eco-efficient solutions in the finnish metallurgical industry · challenges of eco-efficiency,...

42
Challenges of Eco-efficiency, 5.12.2006, VTT Espoo Eco-efficient Solutions in the Finnish Metallurgical Industry Juho Mäkinen, VTT Business Solutions

Upload: hoangdieu

Post on 04-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Eco-efficient Solutions in theFinnish Metallurgical Industry

Juho Mäkinen,VTT Business Solutions

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Structure of the presentation

1. Metallurgical industry in Finland2. Eco-efficient features in the Finnish

metallurcigal industry3. Harjavalta industrial park4. Outokumpu flash smelting technology5. Ferro-alloys technologies of Outokumpu6. Extraction of iron with low carbon dioxide

emissions

Challenges of Eco-efficiency 5.12.2006

Steel billets, BOFSteel billets, AOD

Steel billets, EAF

Harjavalta

Nickel and coarse copper

Aluminium

Cathode copper,copper half-products

Pipe factories

Cold rolling millHot rolling mill

Zinc

KemiCr

PRODUCERS OF STEEL ANDCOLOUR METALS IN FINLAND

Kuusakoski, Heinola

METALLINJALOSTAJAT09/2006

Tornio

Raahe

Kokkola

Stainless Tubular Products,Pietarsaari

Pori

Pulkkila

Oulainen

Hämeenlinna

LappohjaDalsbruk

Koverhar

HituraNi

OrivesiAu

Pori

Electrolysis

Imatra

1. Metallurgical industry in Finland

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

2. Eco-efficient features in theFinnish metallurcigal industry§ Conservation of energy and intelligent use of

non-fossile energy sources§ Minimizing the impact on the environment; air,

water, soil§ 6 BAT´s = Best Available Technologies§ ASM Historical Landmark Award for the

Outokumpu Flash Smelting Process in 2002§ About 50 % of the World copper and 30 % of

nickel is produced by Flash Smelting

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

3. Harjavalta industrial park

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

1944 Copper smelter is moved from Imatra to Harjavalta1945 The start up of the Outokumpu copper smelter

The history of Harjavalta industrial area

CuFeS2SiO2

ANODE FURNACE

Coppermatte

Blistercopper

Anode copperto electrolysis

Fe2SiO4 slagto disposal

Surplus energynot utilized

SO2 and metalcontaining flue dust

SO2 and metalcontaining flue dust

The Harjavalta copper smelter before Flash Smelting

PS-CONVERTERELECTRICFURNACE

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

The history of Harjavalta industrial area continued...1944 Copper smelter is moved from Imatra to Harjavalta1945 The start up of the Outokumpu copper smelter1947 The start up of the Kemira sulfuric acid plant

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

The history of Harjavalta industrial area continued...

1944 Copper smelter is moved from Imatra to Harjavalta.1945 The start up of the Outokumpu copper smelter1947 The start up of the Kemira sulfuric acid plant1949 The start up of Outokumpu copper flash smelter

Challenges of Eco-efficiency5.12.2006

WHB EP

Concentrate, silica sand

Feed mixture

Oxygenand air

Flue dust

Slag

FLOW SHEET OF COPPER SMELTER

SLAG COOLING

Silica sand,coke, reverts

Air and oxygen

SCREENING AND GRINDING

SLAG GRINDING

SLAGCONCENTRATOR

Waste slag

Acidplant

Bagfilter

Propane, air

Matte

Bagfilter

Bagfilter

WHB

FLASH SMELTINGFURNACE

CONCENTRATEDRYINGSteam

THICKENER

BlisterHEATEXCHANGER

PRESSUREFILTER

Scrap, anode scrap

EP

CONVERTER

ANODEFURNACE

Ni drying

Ni Electricfurnace bins

ANODE CASTING

Cu-ANODE

Slag concentrate

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

The history of Harjavalta industrial area continued…

1944 Copper smelter is moved from Imatra to Harjavalta1945 The start up of the Outokumpu copper smelter1947 The start up of the Kemira sulfuric acid plant1949 The start up of Outokumpu copper flash smelter1959 The start up of Outokumpu nickel flash smelter1971 The start up of the oxygen plant1995 The start up of AGA hydrogen plant1995 The start up of Direct Outokumpu Nickel process (DON)2000 OMG Harjavalta Nickel Ltd is founded2000 Porin Lämpövoima Ltd starts the energy production2002 OMG starts the nickel chemical production2004 Boliden Harjavalta Oy is founded

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Raw m aterialacquisition

Raw materialsrefining

Products making

Transporting

Sulphure chemicalsusing / Raw materialacquisition

Raw materialsrefining

Products making

Transporting

Copper deposit

Copper flashsmelting off gases

Surphurric acidplant

Ilmenite

Ilmenitedeposit

TiO 2-plant

Products using

Paint industry

Apatitemine

Potassiummine

AmmoniaNitricacid

Phosphorousacid

Sulphuricacid

Potassiumchloride

Fertilizer industry

Barley growing

Natural gas

Domestic market / Consumer

Foodproduction

Transporting

Products using

Bauxitedeposit

Bauxite

Al2(SO 4)3

Wastewatertreatment

Sugar- andstarch industry

Sulphurdioxide

Chem ical pulp(bleaching)

Paperindustry

ClO 2 -making

Cattlefeed

FeSO 4

TiO 2 .

The utilisation chain of sulphur starting from a copper mine to sulphurdioxide, sulphuric acid and ending at consumer’s dinner-table

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Product and company diversity progress 1945 - 2005

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Material and energyexchange of HarjavaltaIndustrial Park

ADVANTAGES:§ Environmental and

recycling benefits§ Better energy efficiency§ Better product diversity

when different companiescan concentrate to theirown core know-how areas

§ Marketing and logisticbenefits

§ Improved safety activity§ Image factors§ Cultural differences is a

positive factor in co-operation

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

How to govern the eco-efficiency ofthe activities in an industrial park?

§ There is no umbrella organization togovern the activities of individualcompanies in the park§ The overall supervision is carried out by

the environmental authorities§ They have the final decision making power

in environmental permissions and theyalso monitor the emissions from varioussources in the park

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

4. Outokumpu Flash SmeltingTechnology

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Theory of Flash Smelting - reactions

§ Dissociation reactions –endothermic (require energy)

§ Oxidation reactions –exothermic (produce energy)

§ Oxidation reaction are notcompleted, the degree ofoxidation depends on theamount of available oxygen.

§ Iron sulphides are oxidizedeasier than copper sulphides.

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Flash smelting furnace

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Cu production by process

1982

1984

1986

1988

1990

1992

1994

NORANDAISAMITSUBISHIINCOBLAST F.ELECTR. F.CMTREVERB.OK FSF

0.0

1.0

2.0

3.0

4.0PR

OD

UC

TIO

N, M

t Cu/

a

REVERBERATORY

FSF

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Sulfur Capture in CopperSmelters (Forecast)

YEAR

SULF

UR

CA

PTU

RE

(%)

90

91

92

93

94

95

96

97

98

99

100

1996 1998 2000 2002 2004 2006 2008 2010

South America

Australia

Africa

Asia excl. Japan

North America

Europe

ISA + PS + Acid Plant

Japan

MITSUBISHI + Acid PlantFSF + PS + Acid Plant

FSF + FCF + Acid Plant

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Flash Smelters around the world

KONKOLA

(ZAMBIA)

KHATOON-ABAD

(IRAN)

SALT LAKE CITY

SAN MANUEL

HIDALGO

(USA)

RÖNNSKÄR

(SWEDEN)

GLOGOW

(POLAND)

PIRDOP

(BULGARIA)

LA CARIDAD

(MEXICO)

PASAR

(PHILIPPINES)

FORTALEZA

DIAS D’AVILA

(BRAZIL)

ONSAN

(SOUTH KOREA)HUELVA

(SPAIN)

DAHEJ

KHETRI

GHATSILA

(INDIA)

SELEBI-PHIKWE

(BOTSWANA)

SAMSUN

(TURKEY)

KALGOORLIE

TENNANT CREEK

OLYMPIC DAM

MOUNT MORGAN

(AUSTRALIA)

HAMBURG(GERMANY)

KOSAKA

HITACHI

ASHIO

TAMANO

TOYO

SAGANOSEKI

(JAPAN)

BAIA MARE

(ROMANIA)

KOKKOLA

HARJAVALTA

(FINLAND)

CHUQUICAMATA

CHAGRES

(CHILE)

JINCHANG

YANGGU

TONGLING

GUIXI

(CHINA)

Cu SMELTING

Cu CONVERTING

DIRECT TO BLISTER

Ni SMELTING

NOT IN OPERATION

NORILSK

(RUSSIA)

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Flash Smelting & FlashConverting References 1/3

1. Outokumpu Oy, Harjavalta, Finland Cu smelting 19492. Outokumpu Oy, Harjavalta, Finland Ni smelting 19593. Furukawa Co Ltd., Ashio, Japan Cu smelting 19564. Outokumpu Oy, Kokkola, Finland Pyrite smelting 19625. Combinatul Chimico Metalurgic, Baia Mare, Romania Cu smelting 19666. The Dowa Mining Co Ltd., Kosaka, Japan Cu smelting 19677. Nippon Mining Co Ltd., Saganoseki, Japan Cu smelting 19708. Sumitomo Metal Mining Co Ltd., Toyo, Japan Cu smelting 19719. Hindustan Copper Ltd., Ghatsila, India Cu smelting 197110. Peko Wallsend Metals Ltd., Mount Morgan, Australia Cu smelting 197211. Hibi Kyodo Smelting Co Ltd., Tamano, Japan Cu smelting 197212. Norddeutsche Affinerie AG, Hamburg, Germany Cu smelting 197213. Nippon Mining Co Ltd., Hitachi, Japan Cu smelting 197214. Western Mining Corporation, Kalgoorlie, Australia Ni smelting 197215. Karadeniz Bakir Isletmeleri AS, Samsun, Turkey Cu smelting 197316. Peko Wallsend Metals Ltd., Tennant Creek, Australia Cu smelting 197317. Nippon Mining Co Ltd., Saganoseki, Japan Cu smelting 197218. BCL Limited, Selebi-Phikwe, Botswana Ni smelting 1973

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Flash Smelting & FlashConverting References 2/3

19. Hindustan Copper Ltd, Khetri, India Cu smelting 197420. Rio Tinto Minera SA, Huelva, Spain Cu smelting 197521. Phelps Dodge Corporation, Playas, USA Cu smelting 197622. Gécamines, Luilu, Zaire Direct to blister23. Kombinat Górniczo-Hutniczy Miedz, Glogow, Poland Direct to blister 197824. Korea Mining & Smelting Co Ltd., Onsan, South Korea Cu smelting 197925. Norilsk Mining & Metallurgical Co, Norilsk, Russia Ni smelting 198126. Norilsk Mining & Metallurgical Co, Norilsk, Russia Cu smelting 198127. Caraíba Metais SA, Camacari, Brazil Cu smelting 198228. Philippine Associated Smelting & Refining Co.,

Isabel, the Philippines Cu smelting 198329. Jiangxi Copper Corporation, Guixi, China Cu smelting 198530. Mexicana de Cobre SA, El Tajo, Mexico Cu smelting 198631. MDK G Damianov, Srednogorie, Bulgaria Cu smelting 198732. Codelco, Chuquicamata, Chile Cu smelting 198833. Jinchuan Non-ferrous Metals Co, Jinchang, China Ni smelting 199234. Magma Copper Co., San Manuel, USA Cu smelting 1988

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Flash Smelting & FlashConverting References 3/3

35. Roxby Management Services Pty Ltd,Olympic Dam, Australia Direct to blister 1988

36. Compania Minera Disputada de las Condes SA,Chagres, Chile Cu smelting 1995

37. Kennecott Utah Copper Corp., Salt Lake City, USA Cu smelting 199538. Kennecott Utah Copper Corp., Salt Lake City, USA Cu converting 199539. Jinlong Copper Co Ltd., Tongling, China Cu smelting 199740. Indo-Gulf Fertilisers & Chemical Ltd, Gujarat, India Cu smelting 199841. Mineraç o Serra da Fortaleza Ltda, Fortaleza, Brazil Ni smelting 199842. WMC Resources Ltd, Olympic Dam, Australia Direct to blister 199943. Boliden Mineral AB, Rönnskär, Sweden Cu smelting 200044. Southern Peru Copper Corporation, Ilo, Peru Cu smelting45. Southern Peru Copper Corporation, Ilo, Peru Cu converting46. National Iranian Copper Industries Co.,

Khatoon Abad, Iran Cu smelting 200447. Yanggu Xiangguang Copper Co., China Cu-smelting48. Yanggu Xiangguang Copper Co., China Cu-converting49. KGHM Polska Miedz S.A., Glogów, Poland Direct to blister50. Jiangxi Copper Corporation, Guixi, China Cu smelting51. Konkola Copper Mines Plc., Zambia Direct to blister

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Relative amount of copper produced insmelters (”pure FSF” vs. others)

0

5

10

15

20

25

30

35

40

45

> 95 % > 90 % < 90 %Sulfur recovery, %

% o

f prim

ary

Cu

prod

uced

Other smeltersOK Flash

90-95 % < 90 %> 95 %

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

5. Ferro-alloys Technology ofOutokumpu

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Outokumpu FeCr smelting process

§ Based on pellets.

§ Furnace chargeis preheated instationaryshaft kiln.

§ Smelting furnace isclosed and sealed.

§ CO-gas is cleanedand utilized in theplant and outside.

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Outokumpu Tornio Works§ Full capacity after last expansion:

FeCr 270 000 tonsSlabs 1 600 000 tonsCoil products 1 200 000 tonsof which:Hot rolled 300 000 tonsSemi-cold rolled 150 000 tonsCold rolled 750 000 tons

§ Specialized in:– Custom-made volume production in

selected product areas– Supplying cost efficiently high

quality volume products– Using best available technology– New products from RAP line

§ About 2 300 employees

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

The most integrated stainless steel works inthe world (Outokumpu Tornio works)

§ Own chrome – safe supply§ Stable FeCr quality§ Liquid FeCr and use of own CO saves primary energies§ FeCr-converter increase melting capacity and saves energy§ Hot slab charging in Hot Rolling Mill§ Short processing time and lower logistical costs§ Savings in product handling§ Integrated southbound and northbound logistics§ Terneuzen Mill close to main markets

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Main principles of environmentalmanagement

§ Improvement of materialefficiency and utilization ofbyproducts

§ Improvement of energyefficiency

§ Continuous improvement:ISO 14001 and R&D as tools

§ Utilization of best availabletechnology (BAT) to keep theemissions at low levels

§ Active co-operation withauthorities

Aim is to be the best in eco-efficiency

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

The ecological balance of TornioFeCr -plant

EMISSIONS TO WATERSOLIDS 13,8 gCr 0,4 “Zn 1,0 “CN 0,7 “OIL 0 “

EMISSIONS TO WATERSOLIDS 13,8 gCr 0,4 “Zn 1,0 “CN 0,7 “OIL 0 “

OUTFeCr 1000 kgSLAG 1181 “CO 708 Nm3

(CO EQUALS 196 kg OIL)

OUTFeCr 1000 kgSLAG 1181 “CO 708 Nm3

(CO EQUALS 196 kg OIL)

EMISSIONS TO AIRDUST 0,20 kg

CO2 593 “

NO2 0,87 “

SO2 0,38 “

EMISSIONS TO AIRDUST 0,20 kg

CO2 593 “

NO2 0,87 “

SO2 0,38 “

FeCr - PLANTECOLOGICAL BALANCE 2002

INELECTRICITY 3469 kWh

(12,18 GJ)COKE 507 kgLIQUID NATURAL GAS 0,06 “OIL 0 “LUMPY ORE 769 “FINE CONCENTRATE 1532 “QUARTZ 306 “ELECTRODE PASTE 7 “OTHER 15 “

INELECTRICITY 3469 kWh

(12,18 GJ)COKE 507 kgLIQUID NATURAL GAS 0,06 “OIL 0 “LUMPY ORE 769 “FINE CONCENTRATE 1532 “QUARTZ 306 “ELECTRODE PASTE 7 “OTHER 15 “

DUMPING PLACEWASTE 35 kg

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Specific CO2 emissions at OutokumpuTornio FeCr Plant, kg CO2/t FeCr

FERROCHROMIUM PRODUCTION- CO2 EMISSION -

0

500

1000

1500

2000

2500

1970 1975 1980 1985 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000YEAR

SPEC

IFIC

EM

ISSI

ON

, CO

2 kg

/t Fe

Cr

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Effect of Technology development on CO2 emissionand power consumption in FeCr production

-4 500

-4 000

-3 500

-3 000

-2 500

-2 000

-1 500

-1 000

-500

0

500

1 000

1 500

2 000

2 500

3 000Base Case Pelletizing/ Sintering Pelletizing

Sintering+Preheating+Closed Furnace

Full utilizationof Furnace COin addition

-kW

h / t

onFe

Cr

t CO

2/t

FeC

r

CO2 Emission per ton FeCrPower consumption kWh/t HC FeCr

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Without technology development the CO2 emissionlevel at Outokumpu Tornio FeCr plant would be morethan 3-fold compared to the present actual figures

CO2 emissions at Outokumpu Tornio FeCr plantwith and without technology development

0

100 000

200 000

300 000

400 000

500 000

600 000

1970 1975 1980 1985 1990 1995 2000 2005 2010YEAR

CO

2EM

ISSI

ON

S,tp

a

CO2 EMISSIONS, REAL

CO2 EMISSIONS WITHOUTIMPROVEMENTS

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Effect of technology development on cumulative CO2emission reduction at Outokumpu Tornio FeCr plant

CO2 EMISSION REDUCTION IN FeCr PRODUCTION IN TORNIO

0

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

6 000 000

7 000 000

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

YEAR

CU

MU

LAT

CO

2 EM

ISSI

ON

RED

UC

TIO

N, t

ons

CO

2

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Outokumpu Technology’s latests FeCr technologytransfer project references

§ Ferrometals 1998 South Africa§ Hernic 1999 South Africa§ Assmang 2001 South Africa§ Tubatse 2002 South Africa§ SA Chrome 2002 South Africa§ Hernic 2 2005 South Africa§ Donskoy GOK 2005 Kazakhstan§ IFM 2007 South Africa§ Xstrata Wonderkop 2007 South Africa

§ Already now about 5-7 million tons less CO2 emissions

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Estimate of cumulative CO2 emission reduction inFeCr production in South Africa achieved by

utilization of Outokumpu technologyFeCr PRODUCTION

Outokumpu Technology Technology DeliveriesEffect on CO2 emissions

0

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

6 000 000

7 000 000

8 000 000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009YEAR

CU

MU

LAT.

CO

2EM

ISSI

ON

RED

UC

TIO

N, t

CO

2

CO2 REDUCTION CALC. BYELECTRICAL ENERGY SAVINGSDIRECT REDUCTION OF CO2EMISSIONS

Forecast

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

6. Extraction of Iron With LowCarbon Dioxide Emissions

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Reduction of iron ores§ Conventional blast furnace reduction of iron oxides

– Pelletizing– Sintering– Coking– Oxygen removed as CO– 95 % of primary iron production

§ Direct reduction by natural gas– Oxygen removed as H O+CO– 3-4 % of primary iron production

§ Direct reduction by hydrogen– Oxygen removed as H O– 1-2 % of primary iron production

2

2

2

2

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

View of Circored plant inPoint Lisas, Trinidad

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Circored® : Gas Based DirectReduction of Iron Ore Fines

Challenges of Eco-efficiency, 5.12.2006, VTT Espoo

Basic reactions in the bath