ecen 610 mixed-signal interfaces - computer engineeringhoyos/courses/610/dacs.pdf · s....

31
S. Hoyos-ECEN-610 1 ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group

Upload: others

Post on 14-Oct-2020

61 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 1

ECEN 610Mixed-Signal Interfaces

Sebastian Hoyos

Texas A&M UniversityAnalog and Mixed Signal Group

Page 2: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 2

DAC Architectures

Page 3: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 3

Binary-Weighted DAC

Page 4: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 4

Binary-Weighted CR DAC

• Binary-weighted capacitor array → most efficient architecture

• Bottom plate @ VR with bj = 1 and @ GND with bj = 0

Cu = unit capacitanceVX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Page 5: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 5

Binary-Weighted CR DAC

• Cp → gain error (nonlinearity if Cp is nonlinear)• INL and DNL limited by capacitor array

mismatch

Ru

Np

N

1ju

jNjN

RN

1ju

jNup

N

1ju

jNjN

o

VC2C

C2b

VC2CC

C2bV

+

⋅=

++

⋅=

=

−−

=

=

−−

∑=

⋅⋅

+=

N

1jjj-N

Ru

Np

uN

o 2b

VC2C

C2V

VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Page 6: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 6

VX

2Cu Cu

16Cu

8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

A

Stray-Insensitive CR DAC

∑=

+ ⋅⋅

−++

=N

1jjj-N

Ruu

1Np

uN

uN

o 2b

V

ACC2C

C2

C2V

Large A needed to attenuate summing-node charge sharing

Page 7: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 7

MSB Transition

Largest DNL error occurs at the midpoint where MSB transitions, determined by the mismatch between the MSB

capacitor and the rest of the array.

( ) R4

1j

j4p

4o V

C2CC

C1000V ⋅

++=

∑=

( ) R4

1j

j4p

321o V

C2CC

CCC0111V ⋅

++

++=

∑=

( ) δC,CCCCC :Assume u3214 +=++−

( ) ( )[ ]

uu

oo

CδCC

CC

δC1LSB1LSB0111V1000VDNL

==

−−=

∑∑

Code 0111 Code 1000

Page 8: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 8

Midpoint DNL

• δC > 0 results in positive DNL.• δC < 0 results in negative DNL or even

nonmonotonicity.

δC > 0 δC < 0

Di

Ao

00111 1000

+DNL

Di

Ao

00111 1000

-DNL

Page 9: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 9

Output Glitches

• Glitches cause waveform distortion, spurs and elevated noise floors.

• High-speed DAC output is often followed by a de-glitching SHA.

• Cause: Signal and clock skew in circuits

• Especially severe at MSB transition where all bits are switching –0111…111 →1000…000

Time

Vo

Page 10: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 10

De-Glitching SHA

Time

Vo

DAC...

b1

bN

VoSHA

SHA output must be smooth (exponential settling can be viewed as pulse shaping → SHA BW does not have to be

excessively large).

SHA samples the output of the DAC after it settles and then hold it for T, removing the glitching energy.

Page 11: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 11

Frequency Response

f

|H(f)|

0 fs 2fs 3fs

SHA

ZOH

HZOH jω( )= e− jωT

2 ⋅sin ωT

2( )ωT

2

HSHA jω( )=1

1+ jωω−3dB

Page 12: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 12

Binary-Weighted Current DAC

• Current switching is simple and fast.• Vo depends on Rout of current sources without op-amp.• INL and DNL depend on matching, not inherently monotonic.• Large component spread (2N-1:1)

VX

Vob3 b2 b1 b0 A

I/2 I/4 I/8 I/16

R∑=

⋅=N

1jjj-N

o 2b

IRV

Page 13: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 13

R-2R DAC

• A binary-weighted current DAC• Component spread greatly reduced (2:1)

∑=

⋅=N

1jjj-N

o 2b

IRV

VX

Vob3 b2 b1 b0 A

R

R R R2R 2R 2R 2R

I

2RI/2 I/4 I/8 I/16

Page 14: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 14

Unit-Element DAC

Page 15: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 15

Resistor-String DAC

• Simple, inherently monotonic → good DNL performance

• Complexity ↑ speed ↓ for large N, typically N ≤ 8 bits

VR

Vo

Vo

Di

0

b0 b0 b1 b1

1

2

3

Page 16: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 16

Code-Dependent Ro

• Ro of ladder varies with signal (code).• On-resistance of switches depend on tap

voltage.

t

Vo

VR

Vo

Ro

Dib0 b0 b1 b1

Co

Signal-dependentRoC causes HD.

Page 17: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 17

INL and DNL

Vj =Rk

1

j−1

Rk1

N

∑⋅ VR =

j −1( )R + ∆Rk1

j−1

NR + ∆Rk1

N

∑⋅ VR

R+ΔRNR+ΔRN-1R+ΔR1 R+ΔR2

VR...V1 V2 VN VN+1

Vj-1 =j − 2( )R + ∆Rk

1

j−2

NR + ∆Rk1

N

∑⋅ VR

Vj − Vj-1 =R + ∆Rj−1

NR + ∆Rk1

N

∑⋅ VR ≈

VR

N+

∆Rj−1

NR⋅ VR

DNLj = Vj − Vj-1 −VR

N

VR

N≈

∆Rj−1

R⇒ DNL = 0, σDNL =

σR

R.

∆R = 0,σR[ ]

Page 18: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 18

INL and DNL

Vj =Rk

1

j−1

Rk1

N

∑⋅ VR =

j −1( )R + ∆Rk1

j−1

NR + ∆Rk1

N

∑⋅ VR ≈

j −1N

VR +

N - j +1( ) ∆Rk1

j−1

∑ − j −1( ) ∆Rkj

N

∑N2R

VR

INLj = Vj −j -1N

VR

VR

N⇒ INL = 0, σ INL max( ) ≈

N2

σR

R

.

⇒ Vj =j −1N

VR, σ Vj

2 ≈j −1( ) N - j +1( )

N3σR

2

R2 VR2.

⇒ σ Vj

2 max( ) ≈1

4NσR

2

R2 VR2, when j =

N2

+1≈N2

.

Page 19: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 19

Current DAC

• Fast, inherently monotonic → good DNL performance• Complexity increases for large N, requires B2T decoder.

Io

…… …

Binary-to-Thermometer Decoder

...b1 bN

I I I

Page 20: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 20

Unit Current Cell

• 2N current cells typically broken up into a (2N/2 X 2N/2) matrix

• Current source cascoded to improve accuracy• Coupled inverters improve synchronization of

current switches.

Io

ROW/COL Decoder

...

b1

bN

I

Φ

Φ

...

Sj Sj

Page 21: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 21

Segmented DAC

Page 22: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 22

BW vs. UE DAC’sBinary-weighted DAC• Pros

– Small– Simple– Min. switched elements

• Cons– Large DNL and glitches– Not guaranteed

monotonic• INL/DNL

– INL(max) ≈ (√N/2)σ– DNL(max) ≈ 2*INL

Unit-element DAC• Pros

– Good DNL, small glitches– Linear glitch energy– Guaranteed monotonic

• Cons– Needs B2T decoder– Large area for N ≥ 8

• INL/DNL– INL(max) ≈ (√N/2)σ– DNL(max) ≈ σ

Combine BW and UE architectures → “segmentation”

Page 23: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 23

Segmented DAC

0

VFS

Di

Vo

2N-10

LSB’s

MSB’s

• MSB DAC: M-bit UE DAC

• LSB DAC: L-bit BW DAC

• Resolution: N = M + L• 2M+L s.e.• Good DNL• Small glitches• Same INL (depends on

matching)

Page 24: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 24

ComparisonExample: N = 12, M = 8, L= 4, σ = 1%

Architecture σINL σDNL # of S.E.

Unit-Element 0.32 LSB’s

0.01 LSB’s 2N = 4096

Binary-weighted

0.32 LSB’s

0.64 LSB’s N = 12

Segmented 0.32 LSB’s

0.06 LSB’s

2M+L = 260

Max. DNL error occurs at the MSB segment transitions.

Page 25: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 25

Example: “8+2” Segmented Current DAC

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm2," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, issue 12, 1998.

Page 26: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 26

MSB-DAC Biasing Scheme

Common-centroid global biasing + divided 4 quadrants of current cells

Page 27: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 27

MSB-DAC Biasing Scheme

Page 28: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 28

Randomization and Dummies

Page 29: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 29

Measured INL and DNL

Page 30: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 30

Summary• Nyquist DAC architectures

– Binary-weighted DAC– Unit-element (thermometer-coded) DAC– Segmented DAC– Resistor-string, current, charge-redistribution DAC’s

• Oversampling DAC– Oversampling performed in digital domain (zero stuffing)– Digital noise shaping (ΣΔ modulator)– 1-bit DAC can be used– Analog reconstruction/smoothing filter

Page 31: ECEN 610 Mixed-Signal Interfaces - Computer Engineeringhoyos/courses/610/DACs.pdf · S. Hoyos-ECEN-610 30. Summary • Nyquist DAC architectures – Binary-weighted DAC – Unit-element

S. Hoyos-ECEN-610 31

References1. K. Khanoyan et al., VLSI, 1999, pp. 73-76.2. M. J. M. Pelgrom, JSSC, vol. 25, pp. 1347-1352, issue 6, 1990.3. A. van den Bosch et al., JSSC, vol. 36, pp. 315-324, issue 3, 2001.4. A. R. Bugeja et al., JSSC, vol. 35, pp. 1841-1852, issue 12, 2000.5. G. A. M. Van Der Plas et al., JSSC, vol. 34, pp. 1708-1718, issue 12, 1999.6. A. R. Bugeja et al., JSSC, vol. 34, pp. 1719-1732, issue 12, 1999.7. C.-H. Lin et al., JSSC, vol. 33, pp. 1948-1958, issue 12, 1998.8. K. Falakshahi et al., JSSC, vol. 34, pp. 607-615, issue 5, 1999.9. D. K. Su et al., JSSC, vol. 28, pp. 1224-1233, issue 12, 1993.