some relations between fractal dimension of drainage networks and geomorphology of drainage basins

21
Introduction Theapplication offractalanalysisisinvolvingan increasingnumberofscientific branches.Infact,duetoitscapabilitytoreducetheinadequacyoftraditionalEuclidean geometry,when studyingcomplexforms,itcan affordareliabletoolin investigating many naturalphenomena(Mandelbrot, 1977 ;Turcotte, 1992 ).Thisanalysisisapplicable also in many fieldsofearth sciences,such asgeology,geomorphology,geophysicsand oceanography.Specifically,fractalanalysisingeomorphologyallowstoacquireinteresting quantitativeinformation on theshapeofdrainagenetworks,contourlines,topographic surfacesandmanyothermorphosculptures. Ingeomorphologiccontexts,manyofthefractal objects sofarstudied,keeptheir geometriccharacteristicsin spiteofscalevariations(scaleinvariance).Someothers, Transactions, Japanese GeomorphologicalUnion 28 - 1 ,p. - 21 ( 2007 ) 地形 第28巻第1号 - 21頁 (2007) SomeRelationsbetweenFractalDimensionofDrainage NetworksandGeomorphologyofDrainageBasins MaurizioD ELM ONTE ,PaolaF REDI ,ElvidioL UPIA P ALMIERI andPaolaS BARRA Abstract ThefractalpropertiesofdrainagenetworksofsomeItaliandrainagebasinswith differentgeomorphologicalcharacteristicshavebeen investigated.Theaimsofthis studyaretomeasurethe fractaldimension ofsuch drainage networksand to evaluatequantitativelytheirgeomorphologicalsignificance. Tothisend,fourmethodologieshave been applied toeleven networks,whose fractaldimension( Df )hasbeen computed.Dataobtained suggestthatthe relation betweendrainagepatternandfractaldimensionvaluesisnotasimpleone;however, theparameterDf can expressthenetwork geometryandafforduseful,quantitative information aboutthetectonicconditioningon thenetwork emplacementsandtheir evolution degree.On thisbasis,the differencesamong the complex and varied geometryofwidenetworkscanbetranslatedinquantitativeterms. Theresultssofarobtainedareobviouslypreliminary,andneedtobefurther verified;however,theyareencouragingandgiveshapetothepossibilityofproviding information in aparametricform aboutthegeometryofadrainagenetwork andits evolutiondegree. Keywords: DrainageNetwork,FractalDimension,QuantitativeGeomorphology, StructuralGeomorphology ReceivedJune 13 , 2006 ;AcceptedJuly 24 , 2006 DipartimentodiScienzedellaTerra,UniversitàdegliStudidiRoma«LaSapienza» PiazzaleAldoMoro, - P.O.Box 11 - 00185 RomeItaly

Upload: independent

Post on 21-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Introduction

Theapplicationoffractalanalysisisinvolvinganincreasingnumberofscientificbranches.Infact,duetoitscapabilitytoreducetheinadequacyoftraditionalEuclideangeometry,whenstudyingcomplexforms,itcanaffordareliabletoolininvestigatingmanynaturalphenomena(Mandelbrot,1977;Turcotte,1992).Thisanalysisisapplicablealsoinmanyfieldsofearthsciences,suchasgeology,geomorphology,geophysicsandoceanography.Specifically,fractalanalysisingeomorphologyallowstoacquireinterestingquantitativeinformationontheshapeofdrainagenetworks,contourlines,topographicsurfacesandmanyothermorphosculptures.Ingeomorphologiccontexts,manyofthefractal“objects”sofarstudied,keeptheir

geometriccharacteristicsinspiteofscalevariations(scaleinvariance).Someothers,

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 1Transactions, JapaneseGeomorphologicalUnion28-1,p.1-21 (2007)

地形 第28巻第1号1-21頁 (2007)

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins

MaurizioDELMONTE*,PaolaFREDI*,ElvidioLUPIAPALMIERI*

andPaolaSBARRA*

Abstract

ThefractalpropertiesofdrainagenetworksofsomeItaliandrainagebasinswithdifferentgeomorphologicalcharacteristicshavebeeninvestigated.Theaimsofthisstudyaretomeasurethe“fractaldimension”ofsuchdrainagenetworksandtoevaluatequantitativelytheirgeomorphologicalsignificance.Tothisend,fourmethodologieshavebeenappliedtoelevennetworks,whose

fractaldimension(Df)hasbeencomputed.Dataobtainedsuggestthattherelationbetweendrainagepatternandfractaldimensionvaluesisnotasimpleone;however,theparameterDfcanexpressthenetworkgeometryandafforduseful,quantitativeinformationaboutthetectonicconditioningonthenetworkemplacementsandtheirevolutiondegree.Onthisbasis,thedifferencesamongthecomplexandvariedgeometryofwidenetworkscanbetranslatedinquantitativeterms.Theresultssofarobtainedareobviouslypreliminary,andneedtobefurther

verified;however,theyareencouragingandgiveshapetothepossibilityofprovidinginformationinaparametricform aboutthegeometryofadrainagenetworkanditsevolutiondegree.Keywords:DrainageNetwork,FractalDimension,QuantitativeGeomorphology,

StructuralGeomorphology

ReceivedJune13,2006;AcceptedJuly24,2006* DipartimentodiScienzedellaTerra,UniversitàdegliStudidiRoma«LaSapienza»PiazzaleAldoMoro,5-P.O.Box11-00185RomeItaly

instead,seem topreservesomeoftheircharacteristicsunchangedwithinshorterlengthintervals.Thestudyofthesegeometriccharacteristicsallowstoobtaintheirfractionarydimensionor“fractaldimension”,Df.Thispaperfocusesparticularlyonfractalpropertiesofdrainagenetworksandon

theirgeomorphologicalmeaning.Manyauthorstackledthistopic(LaBarberaandRosso,1989;Maranietal.,1991;Rinaldoetal.,1991;MasekandTurcotte,1993;BeerandBorges,1993;Nikora,1994;Rodriguez-Iturbeetal.,1994;ClapsandOliveto,1996;MaitreandPinciroli,1997;Sagaretal.,1998;DelMonteetal.,1999).ManyofthemshowedthatDfdependsondrainagenetworkdegreeofdevelopmentandramificationandonthesinuosityofeachstream channel(Schulleretal.,2001).

Someauthors(Chengetal.,2001)assertthatadrainagenetworkwithhighDfvalues(closeto2)isspace-filling,isotropicandstructuralconditioningindependenttoo.Otherauthors,asStark(1991),assertthatanisotropicnetdoesnotnecessarilydiffersfrom ananisotropicone(structurallycontrolled)inthesizeofspace-filling.

Theconceptofspace-fillingwasintroducedbyPeanoin1890,andsuccessivelydrawn on byHilbertin1891 (Norman andMoscato,1995),toexplain thefractaldimensions ranging between1 and2 ofsome objects.Actually,drainage netispotentiallyspace-fillingasitgatherstherunofffrom thewholedrainagebasin.Tokunaga(1998),referringtoHack(1957),showedtheexistenceofatheoreticalmodelofdrainagenetworkdevelopment,wheretheupperlimitvalueofDfequals2 rightinthecaseofbasinslacking offractallacunae (maximum space-filling).Thistheoreticalcondition,however,canbeobtainedonlywhenadrainagebasinisfilledupwithitssubbasinandinterbasinareas,andnotwithitschannelnetwork(Tokunaga,2000).

Studyareas

ElevendrainagebasinsofvariousItalianareasareconsidered(Fig.1);theydifferingeological,geomorphological,structural,climatic,andvegetationcharacteristicsandtheirsizesrangebetween16 km2 and180 km2 (Table1).Althoughitisoftenimpossibletosimplyclassifyadrainagenetworkwithinasinglespecificpattern,thebasinshavebeenchosentakingintoaccountboththedensityandthepatternoftheirnetworks.The studied basins are representative enough ofthe various environmental

conditions ofCentral-Southern Italy.Some ofthem are in CentralItaly,on theTyrrheniansideoftheApenninechain,theothersflowstotheAdriaticSeaortotheIonianSeaandarelocatedinCentralandSouthernItaly.

Theclimaticconditionsofthestudyareasarequitedifferent,accordingtotheirgeographicallocations.Meanannualrainfallsrangefrom 617 to1609 mm.Rainfallsdecreasedownsteam,wherethelowestmeanannualvaluesarerecorded.Meanmonthlyvaluesrangefrom106.0to185.4mminNovember,andfrom11.6to41.1mminJuly.Rainfalleventsofconsecutivedaysarefrequent.Theyoftenreach250 mm in5

days,andsometimestheymayexceed450mm in5days.

2 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Themeanannualtemperaturesofthestudybasinsrangesfrom11 and15 °C;themeanmonthlymaximum isusuallyregisteredinJuly(24.0°C)andtheminimum inJanuary(1.8°C).

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 3

Table1.Cumulativelengthofdrainagenetworks(L),area(A)anddrainagedensityofdrainagebasins(D)(Horton,1945).

D(km/km2)A(km2)L(km)

4.67662.53292.380TorrenteMaianoa

4.166181.43755.928TorrenteTrasubbieb

5.75619.90114.546TorrenteCertanoc

6.87643.85301.536TorrenteBuranod

4.54618.2582.968TorrenteBalbanoe

8.42821.49181.119TorrenteBrettaf

2.18275.28164.229FossodellaMolag

4.91217.5286.068FossodiVallelatah

4.13716.3267.525FossoMoranai

3.67629.05106.778Fossodell’Acquabuonal

3.71037.30138.370TorrenteGravinadiMateram

Fig.1.Studyarealocation.

Administrator
Testo inserito
please shift L (km) on the right (on the column with 292.380 as first value); shift A(km2) on the second numeric column (on first value 62.53)
Administrator
Evidenziato
Administrator
Evidenziato
Administrator
Evidenziato
Administrator
Nota
please shift L on the first numeric column (on 292.380) and A on the second numeric column (on 62.53)

Movingfrom thenorthernmostonesouthward,thestudybasinsbelongtothefollowingareas:SouthernTuscany,Umbria-Marcheboundary,SouthernMarche,Latium,(CentralItaly)andBasilicata(SouthernItaly)(Fig.1).ThedrainagebasinsofTorrenteMaianoandTorrenteTrasubbiearelocatedin

Southern Tuscany (Fig.1a-b),although adjacent,they greatly differin outcroppinglithologies.Argillaceous-arenaceouslithologiescropoutintheTorrenteMaianobasin(Figs.2aand3a);bedrockoutcrops(argillites,marlylimestones,polygenicconglomeratesandgray-blueshalesandmarls)arewidespreadintheTorrenteTrasubbiedrainagebasin(Figs2band3b).N-SorientedtectonicsaffectedthisareaduringPliocene;NE-SWtectonicdirectionsarealsopresentintheeasternportion.Pleistocenesinkingandblockfaultingcontrolledtherecentmorphologicalevolutionofthewesternmostportionofthisarea.(Pasquarèetal.,1983).

TheTorrenteCertano,TorrenteBuranoandTorrenteBalbanodrainagebasinscoveranoverallsurfaceof82km2,attheUmbria-Marcheboundary,totheNorthofGubbiotown(Table1,Figs.3c,3dand3e).Lithologiesbelongingto“SchlierFormation”(lightgray silty marls with thin arenaceous layers) and“Marnoso-Arenacea Formation”(sandstones,marlinterbeddedsandstoneandargillaceousmarls)widelycropoutinthissecondarea(Figs.2c,2dand2e).TheseformationsaretypicaloftheUmbria-MarcheApennine,aNEvergingfoldsandthrustchainsthatwerebuiltupstartingfrom UpperMiocene (Menichettiand Minelli,1991).Foldsare characterized by wide synclinesalternatedwithnarrow anticlines,allofthem NW-SEtrendingandoftendislocatedbylongitudinalfaults.Theanticlineaxisisfrequentlyaffectedbysecondaryobliqueandtransversefaults.

Secondaryfaultsandfracturesoccuronthemostresistantlithologies.TheTorrenteBrettadrainagebasinextendsforabout21 km2 (Table1)inthe

SouthernMarche,whereprevailinglypelitic-arenaceouslithologiesarewidespread(Figs.2fand3f).Outcroppingrocksarearenaceouscalcareniticlithofacies,transgressiveontheMessinian pelitic-arenaceousturbiditesofthe“LagaFormation”(Cantalamessaetal.,1986;Centamore,1986;Carlonietal.,1990).Duetoselectiveerosion,arenaceous-calcareniticrocksstandoutinthesurroundinglandscape,madeupofthelessresistantturbidites.Themorphogenesisofthisareaisstronglycontrolledbyrecenttectonicevents, and particularly by differential uplift occurred since Lower Pleistocene(Ambrosettietal.,1982;Dufaureetal.,1988),accordingtoNW-SEandNE-SW tectoniclines.ThevalleysofthemainriversareconditionedbytectonicdiscontinuitiesWSW-ENEtrending.ThedrainagebasinsofFossodellaMola,FossodiVallelata,FossoMoranaand

Fossodell’AcquabuonaarecomprehendedwithintheLatiumarea.TheFossodellaMoladrainagebasin(75.3km2,Table1)isemplacedbetween

MontiSabatinieMontiCeriti,twovolcanicdistrictsactiveduringPleistocene(Ciccaccietal.,1988).Themainvalleyiscutintotheignimbritecalled“Tuforossoascorienere”(“Redtuffwithblackscoriae”),thatwaseruptedfrom MontiSabatiniandextended

4 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Administrator
Nota
please delete the dot

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 5

Fig.2.Simplifiedlithologicalsketches.

northeastwardasfarastheolderMontiCeriti(Figs.2gand3g).Thesearevolcanicdomes,rangingincompositionfrom rhyolitic(theolderones)totrachiyandesitic(theyoungerones).Duetothedifferentresistencetoerosionofignimbriteandlavadomes,thelandscapeismarkedbystrongcontrasts.Thelesserodiblelavadomesarepoorly

6 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.3.Drainagenetworksofstudybasins.

affectedbydenudationalprocessesincontrasttotheignimbritethat,atplacesfriableandearthy,ismarkedlyshapedbysurfacerunningwaters.TotheSouthofRome,betweenApriliaandArdea,themaintrunksofthedrainage

networksofFossodiVallelata(Fig.3h),FossoMorana(3i)andFossodell’Acquabuona(Fig.3l),flow followingtheNE-SW direction,whereasmostoftheirtributariesareperpendiculartothemaintrunks,flowingNW-SE.Onthewhole,thedrainagenetworksshowanoverallsubparallelpattern,althoughrectangularpatternappearsatplaces(Figs.3h,3iand3l).

These drainage networksare emplaced in the Ardeasedimentary basin whichdeveloped between Lower Pliocene and Lower Pleistocene;itshows half-grabenstructuresandisfilledbyclasticdeposits1600 m thick(DeRitaetal.,1995)overlainbythevolcanicproductseruptedbyTuscolano-Artemisioedifice(0.60-0.35 Ma;Marraetal.,2003),belongingtotheVolcanicDistrictofColliAlbani.ThelaststudiedbasinisinSouthernItaly(Basilicata);itisdrainedbythenetwork

ofTorrenteGravinadiMatera(Fig.3m),totheSouthofthebuilt-upareaofMatera(seeFig.1).Thebasinisemplacedinarecentlyupliftedarea(MateraHorst),whichispartoftheApuliaforeland.Thedrainagenetworkconsistsmainlyofstream channels(locally named“gravina”)deeply cutting the limestone outcrops(Fig.2m;Tropeano,1992),wheregorgeswithsteepslopesareoriginatedasaresultofthetectonicuplift.ThelowerorderstreamsflowaccordingtoNNE-SSW andENE-WSW jointsthataffectthemostrecentsedimentaryunits(UpperPliocene-LowerPleistocenecalcarenites);thehigherorderstreamsfollowtheNW-SEandNE-SW trendingfaultsandfractureswhichaffecttheMesozoicsubstratum andrevealonsurfaceinthedevelopmentofstreamelbows(Fig.4).Asawholethedrainagenetworkhasrectangularpatternandisclearlycontrolledbylinearstructuralelements.

Methodsoffractalanalysis

Thedrainagenetworksoftheexaminedbasinshavebeenreconstructedindetailsbymeansoftopographicmaps(scale1:25,000)andaerialphotointerpretation;streamchannelshavebeenhierarchicallyorderedafterStrahler(1957)anddigitizedbythesoftwareAutodeskAutoCAD Map®.Thegeometriccharacteristicsofstream channelshavebeenanalyzedthroughFORTRAN programsspecificallydevelopedbytheauthors;suchprogramsanalyze“.dxf”filesbycomputinglengthsandnumbersofthedifferentorderstreams.TocalculateDfvaluesthemethodsbyLaBarberaandRosso(1989),byTurcotte

(1992,1997),the channel-computing(DelMonte etal.,1997)and the box-counting(Goodchild,1982)wereused.According to the method by LaBarberaand Rosso,the fractaldimension is

obtainedfrom theratiologRb/logRl,whereRbandRlaretheparameters“bifurcationratio”and“lengthratio”byHorton(1945).

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 7

Both channel-computingandTurcotte’smethodsconsiderthenumberofstreamchannels(N)asfunctionoftheirlength(L),buttheformergroupschannelsaccordingtolengthintervals,whereasthelattergroupsthem accordingtotheirhierarchicalorder.Afterthechannel-computingmethod,dataaboutthenumbersofchannelsperlength

intervalsarerepresentedthroughhistogramsandprojectedontoabi-logarithmicspace,inwhichlengthintervals(L)areonthex-axisandfrequency(N)onthey-axis.Thederivedcurvesshowastraightportionwithtwo“drops”atitsedges.Thecurvedropshave then been cutoffin the regression to evidence the intervalofinverseproportionalitybetweenlogNandlogL.ThecurvedroprelatedtothelowestLvalues(resolutiondrop)dependsonthescaleatwhichthedrainagenetworkweretraced;theonerelatedtothehighestLvalues(extensiondrop)istiedtothesizeoftheexamineddrainagebasin(DelMonteetal.,1999).Alongtheintervalofinverseproportionalityofeach curve,aseriesoflinear

regressions have been performed. Starting from the regression of points, weprogressivelyreducedthepointintervaluntilasatisfactoryregressionwasreached.Asameasureofgoodness-of-fitoflinearregression,theR²value(afractionbetween0.0and1.0)wasused.Tothispoint,thefractaldimensionofthedrainagenetworkanalysediseasilydeducedfrom thegradient— changedinsign— oftherepresentativeregressionline(Df=-[Δ(logN)/Δ(logL)]).Turcotte’smethodfollowsasimilarprocedure,butthecurvedrawnbyplottinglog

LvaluesagainstlogNvaluesisalwaysdescendentandhasfewerpoints(x,#y).

8 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.4.Stream elbow ofGravinadiMatera(m);onthebackground,astructuralsummitsurface.

Administrator
Nota
please delete the symbol before the y, to obtain (x, y).
Administrator
Testo inserito
˙

Accordingtothebox-countingmethod,aboxgridisarrangedonaplaneCartesiancoordinates.Then,alltheboxesthatcontainatleastonesegmentofanystream arecounted.Bydecreasingthesizeoftheboxside(r)andcountingagainthenumber(N(r))ofboxescrossedbyoneormorestream segments,asetofcouplesr-N(r)isobtainedthatisplottedonthecoordinatesystem byputtinglogrontheabscissasandlogN(r)onordinates.Theminimum sizeoftheboxsideconsideredinthispaperis50m.Asforthetwopreviouslydescribedmethods,Dfvaluescorrespondtothegradient(changedinsign)ofthebestequationdrawnfrom theplottedpointsbyregressionanalysis.

TheDfvaluesareconsideredsignificantwhentheprobabilitythatR2 valuesareaccidentalisrespectively<0.1% ifthebox-countingmethodisfollowedand<1% ifthechannel-computingandTurcotte’smethodsareperformed.TheDfvaluescalculatedforthestudydrainagebasinsarelistedinTable2,alongwiththevaluesthatdonotsatisfytheneededprobabilityconditions.ThesametableshowsDfvaluesobtainedthroughLaBarberaandRossomethod.

Results

Figures5,6 and7 showtheplotsresultingfrom thefractalanalysismethodsthatrequire graphic representations (i.e.,channel-computing,box-counting and Turcotte’smethods).ThedrainagenetworkoftheTorrenteMaianobasinhasdendriticpattern(Fig.3a),

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 9

Box-countingTurcotteChannel-computingLaBarberaandRosso

ElemR2DfElemR2DfElemR2DfRlRbDf

70.9991.6140.9671.73*60.9891.702.223.931.72TorrenteMaianoa

50.9991.6460.9701.7940.9941.802.344.341.73TorrenteTrasubbieb

70.9971.5250.9751.6870.9871.602.564.551.61TorrenteCertanoc

80.9971.5250.9851.6680.9911.792.614.731.62TorrenteBuranod

80.9941.4150.9891.7570.9641.582.204.081.78TorrenteBalbanoe

50.9991.5460.9041.49*90.9901.234.314.321.00TorrenteBrettaf

70.9921.2750.9831.5270.8101.60*2.624.181.48FossodellaMolag

80.9951.3750.9701.6040.9921.342.444.211.61FossodiVallelatah

80.9981.2840.9791.55*40.9671.56*4.779.911.47FossoMoranai

80.9961.4050.9881.7070.9321.642.444.271.63Fossodell’Acquabuonal

90.9941.5150.9701.3960.9891.423.054.581.36TorrenteGravinadiMateram

Table2.Fractaldimension(Df)ofdrainagenetworkscalculatedthroughfourdifferentprocedures(LaBarberaandRosso,channel-computing,Turcotte,box-counting).R2

valuesareindicatedaswellasthenumberofpointsprocessed(Elem.)intheregressionanalysis.(*)indicatesDf valuesthatarenotstatisticallysignificantbecauseapoornumberofelementsorlowR2 values.

10 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.5.Logarithmicgraphs(channelcomputingmethod)ofdrainagenetworks.Filledpointshavebeenusedintheregressionanalysis.

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 11

Fig.6.Logarithmicgraphs(boxcountingmethod).Filledpointshavebeenusedintheregressionanalysis.

12 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.7.Logarithmicgraphs(Turcotte’smethod).Filledpointshavebeenusedintheregressionanalysis.

characterizedbytherandom orientationsofstream channelsthatlackanytectoniccontrol.AllcalculationmethodsaffordDfvaluesofthedrainagenetworkcloseto1.7,exceptbox-countingthatsuppliesalowervalue(1.61),asshowninTable2.

ThedrainagenetworkofTorrenteTrasubbiedrainagebasinhasaprevailingpinnatepattern(Fig.3b)butcontrolled,atplaces,bytectoniclines,mainlyalongthemaintrunk.The Df valuesare high,attaining the maximun of1.80 when the channelcomputingmethodisapplied.ThegraphsonFigures5b,6band7bshowtheresultsofthefractalanalysisaccordingtothethreegraphicmethods;alsointhiscasethelowestvalueofDf(1.64)isaffordedbythebox-counting(Table2).

ThebasinsofTorrenteCertano(Fig.3c),TorrenteBurano(Fig.3d)andTorrenteBalbano(Fig.3e),thethreeadjacentbasinsintheGubbioarea(Figs.1c,1dand1e),have similar rectangular drainage networks.The fractalanalyses based on thecomputationofchannelnumberasfunctionoftheirlengths,givequitehighvaluesofDf(1.58-1.79)forthedrainagenetworksofthesebasins,althoughdifferentinsize;onthecontrary,box-countinganalysisaffordsverylowervalues(1.41-1.52).

DiscordantvaluesofDfhavebeencalculatedforthedrainagenetworkofTorrenteBrettabasin(Fig.3f);thehighestvalue(1.54)isobtainedbythebox-countingmethod;thevaluethroughTurcotte’smethodfollows(1.49)and,finally,LaBarberaandRossomethod gives a Df value thatcorresponds to the lowertheoreticallimit(1.00).Moreover,thegraphinfigure5fshowsthatthechannel-computinganalysisofthisdrainagenetwork resultsin adoubleslopingcurve,thatmightindicateabifractalnetwork.Really,thefirstdescendentbranchofthecurvereferstostream channels(ranginginlengthfrom101.8125 and102.3125 m)occurringinbadlandareas,wherearealerosion isprevailing;whereasthesecondbranch referstoareaswherethelinearincisionbythehigherorderstreams(ranginginlengthfrom102.3125 and102.8125 m)preponderates.RegressionanalysisperformedforeachbranchgiveDfvaluesrespectivelyequalto1.35forthefirststeeperbranchand1.07forthesecond.Thelinearregressionthatrepresentsthewholenetwork— performedforthechannelsranginginlengthfrom101.8125 and102.8125 m (9 elements)— suppliesaDfvalueof1.23,R2 beingequalto0.990 (Table2).ThecurvepointscorrespondingtoL>102.8125 m havebeendiscardedbecauseofpoorstatisticsduetothelownumberoffluvialstreams.ThedrainagenetworkoftheFossodellaMolabasiniscontrolledbygeologic

structure,asorthogonaljunctionsdemonstrate(Fig.3g),andthereforeitshowssomefractallacunae.TheDf valuescalculatedafterTurcotteandLaBarberaandRossomethodsareusuallycloseto1.5,butdecreaseto1.27whenthebox-countingprocedureisfollowed.WithintheAprilia-Ardeaarea(totheSouthofRome),thedrainagenetworkofthe

FossoMoranabasin(Figs.2iand3i)hasDfvalueslowerthanthedrainagenetworkoftheFossodiVallelata(Figs.2hand3h)andFossodell’Acquabona(Figs.2land3l)basins(Table2).Linearequationsinferred from the graphsrelevantto the threedrainagenetworks(Figs.5h,6hand7h;Fig.5i,6iand7i;Fig.5l,6land7l)showthat

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 13

thehighestvaluesofDfbelongtothedrainagenetworkoftheFossodell’Acquabonabasin(Fig.3l).Finally,theDfvaluescalculatedbythreemethodsexceptthebox-countingoneforthe

rectangulardrainagepatternoftheTorrenteGravinadiMaterabasin(Fig.3m)areabout1.4(Table2),althoughthebox-countingmethodprovidesDf=1.51(Table2).Analyzingonlythe portion ofthe drainage network close to Vallone dellaFemmina(Fig.8),therectangularpatternisstillmoreevident,duetothelocalcontrolexertedonstreamchannelsbyfaults,widesynclineandgentleflexures(Beneduceetal.,2002).TheDfvaluesofthisportionalone,calculatedfollowingLaBarberaandRosso(Df=1.15)andthechannelcomputing(Df=1.17)procedures,aremuchlowerthanthoseobtainedforthewholedrainagenetworkoftheTorrenteGravinadiMaterabasin.

14 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.8.Fractalanalysisofasub-basinoftheTorrenteGravinadiMateradrainagebasin.

ValuesofDffandgeomorphologicalcharacteristicsofdrainagebasins

ResultsoffractalanalysesindicatethattherelationbetweendrainagepatternandDfvaluesisnotasimpleone.Amongthestudieddrainagepatterns,thosewithlittlefractallacunaehavesimilarvaluesofDf.Thisistrue,forexample,inthecasesofthedrainagenetworksofTorrenteMaiano(a)andTorrenteTrasubbie(b)basins.Bothofthem havehighvaluesofDf,althoughtheirpatternsarequitedifferent,duetothelowerdegreeofstructuralcontrolontheTorrenteMaianonetwork.

Theexaminationofdrainagenetworksaffectedbytectoniccontrol,testifiedbytheprevalenceofgivenstream directions(asintheTorrenteCelano(c),TorrenteBurano(d)TorrenteBalbano(e),andTorrenteGravinadiMatera(m)drainagebasins)evidencesthatsimilar(mainlyrectangular)drainagepatternshaveverydifferentDfvalues,apartfrom thechosenprocedureoffractalanalysis.

Thedrainagenetworkofbasin(m),closetoMateratown,haslowvaluesofDfandnumerousandwidefractallacunae(Fig.3m)explainablewiththerejuvenationproducedbytherecentuplift,thatfavoursthemarkeddowncuttingbythemainstreams.DrainagenetworksinthesurroundingsofGubbio(c,dande)showhighvaluesofDf,astheyaremorespace-fillingthanthenetworkofbasinm;thesevaluesmightbederivedfrom thehigherdegreeoffracturingoflithologiesoutcroppinginthedrainagebasinsc,dandf(Menichetti&Minelli,1991),aswellasfrom thelongerlastingmorphogeneticactionbysurfacerunningwatertheyhaveundergone.

AlsothedrainagenetworksofthebasinstotheSouthofRome(h,iandl)areinfluencedbyevidentneotectoniccontrols,asinthecaseoftheNW-SEflowdirectionofmanysmallchannelsoffirstorderthatjointhemainriversinthemiddle-lowerpartsoftheirvalleys.ManyNW-SE trendingfractureshavehelpedin recenttimesthedevelopmentofparallelfirstorder stream channels on the outcrops ofvolcaniclithologies(Figs.2h,iandl).TherelevantdrainagenetworksshowintermediatevaluesofDf (Table2,h,iandl)dueafasterincreaseofthefluvialnet,tendingtoaprogressive space-filling in the middle and lowerportion ofthe valleys.In theheadwatersofthese basins,fracturing density islower;stream channelsare lessabundant and,instead offollowing preferentialdirections,they appear randomlydistributed.Amongthestudieddrainagenetworks,thosehavingthelowestvalueofDfbelong

totheTorrenteBretta(Fig.3f)andFossodellaMola(Fig.3g)drainagebasins.TorrenteBrettabasinhasatplacesapinnatepattern,typicalofbadlandareas;morphogeneticprocessesareparticularlyfast(Fig.9),favouredbythelargeextentionofclayoutcropthicklydissected,asrevealedbythehighvalueofdrainagedensity(Horton,1945)(D=8.428 km-1,Fig2f,Table1).From ageometricalpointofview,pinnatepatternwouldbeinaccordancewiththefastgrowthofthedrainagenetworkthatrapidlytendstospace-fillingconditions;inthiscase,however,theexistenceofmanyfractallacunae(seeFig.3f)isresponsibleforthelowvaluesofDf(Table2).Alsothedrainagenetworkof

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 15

FossodellaMolabasin,wherevolcanicoutcropprevails(Fig.2g),haslowDfvaluesthatareascribabletofractallacunae;howeverthedrainagepatternisverydifferentfrom thepreviousoneanddrainagedensityislow(D=2,182km-1,Table1).

Discussion

Thedrainagenetworksexaminedcanbedividedintotwogroups,dependingonthevaluesoftheirfractaldimension;thefirstgroupshowshighvalues(a,b,c,d,e)andthesecondlow values(f,g,h,i,l,m)ofDf.Withineachgroupdifferentdrainagepatternsarepresent,thatbelongtobasinsshowingavarietyofgeologicalandclimaticconditions,butsharingsomegeomorphologicalaspects.

Thedrainagebasinswhosenetworksbelongtothefirstgroup,haveundergoneprolonged morphogenetic processes and show the fluviallandscape typicalofthe«maturity stage».Those drained by networksofthe second group,instead,showlandformsreferabletothe«youthstage».Thelatterhavebeenexposedtoexogenousmorphogeneticprocessesforashorterperiodthanthepreviousones.TheylieinareasemergedonlysinceQuaternaryorupliftedduringthisepoch,with theconsequentrejuvenationoftheirstream networks(i.e,drainagenetworkm).Inspiteofthedifferentpatternoftheirhydrologicnetworks,allofthem show summitsurfacesofdifferentextent(originatedbyplanationprocessesorbythedepositionofmarinesedimentsorvolcanicproducts,i.e.Fig.4)thatthe regressive erosion by streamshasnotyetcompletelyerased.ThepresenceofthesesurfacescanberesponsiblefortherecordedfractallacunaeandconsequentlyforthelowvaluesofDf.

Therefore,itmaybesupposedthatifadrainagenetworkcanevolvewithout«endogenousinterference»foraperiodoftimelongenough,ittendstospace-fillingconditionanyhow,independentlyfrom itspattern.Resultssofarobtainedcannotfullyconfirm thesuggestionsbysomeauthors

(Chengetal.,2001)thatdrainagenetworks,freefrom structuralcontrolandwith

16 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

Fig.9.Badlandsarea(TorrenteBrettadrainagebasin).

Administrator
Commento su testo
l, m

randomdistributionoftheirstreamchannels,shouldhavehighvaluesofDf,whereaslowvaluesofDfshouldrefertocontrollednetworkswithpreferentialstream orientations.Thenon-confirmationmightdependonthedefinitiondegreeofthedrainagenetworkreconstruction;infact,iftheyareextrapolatedfrom DEMsorsmallscalemaps,theirgeometrywillbedeterminedonlybythehigherorderstreams.Thus,theroleoflowerorderstreamsintheattainmentoftheoverallconfigurationsofdrainagenetworks(andin the network tendency toward space-filling)willbe neglected,in spite oftheirmorphoevolutivemeaningandofthepossibilitythattheyarecontrolledbyrecentactivetectonics(Ciccaccietal.,1986).Furthermore,externalconditioningotherthantectonicsonthedrainagegeometry,

andthereforeontheirfractaldimensions,cannotbedisregarded.Climateconditionsarean example:drainagenetworksin aridclimatemaybefarfrom space-fillingstatebecauseofasmallnumberofstream channels,oftenallogenic.Inotherwords,insuchcasesthelow valuesofDfmightbeascribedonlytotectonicswithoutholdingindueconsiderationotherimportantfactorsofthenetworkdevelopment.Thisobservationisinaccordance with Takayasu (1990),who maintains that–ceteris paribus–drainagenetworksinhumidregionshavehighvaluesofDf.

Finalremarks

Fractalanalysisofdrainagenetworksnotonlyaffordedimportantinformationaboutthe geomorphologicalevolution ofthe study basins,butitalso proved to be aninterestingmethodologicalapproach.In particular,the channel-computingprocedure can evidence acomplex bifractal

behaviourofsomedrainagenetworks,withtwoseparatevaluesofDfcorrespondingtodifferentlengthrangesofthestream channels.

Thiswouldsuggestthatthebasinstheybelongtoareaffectedbytwomainmorphogeneticprocesses,thatoperatesimultaneusly,althoughwithdifferenteffectivenessatdifferentscales.ThebifractalcharactersofsomedrainagenetworksmightexplainthedifferenceobservedbetweenDfvaluescalculatedbychannel-computingprocedureandthosedrawnfollowingtheothermethods.ThedifficultiestoobtainauniqueDfvalueofsomedrainagenetworkscanbeof

geomorphologicalsignificance.Forexample,thetwodifferentvaluesofDfcalculatedfromthedouble-slopecurveofthedrainagenetworkofTorrenteBrettabasin,indicatethatthetendencytowardspace-fillingofchannelsoflowerordersandlengthdiffersfromthatofthemainstreams,duetoerosionalprocessesofdifferentintensity.Beyondtheabovenotations,channel-computing,LaBarberaandRossoandTurcotte

methodsprovidesimilarresultsforthesamedrainagenetwork.Highestdiscrepanciesareobservedforequationswithnostatisticalsignificance.TheseareoftenobtainedfollowingtheTurcotteprocedure,duetotheinsufficientnumberofdata,especiallyforthedrainagenetworksofsmallbasins(Table2,Figs.7aandf).

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 17

Drainagenetworksoflimitedextensionshow unreliablevaluesofDf(Seyb,1994)alsowhenLaBarberaandRossoprocedureisfollowed(Table2,T.Brettabasin,Df=1.00).Ontheotherhand,thismethodhasnotbeentestedforsmallbasins;itisadvisabletoperform itinthecaseofdrainagebasins25-30km2 wideandanalyzedatascale1:25,000.

TheDfvaluesbybox-countingmethoddonotdivergegreatlyfrom thoseoftheotherprocedures;those,however,varyinalesswiderangeandsometimesseem toohighforthebasinsshowinglargefractallacunae(Table2,Figs.6fandm).TheDfvaluescalculatedbythisprocedure,althoughstrengthenedbyhighdeterminationcoefficients(R2>0.991),appearinfluenced by drainage density.The maximum value ofthisparameter,infact,isrecordedforT.Brettadrainagebasin(D=8.428km/km2,Table1),whosenetwork hasoneofthehighestvaluesofDf amongthosecalculated.ThedrainagebasinofFossodellaMolahasasimilaranomaly:drainagedensityhasthelowestrecordedvalue(D=2.182 km/km2,Table1)andDfofitsdrainagenetwork,generallylow,isthelowestamongthoseobtainedbybox-counting.Forthisreasonthisprocedureseemstobemoresuitabletoanalyzelineswithoutbifurcation,ascontourlines(Goodchild,1982).Toconclude,themostinterestingrelationsbetweenfractalcharactersofdrainage

networks and geomorphologicalcharacteristics oftheirdrainage basins are shortlyevidenced.ThehighertheDfvalues,thesmallertheareaoccupiedbyfractallacunaeare,according to Tokunaga’s laws (Tokunaga,2000).This occurs where randomlydistributedchannelsdraindifferentlithologies,withvaryingdegreeoffracturing,butalsowheredrainagenetworks,showinganisotropicdistributionoftheirchannels,arestronglycontrolledbystructure.Abi-directionalfracturingwith90°allowarectangularnetworktodevelop,whichis

characterizedbytherepetitionofthesamepatterninspiteofvaryingscale;asaresultDfcanattainhighvalues.Fracturing,therefore,isofgreatimportanceindeterminingDfvalues,that— otherconditionsbeingequal— arehigherinareaswithhighfracturingdensity.The Df valuesofthe studied networksare strongly depending also on their

evolutiondegree.Basically,a«young»networkislessspace-fillingthanan«older»one,independentlyfrom thegeometricalpattern.Theystrictlydependontype,intensityofdenudationalprocesses,andalsotimespanexposedtotheprocessesinstead.

Acknowledgements

WearegratefultoProf.EijiTokunaga(ChuoUniversity,Tokyo)forhiscriticalreadingandforhisencouragement.ThisworkwasfinanciallysupportedbytheItalianMinisteryfortheUniversityand

the Scientificand TechnologicalResearches(MURST);DirectorofresearchesProf.ElvidioLupiaPalmieri.

18 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

References

Ambrosetti,P.,Carraio,F.,Deiana,G.andDramis,F.(1982)Ilsollevamentodell’ItaliacentraletrailPleistoceneinferioreeilPleistocenemedio:Contributiconclusiviperlarealizzazionedellacartaneotettonicad’Italia.P.F.Geodinamica-C.N.R.,513,219-223.

Beer,T.andBorges,M.(1993)Horton’slawsandthefractalnatureofstreams:WaterResour.Res.,29,1475-1487.

Benedice,P.,Schiattarella,M.andTropeano,M.(2002)Caratteridelreticoloidrograficonell’areadell’HorstdiMaterainBasilicata.In:Guidaall’escursionegeomorfologica:dallaVald’AgriaMatera,UniversitàdellaBasilicataed.,pp.68-78.

Cantalamessa,G.,Centamore,E.,Chiocchino,U.,Colalongo,M.L.,Micarelli,A.,Nanni,T.,Pasini,G.,Potetti,M.andRicciLucchiF.(1986)IlPlio-PleistocenedelleMarche:StudiGeol.Camerti,Vol.Spec.— LaGeologiadelleMarche—,61-81.

Carloni,G.C.,Francavilla,F.andFurani,M.(1990)Lineamentipaleogeograficidell’areadelMontedell’Ascensione(AscoliPiceno)nelPlioceneenelPleistocene:ActanaturaliadeL’AteneoParmense,26,NN.3-4,93-128.

Centamore,E.(1986)CartaGeologicadeidepositiPlio-PleistocenicitrailF.TennaeilF.Tronto(scala1:50000):volumeSpec.StudiGeol.Camerti,UniversitàdegliStudidiCamerinoed.

Cheng,Q.,Russel,H.,Sharpe,D.,Kenny,F.and Qin,P.(2001)GIS-based statisticalandfractal/multifractalanalysisofsurfacestream patternsintheOakRidgesMoraine:Computers&Geosciences,27,513-526.

Ciccacci,S.,Fredi,P.,LupiaPalmieri,E.andSalvini,F.(1986)Anapproachtothequantitativeanalysis ofthe relations between drainage pattern and fracture trend.In:IntemationalGeomorphology,PartII,pp.49-68.Chichester.

Ciccacci,S.,DeRita,D.andFredi,P.(1988)Geomorfologiaquantitativaemorfoneotettonicadell’areadiMorlupo— CastelnuovodiPortoneiMontiSabatini(Lazio):Geogr.Fis.eDinam.Quat.,Suppl.I,197-206.

Claps,P.andOliveto,G.(1996)Re-examiningthedeterminationofthefractaldimensionofrivernetwork:WaterResour.Res.,32,3123-3135.

DeRita,D.,Facenna,C.,Funiciello,R.andRosa,C.(1995)Stratigraphyandvolcano-tectonics.In:TheVolcanooftheAlbanHills,RaffaelloTrigilaed.,Roma,56-70.

DelMonte,M.,Fredi,P.,LupiaPalmieri,E.andSalvini,F.(1997)Fractalcharacterizationofdrainagenetworkgeometry:Geogr.Fis.Din.Quat.,Suppl.III-TomoI,144-145.

DelMonte,M.,Fredi,P.,LupiaPalmieri,E.andSalvini,F.(1999)Fractalanalysistodefinethedrainagenetworkgeometry:Boll.Soc.Geol.It.,118,167-177.

Dufaure,J.,Bossuyt,D.andRasse,M.(1988)Deformationsquatermairesetmorphogenesedel’ApenninCentralAdriatique:Physio-Géo,18,9-46.

Goodchild,M.F.(1982)TheFractionalBrownianprocessasaterrainsimulationmodel:ModelingandSimulation,13(3),ProceedingsoftheThirteenthAnnualPittsburghConference,1133-1137.

Hack,J.T.(1957)Studiesoflongitudinalstream profilesinVirginiaandMaryland:U.S.Geol.Surv.Prof.Pap.,294B,45-97.

Horton,R.E.(1945)Erosionaldevelopmentofstreamsandtheirdrainagebasins:hydrophysicalapprachtoquantitativemorphology:Geol.Soc.Am.Bull.,56,275-370.

LaBarbera,P.andRosso,R.(1989)Onthefractaldimensionofrivernetworks:WaterResour.Res.,4,735-741.

Maitre,H.andPinciroli,M.(1997)FractalcharacterizationofahydrologicalbasinusingSARsatelliteimages:IEEETransactionsonGeoscienceandRemoteSensing,37,175-181.

Mandelbrot,B.B.(1977)Fractals:Form,ChanceandDimension.SanFrancisco,CA:Freeman.Marani,A.,Rigon,R.andRinaldo,A.(1991)Anoteonfractalchannelnetworks:WaterResour.

Res.,27,12,3041-3049.Marra,F.,Freda,C.,Scarlato,P.,Taddeucci,J.,Karner,D.B.,Renne,P.R.,Gaeta,M.,Palladino,D.

M.,Trigila,R.andCavarretta,G.(2003)Post-calderaactivityintheAlbaniHillsvolcanic

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 19

Administrator
Evidenziato
Administrator
Nota
Carraro
Administrator
Nota
Beneduce
Administrator
Nota
Chiocchini

district(Italy):40Ar/39Argeochronology and insights into magma evolution:Bulletin ofVolcanology,65,227-247.

Masek,J.andTucotte,D.L.(1993)A diffusion-limitedaggregationmodelfortheevolutionofdrainagenetworks:EarthandPlanetaryScienceLetters,119,379-386.

Menichetti,M.andMinelli,G.(1991)ExtensionaltectonicsandseismogenesisinUmbria(CentralItaly):theGubbioarea:Boll.Soc.Geol.It.,110,857-880.

Nikora,V.I.(1994)Onself-similarityandself-affinityofdrainagebasinis:WaterResour.Res.,30,133-137.

Norman,M.andMoscato,P.(1995)TheEuclideanTravelingSalesmanProblem andaSpace-FillingCurve:Chaos,SolitonsandFractals,6,389-397.

Pasquarè,G.,Chiesa,S.,Vezzoli,L.andZanchi,A.(1983)EvoluzionepaleogeograficaestrutturaledipartedellaToscanameridionaleapartiredalMiocenesuperiore:Mem.Soc.Geol.It.,25,145-157.

Rinaldo,A.,Rigon,R.andMarani,A.(1991)Onwhatisexplainedbytheform ofachannelnetwork.— Attidelconvegno— EntropyandEnergyDissipation:WaterResorces,Maratea,Italia,26-28giugno.V.P.SinghandM.Fiorentinoed.,379-399.

Rodriguez-Iturbe,I.,Marani,M.,Rigon,R.andRinaldo,A.(1994)Self-organizedriverbasinlandscapes:Fractalandmultifractalcharacteristics:WaterResour.Res.,30,3531-3539.

SagarDaya,B.S.,Omoregie,C.andPrakasaRao,B.S.(1998)Morphometricrelationsoffractal-skeletalbasedchannelnetworkmodel:DiscretedynamicsinNatureandSociety,2,2,77-92.

Schuller,D.J.,Rao,A.R.andJeong,G.D.(2001)Fractalcharacteristicsofdensestreamnetworks:J.ofHydr.,243,1-16.

Seyb,A.(1994)Drainagenetworkanalysisusingfractalgeometry:Master’sthesis,UniversityofAuckland.

Stark,C.P.(1991)Aninvasionpercolationmodelofdrainagenetworkevolution:Nature,352,423-425.

Strahler,A.N.(1957)Quantitativeanalysisofwatershedgeomorphology:Trans.Am.Geoph.Un.,38,913-920.

Takayasu,H.(1990)FractalsinthePhysicalSciences.ManchesterUniversityPress,170p.Tokunaga,E.(1998)RevalutationofHack’srelationbyself-similarmodelfordrainagebasins:Trans.

Japan.Geomorph.Union,19,77-90.Tokunaga,E.(2000)Dimensionofachannelnetworkandspace-fillingpropertiesofitsbasin:

Trans.Japan.Geomorph.Union,21,4,431-449.Tropeano,M.(1992)Aspettigeologicie geomorfologicidella Gravina diMatera:Itinerari

Speleologici,2,19-33.Turcotte,D.L.(1992)FractalsandChaosinGeologyandGeophysics.CambrigeUniversityPress,

NewYork,432p.Turcotte,D.L.(1997)FractalsandChaosinGeologyandGeophysics(Secondedition).Cambrige

UniversityPress,NewYork,398p.

20 MaurizioDELMONTE,PaolaFREDI,ElvidioLUPIAPALMIERIandPaolaSBARRA

流域網のフラクタル次元と流域の地形との間のいくつかの関係

MaurizioDELMONTE*,PaolaFREDI*,ElvidioLUPIAPALMIERI*

andPaolaSBARRA*

要 旨

地形特性の異なるイタリアのいくつかの流域を対象として,流域網のフラクタル特

性を検討した.本稿の目的はこのような流域網の「フラクタル次元」を計測し,それ

らの地形的意義を定量的に評価することである.

4つの方法が11個の流域網に適用され,それらのフラクタル次元(Df)が計測され

た.得られた結果は,流域の形態とフラクタル次元の値との間の関係が単純なもので

はないことを示唆している.しかし,フラクタル次元Dfのパラメーターは流域の幾何

学を表現することが可能であり,流域網の形成やその発達過程におけるテクトニック

な状態についての有用な定量的情報を与える.このことを基に,より広い流域網の複

雑で変化に富んだ幾何学の間に存在する差異を定量的問題として扱うことができる.

本研究の結果は予察的なものであり更なる証明が必要ではあるが,流域網の幾何学

と流域の発達程度に関する特性値としての情報を提供する可能性を明確に示してい

る.

SomeRelationsbetweenFractalDimensionofDrainageNetworksandGeomorphologyofDrainageBasins 21

* DipartimentodiScienzedellaTerra,UniversitàdegliStudidiRoma«LaSapienza»PiazzaleAldoMoro,5-P.O.Box11-00185RomeItaly