Transcript
Page 1: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

1

�������������������������� �����

���������������������������������������������� ���!���������

�������������� �������������������������� ��������������

AULA PRÁTICA – 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS

1) - M A S S A E S P E C Í F I C A ( ρρρρ ) OU DENSIDADE ABSOLUTA (ρ ). - É o quociente entre a Massa do fluido e o Volume que contém essa massa. m ρρρρ = ---------- V

onde: ρ = massa específica

m = massa do fluido

V = volume correspondente do fluido

SISTEMA: UNIDADE:

Sist. Internacional ( S.I.). kg / m3

Sist. Técnico UTM / m3 ou kgf s2 / m4

Exemplos: a) massa específica da Água ( 4° C )

ρ = 1 g / cm3 ( Sistema C.G.S. )

ρ = 1.000 kg / m3 ( Sistema Internacional – S.I. )

ρ = 101,94 UTM / m3 ou kgf s2 / m4 ( Sistema Técnico )

b) massa específica do Mercúrio (Hg)

ρ = 13.595,1 kg / m3 ( Sistema Internacional – S.I. )

ρ = 1.385,84 UTM / m3 ou kgf s2 / m4 (Sistema Técnico )

Page 2: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

2

2) - P E S O E S P E C Í F I C O ( γγγγ )

- É o quociente entre o PESO de um dado fluido e o VOLUME que o contém. W γγγγ = ----------- V

onde: γ = peso específico

W = peso do fluido

V = volume correspondente do fluido

SISTEMA: UNIDADE:

Sist. Internacional ( S.I.). N / m3

Sist. Técnico kgf / m3

Exemplos: a) peso específico da Água ( 4° C ): γ = 9.806,65 N / m3 ( Sistema Internacional – S.I. )

γ = 1.000 kgf / m3 ( Sistema Técnico )

b) peso específico do Mercúrio ( Hg):

γ = 133.368 N / m3 (Sistema Internacional – SI)

γ = 13.595,1 kgf / m3 ( Sistema Técnico )

OBSERVAÇÃO: W m. g γ = --------- = --------- V V m

mas, ρ = --------- V portanto, γγγγ = ρρρρ g

Page 3: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

3

3) – DENSIDADE RELATIVA OU D E N S I D A D E (δδδδ): - É a relação entre a Massa específica ( ρρρρ ) de uma substância e a Massa específica ( ρρρρ1 ) de outra substância, tomada como referência: ρρρρ δδδδ = ----------- ρρρρ1 onde:

δ = Densidade (adimensional).

ρ = Massa específica do fluido em estudo.

ρ1 = Massa específica do fluido tomado como referência.

- Adota-se a mesma unidade para ρρρρ e ρρρρ1

Portanto, δδδδ é um número ( desprovido de unidade). - A referência adotada para os líquidos é a ÁGUA a 4°C: ρ1 = 1.000 kg / m3 ( Sistema Internacional – S.I. )

ρ1 = 101,94 UTM / m3 ou kgf s2 / m4 ( Sistema Técnico g= 9.81m/s2)

Substância: DENSIDADE (δδδδ) :

Álcool etílico 0,80

Petróleo 0,88

Óleo Díesel 0,82 a 0,96

ÁGUA (Destilada) 1,0

ÁGUA do Mar (Salgada) 1,02 a 1,03

Melado 1,40 a 1,50

Tetracloreto de Carbono 1,59

MERCÚRIO 13,6

Page 4: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

4

4) – V I S C O S I D A D E ( ATRITO INTERNO):

- É a propriedade dos fluidos responsável pela resistência ao deslocamento (deformação). Exemplo: Óleo lubrificante escoa mais lentamente que a água ou álcool. IMPLICAÇÃO:

- Em conseqüência da viscosidade, o escoamento de fluidos dentro das canalizações

somente se verifica com “ PERDA “ de energia, perda essa designada por “ PERDA DE

CARGA” (Figura-1)

COEFICIENTE DE VISCOSIDADE DINÂMICA ( µ )

SISTEMA: UNIDADE:

Sist. Internacional ( S.I.). N s/ m2 ou kg / m s

Sist. Técnico kgf s/ m2

COEFICIENTE DE VISCOSIDADE CINEMÁTICO ( ν ) µµµµ νννν = --------- ρρρρ

SISTEMA: UNIDADE:

Sist. Internacional ( S.I.). m2 / s

Sist. Técnico m2 / s

- A viscosidade é medida pelo equipamento denominado VISCOSÍMETRO. 5) – C O E S Ã O: - É uma pequena força de atração entre as moléculas do próprio líquido (atração eletroquímica). - A formação da gota d’água é devida à coesão (Figura-2). - Essa propriedade é que permite às moléculas fluídas resistirem a pequenos esforços de tensão.

Page 5: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

5

6) – A D E S Ã O: Quando um líquido está em contato com um sólido, a atração exercida pelas moléculas do sólido pode ser maior que a atração existente entre as moléculas do próprio líquido (coesão) (Figura-3). 7) – T E N S Ã O S U P E R F I C I A L (σσσσ s) e C A P I L A R I D A D E: - Na superfície de contato entre dois fluidos não micíveis (fluidos que não se misturam, como por exemplo: água e ar), forma-se uma película elástica capaz de resistir a pequenos esforços (Figura-4). FIGURA - 4 Ilustração da Tensão Superficial.

- A tensão superficial é a força de coesão necessária para formar a película.

Page 6: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

6

DIMENSÃO: F / L UNIDADE: sistema técnico: kgf/m

S.I.: N / m Exemplo: a) Ar e água a 20°C: σσσσ s = 0,0074 kgf/m b) Ar e Mercúrio σσσσ s = 0,055 kgf/m - As propriedades de adesão, coesão e tensão superficial são responsáveis pelo fenômeno da CAPILARIDADE, que .é a elevação (ou depressão) de um líquido dentro de um tubo de pequeno diâmetro (Figura-5). - A elevação ou depressão em um tubo é dada por: 4 σσσσ s cos αααα h = ---------------------------- γγγγ D

onde: h = elevação ou depressão, σ s = coeficiente de tensão superficial, α = ângulo formado pela superfície líquida com a parede de tubo, γ = peso específico D = diâmetro do tubo

- A elevação ou depressão capilar é inversamente proporcional ao diâmetro do tubo. - Por isto, quando se deseja medir cargas piezométricas (pressão) deve-se utilizar tubos de diâmetro superior a 1,0 cm para que sejam desprezíveis os efeitos de capilaridade. 8) – C O M P R E S S I B I L I D A D E: - Para efeitos práticos, os líquidos são considerados INCOMPRESSÍVEIS. Exemplo: Volume de 100 litros � Aplicar P = 7 kgf/cm2 � Redução no volume de 0,33 litros (volume desprezível). 9) – S O L U B I L I D A D E D O S G A S E S: - Os líquidos podem dissolver os gases. A água dissolve o ar em proporções diferentes entre o O2 e N. � Implicação: Pode ser a causa do desprendimento de ar e aparecimento de bolhas de ar nos pontos altos das tubulações.

Page 7: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

7

10) – P R E S S Ã O de V A P O R ou T E N S Ã O d e V A P O R (hv ou Pv) - Pressão de vapor ou tensão de vapor corresponde ao valor da pressão na qual o líquido passa da fase líquida para a gasosa. Na superfície de um líquido há uma troca constante de moléculas que escapam para a atmosfera (evaporação) e outras que penetram no líquido (condensação). Visto que este processo depende da atividade molecular e que esta depende da temperatura e da pressão, a pressão de vapor do líquido também depende destes, crescendo o seu valor com o aumento da pressão e da temperatura (Tabela-1) - Quando a pressão externa, na superfície do líquido, se iguala à pressão de vapor, este se evapora. Se o processo no qual isto ocorre é devido ao aumento da temperatura do líquido, permanecendo a pressão externa constante, o processo é denominado de EVAPORAÇÃO. Caso isto se dê pela mudança da pressão local enquanto a temperatura permanece constante, o fenômeno é conhecido por CAVITAÇÃO. Este fenômeno ocorre, normalmente, em escoamentos sujeitos às baixas pressões, próximos à mudança de fase do estado líquido para o gasoso e constitui um grande problema em válvulas e sucção de bombas. � Implicações:

a) - A temperatura de ebulição da água muda com a altitude (pressão atmosferica). Por exemplo, a água entra em ebulição à temperatura de 100 ºC quando a pressão é 1,0332 kgf/cm2 (1atm), ou seja, ao nível do mar, mas também pode ferver a temperaturas mais baixas se a pressão também for menor (ou seja, em locais mais altos).

b) - A máxima altura possível de sução da bomba é limitada pela pressão de vapor do

líquído. As tubulações de sucção nas bombas que não trabalham afogadas, como as usadas na maioria dos projetos de irrigação, trabalham com pressão inferior à pressão atmosférica. Se na entrada da bomba houver pressão inferior à pressão de vapor da água, haverá formação de bolhas de vapor, podendo até interromper a circulação da água ou formar muitas bolhas menores, que, ao atingirem as regiões de pressão positivas, ocasionam implosões, causando ruídos (martelamento) e vibrações no sistema. Tal fenômeno denomina-se CAVITAÇÃO e provoca a “corrosão” das paredes da carcaça da bomba e das palhetas do rotor, bem como reduz a sua eficiência.

- Na prática, recomendam-se os seguintes valores máximos para a altura de sucção: 6,5 m ao nível do mar, 5,5 m para a altitude de 1.500 m e 4,5 m para a altitude de 3.000 m, contudo, quanto menor for a altura de sucção, melhor será o desempenho da bomba.

c) - A medida da tensão de água no solo, realizada com o auxílio de tensiômetros de

cápsula porosa preenchidos com água, é limitada pela tensão de vapor (a leitura máxima do tensiômetro é de 70kPa).

Page 8: AULA PRÁTICA - deg.ufla.brdeg.ufla.br/site/_adm/upload/file/2_Aula pratica 2.pdf · AULA PRÁTICA – 2 PROPRIEDADES ... Se o processo no qual isto ocorre é devido ao aumento da

8

TABELA – 1 PROPRIEDADES FÍSICAS DA ÁGUA DOCE, À PRESSÃO ATMOSFÉRICA (g=9,80665 m/s2)

TEMPE- RATURA

OC

PESO

ESPECÍFICO γ

N/m3

MASSA

ESPECÍFICA ρ

kg/m3

VISCOSIDADE CINEMÁTICA

ν m2/s

TENSÃO

SUPERFICIAL σ

N/m

PRESSÃO

DE VAPOR PV kPa

PRESSÃO

DE VAPOR PV/γ

m 0 5

9.805 9.807

999,8 1.000,0

1,785x10-6 1,519x10-6

0,0756 0,0749

0,61 0,87

0,06 0,09

10 15

9.804 9.798

999,7 999,1

1,306x10-6 1,139x10-6

0,0742 0,0735

1,23 1,70

0,12 0,17

20 25

9.789 9.777

998,2 997,0

1,003x10-6 0,893x10-6

0,0728 0,0720

2,34 3,17

0,25 0,33

30 40

9.764 9.730

995,7 992,2

0,800x10-6 0,658x10-6

0,0712 0,0696

4,24 7,38

0,44 0,76

50 60

9.689 9.642

988,0 983,2

0,553x10-6 0,474 x10-6

0,0679 0,0662

12,33 19,92

1,26 2,03

70 80

9.589 9.530

977,8 971,8

0,413x10-6 0,364x10-6

0,0644 0,0626

31,16 47,34

3,20 4,96

90 100

9.466 9.399

965,3 958,4

0,326x10-6 0,294x10-6

0,0608 0,0589

70,10 101.33

7,18 10.33

NOS CÁLCULOS HABITUAIS DE HIDRÁULICA, NO SISTEMA INTERNACIONAL DE UNIDADES, QUANDO A TEMPERATURA NÃO É ESPECIFICADA, UTILIZA-SE :

ρ = 1.000 kg/m3

γ = 9.810 N/m3

ν = 1,003 x 10-6 m2/s


Top Related