energy futures - massachusetts institute of...

26
MIT competes in DOE’s Solar Decathlon in Washington, D.C. Doubling vehicle fuel economy by 2035: Technically feasible, challenging in scope Rechargeable batteries: Nanoscale clues to higher power Energy-related environmental changes: Consequences for crop yields, global economy MITEI supports student innovators to help reduce MIT’s energy, environmental footprint Energy Futures MIT ENERGY INITIATIVE VOLUME 1 WINTER 2008 IN THIS ISSUE

Upload: others

Post on 30-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • MIT competes in DOE’s Solar Decathlon in Washington, D.C.

    Doubling vehicle fuel economy by 2035:Technically feasible, challenging in scope

    Rechargeable batteries: Nanoscale clues to higher power

    Energy-related environmental changes:Consequences for crop yields, global economy

    MITEI supports student innovators to help reduce MIT’s energy, environmental footprint

    Energy FuturesM I T E n E r g y I n I T I a T I v E v o l u M E 1 • W I n T E r 2 0 0 8

    I n T h I S I S S u E

  • Winter 2008 | MIT Energy Initiative | Energy Futures | �

    A l e t t e r f r o m t h e d i r e c t o r

    2 UpdateontheMITEnergyInitiative

    r e s e A r c h r e p o r t s

    4 Doublingvehiclefueleconomyby2035:Technicallyfeasible, challenginginscope

    7 Rechargeablebatteries:Nanoscalecluestohigherpower

    9 Energy-relatedenvironmentalchanges: Consequencesforcropyields,globaleconomy

    e d u c A t i o n & c A m p u s e n e r g y A c t i v i t i e s

    12 Studentsdevelopmethodologyforassessingoptions tocutcampusenergyuse,emissions

    13 Makingadifference:Researchopportunitiesforundergrads

    e d u c A t i o n

    15 Stackablecars,alternativeenergyhighlightMITEnergyNight

    16 MartinFellowswelcomed

    17 AnMITfirst:CompetinginDOE’sSolarDecathlon

    c A m p u s e n e r g y A c t i v i t i e s

    19 MITEIsupportsstudentinnovatorstohelpreduceMIT’s energy,environmentalfootprint

    20 Nightandday:Lightingthedome,installingaphotovoltaicarray

    21 DormElectricityCompetition: MITstudentssaveenergywhereitcounts

    l f e e • laboratoryforenergyandtheenvironment

    22 AllianceforGlobalSustainabilityannualmeetingtobeheldatMIT

    22 AltWheelsfestivalfeaturescleanenergytechnologiesandpractices

    23 WorkshopcelebratesnewdoctoralprograminPortugal

    24 InaugurationceremoniesheldforenergycenterattheCyprusInstitute

    Energy Futuresc o n t e n t s

    Energy Futures ispublishedtwiceyearlybytheMITEnergyInitiative.Itreportsonresearchresultsandenergy-relatedactivitiesacrosstheInstitute.Tosubscribe,[email protected].

    NancyW.Stauffer,editor

    ISSN1550-008X

    Copyright©2008MassachusettsInstituteofTechnology.Materialinthisnewslettermaybereproducedifcreditedto“Energy Futures, MITEnergyInitiative.”

    MIT Energy InitiativeTheMITEnergyInitiativeisdesignedtoaccelerateenergyinnovationbyintegratingtheInstitute’scutting-edgecapabilitiesinscience,engineering,management,planning,andpolicy.

    MITEnergyInitiativeMassachusettsInstituteofTechnology77MassachusettsAvenue,E40-455Cambridge,MA02139-4307

    617.258.8891

    web.mit.edu/mitei

    PrintedonrecycledpaperDesign:TimBlackburnPrinting:PuritanPressPSB 07.10.0839

  • 2 | Energy Futures | MIT Energy Initiative | Winter 2008

    A l e t t e r f r o m t h e d i r e c t o r

    Update on the MIT Energy Initiative

    Dear Friends,

    WelcometotheinauguralissueofEnergy Futures, thenewsletteroftheMITEnergyInitiative.I’dliketotakethisopportunitytotellyouaboutsomeoftheexcitingdevelopmentsandactivitiesoftheInitiativeduringitsfirstyearofoperation.PresidentSusanHockfieldsetMIT’senergyinitiativeinmotionduringherMay2005inauguraladdresswhenshehighlightedMIT’s“…institutionalresponsibilitytoaddressthechallengesofenergyandtheenvironment.”FollowingayearlongstudyofhowMITcouldbestcontribute,inNovember2006PresidentHockfieldformallylaunchedtheMITEnergyInitiative(MITEI)withabroadmandatetoaddresskeyglobalandnationalenergychallenges:meetinggrowingdemandforenergywhileincreasingtheeffi-ciencywithwhichitisused;enhancingenergysecurity;andmitigatingtheenvironmentalimpactsofenergypro-duction,distribution,andconsumption,especiallytheclimaterisksassociatedwithgreenhousegasemissions.

    BuildingonMIT’slonghistoryoffirst-rateresearchandindustrialandinterna-tionalcollaboration,MITEIisdesignedtoaccelerateenergyinnovationbyintegratingtheInstitute’scutting-edgecapabilitiesinscience,engineering,management,planning,andpolicy.MITEIalsoenliststhetalentanddedica-tionofMIT’sstudentstoaddresscriticalenergyandenvironmentalchallenges.FormalMITEI/ industrypartnershipsenableMITresearcherstoworkcloselywithscientists,engineers,andplannersinindustry,ensuringtherapidmove-mentofideasintothemarketplace.Finally,MITEIseekstoserveasan“honestbroker”tothepolicydiscourse,providingleadersingovernmentandindustrywithunbiasedanalysesofenergyissues,informedenergypolicyoptions,andopportunitiesforcriticalenergydialogue.InlaunchingMITEI,PresidentHockfieldnamedanEnergyCouncilmadeupoffacultyfromallfiveMITschoolstohelpimplementtheInitiative’sresearchandeducationgoals.Councilmembersarelistedintheboxonthefacingpage.MITEIDeputyDirectorRobertArmstrongandIworkcloselywiththecounciltooverseeInitiativeactivities,coordinatewithexistingenergyactivitiesacrosstheInstitute,andfacilitatethedevelopmentofrelationshipswithotherinstitutions,industries,andgovernmentalagencies.TohelpguidetheInitiative,PresidentHockfieldhasestablishedanExternalAdvisoryBoardcomposedofhigh-levelmembersfromindustry,nongovern-mentalorganizations,academia,andthinktanks.ItwillbechairedbyformerU.S.SecretaryofStateGeorgeShultz,anMITalumnusandformerfacultymember.ThefirstmeetingoftheboardisscheduledformidJanuary2008.

    MITEI’sfourmajorprogramcompo-nents—industryresearchpartnerships,education,campusenergymanage-ment,andoutreach—arealreadyyieldingimportantresults.MITEI’sindustrypartnershipssupportmajorresearchprograms,early-stageinnovativeprojects,educationalinitiatives,fellowships,undergraduateresearchopportunities,otherstudentactivities,andoutreach.Currentindus-trypartnersandsomeoftheirresearchinterestsareBP(coalconversion);Ford(newpowertraintechnologies);Chevron(ultra-deepwateroilandgasproduction);b_TEC,Barcelona(renew-ables);andSchlumberger(subsurfacescienceandtechnology).Thisfirstgroupofindustrypartnersrepresentsa$70millioncommitmentoverthenextfiveyears,includingalmost100newenergygraduatefellowships.ThepartnershavealsocontributedtoanEnergyResearchSeedFund;thefirstawardssupportingnovelenergy-relatedproposalsfromacrossthecampuswilltotalnearly$1millionandwillbeannouncedbyJanuary.Todate,MITEIhasreceivedmorethan50seedfundproposals.Thisextraordinaryresponsetothefirstcallforproposalsshowsthebreadthanddepthofenergy-relatedinnovationbyMITfaculty.TwotaskforcesarehelpingMITEIimplementitsmandatefromPresidentHockfield.TheEnergyEducationTaskForce,co-chairedbyProfessorsAngelaBelcherandJeffersonTester,isassessingtheexistingcurriculum,evaluatingandcoordinatingundergrad-uateandgraduateenergy-relatedsubjects,andconsideringthedevelop-mentofanInstitute-wideenergyminor.TheCampusEnergyTaskForceisco-chairedbyProfessorLeonGlicksmanandTheresaStone,MITexecutivevicepresidentandtreasurer.Activities

  • Winter 2008 | MIT Energy Initiative | Energy Futures | �

    A l e t t e r f r o m t h e d i r e c t o r

    includeimprovingandplanningcampusenergyuse,providinginputtonewcampusconstruction,andsupportingstudentactivitiesthatusethecampusasalaboratoryforenergyresearchandeducation.NotableadvancesinMITEI’seducationprogramthisyearincludeaverygenerousgrantfromtheKabcenellFoundationsupportingavarietyofcurricularinitiatives.MIThasalsobeenawardedaClareBootheLucePostdoc-toralFellowshipProgramforWomeninEnergy,tobefilledstartinginfall2008.Otheropportunities,suchasanMITEIPracticeSchool,areunderdiscussion.

    TheCampusEnergyTaskForcehasalreadyawardedstudentgrantsforcampusenergyprojectsrangingfromawindturbinedesigncompetitiontoacampaignencouragingtheuseofrevolvingdoors.Asecondroundoffundedprojectswillbeannouncedsoon.Anexcitingparalleldevelopmentisthegenerationofnumerousstudent-ledprojectssuchasadormefficiencycompetition(wonbyMcCormickHall)andanaward-winningplantoproducebiodieselfromcampuswaste.TheLaboratoryforEnergyandtheEnvironmenthasbeenbroughtundertheMITEIumbrella,providingessentialadministrativeandprogrammaticsupportforMITEI.Similarly,MITEIisleveragingthestrongCorporateRelations/IndustrialLiaisonProgramnetworktoattractcorporatefinancialsupportandFoundationRelationsandIndividualGivingtoattractfounda-tionsandindividualdonors.Thiscollaborationavoidsduplicatingeffortsandminimizesthebuildupofsupportinfrastructures.Ontheoutreachfront,MITEIheldthreecolloquiaduring2007.ProfessorGeorgeWhitesidesspokeaboutexcitingbreak-throughopportunitiesinbasicenergyresearch.LeeRaymond,theformerCEOandchairmanofExxonMobil,discussedtherecentlyreleasedreportbytheNationalPetroleumCouncilonglobaloilandgasissues.SirNicholasSternspokeabouttheglobalclimatechangeimperative.Inaddition,MITEI,withthesupportoftheMITEnergyClub,recentlyhostedanEnergySalonfortheMITEIAffiliateandAssociatemembers;discussionfocusedon“InnovationIsanEnergyResource:GrowingtheEnergyIndustryinNewEngland,”withapanelledbyProfessorRichardLester,directorofMIT’sIndustrialPerformanceCenter.

    TheMITEIwebsiteisalsoupandrunningat.WeencourageyoutotakeamomenttovisitthisportaltoenergyactivitiesattheInstitute.WeanticipateaddingnewMITEIindustrypartnersinthenearfuture.Withthosepartnerswillcomeaddi-tionalenergyresearchopportunities,newenergyfellowshipsfortheInstitute,andalargerEnergyResearchSeedFundtosupportcreativeproposalsfromacrossthecampus.MITEIwillalsocontinuetosupportdevelopmentofthenextgenerationofenergyinnovatorsandentrepreneursbyhelpingtocreateeducationoptionsthatcombinesingle-disciplinedepthwithmultidisciplinebreadthandthatusethecampusitselfasateachingandlearningtool.Futureissuesofthisnewsletter—tobepublishedtwiceyearly—willhigh-lightenergyresearchoutcomesandenergy-relatedactivitiesattheInstitute.Iappreciateyourongoinginterestinenergyissues,MITEI,andthekeyroletheInstituteisplayingtohelpaddressglobalenergychallenges. Sincerely,

    Professor Ernest J. MonizDirector,MITEnergyInitiative

    December2007

    MITEI Energy Council

    Ernest J. MonizCecilandIdaGreenProfessorofPhysicsandEngineeringSystems,director,MITEI

    Robert C. ArmstrongChevronProfessorofChemicalEngineering,deputydirector,MITEI

    • • •

    Stephen AnsolabehereEltingR.MorisonProfessorofPoliticalScience

    Angela M. BelcherGermeshausenProfessorofMaterialsScienceandEngineeringandBiologicalEngineering

    John M. DeutchInstituteProfessor(Chemistry)

    Leon R. GlicksmanProfessorofBuildingTechnologyandMechanicalEngineering

    Rebecca H. HendersonGeorgeEastmanKodakLFMProfessorofManagement

    Emanuel M. SachsFredFortFlowers’41andDanielFortFlowers’41ProfessorofMechanicalEngineering

  • � | Energy Futures | MIT Energy Initiative | Winter 2008

    Doubling vehicle fuel economy by 2035:Technically feasible, challenging in scopeAccordingtoarecentMITstudy,itshouldbepossibletodoublethefueleconomyofnewcarsandtruckssoldin2035usingimprovedversionsoftoday’stechnology.Achievingsuchadoublingistechnicallyfeasible,butitwillbeamajorchallenge.

    Inonesuccessfulscenario,forexample,almost80%ofallvehiclessoldin2035willbehybrids,diesels,orturbochargedgasolineengines.Inaddition,technicaladvancesbetweennowandthenmustfocusalmostentirelyonimprovingfueleconomyratherthanmakingcarsfasterandlarger—thetrendoverthelastfewdecades.Ifthosetworequirementsarenotmet,thenvehicleswillhavetobesubstan-tiallylighterforthefactor-of-twogaininfueleconomy.Perhapsthebiggesthurdleischangingconsumers’expectationsandbuyingbehavior.“Becauseofthefocusonimprovingfueleconomyratherthan,say,increasingacceleration,the2035buyerwillhavetobesatisfiedwithclosetotoday’slevelofperformance,”saidJohnB.Heywood,theSunJaeProfessorofMechanicalEngineeringanddirectorofMIT’sSloanAutomotiveLaboratory.Amidgrowingconcernsaboutenergysecurityandtheimpactsofclimatechange,muchattentionisfocusingoncuttingenergyusefortransportation—asectorthatconsumestwo-thirdsofallpetroleumintheUnitedStatesandthatgeneratesathirdofthenation’scarbondioxideemissions.Congressisnowdebatinglegislativeproposalstoincreasethefueleconomyofnewpassengervehiclesoverthenexttwodecades.Buthowrealisticarethegoalsbeingconsidered?

    Forthepastninemonths,ProfessorHeywoodandgraduatestudentsLynetteCheah,ChristopherEvans,andAnupBandivadekarhavebeendrawingontheiraccumulatedexpertiseandadvancedmodelingmethodstofindout.Theirdefinedgoalwastoendupwith2035light-dutyvehicles—cars,wagons,SUVs,pickups,andvans—thathaveonaveragetwicethefuelecon-omyofthosebeingsoldtoday.“Thisisasurprisinglydemandingtask,”saidProfessorHeywood.“Wedon’tusuallythinkaboutdoublingthefueleconomy—inotherwords,halvingthefuelconsumption—ofeverycarinsomeaveragesense.”Theresearcherslimitedtheirstudytoevolvedgasolineinternalcombustionenginesandthreeadvancedvehicletechnologies:turbochargedgasolineengines,high-speedturbochargeddieselengines,andhybrid-electricsystems.“Wewantedtofocusonreadilyavailabletechnologiesthatcanpenetratethemarketwithoutalotofaddedinvestmentinthetechnologyorfuelinginfrastructure,”saidMs.Cheah.Plug-inhybrids,batteryelectricvehi-cles,andalternativefuelswerethere-foreexcluded.Theyexaminedthreewaysofreducingfuelconsumption:usingmorealterna-tiveandfuel-efficientpropulsionsystems(calledpowertrainsintheirstudy),channelingtechnologyimprove-mentstowardreducingfuelconsump-tionratherthanincreasingperformance,andreducingvehicleweightandsize.ProfessorHeywoodemphasizedthatthestudydoesnotaimtoforecasthowvehiclesormarketsmightlookin2035.“We’reworkingbackwardstounderstandthedegreeofthechangesthatarenecessarytoachievethedesiredtarget,”hesaid.

    What can we expect by 2035?

    Theresearchersfirstdeterminedhowmucheachoption,takentoitsmaximum,couldcutfuelconsumptionby2035.Asabaseline,theanalysisassumesthatenginesandtransmis-sionswillcontinuetoimproveastheyhaveinthepast.Use alternative, more efficient power-trains. Today,lessthan5%oftheU.S.marketismadeupofturbochargedgasoline,diesel,andhybridvehicles.Basedontheratesatwhichpreviousnewtechnologieshavepenetratedtheexistingvehiclefleet—andassum-ingaggressivepromotionofthenewtechnologies—theresearchersassumedthatthemaximummarket-sharegrowthrateofalternativepowertrainsis10%peryear.Atthatrate,alternativepowertrainscouldatmostmakeup85%ofnewvehiclesalesin2035,yieldinga23%reductioninthefuelconsumptionoftheaverage2035modelyearvehicle.Emphasize reducing fuel consumption. Asvehicletechnologiesimprove,thereisatrade-offbetweenreducingfuelconsumptionandincreasingperfor-mance,size,andweight.Overthepasttwodecades,forexample,gainshavebeenusedtopushuphorsepowerandaccelerationratherthantoincreasefueleconomy.Akeyvariableinthestudywastherefore“emphasisonreducingfuelconsumption”(ERFC).Assuming100%ERFC,vehicleperformancewouldremainunchangedfromtoday,butfuelconsumptionwouldbe35%lowerintheaverage2035vehicle.Reduce vehicle weight and size.Thethirdoptionistoreducevehicleweightandsize(beyondwhatisassumedatdifferentlevelsofERFC).Heaviermaterialscanbereplacedbylighter-weightonessuchasaluminumand

    r e s e A r c h r e p o r t s

  • Winter 2008 | MIT Energy Initiative | Energy Futures | �

    high-strengthsteel.Asvehicleweightdecreases,theengine,suspension,andothercomponentscanbedownsized.Andtheoverallvehiclecanbemadesmaller—achangethatwouldfocusfirstonlargervehicles,producingafleetwithamoreconsistentsize.Integratingallofthoseapproachescouldcutvehicleweightby35%by2035,yieldinga19%reductioninfuelconsumptionintheaverage2035vehicle.

    Putting it all together

    Nosingleoptioncutsfuelconsumptionenoughtoreachthestudy’sdefinedtarget,butvariouscombinationsofthethreeoptionswoulddothejob.Using

    theiranalyticaltools,theresearchersgeneratedthefigureabove,whichdemonstrateshowthethreeoptionscanbecombinedandtradedofftoachievethefactor-of-twogain.Anypointwithintheshadedtriangle—the“solutionspace”—willyieldthedesiredoutcome.Forexample,assumethattechnologyimprovementsgoalmostentirelytowardfueleconomy.Inthiscase,vehicleaccelerationinthefuturewillremainessentiallyunchangedfromthecurrentlevelof0to60mphin9.4seconds(thediagonallineatthelowerright).Atoneextreme(pointA),thetargetcanbereachedwhenthemarket

    shareofalternativevehiclesisjust34%,butvehicleweightmustthendropto1,055kg—morethanathirdlessthanvehiclesweightoday.Attheotherextreme(pointB),vehicleweightisjustover1,300kg,adeclineof20%fromtoday,butthenthemarketshareofalternativevehiclesmustrisetoalmost80%.Alongthediagonallinebetweenthoseextremesaremanycombinationsofmarketshareandweightreductionthatwillwork.NowassumeanERFCofonly60%.Giventhatlevelofemphasisonin-creasingperformance,theaveragenewcarin2035wouldacceleratefrom0to60mphin7.6s(pointC

    r e s e A r c h r e p o r t s

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0900 1,000 1,100 1,200 1,300 1,400

    More than 35%weight reductionwould be needed.

    New cars would have poorer acceleration performance than today’s cars have.

    7.6 s8.0 s

    More than 85% alternative powertrains would be needed.

    Iso-performance lines (0–60 mph time)

    Solution space

    A

    B

    C

    Mar

    ket

    shar

    e o

    f al

    tern

    ativ

    e p

    ow

    ertr

    ain

    s (%

    )

    2035 average new car weight (kg)

    8.5 s

    9.0 s

    9.4 s

    thisfigureshowsasetofscenariosthatwouldleadtoadoublingoffueleconomyinnewcarsin2035.pointswithintheshadedareawouldyieldthedesiredresultbycombiningchangesinthreefactors:marketpenetrationofalternativepowertrains,reductioninvehicleweight,andchannelingtechnologyimprovementsmoretowardincreasingfueleconomyratherthanperformance(hereindicatedbyhowmuchaccelerationchangesfromtoday’saverageof0to60mphin9.4s).maximumchangesareindicatedforeachfactor.

    Sample Scenarios for Doubling Fuel Economy in New 2035 Cars

  • � | Energy Futures | MIT Energy Initiative | Winter 2008

    inthesolutionspace).Butthenachiev-ingthefactor-of-twotargetrequirestakingtheothertwooptionstotheirlimits:alternative-vehiclemarketsharemustbe85%and2035vehicleweightonlyabout1,055kg.Throughoutthoseanalyses,hybridsnevermakeupmorethan35%ofthenewvehiclefleet.“Butinpreviousworkwe’veshownthathybridsgetsignificantlybetterfueleconomythanstandard-enginevehicles,whethergasolineordiesel,”saidProfessorHeywood.“Soanimportantquestionis:Howmuchdifferencecanusingmorehybridsmake?”Tofindout,anotheranalysisassumedthat55%ofallnewvehiclesarehybrids,withthebalancespreadaboutevenlyamongconventionalgasoline,turbogasoline,anddieselengines(seethetableabove).Thepreponderanceoffuel-efficienthybridsbringsdownfuelconsumptionenoughthatthetargetismetevenwhennewcaraccelerationperformance(0to60mph)increasesto8.1sandvehicleweightdropsto1,300kg—areductionthatcanbeachievedbyusingmorelightweightmaterials.

    Theresearchersestimatethatreachingthefactor-of-twotargetwillcostman-ufacturersanextra$50–$65billioninthe2035modelyearalone,orroughly20%morethanabaselineassumingfueleconomyremainsunchangedfromtoday.Consideringthefuelsavings,however,societyasawholewouldrecoupthosecostswithinfourtofiveyears.Theyconcludethathalvingfuelcon-sumptionby2035ispossiblebutwillrequireaggressiveactionbeginningtoday.“Therewillhavetobeafun-damentalshiftinthemindsetandmotivationofabroadbaseofconsumer,industry,andgovernmentalstake-holders,”saidProfessorHeywood.“We’llneednewpoliciesthatpushindustrytoutilizenewtechnologieswhileatthesametimecreatingamarketdemandthatpullstechnologygainstowardreducingfuelconsumption.”

    • • •

    This research was supported by Environ- mental Defense. Further information can be found in:

    L. Cheah, C. Evans, A. Bandivadekar, and J. Heywood. Factor of Two: Halving the Fuel Consumption of New U.S. Automobiles by 2035. MIT Laboratory for Energy and the Environment Publication No. LFEE 2007-04 RP, October 2007. Available at .

    r e s e A r c h r e p o r t s

    Model year Emphasis on Average Average Market share by powertrain

    reducing fuel acceleration car curb Conventional Turbo Diesel Hybrid consumption time (0–�0 mph) weight gasoline gasoline gasoline

    2006 — 9.4s 1,620kg 95% 1% 2% 2%

    2035 75% 8.1s 1,300kg 15% 15% 15% 55% (20%reduction)

    thistableshowsonescenariothatwouldyieldafleetofnewcarsin2035withdoublethefueleconomyofnewcarstoday.onekeyfactorishowmuchemphasisisputonusingtechnologygainsbetweennowandthentoreducefuelconsumptionratherthantoincreaseperformancefactorssuchasacceleration.mitanalysesshowthataccomplishingthesechangesby2035istechnicallyfeasiblebutwillrequiremajorshiftsintheexpectationsandbehaviorofconsumers,manufacturers,andthegovernment.

    Plausible Scenario for Doubling Fuel Economy in New 2035 Cars

  • Winter 2008 | MIT Energy Initiative | Energy Futures | �

    Rechargeable batteries:Nanoscale clues to higher powerImaginechargingupthebatteryinyourelectricvehicleinfiveminutes,thenacceleratingrapidlytojointrafficonthehighway.ThatisthevisionofMITscientistswhoarelookingtospeeduptheflowofelectricityintoandoutofrechargeablebatteries.Theirrecentresearchfindingsprovideatomic-levelinsightsintowhatlimitsthatflow—andwhyfabricatingelectrodesfromnanoscaleparticleseasestheproblem.Yet-MingChiang,theKyoceraProfessorofCeramicsintheDepartmentofMaterialsScienceandEngineering,isnostrangertopowerfulrechargeablebatteries.Inpastresearch,heandhiscolleaguesdevelopedanintrinsicallysafe,long-lastinglithium-ionbatterythatwasfivetimesmorepowerfulthanitscompetitors.Thebattery,marketedsince2001byA123SystemsofWatertown,MA,hasbeenincorpo-ratedintohigh-poweredcordlesstoolsandisnowbeingdemonstratedinplug-inhybridelectricvehicles.Despitetheirsuccess,ProfessorChiangandhiscolleagues—likeothersinthefield—havebeenuncertainastowhyhighpowerissohardtoachieve.Whilemanyexpertscitelimitedratesofchemicaldiffusion,ProfessorChiangsuggestedinsteadthattheimpedimentishowquicklystructuralchangescanoccurattheatomiclevel—ahypothesisthathasbeensupportedbyresultsfromrecentexperimentalandtheore-ticalwork.Whenalithium-ionbatteryproduceselectricity,lithiumionsflowfromthenegativeelectrodetothepositiveelectrodeofthebattery.Thefasterthoseionsmove,thehigherthebat-tery’spower.Thelimitingfactorhasbeenhowquicklythepositiveelectrodecantakeupthelithiumions.Andhowquicklythatelectrodecanrelease

    lithiumionshaslimitedtherateatwhichthebatterycanberecharged.Amongtheelectrodematerialsthatworkbestareolivines,afamilyofcrystallinecompoundswithasimilaratomic-scalestructure.Foragivenolivine,thestructurediffersslightlydependingonwhetherornotlithiumispresent.Asaresult,whenlithiumionsmoveintooroutofthepositive

    electrode,anewcrystallinestructuremustforminplaceoftheoriginalone.“Sothechallengeistoengineer,ordesign,thematerialtoallowthatstructuralorphasechangetohappenasquicklyaspossible,becausethefasteritcango,thehigherthepowerthatthebatterycandeliverandthefasteritcanberecharged,”ProfessorChiangsaid.

    100nm

    r e s e A r c h r e p o r t s

    50nm

    theseimagesshowthenanoscaleparticlesthatmakeuptheelectrodesofadopedlithium-ironphosphatebattery—anintrinsicallysaferechargeablebatterydevelopedatmitandremarkableforitshighpower,longlifetime,andmechanicalrobustness.recentmitresearchhasprovidedatomic-scaleinsightsintowhyworkingatthenanoscalemakesthosecharacteristicspossible.

  • 8 | Energy Futures | MIT Energy Initiative | Winter 2008

    Butinaconventionalelectrode,thereisaproblem:thechangefromonecrystallinestructuretotheothergetsstuck.Considertheflowoflithiumintothepositiveelectrodeasacharged-upbatteryisdischargedtorunadevice.“Westartoffwithapositiveelectrodethatcontainsnolithium,”ProfessorChiangexplained.“Asweaddlithium,partofthatsolidmodifiesitscrystallinestructure.Nowthere’samismatchbetweenthatnewstructureandtheoriginalstructureinthepartofthesolidthat’sstilldevoidoflithium.”Themis-matchattheinterfacebetweenthetwocrystallinestructuresslowstheuptakeoflithiumions,whichlimitsthepowerofthebattery.Thekey,then,istopreventthematerialfromseparatingintoregionswithandwithoutlithium.Butstablecrystallinestructuresexistforonlytwocomposi-tions:whenthematerialiscompletelyfreeoflithiumandwhenitisfullysaturatedwithlithium.Nostablecrys-tallinestructureexistsforintermediateconcentrationsoflithium,suchasthosepresentwhenthebatteryisdischargingorcharging.Asaresult,thematerialquicklyseparatesintolithium-saturatedandlithium-freeregions.

    The benefits of nanotechnology

    Inconventionalformsofthesecom-pounds,theonlywaytoachievestabilityatintermediatelithiumconcen-trationsisbyraisingthetemperature—notapracticalsolutionforabatteryelectrode.Anotherapproachistousenanotechnology.“Thefascinationwithnanomaterialsisthatunusualthingshappenwhenparticlesgetverysmall,”saidProfessorChiang.“Asthesizescalegetssmallerandsmaller,physicalpropertiessuchasmeltingpointsandopticalandelectronicpropertiescanchangedramatically.”

    Indeed,whentheresearcherstestedelectrodematerialsmadeupofparticleslessthan100nmindiameter,theyobservedregionswithintermediatelithiumconcentrations—evenatroomtemperature.Intheoverallmaterial,thecompositionwasmoremixed,reducingoreliminatingabruptinter-facesbetweenregionsofdifferingcomposition.Andwhenthatconditionprevailed,thebatterybeingtestedhadmuchhigherpower.“Thereforewereasonedthatthesetwoarecoupledphenomena,”ProfessorChiangsaid.“Byreducingtheparticlesizetothenanoscaleweallowthetransitionfromlithium-devoidtolithium-saturated,andviceversa,toproceedmuchfaster.”Moreover,intestswithdifferentolivinestheresearchersfoundthatsomeexhibitedthedesiredbehaviorfarmorethanothers.Thatfindingcouldexplainwhycertainolivinesexhibitexceptionalperformanceaselectrodematerialswhileothersdonot—adiscrepancythathaspuzzledbatteryexperts.Agoodcriterionforidentifyingpromisingnewelectrodecompoundsmaythereforebetheirabilitytoadsorbandreleaselithiumwithoutabruptandsignificantstructuralchange.Asanaddedbenefit,theuseofsuchcompoundsshouldextendbatterylifetime.Eliminatingabruptchangesincompositionwillreducecrackingandotherdamagethatcanoccurwithrepeatedcharginganddischarging.Initially,ProfessorChiangwasreluctanttousetheterm“nanotechnology”whentalkingabouthisongoingworkonbatterytechnology.However,thenewfundamentalresultshaveconvincedhimthatheandhisteamareindeedusingnanotechnologytoengineerandcontrolthephysicalpropertiesoftheirelectrodematerials.“Therehavepreviouslybeenobservationsof[this

    typeof]changeinbehavioratthenanoscale,”hesaid.“Butthisisthefirsttimethatwe’reawareofthatit’sbeenobservedinabattery-storagematerialandactuallyusedasamechanismforachievinghigherperformance.”

    • • •

    This research was supported by the United States Advanced Battery Consortium and a Royal Thai Government Graduate Fellowship. Further information can be found in:

    N. Meethong, H-Y. Huang, S. Speakman, W. Carter, and Y-M. Chiang. “Strain accom-modation during phase transformations in olivine-based cathodes as a materials selec- tion criterion for high-power rechargeable batteries.” Advanced Functional Materials, vol. 17, 2007, pp. 1115–1123.

    r e s e A r c h r e p o r t s

  • Winter 2008 | MIT Energy Initiative | Energy Futures | �

    Energy-related environmental changes:Consequences for crop yields, global economyAnewMITstudyconcludesthatchangesintheenvironmentcausedbyincreasingfuelusemaydamageglobalvegetation,resultinginseriouscoststotheworld’seconomy.Accordingtotheanalysis,changesinclimateandincreasesincarbondioxide(CO2)concentrationsmay,onnet,benefitcrops,pastures,andforests,especiallyinnortherntemperateregions.However,thosebenefitsmaybemorethanoffsetbythedetrimentaleffectsofincreasesintroposphericozone,notablyoncrops.Theeconomiccostofthedamagewillbemoderatedbychangesinlanduseandbyagriculturaltrade,withsomeregionsmoreabletoadaptthanothers.Buttheoveralleconomicconsequenceswillbeconsiderable.Amongthemoststrikingresultsofthestudyisthedifficultyofcontrollingozonelevels.“Evenassumingthatbest-practicetechnologyisadoptedworldwide,weseerapidlyrisingozoneconcentrationsinthecomingdecades,”saidJohnM.Reilly,associatedirectorforresearchoftheMITJointProgramontheScienceandPolicyofGlobalChange.“Thatresultisbothsurprisingandworrisome.”Thenewfindingscomefromastudythatisnovelinbothdesignandmethod-ology.WhileotherinvestigatorshavelookedathowchangesinclimateandinCO2concentrationsmayaffectvegeta-tion,Dr.ReillyandhiscoworkersattheJointProgramandtheMarineBiologicalLaboratory(WoodsHole,MA)addedtothatmixchangesintroposphericozone.Moreover,theylookedatallthreeenvironmental“stressors”atonce,examiningtheircombinedimpactsoncrops,pastures,andforests,allofwhichcompeteforlanduse.(Changes

    inecosystemsandhumanhealthandotherimpactsofpotentialconcernareoutsidethescopeofthisstudy.)TheyperformedtheiranalysisusingtheMITIntegratedGlobalSystemsModel(IGSM),whichprojectsemissionsofgreenhousegases(GHGs)andozoneprecursorsbasedonhumanactivityandnaturalsystems.Coupledmodelsthentrackchemicalreactionsintheatmosphere,flowsofGHGsintoandoutofoceansandland,andimpactsonvegetationandsoils.Resultingchangesincropyields,grazingland,andforestsarefedintoalinkedeconomicmodel,whichcalculatesactivityinvariouseconomicsectors,accountingfortheeffectsofadaptationtochange,interna-tionaltrade,andtheimpositionofemissions-controlpolicies.Calculationsareperformednotforselectedyearsbutonacontinuous,day-by-daybasis—anapproachthatiscriticalforsimulatinggradual,long-termchangesinsoils.Spatialvariationiscapturedbyconsid-ering62,000individualcellscoveringtheEarth’ssurface.

    Expected and unexpected findings

    AnalyticalresultsfortheimpactsofclimatechangeandrisingCO2concentrations(assumingbusinessasusual[BAU],withnoGHGemissionsrestrictions)broughtfewsurprises.Theestimatedtemperatureincrease—2.75°Cby2100—wouldbenefitvegeta-tioninmuchoftheworld,aswouldthefertilizationeffectofrisingCO2.However,theimpactsoneconomicmarketsarenotmajor.Theeffectsofozonearedecidedlydifferent.Themodelcombinedprojec-tionsofozone-precursoremissionswithdataonweatherandprevailingwindstogeneratethefirstdetailedpictureofwhereozoneforms,howitmoves

    aroundtheworld,andtheconcentra-tionsthatresult.UndertheBAUassumptions,thoseconcentrationsrisedramaticallyovertime.Increasingwealthleadstomoredeploymentofnewtechnologieswithlowerprecursoremissionsperunitofenergy;butevenso,ozoneconcentrationsincreasedramaticallyduetothescaleoftheeconomyandtheprojectedincreaseinfueluse.Furthermore,theincreasedozoneconcentrationshaveadisproportion-atelylargeimpactonvegetation.Inmanylocations,atmosphericozoneconcentrationsarecurrentlyjustbelowthe“accumulatedozonethreshold”of40partsperbillion(AOT-40),thecriticallevelabovewhichadverseeffectsareobservedinplantsandecosystems.“Soarelativelymodestincreaseintheaverageozonelevelresultsinadramaticincreaseintheaccumulatedhoursabove40ppb,”Dr.Reillysaid.IntheBAUcase,globalaverageozonegoesupby50%by2100,butAOT-40levelsovermajorvegetationzonesincreasebyfivetosixtimes.Whilethoseincreasesaffectallvegeta-tion,cropsarehardesthit.Modelpredictionsshowthatozonelevelstendtobehighestinregionswherecropsaregrown.Inaddition,cropsareparticularlysusceptibletoozonedamagebecausetheyarefertilized.“Whencropsarefertilized,theirsto-mataopenup,andtheysuckinmoreair.Andthemoreairtheysuckin,themoreozonedamageoccurs,”saidDr.Reilly.“It’salittlelikegoingoutandexercisingreallyhardonahigh-ozoneday.”Whatistheneteffectofthethreeenvironmentalchanges?FortheBAUcase,yieldsfromforestsandpastures

    r e s e A r c h r e p o r t s

  • �0 | Energy Futures | MIT Energy Initiative | Winter 2008

    thesefiguresshowmitprojectionsofglobalaveragepercentagechangeincropyield(top)andproduction(bottom)underthreescenarios.inthehighestcurveineachfigure,greenhousegas(ghg)emissionsareunregulated,andozonedamagetocropsisexcludedfromtheanalysis.inthelowestcurve,ghgsareunregulated,andcropdamagefromozoneisincluded.inthemiddlecurve,ghgsareregulated,whichleadstosomereductioninozoneconcentrationsandrelatedcropdamage.Whilecropyieldsmaydropdramatically,cropproductionneverdeclinesbymorethan8%becausetheworldadaptsbyallocatingmoreresourcestogrowingfood.

    – 40

    – 20

    0

    20

    40

    60

    80

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Crop Yield%

    Climate and GHGs only GHGs capped Business As Usual

    Year

    – 40

    – 20

    0

    20

    40

    60

    80

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Crop Production

    %

    Climate and GHGs only GHGs capped Business As Usual

    Year

    – 40

    – 20

    0

    20

    40

    60

    80

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Crop Yield%

    Climate and GHGs only GHGs capped Business As Usual

    Year

    – 40

    – 20

    0

    20

    40

    60

    80

    2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Crop Production

    %

    Climate and GHGs only GHGs capped Business As Usual

    Year

    r e s e A r c h r e p o r t s

  • Winter 2008 | MIT Energy Initiative | Energy Futures | ��

    declineslightlyorevenincreasebecauseoftheclimateandCO2effects.Butcropyieldsfallbynearly40%worldwide(seethetopfigureonthefacingpage).Regionalprojectionsshowa60%declineinChinaanda40–50%declineintheUnitedStatesandEurope.However,thoseyieldlossesdonottranslatedirectlyintolossesinfoodproduction.Accordingtotheeconomicmodel,theworldadaptsbyallocatingmorelandtocropsinordertokeepfoodproductionup(seethebottomfigureonthefacingpage).Evenwhencropyieldsgodownbyasmuchas60%,theproductionlossisnomorethan8%.Whilesuchresultsunder-scoretheworld’sabilitytoadapt,thatadaptationcomesatacost.Theuseofadditionalresourcesbringsaglobaleconomiclossof10–12%ofthetotalvalueofcropproduction.

    The regional view

    Globalestimatesdonottellthewholestory,however,asregionalimpactsvarysignificantly.Forexample,north-erntemperateregionsgenerallybenefitfromclimatechangebecausehighertemperaturesextendtheirgrowingseason.However,thecroplossesassociatedwithhighozoneconcentra-tionswillbesignificant.Incontrast,thetropics,alreadywarm,donotbenefitfromfurtherwarming;buttheyarenotashardhitbyozonedamagebecauseozone-precursoremissionsarelowerinthetropicsthantheyareinthenortherntemperateregions.Thenetresult:regionssuchastheUnitedStates,China,andEuropewouldneedtoimportfood;andsupplyingthoseimportswouldbeabenefittotropicalcountries.SuchresultsemphasizethevalueoftheMITapproach.“Thisisthefirsttime,

    Ithink,thatpeoplehavelinkedamulti-stressanalysistoaneconomicmodel,takingintoaccountadaptationandinternationaltrade,”Dr.Reillysaid.“Climatechangeisgenerallyseenasworseningthesituationindevelopingcountries,butwecan’tknowthetrueimpactsunlesswealsolookatozoneeffectsandtradeamongregions.”Theozoneprojectionsraisenewcon-cernsabouthowtodesigneffectiveregulations.Accordingtothemodel,ozoneconcentrationsaresohighthatsignificantintercontinentaltransportoccurs.Onceformed,ozonelastsontheorderofmonths.IntheNorthernHemisphere,itistransportedbyprevailingwesterlywindsfromChinatoNorthAmerica,fromNorthAmericatoEurope,andsoon.Muchlesstransportoccursfromnorthtosouth,sotropicalregionsescapethehigherlevelsoftheNorthernHemisphere.Theresearchshowsthattroposphericozoneisrapidlybecomingatrans-boundaryproblemthatcannolongerbecontrolledwithinacountryoranurbanarea.Interestingly,limitingGHGemissionshelps.Ananalysisassuminganaggres-siveprogramtocapGHGsleadstolowerfuelcombustion.Asaresult,emissionsofozoneprecursorsdrop;andglobalozoneconcentrationsin2100arehalfashighastheyareintheBAUcase.Inthatanalysis,cropyieldsdonotbenefitnearlyasmuchfromclimatechangeandCO2,buttheamountofozonedamageissignificantlyreduced.

    Future plans

    Reillywarnsthatthestudy’sclimateprojectionsmaybeoverlyoptimistic.Theanalysestodateuseatwo-dimensionalclimatesimulation,whichmaynotgeneratesufficiently

    detailedresults.Otherstudieswithlarge,three-dimensionalclimatemodelssuggestmorespatialandtemporalvariability,includinganincreasedpossibilityfordrought,particularlyinmid-continentalregions.Theresearchersarenowincorporatingamorerealisticclimatesimulationintotheiranalyses.Theyarealsoaddingotherenviron-mentalstressorsgeneratedbyfuelcombustion.Emissionsofnitrogen,forexample,willencouragevegetationgrowthbutmayalsodisruptthenaturalecosystembyfavoringsomeplantsoverothers.Emissionsofaerosolsandparticulatematterformhaze,whichreducestheamountofsunlightreach-ingtheEarth’ssurface,andalsoaffectcloudformationandprecipitationpatterns.“Itwillbeinterestingtoseehowinclusionoftheimpactsofthosepollutantsinouranalysesaffectstheproductivityoutcomes,particularlyforplaceslikeChinaandIndia,wherethere’salreadyalotofhaze,”saidDr.Reilly.

    • • •

    This research was supported by the U.S. Department of Energy, U.S. Environmental Protection Agency, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. National Oceano-graphic and Atmospheric Administration, and the industry and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change. Further information can be found in:

    J. Reilly et al. “Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone.” Energy Policy, vol. 35, no. 11, pp. 5370–5383, November 2007.

    r e s e A r c h r e p o r t s

  • �2 | Energy Futures | MIT Energy Initiative | Winter 2008

    e d u c A t i o n & c A m p u s e n e r g y A c t i v i t i e s

    Students develop methodology for assessing options to cut campus energy use, emissionsAnewmethodologydevelopedasaclassprojectshowsthatmeasuressuchasinstallingenergy-efficientlightingandrepairingsteamtrapsonthecampusheatingsystemcouldreduceMIT’senergyuseandcarbonemis-sions—andsavetheInstitutemoneyatthesametime.TheprojectwaspartofanewMITSloanSchoolofManagementclasscalledLaboratoryforSustainableBusiness,orS-Lab,inwhichmorethan60studentsexploredtheconceptofsustainabilityandthebusinessopportunitiesandchallengesitpresents.Akeyexercisewasteaminguptoworkonreal-worldprojectswithclientsrangingfrommultinationalcorporationsandenergystartupstononprofitsandhealthcareorganizations.ForgraduatestudentsNicholasHofmeisterandBrandonMonkofMITSloanandCydMcKennaoftheDepartmentofUrbanStudiesandPlanning,theclientwasMITitself—morespecifically,theCampusEnergyTaskForceoftheMITEnergyInitiative,alsoknownasthe“WalktheTalk”(WTT)TaskForce.Representingthetaskforcewereitsco-chairLeonR.Glicksman,professorofbuildingtech-nologyandmechanicalengineering,andtaskforcememberStevenM.Lanou,deputydirectorforsustainabilityinMIT’sEnvironmentalProgramsOffice.Themissionofthetaskforceincludesidentifyingandpromotingmeasuresthatcouldbetakenwithinthenextfewyearstoreduceenergyuseandcarbondioxide(CO2)emissionsontheMITcampus.Lanounotedthedifficultyofthatmission.“Possibleprojectsrangefromequipmentupgradesandenergy-efficiencymeasurestorenewable

    powersystemsandbehavioralchangeprograms,”hesaid.“Howdowebegintoidentify,assess,andprioritizethoseopportunitiesbasedonbothfinancialmetricsandgreenhousegas-mitigationmetrics?”Hofmeisterandhispartnerstookonthechallenge.AssistedbyEricBeaton,seniorengineerintheSystemsEngi-neeringGroup,andothersinMIT’sDepartmentofFacilities,thestudentsmadealistofaboutahundredpossibleprojectsand—forasmanyaspossible—metricssuchastheimpactonCO2emissions,capitalcost,paybackperiod,netpresentvalue,andreturnoninvest-ment.IncludingbothenvironmentalandfinancialimpactsallowedtheteamtoassessthenetpresentvaluepertonneofCO2-equivalentreduced,whichsummarizes“howmuchbangyougetforyourbuck,”saidLanou.Totrackandstoretheinformation,theteamturnedtoGooglespread-sheets.“Googlespreadsheetsallowedustocreateacollaborativelivingdocument,”saidHofmeister.“Ratherthanhavingonefilethatpeoplehadtopassaround,wehadadocumentthateverybodycouldaccessandworkonsimultaneously.”Theresultofthework—the“CarbonMitigationMatrix”—includesarangeofprojectswithdifferingcharacteristics.Forsome,thecapitalinvestmentrequiredisrelativelylowandwouldbepaidbackbyoperatingsavingswithinafewyearsorless.Examplesincludereplacingconventionallightbulbswithcompactfluorescents;repairingsteamtraps;putting“energymisers”onvendingmachines;andrecommission-ingbuildings,whichinvolvesexaminingallsystemstomakesurethattheyarestilloperatingaccordingtothedesignspecificationswhentheywereinstalled.

    Theteamalsoassessedbehavioralchanges,suchasusingrevolvingdoors,shuttingoffcomputersandclosinglaboratoryfumehoodswhenevertheyarenotinuse,andmakingenergy-efficientpurchasingdecisions.Thoseitemsinvolveminimalcapitalcostandwouldhaveasignificantimpact,buttheyrequireeducationalcampaignstohelppeoplechangetheirhabits.Otherprojectsinvolvemajorcapitalinvestmentandlongerpaybackperiods.Examplesincludeinstallationofrenew-ablesystemssuchassolarpanelsandexpansionofMIT’senergy-efficientcogenerationplant—anoptionalreadybeingscrutinizedaspartofautilitymaster-planningeffort.Theteamidentifiedmanyopportunitiestocutenergyuseandgreenhousegasemissionswhilesimultaneouslysavingmoney.Inanumberofcases,theestimatedrateofreturnontheprojectsexceedsthatofMIT’sendowment.“Themethodology[developedbythestudents]willbeavaluabletoolforanyinstitutionputtingtogetheraportfolioofprojectswithdifferentcapitalcosts,paybacktimes,andimpactsonenergyuseandemissions,”saidLanou.“Insomecases,itdemonstratestheeco-nomicaswellasenvironmentalbenefitsofdoingseeminglymundaneprojects.”Thematrixisnota“finalpolishedproduct,”saidPeterCooper,managerofsustainabilityengineeringandutilityplanningintheDepartmentofFacilities.Indeed,MITandotheruniversitiesareengagedinongoingdiscussionsaboutexactlyhowtocalculatethereductioninCO2emissionsassociatedwithbuyingonefewerkilowatt-hourofelectricity.Thatreductionvarieswiththemixoffuelsusedtogeneratethepowersuppliedoverthegrid.

  • Winter 2008 | MIT Energy Initiative | Energy Futures | ��

    Nevertheless,Coopercalledthematrixa“goodtooltogetusonourway.”ManyitemsonthematrixwereknowntoFacilities,butitalsoelicitedlotsofnewideas,especiallythoserelatingtochangesinbehavior.“ThematrixservedagoodpurposeinthefirstyearoftheEnergyInitiativetocollectideaswithoutjudgingthemandtoshowthattherearetwodifferentkindsofideasthatcouldgetimplementedrequiringdifferentskillsanddifferentpeopletogetthemdone,”Coopersaid.Accordingly,theWTTTaskForceformedtwosubgroups,onelargelypopulatedbyFacilitiespeoplewhocandoengineeredchanges,andtheotherbycampusleadersonrecyclingandothersexperiencedinpromotingbehavioralchanges.ToJohnD.Sterman,theJayW.ForresterProfessorofManagementandEngineeringSystemsandoneoftheS-Labinstructors,developingthematrixwasanidealclassproject.Studentsdemonstratedforthemselvesandforothersthatinvestingintheenvironmentdoesnothavetocomeatafiscalcost;indeed,itcanbringasignificantfiscalgain.“Oftenthere’snotradeoff,”Stermansaid.“Bymakingtheseinvestmentswecanhelptheenvironmentandsavemoney.”

    • • •

    e d u c A t i o n & c A m p u s e n e r g y A c t i v i t i e s

    Making a difference: Research opportunities for undergradsHowcanMITundergraduatescontrib-utetoanewenergyfutureandasustainableworld?SamMaurer’07refinedareactorforthermaldecom-positionofwastebiomass.MonicaLewis’06exploredthepotentialforusinginnovativegreenbuildingtechniquestoreducetheenviron-mentalfootprintofMITdorms.MargaretAvener’07wadedthroughthewet-landsofAugusta,GA,tostudywaterflowanditsabilitytocarrychemicalcontaminants.MITstudentshaverespondedtotheMITEnergyInitiative(MITEI)withasurgeofnewideasformeetingglobalenergychallengesandacommitmenttoinvestigateandimplementsolutions.UndergraduateswanttointegrateenergyandsustainabilityintotheiracademicworkatMITandaddressthosepressingconcernsaspartoftheirMITcareer.IncoordinationwithMIT’sUndergraduateResearchOpportunitiesProgram(UROP),theMITEIEducationOfficeprovidesunder-graduatesameansofpursuingthoseinterestsbyparticipatinginenergy-andsustainability-relatedresearch.TheMITEIEducationOfficeisexpand-ingthespecialUROPfundingoppor-tunitiesitofferstoconnectmorestudentstonewresearchinenergy,environment,andsustainability.OfspecialnotearepositionsavailablethroughtheCampusSustainabilityUROP(CSUROP)ProgramandtheMartinFamilyUROPProgram.IntheCSUROPProgram,theMITEIEducationOfficepartnerswithMIToperations—notablytheEnvironmentalProgramsOffice(EPO)andtheDepart-mentofFacilities—toenablestudentstostudyMIT’sownenergyandenviron-mentalchallengesandthelessonsMIT’scampuscanprovideforlocalandglobal

    applications.SomestudentsstudytechnicalinnovationsthatareapplicabletoMIT’soperationsandinfrastructure.MonicaLewis’sstudyofhowtogreenMIT’sdormsisaprimeexample—onethatbroughtMITHousingintoanewconversationwiththeDepartmentofFacilitiesandMITEI.Otherstudentsinvestigateinnovativeimplementationandfinancingstrategies.AnnikaLarsson’08,forexample,benchmarkedcurrentuniversitymodelsofrevolvingloanfundsforenergyefficiencyimprovements,afinancingstrategythatiscurrentlybeingimplementedatuniversitiesaroundthecountry.CSUROPprojectshavealsoexaminedthehumanbehaviorcomponentsofsystems,forexample,analyzinglaborprocessesandpubliccommunicationsrelatedtorecyclingoncampus.ThreeCSUROPsfocusedontheproposedon-campusBiodiesel@MITprocessor,whichwouldconvertusedvegetableoiltobiodieselfortransportationfuel.Theissuesaddressedwerefuelcertification,logisticsoftransportandproduction,andopportunitiesforeducationandprojectdocumentation.AninnovativefeatureoftheCSUROPProgramisthateachstudentissuper-visedbyanMITfacultymemberinconjunctionwithastaffmemberinMIToperations.Bothguidestudentworktoassurethatstudentlearninggoalsareservedandthatoperationsneedsaremet.AllparticipatingstudentsprovideaconcludingpresentationtowhichtheyinvitekeyMITfacultyandstaffwhomaybeinterestedinoraffectedbytheresearchfindings.ThepresentationsbothinformMITprojectsandgivestudentsexperiencespeakingbeforeaprofessionalaudience.

    rogermoore,mit’ssuperintendentofutilities,explainstheworkingsofthemitcogenerationplanttovisitingmitstudents.thecogenera-tionfacility,whichcombinestheproductionofelectricityandsteam,reducedgreenhousegasemissionsby30%afteritcameonlinein1995.

    Phot

    o: S

    teve

    n La

    nou,

    MIT

  • �� | Energy Futures | MIT Energy Initiative | Winter 2008

    MITEI Education Office

    Amanda Graham, [email protected]

    Beth ConlinEducationCoordinatorandStudentLiaisonE40-481617.452.3199bconlin@mit.edu

    Karen [email protected]

    e d u c A t i o n & c A m p u s e n e r g y A c t i v i t i e s

    StevenM.Lanou,deputydirectorforsustainabilityintheEPOandamemberofMITEI’sCampusEnergyTaskForce,helpsidentifyanddevelopCSUROPprojectsandcoordinatestheparticipa-tionofMIToperations.“Undergraduateresearchprovidesimportantinforma-tionthatcanenhancetheeffectivenessofcampusenergyprojects,”saidLanou.“TheCSUROPProgramisavaluablemechanismforsupportingthistypeofresearch,andweintheEPOarethrilledtobeabletopartnerwithMITEI.”TheMartinFamilyUROPProgrambuildsonthegeneroussupportpro-videdbytheMartinfamilyforgraduateresearchinsustainabilityacrosstheInstitute.MITundergraduateswhomeettheacademicrequirementsoftheprogramareabletoworkwithaMartingraduatefellowonresearchcontributingtoglobalsustainability.ThegoalsoftheprogramaretoconnectMartinUROPstudentstoamentorinresearch,toshowthemnewpathwaystoresearchcareers,andtogivethemanewperspectiveontheapplicationofresearchtosustainabilityprojects.AnyMITfacultymemberiseligibletonominateoneoutstandinggraduate

    studentworkinginsustainability-orientedresearchatMITforaMartinFellowship.MartingraduatefellowsmaythenrequestfundingforaMartinFamilyUROP.StudentsfromallschoolsanddepartmentsatMITareeligibleforMartinUROPs,whichmaycoincidewiththeirmajororaddressadifferentfieldofstudy.Theopportunitiesavailablevarywidely.Forexample,theresearchtopicsaddressedbycurrentMartingraduatefellowsrangefromadvancedphotovoltaicmaterialstomathematicalpatternsofinfectiontransmissiontonegotiationofenvironmentaldisputes.

    FormoreinformationandalistofcurrentUROPopeningsforspring2008,gotoourUROPsite,currentlyhousedontheLFEEwebsiteat.

    InformationontheMartinFellow-shipprogramsisavailableat.NominationsforMartinFellowsandMartinFamilyUROPsforthe2008–2009academicyeararedueFebruary27,2008.

    Ifyouhavequestions,pleasecontactBethConlin,MITEIEducationCoordinatorandStudentLiaison,[email protected].

    • • •

    By Beth Conlin, MIT Energy Initiative and Laboratory for Energy and the Environment

    miteieducationofficestaff:fromleft,Bethconlin,Karenluxton,andAmandagraham.

    Phot

    o: T

    im B

    lack

    burn

  • Winter 2008 | MIT Energy Initiative | Energy Futures | ��

    e d u c A t i o n

    Stackable cars, alternative energy highlight MIT Energy NightTheairhummedwithpossibilitiesinmidOctoberwhen1,200peoplecrowdedintotheMITMuseumforthethirdannualMITEnergyNight,whichfeaturedmorethan40studentandcompanypresenters.“Theeventshowcasesthemostexcitingresearch,technology,labs,andstartupscomingoutofMIT,”saidMattAlbrecht,asecond-yearMITSloanSchoolofManagementstudentandco-directoroftheeventalongwithelectricalengineeringmaster’sdegreestudentFergusHurly.“Theeventisacatalystfornetworking,collaborating,andgenerat-ingnewbusinessideas,”Albrechtsaid.AddedJasonRoeder,asecond-yearMITSloanstudent:“EnergyNighttrulyexhibitsthepassionandexcitementregardingenergyatMIT.”Albrechtsaidthisyear’sEnergyNightattractedtwiceasmanyattendeesaslastyear’s.Nextyear’sEnergyNightalreadyisscheduledforOctober10,2008,likelyagainattheMITMuseum.TheMITEnergyClubsponsoredthe2007eventalongwithcorporatesponsorsShell,venturecapitalistfirmGeneralCatalyst,CambridgeEnergyResearchAssociates,EnerNOC,andBritishPetroleum.Theeventfeaturedboothsanddis-playsbyMITlaboratories,includingthePlasmaScienceandFusionCenter,theEnvironmentallyBenignManu-facturingResearchGroup,andtheEarthResourcesLaboratory.AlsoonhandweretheMITEnergyInitiative;DraperLaboratory;companiesincludingA123Systems,C3BioEnergy,andEnerNOC;andstudentgroupssuchastheMITGeneratorandBiodiesel@MIT.GeneralMotors’newplug-inhybridvehicle,theChevroletVolt,highlighted

    thenightasattendeesreceivedanup-closeviewofthesportscarbeforeenteringtheMITMuseum.SurpriseguestCraigCornelius,SolarProgramsdirectorattheU.S.DepartmentofEnergy,alsostoppedintoseewhatthebuzzwasabout.Students,faculty,staff,businesspro-fessionals,andothersexaminedpostersanddisplays,sampledhorsd’oeuvres,listenedtolivejazz,andchattedwithpresenters.WillLark,athird-yearPhDcandidateinmediaartsandsciencesattheMediaLab,foundhimselfamidathrongofpeopleaskingwhenandwheretheCityCarstackablevehicleondisplaywouldhitcitystreets.Thetwo-passengerelectriccarisdesignedtobesharedindenseurbanareasasanadjuncttopublictransportation.Forexample,acommutercoulddriveitfromatrainstationtowork.Thecarcanbestackedatvariouspointsaroundacityandwillusecitypowertorechargewhenparked.“Peopleweren’tquestioningifitworkedbutratherwhatisnext,whatcityitwillbestartedin,andhowwe’llimplementit,”Larksaid.“Peoplewereexcitedaboutthecar.”TheMediaLabisnowindiscussionsaboutmovingtheCityCarbeyondtheconceptstageandintomanufacturing.EncountersatEnergyNightcanleadtointerestingopportunities.AndrewPeterson,aPhDcandidateinchemicalengineeringwhohasexhibitedallthreeyearsofEnergyNight,recalledachancemeetingwhenHarvardBusinessSchoolstudentTracyMathewsdroppedbyhisposteratlastyear’sevent.“Sheaskedalotoftoughquestionsaboutourmethaneposterandmademefeeluncomfortable,”Petersonsaid.

    “ImadeamentalnotethatthisissomeoneIwantonmysideinthefuture.”Thatfuturecamesoonerratherthanlater.Overthepastyear,PetersonandfellowMITchemicalengineeringPhDcandidateCurtFischercameupwithanideaforrenewablepropanegas

    excitementbuzzedatthethirdannualenergynightasvisitorspeeredatpostersanddisplays,chattedwiththeresearchersinvolved,andsocializedwithoneanother.organizedbythemitenergyclubandheldatthemitmuseum,thisannualeventgathersthescience,engineering,policy,andbusinessenergycommunitiesatmitandshowcasesthemostexcitingenergyactivitiesacrosstheinstitute.

    graduatestudentdavidBradwellofthedepartmentofmaterialsscienceandengineeringtellsenergynightvisitorsabouthisresearchonalarge-scale,high-amperageenergystoragedevicethatcouldsupportrenewableenergytechnologies.usedwithwindpowersystems,forexample,thedevicecouldensurethatelectricityisavailableforcustomersevenwhenthewindisnotblowing.

    Ener

    gy N

    ight

    pho

    tos:

    Edm

    und

    Carle

    vale

    , MIT

  • �� | Energy Futures | MIT Energy Initiative | Winter 2008

    production.TheyenlistedMathews,andtogetherthethreestudentsformedC3BioEnergy,acompanydesignedtocommercializethetechnology.Theywonseveralprizesthispastyear,includingasrunner-upinMIT’s$100KEntrepreneurshipCompetitionandinHarvardBusinessSchool’sBusinessPlanContest.AnotherdisplayfocusingonalternativeenergywasBiovolt,ateamofstudentsbuildingaprototypedevicetomoreefficientlygenerateelectricityfromcellulose-basedbiomass.Theirconceptinvolvesusingdifferentbacteriatobreakdownthecellulose,eventuallyproducingprotonsandelectrons,whichareusedtopowerafuelcell.Thehandhelddevicecouldbeusedtopowercellphonesandhouseholddevices,especiallyinoff-gridlocationssuchasdevelopingcountries.TheBiovoltteamsteppedupactivityonitsprojectwhenitenteredtheinauguralMADMEC,orMITandDowMaterialsEngineeringContest,whichtheteamultimatelywon.“Otherpeoplehaddonemicrobialfuelcells,”explainedJosephWalish,aBiovoltteammemberandPhD

    e d u c A t i o n

    candidateinmaterialsscienceengineer-ing.“Butnoone[atthetime]hadputtogetheragroupofsymbioticbacteriainoneself-sustainingunit.”Tomaketheirdevicemoremarketable,theteamcutthecostoftherechargerdevice.“Weusedanon-platinumcata-lystforthefuelcells,whichdecreasedcostanorderofmagnitude,”Walishsaid.“Thathelpeduswinthecontest.”Thosewereamongtheprojectshigh-lightingthecutting-edgeworkonalternativeenergybeingdoneatMIT.Otherprojectsdisplayedresearchonhigh-currentenergystorage,nanotube-enhancedultracapacitors,floatingwindturbines,alternativetransportationfuels,advancednuclearenergyplants,algalfuelcells,syntheticgas,carboncapture,andphotovoltaicnanodefectengineering.

    • • •

    Martin Fellows welcomedAtadinnerheldonSeptember24,2007,21graduatestudentsfromacrosstheInstitutewerewelcomedintotheMartinFamilySocietyofFellowsforSustain-abilityfortheacademicyear2007–2008.ThenewFellowswillengageinresearchontopicsrangingfromtheecologyofmarinemicrobestohurricaneprepared-nesstothedevelopmentofsimulationtoolsforsustainablebuildingdesign.TheMartinFamilySocietywasestab-lishedatMITin1996byLee’42andGeraldineMartintofostergraduate-levelresearch,education,andcollabo-rationonissuesrelatingtosustainability.Since2006,theMartinFoundationhasalsobeenprovidingsupportforMITundergraduatesinvolvedinsustainabilityresearchthroughMIT’sUndergraduateResearchOpportunitiesProgram(UROP).Each“MartinUROP”collaborateswithaMartingraduatefellowandafacultysupervisoronasustainability-relatedresearchproject.

    visitorstoenergynighttookturnssittinginaprototypeofthemitmedialab’scitycar,atwo-passengerelectricvehiclethatcanbefolded,stackedupwithothers,andrechargedatsubwaystationsandothercentralsites.Apassengerarrivingbysubwayorbussimplytakesafullychargedvehiclefromthefrontofthestackandthenreturnsittoastacknearhisorherdestinationsothatitisavailableforotherstouse.

    inherkeynotespeech,rebeccahenderson,theeastmanKodaklfmprofessorofmanagementatthemitsloanschoolofmanagementandamemberofthemiteienergycouncil,bothentertainedandinspiredmartinfellowsandtheiradvisors.usinghistoricalexamples,shedemonstratedforthemthepowerofsmallgroupsofdedicated,visionarypeopletoover-comeseeminglyinsurmountablechallengessuchastheworldenergysituation.

  • Winter 2008 | MIT Energy Initiative | Energy Futures | ��

    inapresentationatthedinner,caspermartin,adirectorofthemartinfoundation,inc.,readthroughthelistofglobalproblemscoveredinthe1984stateoftheWorldreportfromtheWorldwatchinstitute.herelayedhisdismayatfindingthatmanyofthesameproblemsarefeaturedinthe2007versionofthereport.hethenexhortedthenewmartinfellowstoredoubletheirenthusiasmandcommitmenttoleadingtheworldtowardasustainablefuture.

    martinuropAlexandrapatriciatcaciuc’09,left,adoublemajorinenvironmentalengineer-ingandchemistry,poseswithcharulekavaradharajan,amartinfellowfrom2005–2006.theyarecollaboratingonfieldworkanddataanalysistobetterunderstandmethanefluxesintheuppermysticlakeinWoburn.theirfacultysupervisorisharoldf.hemond,theWilliame.leonhardprofessorinthedepart-mentofcivilandenvironmentalengineering.

    An MIT first: Competing in DOE’s Solar Decathlon

    e d u c A t i o n

    Lastspring,ateamofMITstudents,faculty,andvolunteerstookonthechallengeofdesigningandbuildingahousethatreliesentirelyonsolarenergytomeettheelectricityneedsofatypicalAmericanfamily,fromdryingtowelstocookingdinner.Forthefirsttime,MIThadanentryintheU.S.DepartmentofEnergy’sannualSolarDecathlon—avillageof20off-gridsolarhomesthatwerebuiltbycollegestudents,assembledontheNationalMallinWashington,andopentothepublicOctober12–20,2007.OnceassembledintheSolarDecathlonVillage,each800-square-footsolarhomeviedforpointsin10categoriesrelatedtoenergyefficiency,design,andmarketability.AmongthetaskssetbytheDOE:eachteamhadtoheatabucketofwaterto110°F,prepareathree-coursevegetarianmealforfourorfiveoftheirneighbors,washandfluff-dryaloadoftowels—andontopofallthatgenerateenoughelectricitytopoweranelectriccar.AlthoughtheMITentry—dubbedSolar7—didnotwin,itdidsucceedwith

    thepublic.“Althoughwegot13thinthecompetition,wewereverypopularwiththetourists,”saidteammemberDianaHusmann,aseniormajoringinphysics.“Andsincethepointofthecompetitionwastoshowthatsolarcanbebothpowerfulandbeautiful,weallagreedthat,intheend,wewereacompletesuccess.”CoreyFucetola,studentleaderoftheSolar7projectandagraduatestudentinelectricalengineeringandcomputerscience,said,“Thebestwaytochangehumanbehavioristogivepeopletheinformationtheyneedtochange.”Andthe25,000visitorswhotouredthesolarhomesgotcountlessinsightsintohowtolivecomfortablyoff-grid.

    Special features of Solar7

    Solar7wasdesignedandbuiltonanasphaltlotatMIT,thenbrokenintomodulesandsentbyflatbedtrucktoWashington,whereitwasreassembledbyabout20MITstudentsandvolun-teers.Thefinishedproductcontainsakitchen,fullbathroom,livinganddiningarea,andflexiblebedroom/officespace,definedbyopaquepocket

    Mar

    tin F

    ello

    ws

    phot

    os: J

    ustin

    Kni

    ght

    manyhandsvolunteeredinthemakingofmit’ssolarhouse.

    Phot

    o: D

    onna

    Cov

    eney

    , MIT

  • �8 | Energy Futures | MIT Energy Initiative | Winter 2008

    doors.Ithasawide,graciousdeckandrampsforaccessibility.Whilethespacesinthehousesoundconventional,otheraspectsofSolar7arefarfromconventional.LikeallSolarDecathlonentries,Solar7hadtomeetspecificlivabilitystandards.Ithadtoretainwarmthbutnotbakeitsresi-dents.Ithadtoprovidesufficientlighttoendurerainydays,supplywarmwaterforshowers,behandicapped-accessible,andstoreenoughenergytorunadishwasherandanelectriccar.Andithadtobemadefromcommercialbuildingmaterialsandavailabletechnologies—noweirdscience,nofresh-from-the-labcontraptions.“You[couldn’t]yanksomethingoutofthelabandthrowitupontheroof.You[had]touseproduction-gradeproducts,”saidKurtKeville,advisortotheSolar7teamandaresearchspecialistattheInstituteforSoldierNanotechnologies.Duringthehalf-yearofconstruction,Keville,Fucetola,andconstructionmanagerTomPittsleyhadplentyoftechnologyandnewmaterialstokeeptheirinterestandtoengagetheweekendwarriorsmanagedbyvolunteercoordinatorArlisReynolds.

    Foranypassivesolarhome,thechal-lengeiskeepingtheheat.Solar7hasasouth-facinglightwallmadeof1-foot-thicksquaretiles.Eachtilelookslikeasandwich:Twoopaqueplasticsquaresarethe“bread”forafillingofwaterandalayerofathermalinsulatinggelspreadontheinsideofoneofthetile’s“slices.”Theinsulatinggeltransfersthesun’sheatfromtheoutside,throughthewater,totheinsidewall.Energy-efficientwindowsmadeofthreepanelsofglasswithkryptongasasaninsulatorareusedelsewhereinthehouse.Photovoltaiccellscoverthesouth-facingroofofSolar7anddotheheavylifting,energy-wise.Theyproduceabout9kilowattsofpeakgeneration.Electricityisstoredin24batteries,whichcanholdabout70kilowatt-hoursandcanpowerthehouseforabout48hours.Thebatteriesalsohadtopowertheteam’selectriccar—akeyelementintheDOEchallenge.Solar7’ssouthfacealsoholds60evacuatedtubesthatcarrysolar-heatedwaterintothehouseforshowersandwashingandforcirculationinthewarmboards,aradiantheatingsystembasedonamoldedsubfloorthatisembeddedwithplastictubing.

    MIT’s long history of solar houses

    IntypicalMITfashion,theSolar7teamisalreadybeginningtoplanforthenextSolarDecathlon,tobeheldinOctober2009.Afterall,MITisnonewcomertothechallengeofdesigningasolar-poweredhouse.Solar7isso-namedbecauseithadsixpredecessors.In1938,GodfreyLowellCabotgaveMITagifttobeusedforthedevelop-mentof“theartofconvertingtheenergyofthesuntotheuseofman.”TheendowmentenabledthecreationofMIT’sSolarEnergyResearchProject,a50-yeareffortinvolvingthedesignandconstructionofsixexperimentalorprototypicalsolarhouses.SolarI,completedin1939,wasthefirsthouseinAmericatobeheatedbythesun’senergy.FormoreinformationaboutSolar7andtheMITteam,goto.

    • • •

    By Sarah Wright, MIT News Office

    e d u c A t i o n

    petermacdougal,avolunteerfromindepen-denceenergy,andmitgraduatestudentKelliestokesinstallsolarpanelsontheroofofsolar7.

    Phot

    o: M

    ark

    Mor

    elli

    Phot

    o: E

    ric D

    amto

    ft left:mit’ssolar7home,designedandbuiltbystudentsanddisplayedhereatthesolardecathloncontestinWashington,d.c.,waspopularwithvisitorsandinspiredplansforthe2009competition.

  • Winter 2008 | MIT Energy Initiative | Energy Futures | ��

    c A m p u s e n e r g y A c t i v i t i e s

    MITEI supports student innovators to help reduce MIT’s energy, environmental footprintDanWesolowskilookedoutfromthesecondfloorofMIT’sBuildingE25,watchingindismayasstudentsandfacultyalikeignoredsignstousetherevolvingdoorbelowhimandsaveenergy.PersonafterpersoncomingfromthenearbyKendallSquaresubwaywalkedthroughtheswingdoortothesideoftherevolvingdoor.“AsinglepersonwalkingthrougharevolvingdoorinFebruarysavesenoughenergytolighta60-wattlightbulbfor23minutes,”saidWesolowski,afourth-yearPhDcandidateinmaterialsscienceandengineering.Ifeveryoneusedtherevolvingdoors,MITwouldsaveabout$7,500innaturalgasayearinE25alone,whichhastwoofthe29revolvingdoorsoncampus.TheMITEnergyInitiative(MITEI)isnowsupportingastudentplantoencouragethatbehavior.WesolowskiandthreeclassmatesstartedtheirRevolvingDoorCampaignacoupleofyearsagoaspartofaprojectforaclassinsustain-abilityandplanning.Intestsaroundcampus,their11x17-inchsignssaying“HelpConserveEnergy,PleaseUsetheRevolvingDoor”increasedrevolvingdooruseto65%from23%.Basedonthoseresults,MITEIisprovidingfundsforprintingandinstallingpedestal-mountedsignsatfiverevolvingdoorsacrosscampus.TheprojectwasoneofsevenselectedearlierthisyearbyMITEI’snewStudentCampusEnergyProjectFund.Twiceyearly,thefundmakesmoneyavailabletostudentstoundertakeprojectsinlinewiththeEnergyInitiative’sCampusEnergyTaskForce.ThefundwasseededbyMITEIwith$10,000,plusasupple-mentaldonationof$5,000fromShellOilCompany.

    Theotherprojectsfundedinthefirstroundinclude:

    • Wind Turbine Design Competition willberunforthefirsttimeduringIndependentActivitiesPeriod2008.Studentswillhaveanopportunitytodesignandbuildawindturbinecapableofharvestingelectricalenergyfromthewind.

    • MIT Generator isacoalitionofstudentgroupsaimingtocatalyzeandsupportstudentprojectswithafocusonenergy,environment,andsustainabilityissuesonMIT’scampus.Thegoalfor2007–2008istoexpandthecommunityofstudentsinvolvedincampusenergyprojectsthroughmoreextensiveoutreach.

    • Publicity and Recruitment Book-lets for the MIT Sustainability Community isanUndergraduateAssociationCampusSustainabilityCommitteeproject.Itpublisheda

    bookletforfreshmanorientationtorecruitincomingstudentsforsustainabilityactivitiesoncampus.

    • Campus Climate Project (Focus the Nation)aimstowidenaware-nessandconversationaboutclimatechangeoncampusandtomotivateandempowerstudentstotakeactiononthisissue.TheprojectwillbepartofthenationallinkofeventsonJanuary31,2008,knownas“FocustheNation:GlobalWarmingSolu-tionsforAmerica.”ItwillincludeseminarsduringthesecondweekofspringsemesterinFebruary2008.

    • Plug Load Meters for Appliance Use Case Studieswillmeasureenergyconsumptioninmoredetailthanatthegeneralbuildingleveltoincludeitemssuchasappliances.Thegoalistoinfluenceuserbehaviorbyprovidinginformationabouthowmuchandforwhatpurposeenergyisconsumedwithineachbuilding.

    AttheActivitiesmidwayduringmitorientation,seniorAustinoehlerking,chairoftheunder-graduateAssociationcommitteeoncampussustainability,talkswithfirst-yearstudentJaredtrotteraboutcampussustainabilityactivitiesandthenewGuide to Sustainability@MIT. thebooklet,preparedwithmiteisupport,containsinformationonmit’sstudentgroups,clubs,andinitiativesfocusingonenergy,theenvironment,andsustainability.

    Phot

    o: J

    ason

    For

    te ’0

    9

  • 20 | Energy Futures | MIT Energy Initiative | Winter 2008

    • Energy Map ProjecthasdevelopedaprototypemapthatdisplaysenergyuseintensityinvariousMITbuild-ingswithacolorscale.Awebsitefordisplayingandupdatingthemapisnowunderdevelopment(goto).

    “Thisfirstroundofprojectsisjustthetipoftheiceberg,”saidStevenLanou,deputydirectorforsustainabilityinMIT’sEnvironmentalProgramsOfficeandamemberofthegrantreviewcommittee.“Withanotherroundoffundingavailablethissemester,Iexpecttoseetheingenuityandcreativityofstudentprojectscontinuetogrowandinspireustodomoretoreduceourenergyfootprintandleadwithinnova-tiveapproaches.”Whiletheprojectsdoplaceademandonstudents’time,theycanbeawelcomediversionfromdailystudies,accordingtoTarekRached.HeandfellowgraduatestudentStevenPetersareinvolvedintheEnergyMapProject,whichisdesignedtoreduceenergyuseinMIT’sbuildings.Energycon-sumptioninbuildingsaccountsforthevastmajorityofcampusenergyuseandproducesmorethan90%ofMIT’sgreenhousegasemissions.But

    c A m p u s e n e r g y A c t i v i t i e s

    mostbuildingsareusedwithoutanyfeedbacktotheoccupantsandopera-tors.TheprojectaimstodeveloptoolstomeasureandanalyzeMIT’scampusenergyuse,suchastheenergymap.ThestudentsarenowgettingmonthlydatafromMIT’sDepartmentofFacilitiesonenergyuseinMITbuildingsdatingbackfiveyears.“Thenextphaseistolaunchanautomateddisplaysystemtogetreal-timedataonthewebsopeoplecanseewhatisgoingonintheirbuilding,”Rachedsaid.“Wewanttogetpeopleinvolvedtochangebehavior.”Thatincludesgettingincomingfresh-meninvolvedincampusenergyactivi-tiesfromtheget-go.AustinOehlerking,asenior,becameinterestedinsustain-ableenergyaftertakingacourseduringIndependentActivitiesPeriodlastyear.Hewasinstrumentalindevelopingtheorientationbookletfor2007togetfreshmeninterestedinsustainabilitycommunitiesthroughoutMIT.“Thereareatleast12differentstudentgroups,”hesaid.“Somanydifferentprojectsaregoingonthatitishardforpeopletograsp.Thebookletisagreatopportu-nityforthemtofindtheirnicheamongsustainabilityeffortsoncampus.”

    • • •

    Withmiteisupport,ateamofmitstudentsdevelopedsoftwarethatgeneratedthismapshowingenergyuseintensityacrosscampus,buildingbybuilding.thestudentsarenowdevelopinganautomateddisplaysystemthatwillpostreal-timeenergyusedataonthewebsobuildingoccupantscancheckontheirbuilding’susage.

    forthefirsttimeinmorethanthirtyyears,theiconicgreatdomeofmit’sBuilding10isilluminated—anighttimebeacononthecambridgeskyline.theenergy-intensivelightingarrangementofthepasthasbeenreplacedbyanewsystemincorporating12energy-savinglight-emittingdiode(led)fixturesandhigh-efficiencyprecisionmetalhalidefixturesthatlighttheentiredomeusingthesameamountofelectricityneededtoruntwohairdryers.thenewlightingsystemwasmadepossiblebyagenerouscontributionfromananonymousdonor.

    Night and day

    Phot

    o: C

    hris

    Bro

    wn

    tooffsettheelectricityconsumedinlightingthedome,thesamedonoralsoprovidedfundstohelppayforthenew40-kilowattphoto-voltaicarrayshownhere.mountedontheroofoftheAlumnipool,thissolarinstallationisconnectedtomit’selectricalgridandprovidesthreetofourtimestheelectricalenergyconsumedinlightingthedome.thepurchaseofthesolararraywasalsosupportedbyagrantfromthemassachusettstechnologycollaborative.

    Phot

    o: R

    uth

    Davi

    s, M

    IT F

    acili

    ties

    Grap

    hic:

    Ste

    ven

    Pete

    rs a

    nd E

    lsa

    Oliv

    etti

  • Winter 2008 | MIT Energy Initiative | Energy Futures | 2�

    Dorm Electricity Competition: MIT students save energy where it counts

    c A m p u s e n e r g y A c t i v i t i e s

    ResidentsofNewHouseaddedtheirownflairtoMIT’sfirstDormElectricityCompetitionbyhostingaglow-in-the-darkping-pongmatch.“Thiswasanexcellentidea,”saidTimGrejtak,amechanicalengineeringsophomoreandco-organizeroftheeventwithArielEsposito,aseniorinenvironmentalengineering.Thetwoareplanningasecondcompetitionforspring2008thattheyhopewillgenerateevenmoreenthusiasm.TheDormElectricityCompetitionawarded$10,000inenergyefficiencyretrofitsandimprovementstotheundergraduatedormthatconservedthemostelectricityoveratwo-monthperiodfromMarch9toMay4,2007.Thedatesforthenextcompetitionhavenotyetbeenset.McCormickHallwonthe2007com-petition,savinganaverageof25.95kilowatt-hoursperstudentperweekovertheeightweeks.The11dormsthatparticipatedsavedatotalof226megawatt-hours,enoughtopower21homesforayearandtosaveMITaround$30,000inenergycosts.TheretrofitsatMcCormickhavenotyetbegun,butoptionsbeingexaminedincludeinstallingenergy-efficientcompactfluorescentlightsaswellasoccupancysensorsthatturnoffthelightswhenaroomisvacant.Suchretrofitscouldsavethedormabout15%inelectricitycosts.Grejtakemphasizedthatitisnottoodifficultforstudentstosaveenergy.Simplestepsliketurningofflights,washingclothesincoolwater,unplug-gingcomputerdisplaystoavoidcurrentleakage,andsettinglaptopstothehibernatemodecouldsaveafewkilowatt-hoursperstudent

    perday.Everybitaddstotheoveralldormenergysavings.“Thesimpleactofknowinghowmuchenergyyouareusingcanchangebehavior,”Grejtaksaid,addingthatoneoptionbeinglookedatisinstallingwirelessmetersthatmonitorelectricaluseandsendreal-timedatatoaweb-site.Withthesemeters,studentscouldgetup-to-the-minuteinformationontheirenergyuse.GrejtakandEspositoagreedthatthegoalistogetstudentstomakelong-termbehavioralchanges.Otherschools,suchasTuftsUniversity,havesimilarprogramsbutdonotofferacompre-hensiveretrofitasaprize.“It’saboutsustainablebehavioralchange,”saidEsposito.“Wedon’taskpeopletoturnofftheirfridgesduringthecampaign,onlytohavethemturnthembackonafterward.”Espositosaidlastyear’scompetitionyieldedsomevaluablelessons.Onemainonewastogetalongerbaselinebeforethecompetitionstarts.Lastyear,thecompetitionorganizershadeachdorm’senergyusemeasuredforoneweek;nextyear,theywillmeasureabaselineforalongertimeperiod,

    makingtheweeklymeasurementcomparisonsduringthecompetitionmoreaccurate.Theorganizerscurrentlyareraisingmoneyforthecompetition.Lastyear,theMITEnergyInitiative(MITEI)contributedfundsforthecontest’soperatingcosts.TheMITHousingDepartmentprovidedthe$10,000fortheaward.TheorganizersarelookingforrenewedsupportfromtheHousingDepartmentandarealsopursuingcorporateandotherfundingsources.Thisyear,thecompetitionorganizershavealreadybeenawardedfundsfromtheMITEI’sStudentCampusEnergyProjectFund.Espositoalsowantsmoreparticipantsinthecontestthanthe11undergradu-atedorms.Sheishopingthatoutreacheffortswillattractsomeofthe26undergraduatefraternities,sororities,andindependentlivinggroupsoncampus,aswellassomeofthegradu-atedorms.Thecompetitionwillstartwithakickoffeventinthestudentcenterwithabandandfreefood.Therewillalsobeeventsduringthecompetitiontoencouragecontinuedparticipation.Throughoutthecompetition,theorganizerswillworkwithdormcoordinatorstosuggestspecificactivitiesfortheiruniquelivingenvironments.Forexample,Simmonshasmorecommonareaswherelightscanbeturnedoff,whileBexleyresidentsmaywanttofocusmoreonturningoffindividualroomlights.Ittakessomeincentivetogetstudentstosaveenergy;butoncetheydo,theycontinuethisbehavior.“Thecom-petitionisalotoffun,”saidEsposito.“Itraisesawarenessabouthowmuchenergypeopleuseandhowmuchtheycansave.”

    the2007winner,mccormickhall.formoreinformationonthecompetition,pleasegoto.

    Phot

    o: M

    elod

    y Cr

    aven

    , MIT

    Fac

    ilitie

    s

  • 22 | Energy Futures | MIT Energy Initiative | Winter 2008

    l f e e • laboratoryforenergyandtheenvironment

    AGS annual meeting to be held at MITThecomplexityofrespondingtothechallengesofclimatechangeandsus-tainabilityhasmadetimelyandeffec-tiveactiondifficult.Astrongcurrentofpessimismrunsthroughthepublicdialogue,whichseemstohaveevolvedfrom“nothingiswrongsoweneedtodonothing”to“everythingissowrongthatthereisnothingwecando.”Butitisnottoolate.Instead,itistimetodeploytheknowledgewehave—orwillsoonhave—toidentifyandpursuepathwaystowardsustainability.DesigningsuchpathwayswillbethefocusoftheupcomingannualmeetingoftheAllianceforGlobalSustainability(AGS),tobehostedatMITonJanuary28–31,2008.Themeeting,titled“DesigningPathwaysforaSustainableWorld:atScale,inTime,andforAll,”willbuildonprogressmadein2007todevelopAGS’s“pathways”conceptasaframeworkforadvancingnear-termtransitionstosustainability.Themeetingwillbringtogetherabout200internationalscholars,businessleaders,andrepresentativesfromgovernmentsandnongovernmentalorganizations.Dr.R.K.Pachauri,director-generaloftheEnergyandResourcesInstitute(formerlytheTataEnergyResearchInstitute)andchair-manoftheIntergovernmentalPanelonClimateChange(awinnerofthisyear’sNobelPeacePrize),willgivethekeynotespeech.ImmediatelyfollowingwillbeapaneldiscussionwithIPCCleadauthors.BothwillbeopentotheMITcommunity.

    Thebasisofthepathwaysconceptisdefininghowwetransitionfromourpresentsystems,basedontoday’stechnologies,infrastructures,andmarkets,towardmoresustainablesystems.Innavigatingthistransition,wemustconsiderthescale,timing,andsocialequityofproposedbridgingtechnologiesandstrategiesaswerespondtotheurgentneedforsub-stantiveactiononclimate,energy,food,andwaterchallenges.DuringtheAGSmeeting,participantswilljoinpaneldiscussionsandparallelbreakoutsessionsfocusingontechnol-ogyandpolicyoptionsandontheeducationalchallengestodevelopingthepathways.Topicswillincludehowpathwayscanbedesignedandimple-mentedintimetomakeadifference,howinteractionsbetweensocietalsectorsandresearchuniversitiescanbemademoreeffective,perspectivesofagentsofchangeandtheirinnovativeapproaches,andimplicationsofnewpathwaysforthedevelopingworld.Onthefinalday,discussionsinthevarioussessionswillbesynthesizedandactionstepsdefinedformeetingidentifiedchallenges.Formoreinformationabouttheconference,includingtheprogramandonlineregistration,pleasegoto.

    • • •

    By Karen Gibson, MIT Energy Initiative and Laboratory for Energy and the Environment

    AltWheels festival

    Bostonmayorthomash.menino(left),AltWheelsfounderAlisonsander,andmassachusettssecretaryofenergyandenvironmentalAffairsianBowlesattheAltWheelsgreenpioneersawardsceremony.

    Forthefifthyearinarow,LaboratoryforEnergyandtheEnvironmentstaffhelpedorganizeandruntheAltWheelsAlternativeTransportationandEnergyFestivalinSeptember2007(www.altwheels.org).HeldonBostonCityHallPlaza,thetwo-dayfestivalshowed35,000visitorsabroadvarietyofcurrentandfuturecleanenergytechnologiesandpractices.The150exhibitorsincludedmajorautomobilemanufacturersshowinghybrid,flex-fuel,andhydrogenvehicles;publictransportationagencies;car-sharingorganizations;alternativefuelsuppliers;andmore.AlongtheEnergyFreedomTrail™,interactiveexhibitsbygrassrootsorganizationsandlocalmuseumsshowedhowtosaveenergy,“buygreen,”andreduce,reuse,andrecycle.

    AltWheelsattendeescheckoutbiodiesel-andvegetable-oil-fueledcarsandtrucksalongBiodieselBoulevard.

    Phot

    o: E

    rik G

    ehrin

    gPh

    oto:

    Ste

    phen

    Con

    nors

    , MIT

    LFE

    E

    28-31 January 2008 | Cambridge, MA USA

    Designing Pathways for a Sustainable World:at Scale, in Time, and for All

    The AGS Annual Meeting hosted by MIT

  • Winter 2008 | MIT Energy Initiative | Energy Futures | 2�

    laboratoryforenergyandtheenvironment • l f e e

    OnOctober6–8,2007,theSustainableEnergySystemsFocusAreaoftheMIT-PortugalProgramlauncheditsnewdoctoralprogramwithathree-dayworkshopthathighlightedthechal-lengestothedesignanddeploymentofsustainableenergysystems.OrganizedandledbyDavidH.Marks,theMortonandClaireGoulderFamilyProfessorofCivilandEnvironmentalEngineeringandEngineeringSystems,theworkshopgathered48studentsand23facultyandstafffromMITandfromthefivePortugueseinstitutionsthatarecollaboratinginthejointdoctoralprograminPortugal.Together,theattendeesexaminedresearchneedsintheareaofbuildingdesign,includingmicrogeneration;smartenergysystemsthatcoordinatelocalenergyresourcesanddemandmanage-ment;andintegratedenergyplanningandregulationfromlocal,national,andinternationaldimensions.TheworkshopcelebratedthefirstPhDprogramtobeofferedjointlybythePortugueseinstitutions,withassistancefromMIT.ParticipatingaretheUniver-sityofPorto’sFacultyofEngineering,theTechnicalUniversityofLisbonincludingtheInstitutoSuperiorTécnicoandtheInstitutoSuperiordeEconomiaeGestão,theUniversityofLisbon’sFacultyofScience,andtheUniversityofCoimbra’sFacultyofScienceandTechnology.ThefirstdoctoralworkshopwasheldinthehistoriccityofPorto.AttendeesfromMITincludedMarks;LeonGlicks-man,professorofbuildingtechnologyandmechanicalengineeringanddirectorofMIT’sBuildingTechnologyProgram;StephenConnors,directoroftheAnalysisGroupforRegionalEnergyAlternativesatMIT’sLaboratoryfor

    EnergyandtheEnvironment(LFEE);and13MITgraduatestudents.TheSustainableEnergySystemsFocusArea,ledbytheLFEE,ispartoftheMIT-PortugalProgram,afive-yearresearchandeducationalcollaborationsupportedbythePortuguesegovern-mentworkingwithnumerousPortu-gueseresearchuniversities,industry,andgovernment.MarksandConnorshavebeenworkingwithMIT-PortugalProgramheadquarterssincesummer2006todesignandimplementtheSustainableEnergySystemsresearchandeducationprogram.Throughtheresearchprogram,MITteamsarecollaboratingwithPortu-guesecolleaguesonprojectsaddress-ingintegratedenergysystems,economicsandregulation,anddistrib-utedenergysystems.Keytothedesignoftheprogramistherecognitionthatwhileclean-energytechnologyisa“globalbusiness,”thedeploymentandbestuseofcomponenttechnologiesis“situational.”Localenergyresources,theageanddistributionofexistingenergynetworks,andtheenergy-consuming“builtenvironment”areallcrucialfactorswhenlookingathownewenergytechnologiesmightbenefitagivenregion.

    CollaborativeresearchprojectsinthefocusareaandtheirMITparticipantsincludethefollowing:

    • Interactionsamongbuilding,neigh-borhood,andcitydesignfromenergyandmaterialsflowperspectives(GlicksmanandProfessorsLeslieNorfordandJohnFernandezofarchitecture)

    • Smartelectrical/energynetworkstoimproveoverallsystemperfor-mancebyenablingdynamicloadcontrolanddiversemixesofrenew-ablegeneration(ProfessorJamesKirtleyofelectricalengineeringandcomputerscience,ProfessorRichardLarsonofcivilandenviron-mentalengineeringandengineeringsystems,andConnors)

    • Marketsforenergyandemissions(Drs.A.DennyEllermanandJohnParsons,CenterforEnergyandEnvironmentalPolicyResearch)

    • Waveenergysystems(ProfessorChiangMeiofcivilandenviron-mentalengineeringandProfessorMichaelTriantafyllouofmechanicalengineering)

    • Alternativevehiclesandfuels,includingplug-inhybrids(ProfessorJohnHeywoodofmechanicalengineering)

    TheMIT-PortugalProgramishousedinMIT’sEngineeringSystemsDivisionandincludestracksintransportation,manufacturing,andbioengineeringinadditiontosustainableenergyandacross-cutting“engineeringsystems”setofactivities.Theprogramisnowenteringitssecondyear,withthefirstyearbeingastartupyear.Forfurtherdetails,goto.

    Workshop celebrates new doctoral program in Portugal

    davidh.marks,themortonandclairegoulderfamilyprofessorofcivilandenvironmentalengineeringandengineeringsystems.

  • 2� | Energy Futures | MIT Energy Initiative | Winter 2008

    l f e e • laboratoryforenergyandtheenvironment

    InceremoniesheldonDecember10,2007,theEnergy,Environment,andWaterResearchCenter(EEWRC)oftheCyprusInstitute(CyI)celebratedthecommencementofitsoperations.AttendeesincludedthepresidentoftheRepublicofCyprus,TassosPapado-poulos,andmanyotherdignitariesfromCyprusandabroad.MIT’sLaboratoryforEnergyandtheEnvironment(LFEE)featuredpromi-nentlyattheinaugurationceremonies.TheEEWRCisbeingdevelopedinclosecooperationwiththeLFEEanditsCyprusInstituteProgramforEnergy,Environment,andWaterResources(CEEW),whichisdirectedbyProfessorDavidH.Marks,theMortonandClaireGoulderFamilyProfessorofCivilandEnvironmentalEngineeringandEngineeringSystems.Attheceremony,ProfessorErnestJ.Moniz,theCecilandIdaGreenPro-fessorofPhysicsandEngineeringSystemsatMITanddirectoroftheMITEnergyInitiative,wasdecoratedbyPresidentPapadopoulosforhiscontributionstotheestablishmentoftheCyprusInstituteandEEWRCandtothedevelopmentofresearchandeducationintheRepublic.Atthecloseoftheinaugurationday,ProfessorMonizpresentedapubliclectureon“EnergySupplyandClimateChange—CanWeManageBoth?”TheDecember10eventwasasignifi-cantmilestoneinthedevelopmentoftheEEWRC.ItmarkedtheinaugurationoftheCenter’sfirstbuildingaswellasanumberofimportantscientificinitiatives.Ofparticularinterestisthelaunchingofanewclimatechange“MetaStudy.”Thisstudy,whichwillbeledbyagroupofscientistsofinternationalrepute,willaddresstheimpactsofclimatechangeonthe

    EasternMediterraneanandNorthAfrica,aregionofgreatpoliticalsignificancethatisexpectedtobedisproportion-atelyaffectedbyclimatechange.TheambitiousprojectcomplieswiththeobjectiveoftheCyprusInstitutetoworkonproblemsofregionalimportanceandglobalsignificance.ThelinkbetweentheCyprusInstituteandMITalsohasotherfacets,includingactivitiesoncampus.AjointdoctoralandpostdoctoralprogrambetweentheCEEWandtheEEWRCisconsideredavitalelementinenhancingthecollaborationbetweenMITandtheCyprusInstitute.Thefirsttwopostdocshavebeenappointedunderthisinitia-tive.Dr.NicholasPolydoridesarrivedatMITinOctoberandisnowworkingwithProfessorDimitriBertsekasofelectricalengineeringandcomputerscienceonenergy-relatedcomputa-tionalproblems,particularlyonissuesrelevanttoundergroundcarbon

    Inauguration ceremonies held for energy center at the Cyprus Institute

    sequestrationtechniques.Dr.JanAdamowskiwillarriveinJanuaryandwillbecollaboratingwithProfessorElfatihEltahirofcivilandenvironmentalengineering,ProfessorMarks,andProfessorLawrenceSusskindandDr.HermanKarlofurbanstudiesandplanningonproblemsofclimatechangeimpactsforwatermanagementintheMediterraneanBasin.AfterspendingtwoyearsatMIT,bothpostdocswillcontinuetheirresearchattheEEWRCatthedevelopingCyprusInstitute.OtherMITinvolvementswiththeCyprusInstituteincludecollaborationswiththeMITCenterforMaterialsResearchinArchaeologyandEthnologyandtheMITSeaGrantProgram.FormoreinformationontheCyprusInstitute,goto.

    • • •

    ceremoniesatthecyprusinstituteondecember10celebratednotonlythecommencementofoperationsoftheenergy,environment,andWaterresearchcenterbutalsotheinaugurationofthecenter’snew“guyourisson”Building,shownabove.

  • With support from the MIT Energy Initiative, a team of MIT students developed software that generated this map showing energy use intensity across campus, building by building, based on data provided by the MIT Department of Facilities. The students are now developing an automated display system that will post real-time energy use data on the web so building occupants can check on their building’s usage. MITEI’s new Student Campus Energy Project Fund is supporting a variety of such innovative student projects aimed at reducing the energy and environmental footprint of the campus (see page 19).

    MIT Energy Initiative

    Massachusetts Institute of Technology77 Massachusetts Avenue, E40-495Cambridge, MA 02139 -4307

    Return service requested

    Grap

    hic:

    Ste

    ven

    Pete

    rs a

    nd E

    lsa

    Oliv

    etti

    Nonprofit OrganizationU.S. Postage

    PAIDCambridge, MAPermit No. 54016