ee3302 lab report: ziegler-nichols & relay tuning experiments · ee3302 lab report:...

9
EE3302 Lab Report: Ziegler-Nichols & Relay Tuning Experiments Phang Swee King October 29, 2009 1 Objectives 1. Estimate a rst-order plus dead-time process model from an open-loop step response test for the Ziegler-Nichols open-loop method of tuning. 2. Obtain the ultimate gain and ultimate period from a relay experiment for the Ziegler-Nichols ultimate cycling method of tuning. 3. Estimate a transfer function model of the process from the ultimate gain and ultimate period. 4. Implement on-o temperature control. 2 Equipment 1. DIGIAC 1750 Transducer and Instrumentation Trainer 2. Connecting Wires 3. Digital Multi-meter 4. Personal Computer 5. Matlab 3 Open-Loop Step Test Table 1: Open-Loop Step Test (Ambient Temperature = 25.2 C) Time (minute) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Voltage v, (V) 2.982 2.988 3.000 3.018 3.034 3.049 3.062 3.075 3.085 3.095 Temperature above Ambient ( C) 0 0.6 1.8 3.6 5.2 6.7 8.0 9.3 10.3 11.3 Unit Step Response y ( C) 0 0.008 0.025 0.050 0.072 0.093 0.111 0.129 0.143 0.157 Time (minute) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 Voltage v, (V) 3.103 3.110 3.115 3.120 3.124 3.127 3.129 3.133 3.135 3.138 Temperature above Ambient ( C) 12.1 12.8 13.3 13.8 14.2 14.5 14.7 15.1 15.3 15.6 Unit Step Response y ( C) 0.168 0.178 0.185 0.191 0.197 0.201 0.204 0.209 0.212 0.216 Time (minute) 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 Voltage v, (V) 3.142 3.144 3.145 3.148 3.150 3.150 3.149 3.149 3.150 3.151 Temperature above Ambient ( C) 16.0 16.2 16.3 16.6 16.8 16.8 16.7 16.7 16.8 16.9 Unit Step Response y ( C) 0.222 0.225 0.226 0.230 0.233 0.233 0.232 0.232 0.233 0.234 1

Upload: truongdan

Post on 28-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

EE3302 Lab Report:

Ziegler-Nichols & Relay Tuning Experiments

Phang Swee King

October 29, 2009

1 Objectives

1. Estimate a first-order plus dead-time process model from an open-loop step response test for theZiegler-Nichols open-loop method of tuning.

2. Obtain the ultimate gain and ultimate period from a relay experiment for the Ziegler-Nichols ultimatecycling method of tuning.

3. Estimate a transfer function model of the process from the ultimate gain and ultimate period.

4. Implement on-off temperature control.

2 Equipment

1. DIGIAC 1750 Transducer and Instrumentation Trainer

2. Connecting Wires

3. Digital Multi-meter

4. Personal Computer

5. Matlab

3 Open-Loop Step Test

Table 1: Open-Loop Step Test (Ambient Temperature = 25.2∘C)Time (minute) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5Voltage v, (V) 2.982 2.988 3.000 3.018 3.034 3.049 3.062 3.075 3.085 3.095

Temperature above Ambient (∘C) 0 0.6 1.8 3.6 5.2 6.7 8.0 9.3 10.3 11.3Unit Step Response y (∘C) 0 0.008 0.025 0.050 0.072 0.093 0.111 0.129 0.143 0.157

Time (minute) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5Voltage v, (V) 3.103 3.110 3.115 3.120 3.124 3.127 3.129 3.133 3.135 3.138

Temperature above Ambient (∘C) 12.1 12.8 13.3 13.8 14.2 14.5 14.7 15.1 15.3 15.6Unit Step Response y (∘C) 0.168 0.178 0.185 0.191 0.197 0.201 0.204 0.209 0.212 0.216

Time (minute) 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5Voltage v, (V) 3.142 3.144 3.145 3.148 3.150 3.150 3.149 3.149 3.150 3.151

Temperature above Ambient (∘C) 16.0 16.2 16.3 16.6 16.8 16.8 16.7 16.7 16.8 16.9Unit Step Response y (∘C) 0.222 0.225 0.226 0.230 0.233 0.233 0.232 0.232 0.233 0.234

1

Time (minute) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5Voltage v, (V) 3.151 3.151 3.153 3.154 3.153 3.154 3.155 3.152 3.153 3.154

Temperature above Ambient (∘C) 16.9 16.9 17.1 17.2 17.1 17.2 17.3 17.0 17.1 17.2Unit Step Response y (∘C) 0.234 0.234 0.237 0.239 0.237 0.239 0.240 0.236 0.237 0.239

Time (minute) 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5Voltage v, (V) 3.156 3.155 3.154 3.154 3.154 3.155 3.155 3.156 3.156 3.155

Temperature above Ambient (∘C) 17.4 17.3 17.2 17.2 17.2 17.3 17.3 17.4 17.4 17.3Unit Step Response y (∘C) 0.241 0.240 0.239 0.239 0.239 0.240 0.240 0.241 0.241 0.240

4 Closed-Loop Relay Experiment

From the result in Part 3, steady-state voltage, vss = 3.155V

Table 2: ON-OFF Interval of the Electronic Switch

No. tON (sec) tOFF (sec)1 86 862 88 913 84 85

Average 86 87.3

Table 3: Maximum and Minimum Temperatures of the Oscillation

No. Maximum Temperature (∘C) Minimum Temperature (∘C)1 43.9 41.42 44.1 41.53 43.9 41.4

Average 44.0 41.4

5 ON-OFF Control

The temperature of 10∘C above ambient, v10 = 3.082V

2

Table 4: ON-OFF Period of the Electronic Switch

No. tON (sec) tOFF (sec)1 50 1472 49 1363 51 144

Average 50 142.3

Table 5: Maximum and Minimum Temperatures of the Oscillation

No. Maximum Temperature (∘C) Minimum Temperature (∘C)1 37.5 34.92 37.2 34.93 37.0 34.9

Average 37.2 34.9

6 Discussions

6.1 Experimental Unit Step Response

From Table 1, the experiment unit step response is plotted as shown in Figure 1.

Figure 1: Unit Step Response from the Experiment

3

6.2 Ziegler-Nichols Step Response Method - First-Order Plus Dead-TimeModel

The system is approximated by a first-order plus dead-time model as shown in Figure 2.

Figure 2: Ziegler-Nichols Step Response Approximation

The unit step response of the experiment data is approximated by

Gp(s) =Kp

sT + 1e−sL

with Kp = 0.24, L = 0.5 and T = 4.5.

Unit step response for the transfer function,

Gp(s) =0.24

4.5s+ 1e−0.5s

is superimposed with the unit step response from the experiment data (Figure 3).

4

Figure 3: Unit Step Response of Experiment Data (Solid Line) Approximated by First-Order Plus Dead-TimeModel (Dashed-Line)

6.3 Method of Areas - First-Order Plus Dead-Time Model

By calculating areas from the unit step response of the experiment data shown in Figure 1, we can obtain

A0 = 1.02 = Kp(T + L)

A1 = 0.31 = KpTe−1

Substituting Kp = 0.24, we got T = 3.51 and L = 0.739. Unit step response for the transfer function,

Gp(s) =0.24

3.51s+ 1e−0.739s

is superimposed with the unit step response from the experiment data (Figure 4).

5

Figure 4: Unit Step Response of Experiment Data (Solid Line) Approximated by First-Order Plus Dead-TimeModel (Dashed-Line)

6.4 Least-Square Estimation - First-Order Model

Consider a first-order model,

Y (s)

U(s)=

Kp

Ts+ 1

TsY (s) + Y (s) = KpU(s)

T.y(t) + y(t) = Kpu(t)

With sampling interval 0.5s,

Ty(tk)− y(tk−1)

0.5+ y(tk) = Kpu(tk)

y(tk) =T

T + 0.5y(tk−1) +

0.5Kp

T + 0.5u(tk)

= �1y(tk−1) + �2u(tk)

where

Kp =�2

1− �1(1)

T =0.5�11− �1

(2)

Using least-square approximation method on the experiment data in Table 1, we obtain �1 = 0.9074 and�2 = 0.0230.

6

Substituting �1 = 0.9074 and �2 = 0.0230 into equation 1 and 2 gives us the approximate first-order transferfunction,

Gp(s) =0.2484

4.9016s+ 1

The unit step response from the estimated first-order model is superimposed with the unit step responsefrom the experiment data (Figure 5).

Figure 5: Unit Step Response of Experiment Data (Solid Line) Approximated by First-Order Model (Dashed-Line) using Least-Square Approximation

6.5 Relay Feedback - Second-Order Plus Dead-Time Model

The following parameters are obtained from Table 2 and Table 3 in Section 4.

Tu = 173.3

a = 1.3

d =122

2= 72

Ku =4d

�a= 70.52

By inspection,

L = 0.25

Kp = 0.24

We knowarg Gp(j!u) = −�

7

and

∣Gp(j!u)∣ = 1

Ku

where

Gp(s) =Kp

(sT1 + 1)(sT2 + 1)e−sL

We have

− arctan!uT1 − arctan!uT2 − !uL = −� (3)

Kp√!2uT

21 + 1

√!2uT

21 + 1

=1

Ku(4)

Solving equation 3 and 4 simultaneously after substituting Ku = 70.52, Kp = 0.24, L = 0.25 and !u =2�Tu× 60 = 2.175, we got

T1 = 2.2

T2 = 1.5

The approximated second-order plus dead-time step response of

Gp(s) =0.24

(2.2s+ 1)(1.5s+ 1)e−0.25s

is superimposed with the step response of the experiment data (Figure 6).

Figure 6: Unit Step Response of Experiment Data (Solid Line) Approximated by Second-Order Plus Dead-Time Model (Dashed-Line)

8

6.6 ON-OFF Control

Using Table 4 and 5, the approximate average temperature,

Tave =50× 37.2 + 142.3× 34.9

50 + 142.3= 35.5∘C

7 Conclusions

1. A system can be estimated by a first-order plus dead-time process model using Ziegler-Nichols open-loop method of tuning by obtaining the parameters of the open-loop step response.

2. The system can also be estimated using Ziegler-Nichols ultimate cycling method of tuning by obtainingthe ultimate gain and ultimate period from the relay system.

3. Alternately, method of area and least square estimation can be used to estimate the system.

9