electronic supplementary material - uniwersytet...

26
1 Electronic Supplementary Material Catalysts for Heterolytic Split of H 2 by Theoretical Design by Łukasz Maj and Wojciech Grochala Contents S1. Comparison of essential molecular features for cubane–like M 4 C 4 H 8 molecules (M=Ti, Zr, Hf) as computed with the SDD and LANL pseudopotentials or with the 6-31** basis set on M atom. S2. Comparison of vertical and relaxed ionization potential, electron affinity, Mulliken electronegativity, and Pearson’s hardness for Ti 4 C 4 H 8 (6-31** basis set on Ti) and Hf 4 C 4 H 8 (SDD pseudopotential on Hf). S3. Optimized geometries and selected molecular properties of M 4 Nm 4 H 8 molecules (M=Ti, Zr, Hf; Nm=C, Si) and of their dehydrogenation products. S4. Optimized geometries and selected molecular properties of M 4 Nm 4 H 8 molecules (M=Ti, V; Nm=B, C, N) and of their most stable dehydrogenation products, except for Ti 4 C 4 H 8 . S5. Optimized geometries and selected molecular properties of Ti 4 (N 2 B 2 )H 8 and of its dehydrogenation products. S6. Optimized geometries and selected molecular properties of molecular analogues of ‘sub-surface alloys’ originating from perturbed Ti 4 C 4 H 8 , and of their dehydrogenation products. S7. Optimized geometries and selected molecular properties of various isomers of the M 4 Si 4 H 8 composition (M=Ti, Zr), and of the Ti 4 Nm 4 H 8 composition (Nm=B, N), except for those shown in S3 and S4. S8. Optimized geometries and selected molecular properties of dihydrogen complexes and transition states for reactions of H 2 detachment from selected M 4 Nm 4 H 8 systems. S9. The experimentally observed dependence between an ‘efficient energy barrier’ for the homolytic H 2 detachment and a thermodynamic reaction parameter (standard redox potential for the metal cation/metal pair in the aqueous solution, E 0 ), for a range of inorganic binary hydrides. S10. Changes of the total electron density, electrostatic potential and selected molecular orbitals along a schematic reaction path for the reaction: Ti 4 Si 4 H 6 + H 2 Ti 4 Si 4 H 6 …H 2 (H2C) Ti 4 Si 4 H 8 * Ti 4 Si 4 H 8 . PDF created with pdfFactory trial version www.pdffactory.com

Upload: others

Post on 28-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

1

Electronic Supplementary Material

Catalysts for Heterolytic Split of H2 by Theoretical Design

by Łukasz Maj and Wojciech Grochala

Contents

S1. Comparison of essential molecular features for cubane–like M4C4H8 molecules (M=Ti, Zr, Hf) as

computed with the SDD and LANL pseudopotentials or with the 6-31** basis set on M atom.

S2. Comparison of vertical and relaxed ionization potential, electron affinity, Mulliken electronegativity, and

Pearson’s hardness for Ti4C4H8 (6-31** basis set on Ti) and Hf4C4H8 (SDD pseudopotential on Hf).

S3. Optimized geometries and selected molecular properties of M4Nm4H8 molecules (M=Ti, Zr, Hf; Nm=C,

Si) and of their dehydrogenation products.

S4. Optimized geometries and selected molecular properties of M4Nm4H8 molecules (M=Ti, V; Nm=B, C, N)

and of their most stable dehydrogenation products, except for Ti4C4H8.

S5. Optimized geometries and selected molecular properties of Ti4(N2B2)H8 and of its dehydrogenation

products.

S6. Optimized geometries and selected molecular properties of molecular analogues of ‘sub-surface alloys’

originating from perturbed Ti4C4H8, and of their dehydrogenation products.

S7. Optimized geometries and selected molecular properties of various isomers of the M4Si4H8 composition

(M=Ti, Zr), and of the Ti4Nm4H8 composition (Nm=B, N), except for those shown in S3 and S4.

S8. Optimized geometries and selected molecular properties of dihydrogen complexes and transition states for

reactions of H2 detachment from selected M4Nm4H8 systems.

S9. The experimentally observed dependence between an ‘efficient energy barrier’ for the homolytic H2

detachment and a thermodynamic reaction parameter (standard redox potential for the metal cation/metal pair

in the aqueous solution, E0), for a range of inorganic binary hydrides.

S10. Changes of the total electron density, electrostatic potential and selected molecular orbitals along a

schematic reaction path for the reaction: Ti4Si4H6 + H2 → Ti4Si4H6…H2 (H2C) → Ti4Si4H8* → Ti4Si4H8.

PDF created with pdfFactory trial version www.pdffactory.com

Page 2: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

2

S1. Comparison of essential molecular features for M4C4H8 molecules (M=Ti, Zr, Hf) as computed

with the SDD and LANL pseudopotentials or with the 6-31** basis set on M atom.

-------------- Ti4C4H8 cube -------------- LANL2DZ E=-389.5314 au Ti-C 2.031 A C-H 1.102 A Ti-H 1.734 A APT charges: q(Ti) = +1.19 q(C) = -0.77 q(H_Ti)= -0.49 q(H_C)= +0.07 E(HOMO)= -0.265 au E(LUMO)= -0.128 au Gap = 0.137 au EN = -0.197 au -------------- SDDAll E=-390.5262 au Ti-C 2.037-2.039 A C-H 1.102 A Ti-H 1.744 A APT charges: q(Ti) = +1.20 q(C) = -0.78 q(H_Ti)= -0.49 q(H_C)= +0.07 E(HOMO)= -0.261 au E(LUMO)= -0.127 au Gap = 0.134 au EN = -0.194 au -------------- 6-31G** E=-3554.8708 au Ti-C 2.036-2.038 A C-H 1.102 A Ti-H 1.745 A APT charges: q(Ti) = +1.24 q(C) = -0.82 q(H_Ti)= -0.50 q(H_C)= +0.08 E(HOMO)= -0.261 au E(LUMO)= -0.126 au Gap = 0.135 au EN = -0.194 au

-------------- Zr4C4H8 cube -------------- LANL2DZ E=-343.5507 au Zr-C 2.206 A C-H 1.104 A Zr-H 1.911 A APT charges: q(Zr) = +1.35 q(C) = -0.85 q(H_Zr)= -0.54 q(H_C)= +0.04 E(HOMO)= -0.250 au E(LUMO)= -0.116 au Gap = 0.134 au EN = -0.183 au -------------- SDDAll E=-345.4848 au Zr-C 2.211 A C-H 1.104 A Zr-H 1.917 A APT charges: q(Zr) = +1.37 q(C) = -0.88 q(H_Zr)= -0.54 q(H_C)= +0.05 E(HOMO)= -0.248 au E(LUMO)= -0.115 au Gap = 0.133 au EN = -0.182 au -------------- 6-31G** basis set not available for Zr --------------

-------------- Hf4C4H8 cube -------------- LANL2DZ E=-352.9015 au Hf-C 2.187-2.188 A C-H 1.102 A Hf-H 1.892 A APT charges: q(Hf) = +1.36 q(C) = -0.92 q(H_Hf)= -0.51 q(H_C)= +0.06 E(HOMO)= -0.247 au E(LUMO)= -0.121 au Gap = 0.126 au EN = -0.184 au -------------- SDDAll E=-349.3536 au Hf-C 2.214-2.215 A C-H 1.102 A Hf-H 1.916-1.917 A APT charges: q(Hf) = +1.37-1.38 q(C) = -0.92 q(H_Hf)= -0.51 q(H_C)= +0.06 E(HOMO)= -0.242 au E(LUMO)= -0.118 au Gap = 0.124 au EN = -0.180 au -------------- 6-31G** basis set not available for Hf --------------

PDF created with pdfFactory trial version www.pdffactory.com

Page 3: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

3

S2. Comparison of vertical and relaxed ionization potential, electron affinity, Mulliken

electronegativity, and Pearson’s hardness for Ti4C4H8 (6-31** basis set on Ti) and Hf4C4H8 (SDD

pseudopotential on Hf).

-------------- Ti4C4H8 cube -------------- IP

vert = 8.75 eV

IPrelax = 8.47 eV

EAvert = 1.94 eV

EArelax = 2.10 eV

ENMrelax = 5.29 eV

HPrelax = 3.19 eV

-------------- Hf4C4H8 cube -------------- IP

vert = 8.20 eV

IPrelax = 8.00 eV

EAvert = 1.76 eV

EArelax = 1.85 eV

ENMrelax = 4.93 eV

HPrelax = 3.08 eV

Hafnium is the most electropositive metal in the d block (Pauling EN is 1.30), Ti is more electronegative (1.54).

Hafnium atom is bigger than that of Ti (1.55 Å vs. 1.40 Å), and it is easier to remove valence electrons from Hf

than for Ti. In addition, relativistic effects play big role for Hf, while destabilizing part of the d valence set. Both

these effects make tetravalent state (d0 configuration) more stable for Hf than for Ti with respect to reduction

(electron affinity of HfIV is smaller than that of TiIV), as is well known from chemistry of these elements.

Our simplistic DFT calculations (see S1) fully confirm these trends:

- the computed Hf–C bond lengths are ~0.18 Å longer than the Ti–C ones, following the behaviour also

seen in experiment for solid metal carbides (2.318 Å vs. 2.164 Å);

- the APT charge on metal is more positive for Hf than for Ti by some 0.14 e;

- the APT charge on C is more negative for the compound of Hf than for that of Ti, by some –0.14 e;

- energy of HOMO and LUMO are more negative for Ti compound, by some –0.01–0.02 a.u.;

- the relaxed electron affinity of HfIV compound is 0.25 eV smaller than for the TiIV analogue;

- the relaxed ionization potential of HfIV compound is 0.47 eV smaller than for the TiIV analogue;

- in the consequence of the above, the Ti molecule is slightly harder and somewhat more electronegative

than the Hf one.

PDF created with pdfFactory trial version www.pdffactory.com

Page 4: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

4

S3. Optimized geometries and selected molecular properties of cubane–like M4Nm4H8 molecules

(M=Ti, Zr, Hf; Nm=C, Si) and of their dehydrogenation products.

Ia. Ti4C4H8 (cubane-like).

E = −3554.87081 au, EZPE = −3554.79284 au

R(TiC) = 2.038 Å, R(TiH) = 1.746 Å, R(CH) = 1.102 Å

μDIP = 0.0 D; APT charges: Ti +1.242 x4, C −0.822 x4, HTi =

−0.499 x4, HC = 0.080 x4

EHOMO = −0.262 au, ELUMO = −0.126 au, ΔHL = 0.136 au

Ib. Ti4C4H6 (partially dehydrogenated).

E = −3553.65427 au, EZPE = −3553.59006 au

R(TiC) = 1.858 – 2.056 Å, R(TiH) = 1.756 Å, R(CH) = 1.102 Å

μDIP = 6.2 D; APT charges: Ti +1.065 x1, +1.189 x2, +1.217 x1, C

−0.957 x1, −0.763 x2, −0.790 x1, HTi = −0.527 x2, −0.512 x1, HC

= 0.058 x2, 0.063 x1

EHOMO = −0.243 au, ELUMO = −0.105 au, ΔHL = 0.138 au

IIa. Ti4Si4H8 (cubane-like).

E = −4560.33653 au, EZPE = −4560.27917 au

R(TiSi) = 2.543 Å, R(TiH) = 1.718 Å, R(SiH) = 1.496 Å

μDIP = 0.0 D; APT charges: Ti +0.804 x4, Si −0.304 x4, HTi =

−0.407 x4, HSi = −0.094 x4

EHOMO = −0.223 au, ELUMO = −0.156 au, ΔHL = 0.067 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 5: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

5

IIb. Ti4Si4H6 (partially dehydrogenated).

E = −4559.14262 au, EZPE = −4559.09670 au

R(TiSi) = 2.355−2.560 Å, R(TiH) = 1.724 Å, R(SiH) = 1.497 Å

μDIP = 5.2 D; APT charges: Ti +0.594 x1, +0.752 x2, +0.822 x1, Si

−0.253 x2, −0.297 x1, −0.509 x1, HTi = −0.421 x1, −0.423 x2, HSi

= −0.104 x1, −0.118 x2

EHOMO = −0.211 au, ELUMO = −0.134 au, ΔHL = 0.077 au

IIIa. Zr4C4H8 (cubane-like).

E = −345.48476 au, EZPE = −345.41030 au

R(ZrC) = 2.211 Å, R(ZrH) = 1.917 Å, R(CH) = 1.104 Å

μDIP = 0.0 D; APT charges: Zr +1.369 x4, C −0.878 x4, HZr =

−0.538 x4, HC = +0.047 x4

EHOMO = −0.248 au, ELUMO = −0.115 au, ΔHL = 0.133 au

IIIb. Zr4C4H6 (partially dehydrogenated).

E = −344.26275 au, EZPE = −344.20172 au

R(ZrC) = 2.018−2.232 Å, R(ZrH) = 1.932 Å, R(CH) = 1.104 Å

μDIP = 7.0 D; APT charges: Zr +1.081 x1, +1.308 x2, +1.347 x1, C

−0.779 x2, −0.829 x1, −1.034 x1, HZr = −0.548 x1, −0.562 x2, HC

= −0.029 x1, −0.009 x2

EHOMO = −0.227 au, ELUMO = −0.099 au, ΔHL = 0.128 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 6: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

6

IVa. Zr4Si4H8 (cubane-like).

E = −1351.00379 au, EZPE = −1350.94768 au

R(ZrSi) = 2.628 – 2.757 Å, R(ZrH) = 1.874 Å, R(SiH) = 1.499 Å

μDIP = 0.1 D; APT charges: Zr +0.928 x4, Si −0.389 x4, HZr =

−0.440 x4, HSi = −0.099 x4

EHOMO = −0.217 au, ELUMO = −0.148 au, ΔHL = 0.069 au

IVb. Zr4Si4H6 (partially dehydrogenated).

E = −1349.80810 au, EZPE = −1349.76350 au

R(ZrSi) = 2.496 – 2.724 Å, R(ZrH) = 1.878 – 1.887 Å, R(SiH) =

1.450 – 1.502 Å

μDIP = 5.5 D; APT charges: Zr +0.662 x1, +0.882 x2, +0.975 x1, Si

−0.344 x2, −0.357 x1, −0.608 x1, HZr = −0.458 x3, HSi = −0.117

x1, −0.130 x2

EHOMO = −0.202 au, ELUMO = −0.127 au, ΔHL = 0.075 au

Va. Hf4C4H8 (cubane-like).

E = −349.35358 au, EZPE = −349.27978 au

R(HfC) = 2.214 Å, R(HfH) = 1.916 Å, R(CH) = 1.102 Å

μDIP = 0.0 D; APT charges: Hf +1.375 x4, C −0.919 x4, HHf =

−0.512 x4, HC = +0.057 x4

EHOMO = −0.243 au, ELUMO = −0.119 au, ΔHL = 0.124 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 7: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

7

Vb. Hf4C4H 6 (partially dehydrogenated).

E = −348.12133 au, EZPE = −348.06068 au

R(HfC) = 2.025 – 2.240 Å, R(HfH) = 1.928 Å, R(CH) = 1.102 Å

μDIP = 6.9 D; APT charges: Hf +1.075 x1, +1.308 x2, +1.360 x1, C

−1.055 x1, −0.858 x1, −0.808 x2, HHf = −0.521 x1, −0.531 x2, HC

= 0.013 x2, 0.035 x1

EHOMO = −0.224 au, ELUMO = −0.106 au, ΔHL = 0.118 au

VIa. Hf4Si4H8 (cubane-like).

E = −1354.86584 au, EZPE = −1354.80957 au

R(HfSi) = 2.621 – 2.766 Å, R(HfH) = 1.876 Å, R(SiH) = 1.498 Å

μDIP = 0.1 D; APT charges: Hf +0.907 x4, Si −0.371 x4, HHf =

−0.427 x4, HSi = −0.100 x4

EHOMO = −0.217 au, ELUMO = −0.149 au, ΔHL = 0.068 au

VIb. Hf4Si4H6 (partially dehydrogenated).

E = −1353.65942 au, EZPE = −1353.61512 au

R(HfSi) = 2.508 – 2.740 Å, R(HfH) = 1.882 Å, R(SiH) = 1.497 Å

μDIP = 5.2 D; APT charges: Hf +0.688 x1, +0.904 x2, +0.970 x1, Si

−0.371 x1, −0.400 x2, −0.673 x1, HHf = −0.434 x1, −0.444 x2, HSi

= −0.112 x3

EHOMO = −0.200 au, ELUMO = −0.128 au, ΔHL = 0.072 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 8: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

8

S4. Optimized geometries and selected molecular properties of M4Nm4H8 molecules (M=Ti, V; Nm=B,

C, N) and of their most stable dehydrogenation products, except for Ti4C4H8.

VIIa. Ti4B4H8.

E = −3501.68954 au, EZPE = −3501.61969 au

R(TiB) = 2.208 – 2.221 Å, R(TiH) = 1.738 Å, R(BH) = 1.206 Å

μDIP = 0.0 D; APT charges: Ti +0.913 x4, B −0.351 x4, HTi =

−0.503 x4, HB = −0.059 x4

EHOMO = −0.242 au, ELUMO = −0.152 au, ΔHL = 0.090 au

VIIb. Ti4B4H6[I]

E = −3500.49395 au, EZPE = −3500.43555 au

R(TiB) = 2.049 – 2.249 Å, R(TiH) = 1.735 – 1.751 Å, R(BH) =

1.202 Å

μDIP = 4.8 D; APT charges: Ti +0.475 x1, +0.756 x2, +0.760 x1, B

−0.118 x1, −0.194 x2, −0.438 x1, HTi = −0.475 x1, −0.517 x2, HB

= −0.098 x3

EHOMO = −0.218 au, ELUMO = −0.136 au, ΔHL = 0.082 au

VIIIa. Ti4N4H8.

E = −3621.75915 au, EZPE = −3621.67481 au

R(TiN) = 1.896 – 2.100 Å, R(TiH) = 1.770 Å, R(NH) = 1.020 Å

μDIP = 1.7 D; APT charges: Ti +0.831 x2, +1.062 x2, N −0.553 x2,

−0.593 x2, HTi = −0.573 x2, −0.581 x2, HN = +0.203 x4

EHOMO = −0.187 au, ELUMO = −0.117 au, ΔHL = 0.070 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 9: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

9

VIIIb. Ti4N4H6[I]

E = −3620.55816 au, EZPE = −3620.48969 au

R(TiN) = 1.872 – 2.109 Å, R(TiH) = 1.760 – 1.785 Å, R(NH) =

1.020 Å

μDIP = 2.9 D; APT charges: Ti +0.456 x1, +0.633 x1, +1.201 x2, N

−0.538 x1, −0.612 x2, −0.616 x1, HTi = −0.511 x1, −0.546 x2, HN

= +0.157 x2, +0.176 x1

EHOMO = −0.169 au, ELUMO = −0.089 au, ΔHL = 0.080 au

IXa. V4B4H8.

E = −3879.78477 au, EZPE = −3879.70662 au

R(VB) = 2.144 – 2.248 Å, R(VH) = 1.664 – 1.741 Å, R(BH) =

1.199 Å

μDIP = 4.7 D; APT charges: V +0.379 x1, +0.415 x1, +0.453 x1,

+0.500 x1, B −0.113 x2, −0.137 x1, −0.149 x1, HV = −0.115 x1,

−0.144 x1, −0.330 x2, HB = −0.076 x2, −0.113 x1, −0.149 x1

EHOMO = −0.217 au, ELUMO = −0.141 au, ΔHL = 0.076 au

IXb. V4B4H6.

E = −3878.57964 au, EZPE = −3878.51719 au

R(VB) = 2.020 – 2.408 Å, R(VH) = 1.690 – 1.795 Å, R(BH) =

1.194 Å

μDIP = 4.9 D; APT charges: V +0.367 x1, +0.430 x1, +0.483 x1,

+0.547 x1, B −0.024 x1, −0.053 x1, −0.094 x1, −0.179 x1, HV =

−0.326 x1, −0.432 x1, −0.478 x1, HB = −0.068 x1, −0.086 x2,

EHOMO = −0.213 au, ELUMO = −0.130 au, ΔHL = 0.083 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 10: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

10

Xa. V4C4H8.

E = −3932.86026 au, EZPE = −3932.77864 au

R(VC) = 1.857 – 2.100 Å, R(VH) = 1.686 Å, R(CH) = 1.098 Å

μDIP = 2.6 D; APT charges: V +0.503 x2, +1.009 x2, C −0.342 x2,

−0.445 x2, HV = −0.418 x2, −0.454 x2, HC = −0.069 x2, −0.078 x2

EHOMO = −0.221 au, ELUMO = −0.140 au, ΔHL = 0.081 au

Xb. V4C4H6.

E = −3931.65685 au, EZPE = −3931.58945 au

R(VC) = 1.836 – 2.113 Å, R(VH) = 1.684 – 1.698 Å, R(CH) =

1.098 Å

μDIP = 3.3 D; APT charges: V +0.583 x1, +0.630 x1, +0.866 x2, C

−0.344 x1, −0.459 x2, −0.593 x1, HV = −0.419 x1, −0.438 x2, HC =

−0.061 x1, −0.071 x2

EHOMO = −0.209 au, ELUMO = −0.114 au, ΔHL = 0.095 au

XIa. V4N4H8.

E = −3999.72914 au, EZPE = −3999.64134 au

R(VN) = 1.905 – 2.013 Å, R(VH) = 1.693 Å, R(NH) = 1.016 Å

μDIP = 2.7 D; APT charges: V +0.723 x2, +0.749 x2, N −0.446 x2,

−0.495 x2, HV = −0.442 x2, −0.453 x2, HN = +0.176 x2, +0.189 x2

EHOMO = −0.199 au, ELUMO = −0.114 au, ΔHL = 0.085 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 11: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

11

XIb. V4N4H6.

E = −3998.52582 au, EZPE = −3998.45511 au

R(VN) = 1.790 – 2.005 Å, R(VH) = 1.691 – 1.708 Å, R(NH) =

1.014 Å

μDIP = 3.8 D; APT charges: V +0.587 x1, +0.790 x1, +0.846 x1,

+0.890 x1, N −0.521 x1, −0.536 x1, −0.595 x1, −0.642 x1, HV =

−0.464 x3, HN = +0.181 x1, +0.191 x1, +0.201 x1

EHOMO = −0.203 au, ELUMO = −0.112 au, ΔHL = 0.091 au

XIIa. Zr4B4H8.

E = −292.29184 au, EZPE = −292.22399 au

R(ZrB) = 2.373 – 2.393 Å, R(ZrH) = 1.900 Å, R(BH) = 1.206 Å

μDIP = 0.0 D; APT charges: Zr +0.976 x4, B −0.398 x4, HZr =

−0.517 x4, HB = −0.062 x4

EHOMO = −0.233 au, ELUMO = −0.138 au, ΔHL = 0.095 au

XIIb. Zr4B4H6[I]

E = −291.09613 au, EZPE = −291.04037 au

R(ZrB) = 2.213 – 2.513 Å, R(ZrH) = 1.898 – 1,918 Å, R(BH) =

1.198 – 1,208 Å

μDIP = 5.1 D; APT charges: Zr +0.444 x1, +0.764 x2, +0.789 x1, B

−0.112 x1, −0.158 x2, −0.416 x1, HZr = −0.498 x1, −0.539 x2, HB

= −0.122 x3

EHOMO = −0.206 au, ELUMO = −0.130 au, ΔHL = 0.076 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 12: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

12

S5. Optimized geometries and selected molecular properties of Ti4(N2B2)H8 and of its dehydrogenation

products.

XIIIa. Ti4(N2B2)H8.

E = −3561.74335 au, EZPE = −3561.66523 au

R(TiN) = 2.028 Å, R(TiB) = 2.001 – 2.146 Å, R(TiH) = 1.744 Å,

R(NH) = 1.024 Å, R(BH) = 1.234 Å,

μDIP = 3.7 D; APT charges: Ti +0.955 x2, +1.141 x2, N −0.619 x2,

B −0.706 x2, HTi = −0.477 x2, −0.485 x2, HN = +0.152 x2, HB =

+0.039 x2

EHOMO = −0.218 au, ELUMO = −0.133 au, ΔHL = 0.085 au

XIIIb. Ti4(N2B2)H6 (dehydrogenated at TiB).

E = −3560.51402 au, EZPE = −3560.44927 au

R(TiN) = 2.002 – 2.035 Å, R(TiB) = 1.918 – 2.159 Å, R(TiH) =

1.756 Å, R(NH) = 1.024 Å, R(BH) = 1.236 Å,

μDIP = 9.0 D; APT charges: Ti +0.738 x1, +0.944 x1, +1.074 x2, N

−0.582 x2, B −0.671 x1, −0.746 x1, HTi = −0.497 x2, −0.517 x1,

HN = +0.133 x2, HB = +0.016 x1

EHOMO = −0.199 au, ELUMO = −0.109 au, ΔHL = 0.090 au

XIIIc. Ti4(N2B2)H6 (dehydrogenated at TiN).

E = −3560.55588 au, EZPE = −3560.49306 au

R(TiN) = 1.886 – 2.049 Å, R(TiB) = 2.023 – 2.184 Å, R(TiH) =

1.750 Å, R(NH) = 1.024 Å, R(BH) = 1.234 Å,

μDIP = 2.5 D; APT charges: Ti +0.831 x1, +1.000 x1, +1.074 x2, N

−0.621 x1, −0.791 x1, B −0.671 x1, −0.746 x1, HTi = −0.493 x1,

−0.505 x2, HN = +0.154 x2, HB = −0.047 x1, +0.013 x1

EHOMO = −0.214 au, ELUMO = −0.117 au, ΔHL = 0.097 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 13: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

13

S6. Optimized geometries and selected molecular properties of molecular analogues of ‘sub-surface

alloys’ originating from perturbed Ti4C4H8, and of their dehydrogenation products.

XIVa. (TiCH2)(TiNH2)2(TiCH2).

E = −3588.30872 au, EZPE = −3588.22744 au

R(TiN) = 2.010 – 2.040 Å, R(TiC) = 2.001 – 2.042 Å, R(TiH) =

1.758 Å, R(NH) = 1.020 Å, R(CH) = 1.099 Å,

μDIP = 1.6 D; APT charges: Ti +0.947 x2, +1.021 x2, N −0.579 x2,

C −0.526 x2, HTi = −0.569 x2, −0.583 x2, HN = +0.214 x2, HC =

+0.075 x2

EHOMO = −0.185 au, ELUMO = −0.134 au, ΔHL = 0.051 au

XIVb. (TiCH2)(TiNH2)2(TiC).

E = −3587.08863 au, EZPE = −3587.02161 au

R(TiN) = 2.019 – 2.034 Å, R(TiC) = 1.918 – 2.103 Å, R(TiH) =

1.761– 1.774 Å, R(NH) = 1.022 Å, R(CH) = 1.100 Å,

μDIP = 5.7 D; APT charges: Ti +0.884 x1, +1.168 x3, N −0.699 x2,

C −0.749 x1, +0.968 x1, HTi = −0.526 x2, −0.556 x1, HN = +0.141

x2, HC = +0.055 x1

EHOMO = −0.182 au, ELUMO = −0.112 au, ΔHL = 0.070 au

XVa. (TiCH2)(TiBH2)2(TiCH2).

E = −3528.28218 au, EZPE = −3528.20703 au

R(TiB) = 2.104 – 2.248 Å, R(TiC) = 1.984 – 2.063 Å, R(TiH) =

1.741 – 1.756 Å, R(BH) = 1.236 Å, R(CH) = 1.102 Å,

μDIP = 1.5 D; APT charges: Ti +1.035 x1, +1.065 x2, +1.156 x1, B

−0.438 x2, C −0.676 x1, −0.745 x1, HTi = −0.488 x2, −0.516 x1,

−0.531 x1, HB = −0.082 x2, HC = +0.082 x2

EHOMO = −0.223 au, ELUMO = −0.134 au, ΔHL = 0.089 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 14: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

14

XVb. (TiCH2)(TiBH2)2(TiC).

E = −3527.07184 au, EZPE = −3527.01216 au

R(TiB) = 2.203 – 2.281 Å, R(TiC) = 1.849 – 2.063 Å, R(TiH) =

1.755 Å, R(BH) = 1.214 Å, R(CH) = 1.102 Å,

μDIP = 4.9 D; APT charges: Ti +0.893 x1, +1.039 x2, +1.074 x1, B

−0.414 x2, C −0.709 x1, −0.817 x1, HTi = −0.505 x1, −0.540 x2,

HB = −0.112 x2, HC = +0.081 x1

EHOMO = −0.221 au, ELUMO = −0.119 au, ΔHL = 0.102 au

XVIa. (TiCH2)(VCH2)2(TiCH2).

E = −3743.84912 au, EZPE = −3743.76940 au

R(TiC) = 1.984 – 2.054 Å, R(VC) = 1.934 – 1.980 Å, R(TiH) =

1.751 Å, R(VH) = 1.680 Å, R(CH) = 1.101 – 1.111 Å,

μDIP = 2.1 D; APT charges: Ti +1.101 x2, V −0.918 x2, C −0.575

x2, −0.662 x2, HTi = −0.503 x2, HV = −0.412 x2, HC = +0.064 x2,

+0.069 x2

EHOMO = −0.218 au, ELUMO = −0.135 au, ΔHL = 0.083 au

XVIb. (TiCH2)(VCH2)2(TiC).

E = −3742.63564 au, EZPE = −3742.57078 au

R(TiC) = 1.828 – 2.054 Å, R(VC) = 1.900 – 2.012 Å, R(TiH) =

1.765 Å, R(VH) = 1.686 Å, R(CH) = 1.101 – 1.110 Å,

μDIP = 6.9 D; APT charges: Ti +0.912 x1, +0.997 x1, V −0.877 x2,

C −0.617 x2, −0.635 x1, −0.647 x1, HTi = −0.517 x1, HV = −0.436

x2, HC = +0.058 x2, +0.128 x1

EHOMO = −0.192 au, ELUMO = −0.106 au, ΔHL = 0.086 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 15: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

15

S7. Optimized geometries and selected molecular properties of various isomers of the M4Si4H8

composition (M=Ti, Zr), and of the Ti4Nm4H8 composition (Nm=B, N), and of their dehydrogenation

products, except for those shown in S3 and S4.

IIc. Ti4Si4H8*

E = −4560.34337 au, EZPE = -4560.28448 au

R(TiSi) = 2.500 – 2.570 Å, R(TiH) = 1.500 – 1.554 Å, R(SiH) =

1.717 Å

μDIP = 1.0 D; APT charges: Ti +0.662 x1, +0.808 x2, +0.820 x1, Si

−0.257 x2, −0.322 x2, HTi = −0.376 x1, −0.422 x2, −0.404 x1, HSi

= −0.016 x1, −0.094 x1, −0.104 x2

EHOMO (A'') = −0.226 au, ELUMO (A') = −0.148 au, ΔHL = 0.078 au

IVc. Zr4Si4H8*

E = −1351.01043 au, EZPE = −1350.95267 au

R(ZrSi) = 2.649 – 2.727 Å, R(ZrH) = 1.867 – 1.880 Å, R(SiH) =

1.498 – 1.560 Å

μDIP = 1.5 D; APT charges: Zr +0.797 x1, +0.923 x2, +1.002 x1, Si

−0.358 x2, −0.376 x1, −0.408 x1, HZr = −0.411 x1, −0.435 x1,

−0.462 x2, HSi = −0.041 x1, −0.111 x3

EHOMO = −0.218 au, ELUMO = −0.140 au, ΔHL = 0.078 au

VIIc. Ti4B4H6[II]

E = −3500.47896 au, EZPE = -3500.42996 au

R(TiB) = 2.050 – 2.269 Å, R(TiH) = 1.741 – 1.759 Å, R(BH) =

1.199 – 1.209 Å

μDIP = 6.0 D; APT charges: Ti +0.534 x1, +0.678 x1, +0.748 x1,

+0.787 x1, B −0.127 x1, −0.149 x1, −0.201 x1, −0.445 x1, HTi =

−0.490 x1, −0.518 x2, HB = −0.097 x3

EHOMO = −0.215 au, ELUMO = −0.138 au, ΔHL = 0.077 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 16: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

16

VIIIc. Ti4N4H6[II]

E = −3620.54984 au, EZPE = −3620.48166 au

R(TiN) = 1.772 – 2.114 Å, R(TiH) = 1.757 – 1.785 Å, R(NH) =

1.020 Å

μDIP = 3.6 D; APT charges: Ti +0.557 x1, +0.804 x1, +1.113 x1,

+1.275 x1, N −0.576 x1, −0.588 x1, −0.652 x1, −0.764 x1, HTi =

−0.532 x2, −0.596 x1, HN = +0.159 x2, +0.173 x1

EHOMO = −0.177 au, ELUMO = −0.100 au, ΔHL = 0.077 au

XIIc. Zr4B4H6[II]

E = −291.09031 au, EZPE = −291.03495 au

R(ZrB) = 2.289 – 2.541 Å, R(ZrH) = 1.906 – 1,929 Å, R(BH) =

1.199 – 1,214 Å

μDIP = 6.3 D; APT charges: Zr +0.435 x1, +0.702 x1, +0.747 x1,

+0.822 x1, B −0.096 x1, −0.135 x2, −0.393 x1, HZr = −0.505 x1,

−0.542 x2, HB = −0.122 x3

EHOMO = −0.203 au, ELUMO = −0.132 au, ΔHL = 0.071 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 17: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

17

S8. Optimized geometries and selected molecular properties of dihydrogen complexes and transition

states for reactions of H2 detachment from selected M4Nm4H8 systems.

Ic. Ti4C4H6 ... H2

E = −3554.84297 au, EZPE = −3554.76442 au

R(TiC) = 1.857 − 2.054 Å, R(TiH) = 1.760 Å, R(CH) = 1.102 Å,

R(HH) = 0.763 Å

μDIP = 6.3 D; APT charges: Ti +0.992 x1, +1.201 x2, +1.210 x1, C

−0.768 x2, −0.798 x1, −0.979 x1, HTi = −0.514 x1, −0.526 x2, HC

= +0.063 x3, H2 compl = −0.049, +0.136

EHOMO = −0.241 au, ELUMO = −0.104 au, ΔHL = 0.137 au

Id. Ti4C4H6 + H2 (TS)

E= −3554.83063 au, EZPE= −3554.75349 au, υimg = −1225.5 cm–1 R(TiC) = 1.879 − 2.046 Å, R(TiH) = 1.750 Å, R(CH) = 1.102 Å,

R(HH) = 1.047 Å

μDIP = 3.6 D; APT charges: Ti +0.973 x1, +1.233 x3, C −0.780 x2,

−0.818 x1, −1.056 x1, HTi = −0.506 x1, −0.514 x2, HC = +0.069

x3, H2 TS = −0.364, +0.463

EHOMO = −0.252 au, ELUMO = −0.120 au, ΔHL = 0.132 au

IId. Ti4Si4H6 ... H2

E = −4560.33336 au, EZPE = −4560.27267 au

R(TiSi) = 2.359 − 2.566 Å, R(TiH) = 1.722 Å, R(SiH) = 1.495 Å,

R(HH) = 0.797 Å

μDIP = 4.7 D; APT charges: Ti +0.504 x1, +0.764 x2, +0.824 x1, Si

−0.292 x2, −0.306 x1, −0.524 x1, HTi = −0.421 x1, −0.428 x2, HSi

= −0.103 x3, H2 compl = −0.114, +0.260

EHOMO(A'') = −0.211 au, ELUMO(A') = −0.134 au, ΔHL = 0.077 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 18: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

18

IIe. Ti4Si4H6 + H2 (TS1)

E= −4560.33080 au, EZPE= −4560.27290 au, υimg = −800.3 cm–1 R(TiSi) = 2.388 − 2.561 Å, R(TiH) = 1.721 Å, R(SiH) = 1.496 Å,

R(HH) = 1.046 Å

μDIP = 2.6 D; APT charges: Ti +0.490 x1, +0.783 x2, +0.837 x1, Si

−0.294 x2, −0.315 x1, −0.463 x1, HTi = −0.414 x1, −0.425 x2, HSi

= −0.101 x3, H2 TS = −0.279, +0.316

EHOMO(A'') = −0.217 au, ELUMO(A') = −0.141 au, ΔHL = 0.076 au

IVd. Zr4Si4H6 ... H2

E = −1350.99718 au, EZPE = −1350.93786 au

R(ZrSi) = 2.500 − 2.645 Å, R(ZrH) = 1.877 − 1.886 Å, R(SiH) =

1.500 Å, R(HH) = 0.785 Å

μDIP = 5.2 D; APT charges: Zr +0.540 x1, +0.894 x2, +0.978 x1, Si

−0.358 x2, −0.372 x1, −0.626 x1, HZr = −0.455 x1, −0.462 x2, HSi

= −0.119 x3, H2 compl = −0.093, +0.237

EHOMO = −0.202 au, ELUMO = −0.126 au, ΔHL = 0.076 au

IVe. Zr4Si4H6 + H2 (TS1)

E = −1350.99178 au, EZPE = −1350.93530 au, υimg = −986.5 cm–1

R(ZrSi) = 2.531 − 2.716 Å, R(ZrH) = 1.872 − 1.883 Å, R(SiH) =

1.499 Å, R(HH) = 1.088 Å

μDIP = 2.8 D; APT charges: Zr +0.558 x1, +0.908 x2, +1.007 x1, Si

−0.372 x3, −0.574 x1, HZr = −0.447 x1, −0.463 x2, HSi = −0.115

x3, H2 TS = −0.303, +0.332

EHOMO = −0.209 au, ELUMO = −0.134 au, ΔHL = 0.075 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 19: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

19

VIId. Ti4B4H6 ... H2[I]

E = −3501.68093 au, EZPE = −3501.60896 au

R(TiB) = 2.050 − 2.318 Å, R(TiH) = 1.736 − 1.752 Å, R(BH) =

1.204 Å, R(HH) = 0.760 Å

μDIP = 5.4 D; APT charges: Ti +0.351 x1, +0.763 x2, +0.799 x1, B

−0.156 x1, −0.191 x2, −0.449 x1, HTi = −0.479 x1, −0.515 x2, HB

= −0.093 x2, −0.102 x1, H2 compl = +0.025, +0.085

EHOMO = −0.217 au, ELUMO = −0.133 au, ΔHL = 0.084 au

VIIe. Ti4B4H6 + H2[I] (TS)

E = −3501.65321 au, EZPE = −3501.58408 au, υimg = −1409.6 cm–1

R(TiB) = 2.008 − 2.310 Å, R(TiH) = 1.733 − 1.745 Å, R(BH) =

1.204 Å, R(HH) = 1.178 Å

μDIP = 1.6 D; APT charges: Ti +0.354 x1, +0.829 x2, +0.881 x1, B

−0.205 x1, −0.219 x2, −0.480 x1, HTi = −0.484 x1, −0.512 x2, HB

= −0.085 x2, −0.094 x1, H2 TS = −0.363, +0.366

EHOMO = −0.228 au, ELUMO = −0.148 au, ΔHL = 0.079 au

VIIf. Ti4B4H6 ... H2[II]

E = −3501.67475 au, EZPE = −3501.60312 au

R(TiB) = 2.054 − 2.337 Å, R(TiH) = 1.744 − 1.759 Å, R(BH) =

1.200 − 1.210 Å, R(HH) = 0.760 Å

μDIP = 6.4 D; APT charges: Ti +0.334 x1, +0.643 x1, +0.799 x1,

+0.824 x1, B −0.119 x1, −0.159 x1, −0.212 x1, −0.436 x1, HTi =

−0.477 x1, −0.508 x1, −0.521 x1, HB = −0.096 x2, −0.107 x1, H2 compl = +0.047, +0.104

EHOMO = −0.214 au, ELUMO = −0.135 au, ΔHL = 0.079 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 20: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

20

VIIg. Ti4B4H6 + H2[II] (TS)

E = −3501.65836 au, EZPE = −3501.58838 au, υimg = −1189.6 cm–1

R(TiB) = 2.004 − 2.229 Å, R(TiH) = 1.733 − 1.749 Å, R(BH) =

1.203 Å, R(HH) = 1.081 Å

μDIP = 3.8 D; APT charges: Ti +0.533 x1, +0.748 x1, +0.805 x1,

+0.858 x1, B −0.141 x1, −0.256 x2, −0.509 x1, HTi = −0.478 x1,

−0.508 x2, HB = −0.72 x1, −0.092 x2, H2 TS = −0.377, +0.345

EHOMO = −0.223 au, ELUMO = −0.146 au, ΔHL = 0.077 au

VIIId. Ti4N4H6 ... H2[I]

E = −3621.75605 au, EZPE = −3621.67178 au

R(TiN) = 1.848 − 2.161 Å, R(TiH) = 1.752 − 1.778 Å, R(NH) =

1.020 Å, R(HH) = 0.829 Å

μDIP = 1.9 D; APT charges: Ti +0.216 x1, +0.616 x1, +1.374 x2, N

−0.630 x3, −0.824 x1, HTi = −0.459 x1, −0.529 x2, HN = +0.159

x2, +0.167 x1, H2 compl = −0.146, +0.312

EHOMO = −0.176 au, ELUMO = −0.092 au, ΔHL = 0.084 au

VIIIe. Ti4N4H6 + H2[I]

(TS)

E = −3621.70758 au, EZPE = −3621.62763 au, υimg = −1436.8 cm–1

R(TiN) = 1.833 − 2.054 Å, R(TiH) = 1.765 − 1.778 Å, R(NH) =

1.019 Å, R(HH) = 1.064 Å

μDIP = 3.5 D; APT charges: Ti +0.742 x1, +0.799 x1, +0.963 x2, N

−0.525 x2, −0.571 x1, −0.745 x1, HTi = −0.563 x2, −0.575 x1, HN

= +0.179 x2, +0.207 x1, H2 TS = −0.409, +0.446

EHOMO (A')= −0.176 au, ELUMO (A')= −0.106 au, ΔHL = 0.070 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 21: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

21

VIIIf. Ti4N4H6 ... H2[II]

E = −3621.73722 au, EZPE = −3621.65374 au

R(TiN) = 1.770 − 2.121 Å, R(TiH) = 1.759 − 1.781 Å, R(NH) =

1.020 Å, R(HH) = 0.773 Å

μDIP = 4.0 D; APT charges: Ti +0.252 x1, +0.869 x1, +1.064 x1,

+1.216 x1, N −0.538 x1, −0.558 x1, −0.621 x1, −0.659 x1, HTi =

−0.532 x2, −0.593 x1, HN = +0.145 x1, +0.159 x1, +0.174 x1, H2

compl = −0.034, +0.188

EHOMO = −0.175 au, ELUMO = −0.097 au, ΔHL = 0.078 au

VIIIg. Ti4N4H6 + H2 (TS)[II]

E = −3621.71653 au, EZPE = −3621.63585 au, υimg = −1405.7 cm–1

R(TiN) = 1.813 − 2.092 Å, R(TiH) = 1.754 − 1.775 Å, R(NH) =

1.020 Å, R(HH) = 1.058 Å

μDIP = 3.1 D; APT charges: Ti +0.496 x1, +0.854 x1, +1.083 x1,

+1.240 x1, N −0.566 x1, −0.590 x1, −0.607 x1, −0.876 x1, HTi =

−0.532 x1, −0.542 x1, −0.594 x1, HN = +0.169 x1, +0.176 x1, +0.188 x1, H2 TS = −0.345, +0.445

EHOMO = −0.184 au, ELUMO = −0.110 au, ΔHL = 0.074 au

XIVc. (TiCH2)(TiNH2)2(TiC) ... H2

E = −3588.28189 au, EZPE = −3588.19938 au

R(TiN) = 1.982 – 2.094 Å, R(TiC) = 1.931 – 2.069 Å, R(TiH) =

1.761 Å, R(NH) = 1.021 Å, R(CH) = 1.100 Å, R(HH) = 0.795 Å

μDIP = 5.5 D; APT charges: Ti +0.294 x1, +1.185 x2, +1.230 x1, N

−0.521 x1, −0.662 x1, C −0.740 x1, +0.940 x1, HTi = −0.524 x2,

−0.537 x1, HN = +0.132 x1, +0.146 x1, HC = +0.058 x1, H2 compl =

−0.003, +0.220

EHOMO = −0.180 au, ELUMO = −0.112 au, ΔHL = 0.068 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 22: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

22

XIVd. (TiCH2)(TiNH2)2(TiC) + H2 (TS)

E = −3588.26169 au, EZPE = −3588.18478 au, υimg = −760.7 cm–1

R(TiN) = 1.994 – 2.091 Å, R(TiC) = 1.916 – 2.010 Å, R(TiH) =

1.733 – 1.751 Å, R(NH) = 1.022 Å, R(CH) = 1.101 Å, R(HH) =

2.206 Å

μDIP = 5.2 D; APT charges: Ti +0.988 x1, +1.083 x2, +1.341 x1, N

−0.695 x2, C −0.694 x1, +0.726 x1, HTi = −0.484 x1, −0.518 x2,

HN = +0.189 x2, HC = +0.073 x1, H2 TS = −0.498, +0.120

EHOMO = −0.206 au, ELUMO = −0.128 au, ΔHL = 0.078 au

XVc. (TiCH2)(TiBH2)2(TiC) ... H2

E = −3528.26240 au, EZPE = −3528.18694 au

R(TiB) = 2.063 – 2.357 Å, R(TiC) = 1.921 – 2.070 Å, R(TiH) =

1.745 – 1.754 Å, R(BH) = 1.249 Å, R(CH) = 1.102 Å, R(HH) =

0.766 Å

μDIP = 4.8 D; APT charges: Ti +0.396 x1, +1.083 x2, +1.127 x1, B

−0.312 x2, C −0.747 x1, −0.834 x1, HTi = −0.504 x2, −0.518 x1, HB = −0.118 x2, HC = +0.078 x1, H2

compl = −0.101 x2

EHOMO = −0.210 au, ELUMO = −0.119 au, ΔHL = 0.091 au

XVd. (TiCH2)(TiBH2)2(TiC) + H2 (TS)

E = −3528.24156 au, EZPE = −3528.18694 au, υimg = −1220.9 cm–1

R(TiB) = 2.115 – 2.290 Å, R(TiC) = 1.940 – 2.083 Å, R(TiH) =

1.745 – 1.756 Å, R(BH) = 1.238 – 1.250 Å, R(CH) = 1.102 Å,

R(HH) = 1.027 Å

μDIP = 3.8 D; APT charges: Ti +0.715 x1, +0.989 x1, +1.025 x1,

+1.100 x1, B −0.320 x2, C −0.712 x1, −0.882 x1, HTi = −0.511 x1, −0.518 x1, −0.486 x1, HB = −0.097

x1, −0.147 x1, HC = +0.084 x1, H2 TS = −0.271, +0.359

EHOMO = −0.209 au, ELUMO = −0.122 au, ΔHL = 0.087 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 23: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

23

XVIc. (TiCH2)(VCH2)2(TiC) ... H2

E = −3743.82526 au, EZPE = −3743.74549 au

R(TiC) = 1.836 – 2.055 Å, R(VC) = 1.904 – 1.993 Å, R(TiH) =

1.765 Å, R(VH) = 1.688 Å, R(CH) = 1.101 – 1.110 Å, R(HH) =

0.775 Å

μDIP = 6.8 D; APT charges: Ti +0.806 x1, +1.005 x1, V −0.844 x2,

C −0.613 x2, −0.630 x1, −0.647 x1, HTi = −0.522 x1, HV = −0.433 x2, HC = +0.066 x2, +0.115 x1, H2

compl = −0.085, +0.231

EHOMO = −0.188 au, ELUMO = −0.108 au, ΔHL = 0.080 au

XVId. (TiCH2)(VCH2)2(TiC) + H2 (TS)

E = −3743.81806 au, EZPE = −3743.73999 au, υimg = −1135.8 cm–1

R(TiC) = 1.862 – 2.063 Å, R(VC) = 1.917 – 1.979 Å, R(TiH) =

1.758 Å, R(VH) = 1.682 Å, R(CH) = 1.101 – 1.109 Å, R(HH) =

1.036 Å

μDIP = 4.5 D; APT charges: Ti +0.761 x1, +1.036 x1, V −0.823 x2,

C −0.597 x1, −0.613 x2, −0.621 x1, HTi = −0.515 x1, HV = −0.417 x2, HC = +0.069 x2, +0.107 x1, H2

TS = −0.339, +0.444

EHOMO = −0.202 au, ELUMO = −0.116 au, ΔHL = 0.086 au

XIId. Zr4B4H6 ... H2[I]

E = −292.28063 au, EZPE = −292.21174 au,

R(ZrB) = 2.213 – 2.446 Å, R(ZrH) = 1.899 – 1,919 Å, R(BH) =

1.199 – 1.207 Å, R(HH) = 0.756 Å

μDIP = 5.7 D; APT charges: Zr +0.336 x1, +0.793 x2, +0.800 x1, B

−0.135 x1, −0.148 x2, −0.434 x1, HZr = −0.504 x1, −0.537 x2, HB

= −0.119 x2, −0.129 x1, H2 compl = +0.034, +0.057

EHOMO = −0.204 au, ELUMO = −0.127 au, ΔHL = 0.077 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 24: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

24

XIIe. Zr4B4H6 + H2[I] (TS)

E = −292.23439 au, EZPE = −292.17009 au, υimg = −831.0 cm–1

R(ZrB) = 2.301 – 2.456 Å, R(ZrH) = 1.903 Å, R(BH) = 1.203 Å,

R(HH) = 1.551 Å

μDIP = 0.6 D; APT charges: Zr +0.224 x1, +0.879 x1, +0.946 x2, B

−0.120 x1, −0.146 x1, −0.251 x2, HZr = −0.519 x1, −0.529 x2, HB

= −0.041 x1, −0.078 x2, H2 TS = −0.270, +0.057

EHOMO = −0.204 au, ELUMO = −0.127 au, ΔHL = 0.085 au

XIIf. Zr4B4H6 ... H2[II]

E = −292.27395 au, EZPE = −292.20574 au,

R(ZrB) = 2.242 – 2.535 Å, R(ZrH) = 1.907 – 1,930 Å, R(BH) =

1.199 – 1.214 Å, R(HH) = 0.756 Å

μDIP = 7.0 D; APT charges: Zr +0.323 x1, +0.706 x1, +0.756 x1,

+0.839 x1, B −0.088 x1, −0.121 x1, −0.157 x1, −0.401 x1, HZr =

−0.513 x1, −0.540 x2, HB = −0.116 x2, −0.129 x1, H2 compl = +0.046, +0.057

EHOMO = −0.201 au, ELUMO = −0.130 au, ΔHL = 0.071 au

IIf. Ti4Si4H6 + H2 (TS2 between Ti4Si4H8 and Ti4Si4H8*)

E= −4560.33577 au, EZPE= −4560.27883 au, υimg = −243.7 cm–1 R(TiSi) = 2.495 − 2.601 Å, R(TiH) = 1.718 Å, R(SiH) = 1.496 Å,

R(HH) = 3.374 Å

μDIP = 0.4 D; APT charges: Ti +0.762 x1, +0.804 x3, Si −0.272 x2,

−0.314 x1, −0.329 x1, HTi = −0.412 x3, HSi = −0.087 x1, −0.099

x2, H2 TS = −0.064, −0.404

EHOMO = −0.225 au, ELUMO = −0.153 au, ΔHL = 0.072 au

PDF created with pdfFactory trial version www.pdffactory.com

Page 25: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

25

S9. The experimentally observed dependence between an ‘efficient energy barrier’ for the hemolytic H2

detachment and a thermodynamic reaction parameter (standard redox potential for the metal

cation/metal pair in the aqueous solution, E0), for a range of inorganic binary hydrides. Numerical data

from [1].

Comp. Tdec /oC

Tdec / K

3/2 kT Effective barrier

/eV

E0 /V Redox pair

LiH 720 993 2.06E-20 0.128 -3.04 LiI(aq)/Li0(s) BaH2 675 948 1.96E-20 0.122 -2.92 BaII

(aq)/Ba0(s)

SrH2 675 948 1.96E-20 0.122 -2.89 SrII (aq)/Sr0

(s) CaH2 600 873 1.81E-20 0.113 -2.84 CaII

(aq)/Ca0(s)

NaH 425 698 1.44E-20 0.090 -2.713 NaI(aq)/Na0

(s) YH3 350 623 1.29E-20 0.081 -2.37 YIII

(aq)/Y0(s)

MgH2 327 600 1.24E-20 0.078 -2.356 MgII (aq)/Mg0

(s) ErH3 373 646 1.34E-20 0.083 -2.32 ErIII

(aq)/Er0(s)

PuH3 250 523 1.08E-20 0.068 -2.00 PuIII (aq)/Pu0

(s) BeH2 250 523 1.08E-20 0.068 -1.97 BeII

(aq)/Be0(s)

AlH3 150 423 8.76E-21 0.055 -1.676 AlIII (aq)/Al0(s) UH3 250 523 1.08E-20 0.068 -1.66 UIII

(aq)/U0(s)

VH2 35 308 6.38E-21 0.040 -1.13 VII (aq)/V0

(s) [BH3]2 40 313 6.48E-21 0.040 -0.89 H3BO3/B0

(s) ZnH2 90 363 7.51E-21 0.047 -0.793 ZnII

(aq)/Zn0(s)

Ga2H6 -15 258 5.34E-21 0.033 -0.53 GaIII (aq)/Ga0

(s) PH3 25 298 6.17E-21 0.039 -0.502 H3PO3/P0

(s) CdH2 -20 253 5.24E-21 0.033 -0.402 CdII

(aq)/Cd0(s)

SnH4 25 298 6.17E-21 0.039 0.007 SnIV (aq)/Sn0

(s) SbH3 -65 208 4.31E-21 0.027 0.204 SbOI/Sb0

(s) BiH3 -40 233 4.82E-21 0.030 0.317 BiIII(aq)/Bi0(s) HgH2 -125 148 3.06E-21 0.019 0.854 BiIII(aq)/Bi0(s)

Here, ‘effective barrier’ has been calculated as the average thermal energy of a molecule, 3/2 kTdec, at

its thermal decomposition temperature, Tdec, and expressed in the eV units. It is related to, but of course

much smaller then the electronic barrier of the H2 detachment reaction which enters the kinetic

(Arrhenius) equation.

PDF created with pdfFactory trial version www.pdffactory.com

Page 26: Electronic Supplementary Material - Uniwersytet …beta.chem.uw.edu.pl/people/WGrochala/ESI_heterolytic.pdf1 Electronic Supplementary Material Catalysts for Heterolytic Split of H2

26

S10. Changes of the total electron density, electrostatic potential and selected molecular orbitals along a schematic reaction path for the reaction: Ti4Si4H6 + H2 → Ti4Si4H6…H2 (H2C) → TS1 → Ti4Si4H8* → TS2 → Ti4Si4H8.

PDF created with pdfFactory trial version www.pdffactory.com