dynamic wetting processes: modelling and simulation

58
Dynamic Wetting Processes: Modelling and Simulation J.E. Sprittles (University of Birmingham / Oxford, U.K.) Y.D. Shikhmurzaev (University of Birmingham, U.K.) Seminar at KAUST, February 2012

Upload: keelia

Post on 23-Feb-2016

43 views

Category:

Documents


0 download

DESCRIPTION

Dynamic Wetting Processes: Modelling and Simulation. J.E. Sprittles (University of Birmingham / Oxford, U.K.) Y.D. Shikhmurzaev(University of Birmingham, U.K.) Seminar at KAUST, February 2012. ‘Impact’ . A few years after completing my PhD. Wetting: Statics. Wettable (Hydrophilic). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dynamic Wetting Processes: Modelling and Simulation

Dynamic Wetting Processes:Modelling and SimulationJ.E. Sprittles (University of Birmingham / Oxford, U.K.)Y.D. Shikhmurzaev (University of Birmingham, U.K.)

Seminar at KAUST, February 2012

Page 2: Dynamic Wetting Processes: Modelling and Simulation

‘Impact’ A few years after completing my PhD.....

Page 3: Dynamic Wetting Processes: Modelling and Simulation

Wetting: Statics

Non-Wettable (Hydrophobic)Wettable (Hydrophilic)e e

Page 4: Dynamic Wetting Processes: Modelling and Simulation

Wetting: Dynamics

( )h t

Page 5: Dynamic Wetting Processes: Modelling and Simulation

Wetting: As a Microscopic Process

Macroscale

Microscale

MeniscusCapillary

tube

Wetting front

Page 6: Dynamic Wetting Processes: Modelling and Simulation

Wetting: Micro-Macro

Spreading on a Porous Medium

Page 7: Dynamic Wetting Processes: Modelling and Simulation

Processes with Wetting at their Core

Page 8: Dynamic Wetting Processes: Modelling and Simulation

Capillary Rise

50nm x 900nm ChannelsHan et al 06

27mm Radius TubeStange et al 03

1 Million Orders of Magnitude!!

Page 9: Dynamic Wetting Processes: Modelling and Simulation

Curtain Coating

Page 10: Dynamic Wetting Processes: Modelling and Simulation

Curtain Coating Optimization

Increased Coating Speed

Page 11: Dynamic Wetting Processes: Modelling and Simulation

Harnessing Instabilities: Spinning Disk Atomizer

Page 12: Dynamic Wetting Processes: Modelling and Simulation

Polymer-Organic LED (P-OLED) Displays

Page 13: Dynamic Wetting Processes: Modelling and Simulation

Inkjet Printing of P-OLED Displays

Microdrop Impact & Spreading

Page 14: Dynamic Wetting Processes: Modelling and Simulation

Additive Manufacturing

Page 15: Dynamic Wetting Processes: Modelling and Simulation

Modelling

Page 16: Dynamic Wetting Processes: Modelling and Simulation

Why bother?1 - Recover Hidden Information

2 - Map Regimes of Spreading

3 – Experiment

Millimetres in Milliseconds - Rioboo et al (2002)

Microns in Microseconds - Dong et al (2002)

Page 17: Dynamic Wetting Processes: Modelling and Simulation

Wetting: Statics

)

0 1 12e ep p r

1 3 2cose e e e Young

Laplace

1e

θs

e

1e

2ep 0pr

1e

1e

3e

R

Contact Line

Contact Angle

Page 18: Dynamic Wetting Processes: Modelling and Simulation

Wetting: Statics

R2 cos e

eqh Rg

2 cos eeqgh

R

02 cos ep pR

eqh

eqh

R

e

Page 19: Dynamic Wetting Processes: Modelling and Simulation

)

Dynamics: Classical ModellingIncompressible Navier Stokes

θe

Stress balanceKinematic condition

No-SlipImpermeability

Angle Prescribed

No Solution!

Page 20: Dynamic Wetting Processes: Modelling and Simulation

L.E.Scriven (1971), C.Huh (1971), A.W.Neumann (1971), S.H. Davis (1974), E.B.Dussan (1974), E.Ruckenstein (1974), A.M.Schwartz (1975), M.N.Esmail (1975), L.M.Hocking (1976), O.V.Voinov (1976), C.A.Miller (1976), P.Neogi (1976), S.G.Mason (1977), H.P.Greenspan (1978), F.Y.Kafka (1979), L.Tanner (1979), J.Lowndes (1980), D.J. Benney (1980), W.J.Timson (1980), C.G.Ngan (1982), G.F.Telezke (1982), L.M.Pismen (1982), A.Nir (1982), V.V.Pukhnachev (1982), V.A.Solonnikov (1982), P.-G. de Gennes (1983), V.M.Starov (1983), P.Bach (1985), O.Hassager (1985), K.M.Jansons (1985), R.G.Cox (1986), R.Léger (1986), D.Kröner (1987), J.-F.Joanny (1987), J.N.Tilton (1988), P.A.Durbin (1989), C.Baiocchi (1990), P.Sheng (1990), M.Zhou (1990), W.Boender (1991), A.K.Chesters (1991), A.J.J. van der Zanden (1991), P.J.Haley (1991), M.J.Miksis (1991), D.Li (1991), J.C.Slattery (1991), G.M.Homsy (1991), P.Ehrhard (1991), Y.D.Shikhmurzaev (1991), F.Brochard-Wyart (1992), M.P.Brenner (1993), A.Bertozzi (1993), D.Anderson (1993), R.A.Hayes (1993), L.W.Schwartz (1994), H.-C.Chang (1994), J.R.A.Pearson (1995), M.K.Smith (1995), R.J.Braun (1995), D.Finlow (1996), A.Bose (1996), S.G.Bankoff (1996), I.B.Bazhlekov (1996), P.Seppecher (1996), E.Ramé (1997), R.Chebbi (1997), R.Schunk (1999), N.G.Hadjconstantinou (1999), H.Gouin (10999), Y.Pomeau (1999), P.Bourgin (1999), M.C.T.Wilson (2000), D.Jacqmin (2000), J.A.Diez (2001), M.&Y.Renardy (2001), L.Kondic (2001), L.W.Fan (2001), Y.X.Gao (2001), R.Golestanian (2001), E.Raphael (2001), A.O’Rear (2002), K.B.Glasner (2003), X.D.Wang (2003), J.Eggers (2004), V.S.Ajaev (2005), C.A.Phan (2005), P.D.M.Spelt (2005), J.Monnier (2006)

‘Moving Contact Line Problem’

Page 21: Dynamic Wetting Processes: Modelling and Simulation

r

Pasandideh-Fard et al 1996

Dynamic Contact AngleRequired as a boundary condition for the free surface shape.

r

t

d( )d f t

d e

Page 22: Dynamic Wetting Processes: Modelling and Simulation

Speed-Angle Formulae

dθ = ( )f U

e1 3 2cose e e e

R

σ1

σ3 - σ2

Young Equation Dynamic Contact Angle Formula

)

θdU

Assumption:A unique angle for each speed

Page 23: Dynamic Wetting Processes: Modelling and Simulation

Capillary Rise Experiments

Page 24: Dynamic Wetting Processes: Modelling and Simulation

The Interface Formation Model

Mathematics
Consider a new approach - use the ifm derived in 1993 by yds.1) Briefly describe the modelShow you how in this framework2)we see how the additional physics naturally resolved two issues of no-solution and dynamic angle without ad-hoc assumptions3) Show limits in which analytic progress is possible. before moving onto full problem
Page 25: Dynamic Wetting Processes: Modelling and Simulation

Physics of Dynamic Wetting

Make a dry solid wet.

Create a new/fresh liquid-solid interface.

Class of flows with forming interfaces.

Forminginterface Formed interface

Liquid-solidinterface

Solid

Page 26: Dynamic Wetting Processes: Modelling and Simulation

Relevance of the Young Equation

U

1 3 2cose e e e 1 3 2cos d

R

σ1e

σ3e - σ2e

Dynamic contact angle results from dynamic surface tensions.

The angle is now determined by the flow field.

Slip created by surface tension gradients (Marangoni effect)

θe θd

Static situation Dynamic wetting

σ1

σ3 - σ2

R

Page 27: Dynamic Wetting Processes: Modelling and Simulation

2u 1u 0, u u upt

s s1 1 1 2 2 2

1 3 2

v e v e 0cos

s s

d

s1

*1

*1

s 1 11

s 1 111 1

1 1|| ||

v 0

n [( u) ( u) ] n n

n [( u) ( u) ] (I nn) 0

(u v ) n

( v )

(1 4 ) 4 (v u )

s se

s sss e

s

f ftp

t

* 12 || ||2

s 2 22

s 2 222 2

12|| || || 2 22

21,2 1,2 1,2

n [ u ( u) ] (I nn) (u U )

(u v ) n

( v )

v (u U ) , v U

( )

s se

s sss e

s s

s s

t

a b

In the bulk:

On liquid-solid interfaces:

At contact lines:

On free surfaces:Interface Formation Model

θd

e2

e1

nnf (r, t )=0

Interface Formation Modelling

Page 28: Dynamic Wetting Processes: Modelling and Simulation

Comparison With Experiments

0.0001 0.0010 0.0100 0.1000 1.0000

0

30

60

90

120

150

180

d

Ca

0.0001 0.0010 0.0100 0.1000 1.0000

0

30

60

90

120

150

180

d

Ca

Perfect wetting (Hoffman 1975; Ström et al. 1990; Fermigier & Jenffer 1991)

Partial wetting (□: Hoffman 1975; : Burley & Kennedy 1976; , ,: Ström et al. 1990)

The theory is in good agreement with all experimental data published in the literature.

Page 29: Dynamic Wetting Processes: Modelling and Simulation

A Computational Framework

Page 30: Dynamic Wetting Processes: Modelling and Simulation

Graded Mesh – For Both Models

Page 31: Dynamic Wetting Processes: Modelling and Simulation

Arbitrary Lagrangian-Eulerian(Free surface nodes follow the fluid’s path; bulk’s don’t)

Page 32: Dynamic Wetting Processes: Modelling and Simulation

Oscillating Drops: Code ValidationFor Re=100, f2 = 0.9

Page 33: Dynamic Wetting Processes: Modelling and Simulation

Oscillating Drops: Code Validation

a

b

Page 34: Dynamic Wetting Processes: Modelling and Simulation

Drop Impact

Page 35: Dynamic Wetting Processes: Modelling and Simulation

Impact at Different Scales

Millimetre Drop

Microdrop

Nanodrop

Page 36: Dynamic Wetting Processes: Modelling and Simulation

Pyramidal (mm-sized) Drops

Experiment Renardy et al.

Page 37: Dynamic Wetting Processes: Modelling and Simulation

Microdrop Impact

Page 38: Dynamic Wetting Processes: Modelling and Simulation

Microdrop Impact and Spreading

60e

Velocity Scale

Pressure Scale

-15ms

Page 39: Dynamic Wetting Processes: Modelling and Simulation

Typical Microdrop Experiment (Dong et al 07)

?

?

Page 40: Dynamic Wetting Processes: Modelling and Simulation

Recovering Hidden Information

10t s 13.4t s

11.7t s 15t s15t s

10t s

Page 41: Dynamic Wetting Processes: Modelling and Simulation

Flow Over Surfaces of Variable Wettability

Page 42: Dynamic Wetting Processes: Modelling and Simulation

Periodically Patterned Surfaces

• No slip – No effect.

Page 43: Dynamic Wetting Processes: Modelling and Simulation

Interface Formation vs Molecular Dynamics

Solid 2 less wettable

Qualitative agreement

Page 44: Dynamic Wetting Processes: Modelling and Simulation

Surfaces of Variable Wettability

2 110e

1 60e 2e1e

1

1.5

Page 45: Dynamic Wetting Processes: Modelling and Simulation

Flow Control on Patterned Surfaces

-14ms -15ms

Page 46: Dynamic Wetting Processes: Modelling and Simulation

Capillary Rise

Page 47: Dynamic Wetting Processes: Modelling and Simulation

Capillary Rise

R

h 2eqh Rg

Page 48: Dynamic Wetting Processes: Modelling and Simulation

Flow Characteristics

Page 49: Dynamic Wetting Processes: Modelling and Simulation

‘Hydrodynamic Resist’

Page 50: Dynamic Wetting Processes: Modelling and Simulation
Page 51: Dynamic Wetting Processes: Modelling and Simulation
Page 52: Dynamic Wetting Processes: Modelling and Simulation

Dynamic Wetting Models

Washburn Model Basic Dynamic Wetting Models

Interface Formation Model and Experiments

Meniscus shape unchanged by dynamic wetting

Meniscus shape dependent on speed of propagation.

Meniscus shape influenced by geometry

EquilibriumDynamic

EquilibriumDynamic

EquilibriumDynamic

Meniscus

Page 53: Dynamic Wetting Processes: Modelling and Simulation

Wetting Fronts Propagating Through Porous Media

Page 54: Dynamic Wetting Processes: Modelling and Simulation

Wetting Fronts in Porous Media

Threshold ModeWetting Mode

Wetting Front

Page 55: Dynamic Wetting Processes: Modelling and Simulation

Capillary Rise through Packed Beads

Circles: Experimental data from Delker et al 1996Line: Developed theory

) zWashburnian

z (cm)

t (s)

Non-Washburnian

Page 56: Dynamic Wetting Processes: Modelling and Simulation

Flow over a Porous Substrate

Page 57: Dynamic Wetting Processes: Modelling and Simulation
Page 58: Dynamic Wetting Processes: Modelling and Simulation

Thanks