-­‐‑ All  affect  appetite  regulation                

Page 27: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    Common  obesity    

-­‐‑ Tested  for  with  genome-­‐‑wide  association  studies  (GWAS),  which  is  hypothesis-­‐‑free,  “common  disease,  common  variant”  

-­‐‑ Looked  at  single  nucleotide  polymorphisms   throughout   the  genome  of  people  with  common  obesity  and  the  GWAS  identified  SNPs  only  explain  a  small  proportion  of  common  obesity  risk  

-­‐‑ It   has   only   identified   associations   that   are   statistically   strong   and   reliable,   but   the   genetic  component  contribution  is  low,  <5%  

-­‐‑ More  work  is  needed      

2. Identification  of  GSVs  in  “obesity-­‐‑plus”  patients  3. Implications  for  common  obesity  

 -­‐‑ The   heritability   of   complex   diseases   could   maybe   be   due   to   rare   variants   or   even   genomic  

structural  variation  (GSV)  or  even  epigenetics  -­‐‑ Patients  with  syndromic  forms  of  obesity  have  more  GSVs,  i.e.  threefold  more  deletions,  more  

than  500kb  more  than  control  populations  -­‐‑ Large  GSVs   are   found   in   patients  with  obesity-­‐‑plus   phenotypes   can   be   used   to   identify   new  

obesity  loci.  These  loci  can  be  investigated  in  the  general  population  to  find  rare  variants  -­‐‑ Variations  can  include  deletions,  duplications  (amplifications),  inversions  or  translocations  -­‐‑ We  all  have  many  GSVs,  some  have  no  effect,  but  others  are  associated  with  ill  effects  -­‐‑ For   example,   a   deletion   on   chromosome   16p11.2   in   a   patient   with   ‘obesity-­‐‑plus’   phenotypes  

caused  some  mental  retardation,  poor  speech,  congenital  nystagmus,  squint,  etc.    -­‐‑ This  deletion  is  observed  in  patients  with  neurocognitive  problems  -­‐‑ The  deletion  is  more  common  in  ‘obesity  plus’  patients  -­‐‑ It  is  the  first  GSV  (copy  number  variation)  directly  associated  with  obesity  -­‐‑ Duplications   (the   opposite)   were   reported   to   be   associated   with   schizophrenia,   and   other  

mental  illnesses    “Convincing  obesity  association  for  deletions  of  the  ~700kb  16p11  ‘autism’  locus                Onset  of  obesity  at  8-­‐‑10  years  of  age              Explains  ~1%  of  adult  morbid  obesity  in  the  general  population              Duplication  carriers  are  more  likely  to  be  underweight  Strong  association  with  child  obesity  of  nearby  220kb  deletion  encompassing  SH2B1              Explains  >0.5%  of  child  morbid  obesity  cases                Impact  on  adult  obesity  is  less  clear”      

4. Prospects  for  personalised  medicine    

-­‐‑ Around  1:20  morbidly  obese  people  have  a  highly  penetrant  Mendelian  form  of  obesity  -­‐‑ They  are  rarely  offered  screening  or  counselling  e.g.  for  obesity  of  autism  risk  -­‐‑ They  can  be  offered  a  choice  of  medications  that  help,  new  drug  development  and  there  is  the  

potential  for  intensive  lifelong  preventative  intervention  and  they  can  choose  their  surgery  if  needed  

Key  point:  Common  diseases  may  have  a  range  of  causes,  some  very  strongly  genetic.  Progress  in  genetics  is  fast,  Genetic  causes  do  not  imply  that  there  is  nothing  that  can  be  done.  Evidence-­‐‑based  medicine  must  be  used  and  must  not  be  suspended  because  patients  are  stigmatised  

Page 28: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    GENETICS  7:  

The  future  of  genomic  medicine  Dr  Jess  Buxton  ([email protected])    

1. Advances  in  genomic  medicine    What  we  know  now    

-­‐‑ We  know  about  chromosome  abnormalities  that  cause  congenital  conditions  -­‐‑ Genetic  mutations  have  been  identified  for  many  monogenic  disease  -­‐‑ As  a  result,  in  the  UK,  antenatal  screening  is  offered  for  all  pregnant  women.  Genetic  tests  and  

counselling  is  offered  for  families  affected  and  there  is  the  Newborn  Screening  Programme  -­‐‑ The  entire  DNA  sequence  of  the  human  genome  has  been  determined  -­‐‑ Extensive  genetic  variation  has  been  identified,  both  by  single  base  pair  changes  and  structural  

variants  -­‐‑ There  are  some  common  and  rare  genetic  variants  that  affect  risks  of  complex  disease  

 What  we  don’t  yet  know    

-­‐‑ We  don’t  know  what  all  the  DNA  codes  for  in  humans  -­‐‑ We  don’t  know  the  causes  of  some  rare  monogenic  diseases  -­‐‑ We  don’t  know  genetic  variants  that  affect  different  drug  responses  -­‐‑ Most  of  the  DNA  variants  that  affect  risk  of  complex  disease,  we  don’t  know  -­‐‑ And   we   also   do   not   know   how   genetic   and   environmental   factors   interact   to   affect   risk   of  

complex  disease    a. ‘Next  generation’  DNA  sequencing  b. Finding  the  causes  of  monogenic  disease    

-­‐‑ The  entire  genome  cost  loads  to  sequence.  Now  it  could  be  done  cheaply  very  soon  -­‐‑ Next  generation  sequencing  is  used  to  identify  novel  gene  mutations  in  monogenic  disease  -­‐‑ Whole  exome  sequencing  –  just  protein  coding  genes  

o WES  helped  to  determine  the  genes  that  caused  Miller  syndrome  (DHODH  gene)  and  Schinzel-­‐‑Giedion  syndrome  (SETBP1  gene)  

 c. Pharmacogenetics    

 -­‐‑ Studying  the  genetic  basis  for  the  difference  between  individual  response  to  drugs  can  lead  to  

the  right  drug  being  administered  at  the  right  dose  for  the  right  patient  -­‐‑ For  example,  variants  in  the  TPMT  gene  affect  the  metabolism  of  the  drug,  6-­‐‑mercaptopurine.  

People  with  low  activity  of  TPMT  are  at  risk  of  bone  marrow  toxicity  if  the  drug  is  given  -­‐‑ Maturity  onset  diabetes  of  the  young  (MODY)  can  be  misdiagnosed  as  Type   I  diabetes,  and  

the  drugs  used  to  treat  them  are  different  –  metformin  for  MODY  and  insulin  for  Type  I    

d. Risk  of  common,  complex  diseases    

-­‐‑ Many  genetic  variants  that  affect  the  risk  of  common,  complex  traits  and  diseases  are  identified  through  Genome  Wide  Association  Studies  (GWAS)  (See  previous  lecture)    

Page 29: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

2. Personalised  healthcare  a. Direct-­‐‑to-­‐‑consumer  genetic  testing    

-­‐‑ Genetic  information  can  be  sold  -­‐‑ Some  companies  are  already  offering  disease-­‐‑specific  tests  directly  to  consumers  -­‐‑ For  monogenic  disease,  direct  to  consumer  genetic  tests  can  provide:  

o Carrier  status  information  e.g.  Tay-­‐‑Sachs,  cystic  fibrosis  o Detection  of  rare  resinous  conditions  in  newborns  e.g.  MCAD  deficiency  o Genetic  counselling  (must  be  provided)  o Determination  of  later  onset  disease  e.g.  hereditary  breast  cancer  

-­‐‑ For  complex  disease  o May  cause  alarm  o May  offer  false  reassurance  o Data  privacy  concerns  o Limited  clinical  utility  as  treatments  are  rare  

 Can  help  in  the  prediction  of  common  disease  –  e.g.  Type  II  diabetes  –  caused  by  the  complex  interaction  of  environmental  factors  and  genetics  =  strongest  gene  with  variants  is  the  TCF7L2  gene    b. Ethical  issues  

 -­‐‑ Tests  of  dubious  clinical  benefit  may  be  offered  -­‐‑ Test  results  may  cause  false  alarm  -­‐‑ May  provide  false  reassurance  -­‐‑ Complex  results  may  not  be  explained  fully  or  with  appropriate  genetic  counselling  -­‐‑ Data  protection  concerns  -­‐‑ Commercial  genetic  testing  for  disease  risk  based  on  incomplete  information  -­‐‑ Right  ‘not  to  know’  (particularly  children)  -­‐‑ Protection  of  data,  right  to  ‘genetic  privacy’  -­‐‑ Equality  of  access  to  genetic  information  

 c. Future  perspectives  

 -­‐‑ Whole   genome   sequencing   can   replace   individual   genetic   tests   for   variants   to   examine   all  

variants  (both  common  and  rare)  in  one  analysis      

3. Embryo  testing  a. Pre-­‐‑implantation  genetic  diagnosis  (PGD)  

 -­‐‑ PGD  is  a  genetic  test  carried  out  on  IVF  embryos  usually  to  ensure  that  only  embryos  free  from  

a  genetic  condition  are  returns  to  the  woman’s  womb    

b. Uses  and  limitations      

-­‐‑ PGD   is   an   option   for   some   families   at   risk   of   having   a   child   affected   by   a   serious   genetic  condition  

-­‐‑ Can  use  FISH  to  detect  chromosomal  conditions  e.g.  Down  syndrome  -­‐‑ PCR  can  be  used  to  detect  mutations  in  single  genes  

Page 30: ENETICS% Mrs$Jones firstconsultation · F A35#year#old%woman,%Mrs%Jones,%comes%in%for%a%genetic0consultation,because%she%is%7weeks0

MCD:  Genetics       Usama  Asif    

-­‐‑ Used  to  make  saviour  siblings  to  select  an  embryo  free  from  disease  and  HLA  tissue  matched  for  a  sibling  affected  by  a  disease  so  allows  for  easy  transplantation  

-­‐‑ Used  for  hereditary  breast  cancer  –  BRCA1  mutations  can  be  detected  and  avoided  -­‐‑ Used   to   avoid   early   onset   and   late   onset   severe   genetic   diseases   e.g.   Tay-­‐‑Sachs   and  

Huntington’s  respectively  -­‐‑ Limitations:  

o Needs  to  be  done  with  IVF  –  emotionally  and  physically  demanding,  and  expensive  o Only  suitable  for  diseases  where  the  genetic  abnormality  is  known  o Can  only  select  from  traits  that  are  present  in  the  embryos  obtained  

 c. Ethical  issues      

-­‐‑ PGD  (like  all  IVF  procedures)  involves  discarding  unused  embryos    -­‐‑ Disability  rights  arguments  -­‐‑ ‘Slippery  slope’  –  designer  babies?  (not  allowed  yet)  -­‐‑ Eugenics    -­‐‑ Spare  part  babies?