recellularization of acellular human small intestine using bone marrow stem cells

9
® TISSUE ENGINEERING AND REGENERATIVE MEDICINE Recellularization of Acellular Human Small Intestine Using Bone Marrow Stem Cells PRADEEP B. PATIL, a,* PRITI B. CHOUGULE, a,* VIJAY K. KUMAR, a STEFAN ALMSTRÖM, b HENRIK BÄCKDAHL, b DEBASHISH BANERJEE, c GUSTAF HERLENIUS, d MICHAEL OLAUSSON, a,d SUCHITRA SUMITRANHOLGERSSON a Key Words. Adult human bone marrow • Adult stem cells • Transdifferentiation • Differentiation a Laboratory for Transplantation and Regenerative Medicine, Department of Surgery, and c Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; b Department of Chemistry and Materials, SP Technical Research Institute of Sweden, Borås, Sweden; d Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden * Contributed equally as first authors. ABSTRACT We aimed to produce an acellular human tissue scaffold with a view to test the possibility of recellularization with bone marrow stem cells to produce a tissueengineered small intestine (TESI). Human smallbowel specimens (n = 5) were obtained from cadaveric organ donors and treated sequentially with 6% dimethyl sulfoxide in hypotonic buffer, 1% Triton X100, and DNase. Each small intestine (SI) piece (6 cm) was recellularized with EPCAM+ and CD133+ allogeneic bone marrow stem cells. Histological and molecular analysis demonstrated that after decellularization, all cellular components and nuclear material were removed. Our analysis also showed that the decellularized human SI tissue retained its histoarchitecture with intact villi and major structural proteins. Protein films of common extracellular matrix constituents (collagen I, laminin, and fibronectin) were found in abundance. Furthermore, several residual angiogenic factors were found in the decellularized SI. Following recellularization, we found viable mucinpositive goblet cells, CK18+ epithelial cells in villi adjacent to a muscularis mucosa with o.actin+ smooth muscle cells, and a high repopulation of blood vessels with CD31+ endothelial cells. Our results show that in the future, such a TESI would be ideal for clinical purposes, because it can be derived from the recipient’s own immunocompatible bone marrow cells, thus avoiding the use of immunosuppression. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:000 – 000 Correspondence: Suchitra SumitranHolgersson, Ph.D., Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Science Park, Medicinaregatan 8A, Second Floor, S413 46 Gothenburg, Sweden. Telephone: 46708220021; EMail: suchitra.holgersson@ surgery.gu.se INTRODUCTION The regenerative capacity of intestinal mucosa is greatly compromised during pathological condi tions when major damage has occurred to the intestine. Extensive intestinal resections are mostly done as extreme efforts to correct many conditions, including inflammatory bowel dis ease, trauma, mesenteric vascular disease, vol vulus, congenital atresia, and neonatal necrotiz ing enterocolitis. Resection of 70%– 80% of the small bowel re sults in shortbowel syndrome (SBS), a condition that is associated with high morbidity and mor tality [1]. It is reported that the longterm sur vival of patients who have less than 50 cm of residual small bowel is presently only 45% [2]. Different operative alternatives may improve the outcome of patients with SBS. Intestinal lengthening techniques, tapering procedures to improve peristalsis, and construction of intesti nal valves to slow transit have all been shown to have important roles [3]. However, the long term outcome of these procedures appears to be modest. Current therapeutic options available for pa tients with shortbowel syndrome are aimed at ensuring an adequate supply of nutrients, water, electrolytes, trace elements, and vitamins. This can be achieved by parenteral nutrition (PN) via intravenous infusion. Smallbowel transplanta tion is another viable therapeutic option [4]. However, these approaches are still plagued by serious complications such as sepsis and liver failure associated with PN and limited avail ability of the donor organs and high graftre jection rates associated with transplantation and the consequences of longterm immuno suppression. Intestinal tissue engineering is an attractive alternative therapy to intestinal transplantation. Attempts to engineer small intestine since the late 1980s have achieved varying degrees of suc cess in animal models with evolving refinements in biotechnology. The most encouraging results so far have been the generation of intestinal neo mucosa in the form of cysts when intestinal epi thelial organoid units isolated from neonatal rats were seeded onto biodegradable polymers be fore implantation in syngeneic adult rat’s omen tum [4]. There is an interest in developing tissueen gineered small intestine (TESI) with the ultimate goal of implanting structurally and functionally

Upload: gu-se

Post on 25-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

   

®

TISSUE  ENGINEERING  AND  REGENERATIVE  MEDICINE        

Recellularization   of  Acellular  Human  Small  Intestine  Using  Bone  Marrow  Stem  Cells  

 PRADEEP  B.  PATIL,a,*  PRITI  B.  CHOUGULE,a,*    VIJAY   K.  KUMAR,a    STEFAN  ALMSTRÖM,b  

HENRIK  BÄCKDAHL,b    DEBASHISH  BANERJEE,c    GUSTAF  HERLENIUS,d    MICHAEL  OLAUSSON,a,d  

SUCHITRA   SUMITRAN-­‐HOLGERSSONa    

Key  Words.     Adult  human  bone  marrow  •  Adult  stem  cells  •   Transdifferentiation  •  Differentiation        aLaboratory  for  Transplantation  and  Regenerative  Medicine,  Department  of  Surgery,  and  cInstitute  of  Biomedicine,  University  of  Gothenburg,  Gothenburg,  Sweden;  bDepartment  of  Chemistry  and  Materials,  SP  Technical  Research  Institute  of  Sweden,  Borås,  Sweden;  dTransplant  Institute  at  Sahlgrenska  University  Hospital,  Gothenburg,  Sweden  

 *Contributed  equally  as  first  authors.  

ABSTRACT  We   aimed   to   produce   an   acellular   human   tissue   scaffold   with   a   view   to   test   the   possibility   of  recellularization  with  bone  marrow  stem  cells  to  produce  a  tissue-­‐engineered   small  intestine  (TESI).  Human   small-­‐bowel    specimens   (n  = 5)  were   obtained   from   cadaveric   organ   donors   and   treated  sequentially  with  6%  dimethyl  sulfoxide   in  hypotonic  buffer,  1%  Triton  X-­‐100,  and  DNase.  Each  small  intestine   (SI)   piece   (6  cm)  was   recellularized   with   EPCAM+ and  CD133+ allogeneic   bone  marrow  stem  cells.  Histological  and  molecular  analysis  demonstrated   that  after  decellularization,   all  cellular  components  and  nuclear  material  were  removed.  Our  analysis   also  showed   that  the  decellularized  human  SI  tissue  retained  its  histoarchitecture  with  intact  villi  and  major  structural  proteins.  Protein  films  of  common  extracellular   matrix  constituents   (collagen   I,  laminin,   and  fibronectin)  were  found  in  abundance.   Furthermore,  several  residual  angiogenic   factors  were  found  in  the  decellularized   SI.  Following  recellularization,  we  found  viable  mucin-­‐positive  goblet  cells,  CK18+ epithelial  cells  in  villi  adjacent   to   a  muscularis   mucosa  with   o.-­‐actin+ smooth   muscle   cells,   and   a   high   repopulation   of  blood  vessels  with  CD31+ endothelial  cells.  Our  results  show  that  in  the  future,  such  a  TESI  would  be  ideal   for  clinical   purposes,   because   it  can  be  derived   from  the  recipient’s   own   immunocompatible  bone  marrow   cells,   thus  avoiding   the  use  of   immunosuppression.       STEM CELLS TRANSLATIONAL MEDICINE 2013;2:000  –  000  

 Correspondence:  Suchitra  Sumitran-­‐Holgersson,  Ph.D.,  Laboratory  for  Transplantation  and  Regenerative  Medicine,  Sahlgrenska  Science  Park,  Medicinaregatan  8A,  Second  Floor,  S-­‐413  46  Gothenburg,  Sweden.  Telephone:  46-­‐708220021;  E-­‐Mail:  suchitra.holgersson@  surgery.gu.se  

 

INTRODUCTION    The  regenerative  capacity  of  intestinal  mucosa  is  greatly  compromised  during  pathological   condi-­‐  tions   when  major   damage   has   occurred   to   the  intestine.   Extensive   intestinal   resections   are  mostly  done  as  extreme  efforts  to  correct  many  conditions,   including   inflammatory   bowel   dis-­‐  ease,   trauma,  mesenteric   vascular   disease,   vol-­‐  vulus,  congenital  atresia,  and  neonatal  necrotiz-­‐  ing  enterocolitis.  

Resection  of  70%–  80%  of  the  small  bowel  re-­‐  sults  in  short-­‐bowel  syndrome  (SBS),  a  condition  that   is  associated  with  high  morbidity  and  mor-­‐  tality   [1].   It   is   reported   that   the   long-­‐term   sur-­‐  vival   of   patients   who   have   less   than   50   cm   of  residual   small   bowel   is   presently   only   45%   [2].  Different    operative    alternatives    may     improve  the   outcome   of   patients   with   SBS.   Intestinal  lengthening   techniques,   tapering   procedures   to  improve   peristalsis,   and   construction   of   intesti-­‐  nal  valves  to  slow  transit  have  all  been  shown  to  have   important   roles   [3].   However,   the   long-­‐  term  outcome  of  these  procedures  appears  to  be  modest.  

Current  therapeutic  options  available  for  pa-­‐  tients  with  short-­‐bowel  syndrome  are  aimed  at  

ensuring  an  adequate  supply  of  nutrients,  water,  electrolytes,   trace   elements,   and   vitamins.   This  can  be  achieved  by  parenteral  nutrition  (PN)  via  intravenous   infusion.   Small-­‐bowel   transplanta-­‐  tion   is   another   viable   therapeutic   option   [4].  However,   these  approaches  are   still   plagued  by  serious   complications   such   as   sepsis   and   liver  failure   associated   with   PN   and   limited   avail-­‐  ability   of   the   donor   organs   and   high   graft-­‐re-­‐  jection   rates   associated   with   transplantation  and   the   consequences   of   long-­‐term   immuno-­‐  suppression.  

Intestinal   tissue   engineering   is   an   attractive  alternative  therapy  to  intestinal  transplantation.  Attempts   to   engineer   small   intestine   since   the  late  1980s  have  achieved  varying  degrees  of  suc-­‐  cess  in  animal  models  with  evolving  refinements  in   biotechnology.   The  most   encouraging   results  so  far  have  been  the  generation  of  intestinal  neo-­‐  mucosa  in  the  form  of  cysts  when  intestinal  epi-­‐  thelial  organoid  units  isolated  from  neonatal  rats  were   seeded   onto   biodegradable   polymers   be-­‐  fore  implantation  in  syngeneic  adult  rat’s  omen-­‐  tum  [4].  

There   is  an   interest   in  developing  tissue-­‐en-­‐  gineered  small  intestine  (TESI)  with  the  ultimate  goal   of   implanting   structurally   and   functionally  

 

2    

   

 competent  small  intestine  for  the  treatment  of  human  SBS.  Here,  we  have  attempted  to  forward  this  field  by  bioengineering  intes-­‐  tinal   tissue   with   human   stem   cells.   It   has   been   reported   that  bone  marrow  (BM)-­‐derived  cells  contribute  to  the  regeneration  of  damaged  intestinal  epithelium  as  epithelial  cells  [5].  This  sug-­‐  gests  that  BM-­‐derived  cells  could  be  a  potential  source  for  intes-­‐  tinal  epithelial  tissue  regeneration.  We  therefore  aimed  to  pro-­‐  duce  an  acellular  human  tissue  scaffold  with  a  view  to  test  the  possibility  of  recellularization  with  bone  marrow  cells  to  produce  a   tissue-­‐engineered   small   intestine   (SI).   Such   a   TESI   would   be  ideal  for  clinical  purposes,  since  it  can  be  derived  from  the  recip-­‐  ient’s  own  (immunocompatible)  BM  cells,  thus  avoiding  the  use  of  immunosuppression.  

   

MATERIALS   AND  METHODS  

All   protocols   used   in   the   present   study  were   approved   by   the  local  ethics  committee.  Small   intestine  tissue  measuring  20  –30  cm   was   taken   from   different   deceased   healthy   organ   donors  (n  = 5)  after  informed  consent  from  the  relatives.  A  biopsy  piece  of 2  cm2  from  each  tissue  sample  was  snap  frozen  in  liquid  nitro-­‐  gen,  stored  at  -80°C,  and  used  at  a  later  time  point  for  immu-­‐  nohistochemical  analysis.  

 

Retrieval  of  Small  Intestine  From  Cadaver  Donor  A  30  –50-­‐cm  segment  of  terminal  ileum  was  retrieved  from  donors  (details  are  given  in  the  supplemental  online  Materials  and  Meth-­‐  ods).  

 

Decellularization   of  Small  Intestine  Specimen  In  our  initial  experiments,  we  used  three  different  decellulariza-­‐  tion  protocols  (details  are  given  in  the  supplemental  online  Ma-­‐  terials  and  Methods).  Tissues  were  treated  with  either  protocol  1  (4%   sodium   deoxycholate   followed   by   DNase)   [6],   protocol   2  (0.5%  sodium  dodecyl  sulfate  followed  by  DNase),  or  protocol  3  (6%  dimethyl  sulfoxide  followed  by  1%  Triton  X-­‐100  and  lastly  by  DNase).  Based  on  our  preliminary   results   (see  Results),  we  de-­‐  cided  to  use  protocol  3  for  the  present  study.  

Each  small  intestine  specimen  was  divided  into  6  –  8-­‐cm-­‐long  segments.  The  tissue  was  immediately  and  thoroughly  rinsed  in  phosphate-­‐buffered  saline  (PBS)  containing  0.5%  penicillin,  0.5%  streptomycin,  and  0.5%  amphotericin  B  and  frozen  at  -80°C  in  PBS  overnight.  The  next  day  the  samples  were  thawed  at  room  temperature.  The  segments  were  washed  once  with  distilled  wa-­‐  ter.  One  end  of  each  specimen  was  kept  open  while   the  other  was  clamped,  and  the  lumen  was  filled  with  10  ml  of  6%  dimethyl  sulfoxide   (DMSO;   Sigma-­‐Aldrich,   Gothenburg,   Sweden,   http://  www.sigmaaldrich.com).  The  other  end  was  then  clamped,  and  each  specimen  was  then  immersed  in  a  wide-­‐bottom  plastic  bot-­‐  tle   containing  6%  DMSO  and  kept  on  an  agitator  at  37°C   for  4  hours  with  gentle  shaking.  At  the  end  of  the  incubation  time,  one  end  of  each  specimen  was  opened,   the  contents  of   the   lumen  were  emptied,  and  the  specimens  were  filled  with  20  ml  of  PBS,  immersed  again  in  a  new  wide-­‐bottom  plastic  bottle  containing  PBS,  and  placed  on  the  agitator  at  37°C  for  4  hours.  The  contents  were  then  emptied,  and  the  lumen  was  filled  with  10  ml  of  1%  Triton  X-­‐100  (Sigma-­‐Aldrich).  The  specimen  was  once  again  im-­‐  mersed   in   a   plastic   bottle   containing  1%  Triton  X-­‐100   and   agi-­‐  tated   at   37°C   for   4   hours  with   gentle   shaking.  Once   again   the  contents  from  the  lumen  were  emptied  and  replaced  by  20  ml  of  PBS  and  placed  in  a  plastic  bottle  containing  PBS  on  the  agitator  

at  37°C  overnight.  The  next  day,  the  lumen  was  filled  with  10  ml  of  0.4  mg/ml  deoxyribonuclease   I   (Sigma-­‐Aldrich)   in  1  M  NaCl,  and  the  tissue  was  clamped,  immersed  in  a  plastic  bottle  contain-­‐  ing  1  M  NaCl,  and  incubated  for  4  hours  on  the  agitator  at  37°C.  Lastly,   the   lumen  of   the   specimens  was  washed  with  20  ml  of  distilled  water  (D/W)  and  placed  in  a  plastic  bottle  with  D/W  on  the  agitator  for  6  hours  to  remove  cell  debris.  Two  cycles  of  the  decellularization  protocol  were  run.  At  the  end  of  the  decellu-­‐  larization  process,  the  SI  segments  were  washed  continuously  for   24   hours  with   20  ml   of   PBS   (changed   every   6   hours).   All  solutions  used  for  decellularization  contained  the  above  men-­‐  tioned  antibiotics.  At   the  end  of  each  cycle,  a   small  piece  of  tissue   was   screened   for   the   presence   of   nuclei   and   verified  histologically  using  standard  procedure.    Characterization   of  Decellularized  SI  Matrix  The  decellularized   small   intestine   (DSI)   segments  were   charac-­‐  terized  by  staining  with  hematoxylin  and  eosin  (H&E)  and  Mas-­‐  son’s  trichrome  as  well  as  Luminex  technology  for  various  pro-­‐  teins.  Collagens,  glycosaminoglycans  (GAGs),  and  proteoglycans  and  elastin  were  quantified  using  Sicrol  soluble  collagen,  Blyscan  sulfated   glycosaminoglycan,   and   Fastin   elastin   assays   (all   from  Biocolor,   Newtownabbey,   U.K.,   http://www.biocolor.co.uk)   re-­‐  spectively.   Prior   to   sectioning   and   staining,   all   tissue   samples  were   turned   inside-­‐out   to   permit   a   better   examination   of   the  luminal   side  of   the  TESI   (details   are   given   in   the   supplemental  online  Materials  and  Methods).    Determination  of  Tensile  Strength  of  the  Decellularized  SI  Native  and  decellularized  tubular  SI  samples,  10  mm  wide,  were  tensile-­‐tested   as   ring   samples   according   to   ISO   [7]  with   an   In-­‐  stron   5566   (Instron,   Norwood,   MA,   www.instron.com).   The  specimen  holder  had  a  diameter  of  10  mm.  The  preload  was  1.5  N,  and   the   test   speed  used  was  50  mm/minute.  The  maximum  force  and  the  vertical  elongation  at  the  maximum  force  were  regis-­‐  tered.  The  force  along  the  circumference  of  the  tube  was  half  of  this  measured   force.   The   elongation   along   the   circumference   of   the  tube  was   2   times   the  measured   elongation.   The   accuracy   of   the  tensile  tester  was  1%  in  force  and  0.5%  in  elongation.    Analysis  of  Residual  Angiogenic  Growth  Factors  After  Decellularization  Total  protein  was  extracted  from  the  DSI   (n  = 3)  using  a  com-­‐  mercially   available   kit   (Millipore   AB,   Stockholm,   Sweden),   and  the  protein  concentration  for  all  samples  was  standardized  to  1  mg/ml.  The  angiogenic  growth  factors  produced  by  the  DSI  were  tested  by  Luminex  technology  using  a  commercially  available  kit  (Millipore  AB,  Darmstadt,  Germany,  http://www.millipore.com).  The   following   17   growth   factors   were   tested:   angiopoietin-­‐2,  bone  morphogenetic  protein-­‐9,  epidermal  growth  factor  (EGF),  endoglin,   endothelin-­‐1,   fibroblast   growth   factor   (FGF-­‐1;   acidic  FGF),  FGF-­‐2  (basic  FGF),  follistatin,  granulocyte  colony-­‐stimulat-­‐  ing  factor,  heparin-­‐binding  EGF,  hepatocyte  growth  factor  (HGF),  interleukin-­‐8,  leptin,  placental  growth  factor,  vascular  endothe-­‐  lial  growth  factor  (VEGF)-­‐A,  VEGF-­‐C,  and  VEGF-­‐D.    Isolation  of  Bone  Marrow  Stem  Cells  for  Recellularization   of  SI  Specimens  The  cells  were  prepared  from  20  ml  of  BM  obtained  from  a  do-­‐  nor.    The    bone    marrow    was    separated    on    lymphoprep    and  

3    

 

 washed   three   times  with  Dulbecco’s  modified   Eagle’s  medium  (DMEM).  We  isolated  CD133+ stem  cells,  since  these  cells  have  been  reported  to  differentiate  into  several  cell  types  [8  –10]  The  cell  fraction  was  divided  into  two;  one  fraction  was  used  to  iso-­‐  late   CD133+ stem   cells   and   the   other   EPCAM+ cells   using  CD133-­‐   and  EPCAM-­‐coated  Mini  MACS  beads   (Miltenyi   Biotec,  Bergisch   Gladbach,   Germany,   http://www.miltenyibiotec.com),  respectively,   as   described   by   us   earlier   [11].   The   number   of  CD133+ and  EPCAM+ cells  obtained  was  counted,  and  viability  was  tested  using  trypan  blue.  Both  cell  types  were  cultured  in  0.2%  gelatin-­‐coated  culture  wells  at  37°C  in  a  humidified  atmo-­‐  sphere   of   95%   air   and   5%   CO2.   EPCAM+ cells   were   grown   in  complete  epithelial   cell  medium.  The  basal  medium  used  was  a  mixture  of  DMEM  and  Ham’s  F-­‐12  medium  in  1:1  proportion.  For  preparation  of  complete  medium,  5%  heat-­‐inactivated  FBS,  1%  L-­‐  glutamine,   and   1%   penicillin-­‐streptomycin;   amphotericin   (Gibco,  Grand   Island,   NY,   http://www.invitrogen.com)   was   added   to   the  basal   media   mixture.   The   complete   medium   was   supplemented  with  hepatocyte  culture  medium  Single  Quote  kit  (Lonza,  Walkers-­‐  ville,  MD,  http://www.lonza.com)  containing  ascorbic  acid,  bovine  serum  albumin-­‐fatty  acid  free,  hydrocortisone,  transferrin,   insulin,  recombinant  human  epidermal  growth  factor,  and  gentamicin  sul-­‐  fate.  The  CD133+ cells  were  divided  into  two  fractions;  one  fraction  was  grown  in  complete  molecular,  cellular,  and  developmental  bi-­‐  ology  (MCDB)  medium:  basal  medium  MCDB  131  + 10%  heat-­‐inac-­‐  tivated  human  AB  serum,  1%  L-­‐glutamine,  and  1%  penicillin-­‐strep-­‐  tomycin  + supplemented  with  endothelial  growth  medium-­‐2  Single  Quote  kit  (Lonza;  catalog  no.  CC-­‐4176)  containing  ascorbic  acid,  hy-­‐  drocortisone,  transferrin,  insulin,  recombinant  human  vascular  en-­‐  dothelial  growth  factor,  human  fibroblast  growth  factor,  human  ep-­‐  ithelial   growth   factor,   heparin,   and   gentamicin   sulfate   to  differentiate   them   into   endothelial   cells.   The   other   fraction   was  grown   in   a   commercially   available   smooth   muscle   cell   medium  (Gibco,  Grand  Island,  NY,  http://www.invitrogen.com;  medium  231  + growth   factor   supplements;   catalog   no.   S-­‐007-­‐25).  When   cells  reached  90%  confluence,   the  supernatant  was   removed,  and   the  cells  were  washed  with  PBS  and  then  passaged  with  trypsin-­‐EDTA.  To  induce  smooth  muscle  differentiation,  the  culture  medium  was  changed  to  complete  medium  containing  smooth  muscle  cell  differ-­‐  entiation  supplement  (Gibco;  catalog  no.  S-­‐008-­‐5).  The  medium  in  both   cell   fractions   was   replaced   every   2–3   days.   Confluent   cells  were  passaged  using  trypsin-­‐EDTA  (Invitrogen).  

Epithelial  cells  obtained  from  BM  samples  were  stained  with  single-­‐color  immunofluorescence  histology  for  cytokeratin  7  and  18,  CD133+ endothelial  cells  for  CD31  and  von  Willebrand  fac-­‐  tor,  and  smooth  muscle  cells  for  a-­‐actin  and  vimentin  (all  from  Santa  Cruz  Biotechnology  Inc.,  Santa  Cruz,  CA,  http://www.scbt.  com).  All  of  the  cells  were  counterstained  with  4',6-­‐diamidino-­‐2-­‐  phenylindole   (DAPI)   to   confirm   epithelial,   endothelial,   and  smooth  muscle   cell   (SMC)   phenotype,   respectively,   before   at-­‐  tachment  to  the  matrix  in  the  bioreactor.  

 Reseeding  of  Cells  in  the  Bioreactor  An  in-­‐house  bioreactor  was  manufactured  that  facilitated  a  sep-­‐  arate   external   and   luminal   medium   circulation   (supplemental  online  Fig.  1).  The  decellularized  piece  was  placed  into  the  bio-­‐  reactor  (5%  CO2   and  95%  air  at  37°C  and  90%  humidity).  At  our  center,  we  have  previously  isolated  cells  from  human  SI  and  ob-­‐  tained  on   average   5  ± 1.8  X 106    cells   per   cm2    of   tissue   [12].  Based  on  these  observations,  each  seeding  cycle  consisted  of  a  single  injection  of  12  X 106  CD133+ cultivated  allogeneic  endo-­‐  

thelial  cells  (6-­‐cm  length;  2  X 106  cells  per  cm2)  into  the  lumen  of  the   decellularized   SI,   followed   by   24   hours   of   endothelial   cell  medium  perfusion  using  a  constant  flow  of  8  ml/minute.  Prior  to  medium  perfusion,  the  matrix  was  rotated  90°  every  hour  until  all  of  the  surfaces  had  been  seeded  with  cells.  After  24  hours  of  endothelial  cell  medium  perfusion,  EPCAM+ and  differentiated  smooth  muscle  cells   (6  X 106    cells  each)  were  added,  and  the  procedure  was  followed  as  above.  A  total  of  three  seeding  cycles  was  performed  with  a  24-­‐hour   interval  between  each  seeding.  The  total  period  of  bioreactor  culture  was  2  weeks.  The  recellu-­‐  larized  SI  segments  were  characterized  by  staining  with  H&E  and  Masson’s  trichrome.  The  sections  were  stained  for  mucins  (sup-­‐  plemental  online  Materials  and  Methods)  and  with  antibodies  to  various  markers  such  as  cytokeratin  (CK)  8,  CD31,  and  a-­‐actin.    

Enumeration  of  Repopulation  of  TESI  We  quantified   the   recellularization   rate  of   the   SI   segments  using  microscopy.  For  the  microscopy  analysis,  we  used  a  commercially  available  high  content  screening  platform,  Olympus  Scan-­‐R  (details  are  given  in  the  supplemental  online  Materials  and  Methods).    

Statistics  The  data  are  expressed  as  means  ± SEM.  Statistical  significance  was  determined  by  one-­‐way  analysis  of  variance  with  Dunnett’s  post  hoc  test  for  cell  enumeration  experiment,  whereas  a  paired  t  test  was  used  for  extracellular  matrix   (ECM)  quantification.  A  difference  (p  value)  of  <.05  was  considered  significant.    RESULTS  

 

Decellularized  Small  Intestine  Our  initial  studies  demonstrated  that  sodium  deoxycholate  was  un-­‐  able  to  completely  decellularize  the  tissues  and  caused  greater  dis-­‐  ruption   of   the   basement  membrane   and   connective   tissue   ECM  (supplemental   online   Fig.   2,   upper  panel),  whereas   although  SDS  treatment   removed   all   cells,   it   produced   a   frail,   pale   tissue  with  leakage  following  two  cycles  of  the  decellularization  process.  More-­‐  over,  only  a  faint  staining  for  collagen,  fibronectin,  and  laminin  was  observed  (supplemental  online  Fig.  2,  lower  panel).  

Using  the  DMSO  + Triton  X-­‐100  protocol,  the  median  time  needed  to  decellularize  the  SI  segments  was  72  hours.  By  the  end  of  the  decellularization  procedure,  the  DSI  segments  maintained  their  gross  appearance  and  size;  however,  they  were  white  and  translucent  except  for  the  mesenteric  fat  surrounding  the  tissue  as  compared  with  native  tissue  (Fig.  1A,  1B).  Further  decellular-­‐  ization  cycles  resulted  in  a  frail,  translucent  tissue  with  leakage.  

Examination   of   the   normal   and   decellularized   matrices  showed  that  major  areas  of  the  DSI  examined  showed  a  lack  of  DAPI,  which   confirmed   the   absence   of   cells   as   compared  with  native  tissue  (Fig.  1C,  1D).  Although  in  some  areas  a  few  residual  nuclei  were  observed  within  the  examined  sections,  DNA  quan-­‐  tification  showed  that  on  average  the  amount  of  DNA  present  in  the  DSI  samples  (n  = 3)  was  7.9  ± 6  ng/mg  as  compared  with  236  ± 4  ng/mg  in  normal  SI.  

Immunostaining  for  four  ECM  proteins,  collagen  type  I,  col-­‐  lagen   type   IV,   fibronectin,   and   laminin-­‐(31,   indicated   that  both  structural   and   basement   membrane   components   of   the   ECM  were  relatively  retained  (Fig.  1E–1H).  We  found  collagen  type  I  (Fig.   1E)   and   fibronectin   (Fig.   1F)   in   decellularized   spaces,  whereas   the   basement   membrane   of   the   vascular   structures  stained  positive  for  laminin  (Fig.  1G).  However,  collagen  type  IV  

4    

   

 

 

Figure  1.      Gross  morphology  and  extracellular  protein  composition  of  the  decellularized  small  intestine  segment.  (A,  B):  Macroscopic  pictures  of  a  normal  and  decellularized  small  intestine.  The  DSI  was  translucent  and  pale  after  treatment;  however,  the  mesenteric  fat  was  still  yellow.  (C,  D):  4',6-­‐Diamidino-­‐2-­‐phenylindole  (DAPI)  staining  of  normal  SI  showing  presence  of  abundant  nuclei,  which  was  absent  in  the  DSI.  (E–G):  Immunoflu-­‐  orescence  staining  for  extracellular  matrix  proteins  revealed  that  the  DSI  expressed  the  major  ECM  protein  collagen  type  I  (E)  or  fibronectin  (F)  in  decellularized  spaces,  whereas  the  basement  membrane  of  the  vascular  structures  stained  positive  for  laminin  (G).  (H):  Only  staining  with  DAPI  is  shown  in  the  negative  control.  Magnification,  X40.  (I):  Quantification  of  the  ECM  components  showed  that  the  amount  of  collagen  was  significantly  elevated  (p  < .05),  but  there  was  no  difference  in  the  amounts  of  elastin  and  GAGs  in  the  DSI  as  compared  with  the  native  tissue.  Abbreviations:  DSI,  decellularized  small  intestine;  ECM,  extracellular  matrix;  GAG,  glycosaminoglycan;  NHI,  normal  human  intestine;  SI,  small  intestine.  

 was  not  detected  in  DSI.  A  large  amount  of  the  ECM  proteins  was  preserved  in  the  decellularized  ECM  during  the  decellularization  process.  The  decellularized  ECM  was  rich  in  collagen  (2116  ± 0.5  ng/mg)  and  soluble  elastin  (6,446  ± 2.8  ng/mg)  ECM  wet  weight.  A  small  amount  of  sulfated  GAG  (58.8  ± 0.01  ng/mg)  ECM  wet  weight  was  also  found.  The  quantitative  assay  showed  that  ex-­‐  tracellular  matrix  collagen  (significantly  p  < .05)  and  elastin  were  enhanced,  whereas  the  amount  of  GAG  was  decreased  after  de-­‐  cellularization  (Fig.  1I).  

Assessment   of   the   mechanical   properties   of   the   DSI   matrix  showed  a  progressive   increase   in   tensile   strength  with   increasing  decellularization  cycles  (Fig.  2A).  We  found  that  after  two  cycles  of  DMSO  + Triton  X-­‐100,  the  decellularization  process  did  not  greatly  influence   the   force   that   the  DSI   could  withstand  before  breaking  compared  with  the  native  SI  (Fig.  2A).  No  clear  differences  in  tensile  

extension  at  the  maximum  load  of  the  DSI  and  native  SI  samples  were  seen.  However,  sample  stiffness   increased  slightly,  although  not  significantly,  with  further  treatment  cycles  (Fig.  2A).    Growth  Factors  Produced  by  DSI  Using   the   technology   of   Luminex,   we   found   several   residual  growth  factors  present  in  the  DSI  (Fig.  2B).  Interestingly,  most  of  the  growth  factors  tested  were  still  present,  albeit  at  lower  con-­‐  centrations  in  the  DSI.  In  general,  a  three-­‐  to  fourfold  decrease  in  the  concentrations  of  the  growth  factors  was  found  in  the  DSI  as  compared  with  normal  SI.    Histochemical   Staining  of  Decellularized  Small  Intestine  H&E  staining  of  DSI  showed  absence  of  nuclei,  and  the  SI  tissue  retained   its  histoarchitecture  with   intact   villi   but  no  nuclei.   In  

5    

 

 

Figure  2.      Mechanical  and  histological  characterization  of  the  decellularized  small  intestine  segment.  (A):  Mechanical  characterization  of  the  acellular  matrix  for  tensile  strength  shows  stress-­‐strain  curves  for  fresh  (black  solid  lines)  and  decellularized  SI  (black  dashed  lines).  We  found  no  significant  difference  between  the  two;  however,  increased  cycles  of  decellularization  resulted  in  increased  tensile  strength  (gray  dotted  lines),  although  the  difference  was  not  significant.  (B):  The  decellularized  small  intestine  tissue  was  analyzed  for  presence  of  growth  factors  using  the  Luminex  technology.  We  found  the  presence  of  several  important  angiogenic  growth  factors  such  as  angiopoietin,  FGF-­‐2,  and  VEGF  still  present  in  the  decellularized  small  intestine  (DSI;  red).  All  of  the  growth  factors  tested  were  present,  although  the  concentrations  were  approximately  twofold  lower  as  compared  with  normal  SI  tissue  (blue).  (C):  Histological  analysis  of  the  DSI  showed  no  presence  of  nuclei;  however,   the  tissue  retained   its  histoarchitecture  with   intact  villi   (arrowhead)  but  no  nuclei.   In  addition,  several  blood  vessels  were  also  detected   (arrows).  Scale  bar  = 75   f.Lm.  Abbreviations:  BMP,  bone  morphogenetic  protein;  EGF,  epidermal  growth   factor;  FGF,   fibroblast  growth   factor;   G-­‐CSF,   granulocyte   colony-­‐stimulating   factor;   HB,   heparin-­‐binding;   HGF,   hepatocyte   growth   factor;   IL,   interleukin;   PLGF,  placental  growth  factor;  VEGF,  vascular  endothelial  growth  factor.  

 addition,  several  blood  vessels  were  also  detected  (Fig.  2C).  Fur-­‐  thermore,  Masson’s  trichrome  staining  showed  the  presence  of  blue   collagen   fibers   but   no   black   nuclei,   whereas   staining   for  mucins   showed  no  expression  of   these  proteins   (supplemental  online  Fig.  3A–3C).    Characterization   of  Bone  Marrow-­‐Derived   Stem  Cells  

 

EPCAM+ Cells  Following   isolation,   the   magnetically   isolated   EPCAM+ cells  were   counted   and   viability   tested   by   trypan   blue   exclusion  method.  On  average,  approximately  2–3  X 106    EPCAM+ cells  were  isolated  from  7–  8  X 106  BM  mixed  cell  population,  and  the  viability  was  96%.  The  EPCAM+ cells  grew  in  several  clusters  and  formed  a  monolayer  within  10  days.  They  showed  typical  epith-­‐  eloid  morphology.  The  EPCAM+ cells  could  be  maintained  with  stable  morphology  for  five  or  six  passages.  Immunofluorescence  staining   with   anti-­‐keratin   antibodies   CK7   and   CK18   demon-­‐  strated  a  positive  reaction  in  the  form  of  cytoplasmic  strands  in  the  cultured  cells  (Fig.  3A).  

 CD133+ Endothelial  Cells  The  number  of  CD133+ cells  obtained  was  approximately  1  X 106  from  10  X 106  BM  mixed  cells,  and  the  viability  was  98%.  The  CD133+ cells  grown  in  endothelial  cell  medium  grew  as  numer-­‐  ous  clusters  and  formed  a  monolayer  within  3  days.  They  showed  typical   cobblestone   morphology   and   could   be   maintained   for  five  or  six  passages.  The  cells  stained  positive  for  the  endothelial  cell  markers  CD31  and  von  Willebrand  factor  using  immunofluo-­‐  rescence  (Fig.  3B).  

CD133+ Smooth  Muscle  Cells  Differentiated  CD133+ SMC  grew  as  elongated,  spindle-­‐shaped  cells   and   could   be   maintained   for   8  –10   passages   with   stable  morphology.   Immunofluorescence   staining   showed   that   these  cells  were  positive  for  a-­‐smooth  muscle  cell  actin  and  vimentin  (Fig.  3C).    Analysis  of  TESI  Segments  In  general,  the  gross  morphology  of  the  recellularized  TESI  was  very   similar   to   the  native   tissue   (supplemental  online   Fig.   4A)  

6    

   

 

Figure  3.      Morphology  and  phenotype  of  cells  differentiated  from  bone  marrow.  (A):  EPCAM+ stem  cells  were  isolated  from  bone  marrow  of  donors.  These  cells  were  expanded  in  vitro,  formed  a  monolayer,  and  showed  typical  epitheloid  morphology.  Immunofluorescence  staining  with   anti-­‐keratin   antibodies   CK7   and  CK18  demonstrated   positive   reaction   in   the   form  of   cytoplasmic   strands   in   the   cultured   cells.   (B):  Similarly,  CD133+ cells  were  isolated  from  bone  marrow  of  donors,  and  one  fraction  of  these  cells  was  grown  in  endothelial  cell  medium.  The  in  vitro  expanded  cells  showed  typical  cobblestone  morphology  and  could  be  maintained  for  five  or  six  passages.  The  cells  stained  positive  for  the  endothelial  cell  markers  CD31  and  VWF  using  immunofluorescence.  (C):  The  second  fraction  of  CD133+ cells  were  grown  and  differen-­‐  tiated  in  commercially  available  smooth  muscle  cell  medium.  Differentiated  CD133+ smooth  muscle  cells  grew  as  elongated,  spindle-­‐shaped  cells  and  could  be  maintained  for  8  –10  passages  with  stable  morphology.  Immunofluorescence  staining  showed  that  these  cells  were  positive  for  a-­‐smooth  muscle  cell  actin  and  vimentin.  Magnification,  X40.  Abbreviations:  CK,  cytokeratin;  VWF,  von  Willebrand  factor.  

 with  intact  villi  (supplemental  online  Fig.  4B)  resembling  the  orig-­‐  inal   SI   segment.   H&E   staining   revealed  well-­‐formed   recellular-­‐  ized  TESI  (Fig.  4A).  The  TESI  demonstrated  a  muscularis  (arrow-­‐  heads),   abundant   villi,   and   crypts   (arrows).  Masson’s   trichrome  staining  showed  the  presence  collagen  fibers  (blue),  several  nuclei  (black),  and  abundant  connective  tissue  and  muscle  fibers  (red)  and  several  blood  vessels  expressing  endothelial  cells  (Fig.  4B,  arrows).  In  addition,  staining  for  mucins  showed  the  clear  presence  of  secre-­‐  tory  epithelial  cells,  goblet  cells  that  stained  pink/magenta,  indicat-­‐  ing  the  presence  of  neutral  mucins  (Fig.  4C).  

Immunofluorescence  staining  with  antibodies   for   the   three  cell  types  used  for  recellularization  showed  positive  staining  for  CK18,  an  epithelial  cell  marker  (Fig.  5A,  green);  CD31,  an  endo-­‐  thelial  cell  marker  in  the  blood  vessels  (Fig.  5B,  green);  and  a-­‐ac-­‐  tin,  a  smooth  muscle  cell  marker  (Fig.  5C,  green).  DAPI  staining  of  various  sections  provided  further  proof  of  the  presence  of  cells  in  the  recellularized  SI  sections  (Fig.  5D).  

   

Engraftment  Table  1  presents   the  number  of   cells   quantified  at   the   various  time   points.   We   found   that   the   number   of   detected   cells   in-­‐  creased  with  increasing  time  points.  Supplemental  online  Figure  

4C  represents  a  gallery  of   images  used   for  enumeration  of   the  cells  at  2  weeks  of  recellularization.    

   DISCUSSION    

The  present  work  demonstrates  the  first  step  toward  development  of   recellularized  human   small   intestine  matrix   for  possible   future  clinical  transplantation.  We  show  that  decellularized  human  small  intestine   segments,   nature’s   scaffold,   serve   as   biologically   active  blueprints  and  modulators  of  TESI.  We  present  a  technique  for  effi-­‐  cient  in  vitro  recellularization  of  the  graft,  which  maintains  cell  via-­‐  bility   and   allows   cell   attachment.   Furthermore,   we   demonstrate  that  the  decellularized  TESI  samples  during  and  after  recellulariza-­‐  tion  showed  a  progressive  increase  in  the  amount  of  cell  infiltrate  in  the  matrix,  including  a  morphologically  intact  regenerated  mucosa,  intact  villi,  and  crypts  lined  by  columnar  epithelium  with  goblet  cells  and  blood   vessels   lined  with   endothelium  and   abundant   smooth  muscle  cells  lining  the  muscularis.  

The  rationale  for  use  of  the  detergents  in  the  present  decellu-­‐  larization  protocols  was  based  on  the  decellularization  agent’s  ef-­‐  fectiveness  and  destabilization  of  ECM  [13–16].  Detergents  that  are  strongly  ionic  or  hydrophobic  or  zwitterionic  are  commonly  used  

7    

 

                 

Figure   4.       Histological   analysis   of   the  decellularized   small   intestine   segment.  Histological   analysis   of   the   recellular-­‐  ized  small  intestine  with  bone  marrow  stem  cells  was  performed  by  hematox-­‐  ylin   and   eosin   (H&E),   Masson’s   tri-­‐  chrome,   and   staining   for   mucins.   (A):  H&E   staining   revealed   well-­‐formed   re-­‐  cellularized   tissue-­‐engineered   small   in-­‐  testine   (TESI).   The   TESI   demonstrated  an   innervated   muscularis   (arrow-­‐  heads),   abundant   villi,   and   crypts   (ar-­‐  rows).  (B):  Masson’s  trichrome  staining  showed   the   presence   collagen   fibers  (blue),   several   nuclei   (magenta),   abun-­‐  dant  connective  tissue  and  muscle  fibers  (red,   left),   and   several   recellularized  blood  vessels  expressing  endothelial  cells  with  nuclei  (magenta,  arrows,  right).  (C):  Left:   In   addition,   staining   for   mucins  showed  the  clear  presence  of  secretory  epithelial  cells:  goblet  cells  that  stained  pink/magenta,   indicating   the   presence  of  mucins.  Right:  A  magnified  picture  of  a   villus   containing   epithelial   cells   ex-­‐  pressing   abundant   mucin   (pink/ma-­‐  genta)  and  dark  blue  nuclei.  In  all  cases  the   tissue   pieces   were   inverted   inside  out   for   a   clear   examination   of   the   lu-­‐  men.     Magnification,     X60       for     (A–C)  (left)  and  X100   for  (C)  (right).  

 and  may  be  effective  against  one  or  two  of  the  protein-­‐protein  in-­‐  teractions  or/protein-­‐lipid  interactions  but  not  all.  Therefore,  a  mix-­‐  ture  of  detergents  will  be  required  for  efficient  removal  of  cellular  material  from  the  grafts.  The  use  of  sodium  deoxycholate  and  SDS  in  our   initial  experiments  did  not  give  satisfactory  results;  we  there-­‐  fore  decided  to  try  other  chemicals  and  chose  DMSO,  which  is  a  very  common  organic   solvent  used   for  dissolving   lipophilic   substances  [17].  At  the  same  time,  DMSO  is  known  to  be  cytotoxic  at  high  con-­‐  centration  [18,  19].  We  therefore  combined  the  actions  of  DMSO  together  with  Triton  X-­‐100  to  achieve  a  gentle  and  efficient  decellu-­‐  larization  protocol  for  SI.  Here,  we  report  for  the  first  time  the  use  of  DMSO   for   decellularization  of   SI   segments.  We   found   that   treat-­‐  ment  with  DMSO  + Triton  X-­‐100  did  not  significantly  compromise  the  tensile  strength  of  the  SI  walls  and  successfully  preserved  the  three-­‐dimensional   architecture,   vasculature,   and   native   matrix  composition  of  the  SI  tissue.  

We   characterized   the   DSI   segments   with   regard   to   the  retention   of   the  major   structural   extracellular   matrices   and  found  that  collagen  type  I,  fibronectin,  and  laminin  were  still  present  after  decellularization,  indicating  that  the  process  did  not  have  an  effect  on  the  major  ECM  scaffold  composition.  It  has  long  been  known  that  growth  factors  are  present  in  ECM  scaf-­‐  folds  [20  –22].  In  fact,  growth  factors  and  glycosaminoglycans  have  been   correlated   with   in   vivo   constructive   remodeling   of   biologic  scaffolds  [23–25].  We  therefore  analyzed  the  presence  of  residual  growth  factors  in  the  DSI  and  found  that  several  angiogenic  growth  factors,  such  as  FGF-­‐2,  VEGF,  angiopoietin,  were  still  present  after  

the  decellularization  process.  It  is  likely  that  the  retention  of  these  important  growth  factors   induced  better  cell  attachment  and  mi-­‐  gration   and   favored   the   growth   of   endothelial,   epithelial,   and  smooth  muscle  cells  during  the  recellularization  process.  

Elegant  work  has  been  performed  by  Mertsching  et  al.  [26]  and  Schanz  et  al.   [27]  using  an  acellular  porcine  small-­‐bowel  segment  for  tissue  engineering.  They  succeeded  in  generating  a  decellularized  porcine  jejunal  scaffold  with  preserved  func-­‐  tional   tubular   structures  of   the   capillary  network   in   the  ma-­‐  trix,  which  is  a  prerequisite  for  a  functional  bioartificial  tissue.  Other   intestinal   tissue   engineering   studies   have   isolated   or-­‐  ganoid   units   from   neonatal   rat   intestine   [28,   29].   However,  these   approaches   are   limited   with   regard   to   human   clinical  applications.  Unless  patient’s  autologous  cells  are  harvested,  long-­‐term   postoperative   immunosuppression   will   be   neces-­‐  sary  to  prevent  rejections.  Alternatives  such  as   isolating  suf-­‐  ficient   numbers   of   viable   stem   cells   before   surgery   may   be  difficult   or   even   impossible   to   achieve   in   patients   with   dis-­‐  eased  or  damaged  intestine.  Therefore,  the  goal  of  this  study  was  to  develop  a  decellularized  SI  scaffold  conducive  to  cellu-­‐  lar   repopulation   by   a   cell   source   that  may   one   day  make   SI  transplantation  clinically  feasible.  As  a  possible  solution  to  the  problem,   here   we   investigated   the   use   of   BM-­‐derived   stem  cells   for   tissue  engineering   small   intestine.   In  previous   stud-­‐  ies,   it  has  been  demonstrated  that  BM-­‐derived  cells  contrib-­‐  ute   to   the   regeneration  of  damaged   intestinal  epithelium  as  epithelial  cells  [30,  31],  although  this  is  controversial  [32].  We  

8    

   

 

Figure   5.       Immunofluorescence   staining   of   the   various   cell   types   found   in   the   recellularized   small   intestine   segment.   Recellularized  tissue-­‐engineered  small  intestine  was  further  examined  by  immunofluorescence  for  the  presence  of  nuclei  and  other  cell  markers.  (A–C):   Immunofluorescence   staining   with   antibodies   for   the   three   cell   types   used   for   recellularization   showed   positive   staining   for  CK18,  an  epithelial  cell  marker  (arrows)  (A),  CD31,  an  endothelial  cell  marker  in  the  blood  vessels  (arrows)  (B),  and  a-­‐actin  (arrows),  a  smooth  muscle  marker,  which  stained  the  walls  of  the  villi  (C).  (D–F):  4',6-­‐Diamidino-­‐2-­‐phenylindole  staining  of  various  sections  further  confirmed  the  presence  of  cells  in  the  recellularized  SI  sections.  Magnification,  X60.  

 Table  1.  Enumeration  of  cell  numbers  in  tissue-­‐engineered  small  intestine  after  recellularization  with  bone  marrow  cells  

Total  number  of  

 shown  by  Mertsching  et  al.  [26]  and  Totonelli  et  al.  [33].  We  have  not  addressed  important  issues  of  functionality.  Functional  peristal-­‐  sis  of  the  luminal  contents  in  TESI  will  require  a  neuromuscular  layer.  

    Sample   cells  per  cm3     p  value   Although  we  successfully  demonstrated  the  presence  of  actin  in  the  Normal  SI                                                                                                              1.40  ± 0.32  2  days  postrecellularization                                              0.46  ± 0.11                                            <.01  5  days  postrecellularization                                              0.48  ± 0.06                                            <.01  7  days  postrecellularization                                              0.53  ± 0.07                                            <.05  14  days  postrecellularization                                          0.93  ± 0.05                                            >.05  

All  p  values  were  calculated  in  comparison  with  normal  control.  Abbreviation:  SI,  small  intestine.  

 nevertheless   decided   to   test   the   hypothesis.   We   isolated  three   different   populations,   epithelial,   endothelial,   and  smooth  muscle  cells,  with  relative  ease  from  the  BM.  The  cells  could  be  expanded   in   vitro  without  difficulties   and   found   to  express   the   necessary   associated   cell   surface   markers.   We  also   succeeded   in   developing   an   in-­‐house   bioreactor   that  helped  in  the  efficient  recellularization  of  the  SI.  Histological  analysis  of  the  recellularized  scaffolds  revealed  that  the  scaf-­‐  folds  were  capable  of  supporting  cell  attachment  and  migra-­‐  tion.  We  detected  a  morphologically   intact   regenerated  mu-­‐  cosa,   intact  villi,  and  crypts   lined  with  goblet  cells  and  blood  vessels   lined  with   endothelium,   indicating   that   all   three   cell  types  had  participated  in  the  recellularization  process.  

Although  promising,  our  study  has  several  limitations.  The  cur-­‐  rent  model  relied  on  intraluminal  decellularization,  a  strategy  that  may  not  be  optimal  for  construction  of  a  successful  graft.  Decellu-­‐  larization  via  the  vascular  arcades  would  be  far  more  efficient,  as  

muscularis  mucosa,  it  will  be  necessary  to  seed  the  DSI  with  other  important  cells  such  as  nerve  cells,  mesenchymal  cells,  and  entero-­‐  cytes.  In  the  future,  it  might  be  possible  to  harvest  small  quantities  of  organoid  units  from  the  remnant  small  bowels  of  patients  that  could  then  be  expanded  in  vitro.  A  complete  TESI  may  then  be  pos-­‐  sible   using   a  mixture   of   bone  marrow-­‐   and   small   bowel-­‐derived  cells.  Such  studies  are  ongoing  in  our  laboratory.        CONCLUSION    This  is  the  first  report  demonstrating  that  human  BM-­‐derived  cells  can  be  efficiently  used  for  TESI.  Our  data  established  foundations  for  in  vitro  SI  tissue  engineering  with  DSI  scaffolds  and  formed  the  basis  for  methods  that  may  be  necessary  for  eventual  in  vivo  transplan-­‐  tation  for  patients  with  small-­‐bowel  syndromes.  Extensive  recellu-­‐  larization  experiments  with  a  range  of  cell  populations  will  be  nec-­‐  essary  to  assess  the  full  potential  of  these  scaffolds  and  understand  the  usefulness  of  different  cell  lineages  for  recellularization  strate-­‐  gies.  In  addition,  functional  characterization  of  the  TESI  will  be  very  important.  Findings  from  this  study  serve  as  initial  steps  toward  the  development   of   future   engineered   SI   constructs   and  will   set   the  stage  for  preclinical  studies  in  nonhuman  primates.  

 

 

  9      

ACKNOWLEDGMENTS  

We  sincerely  thank  Tomas  Olsson  for  help  with  the  high  content  screening  system  microscopy  during  enumeration  of  the  cells  in  tissue-­‐engineered   small   intestine   segments.   This   study   was   fi-­‐  nanced  by   the  Swedish  Government  LUA  ALF  grants   (to  S.S.-­‐H.  and  M.O.)  and  by  the  Lars  Erik  Gelins  Foundation  and  the  Inga-­‐  Britt  and  Arne  Lundbergs  Foundation  (to  S.S.-­‐H.).  

   AUTHOR  CONTRIBUTIONS  

 

P.B.P.,  P.B.C.,  and  H.B.:  collection  and  assembly  of  data  analysis  and  interpretation,  manuscript  writing;  V.K.K.:  collection  and  as-­‐  

sembly  of  data  analysis  and   interpretation;  S.A.:  collection  and  assembly  of  data,  data  analysis  and   interpretation;  D.B.:  provi-­‐  sion  of  study  material;  G.H.:  provision  of  patient  material,  man-­‐  uscript  writing;  M.O.:  manuscript  writing,  financial  support,  final  approval   of   manuscript;   S.S.-­‐H.:   conception   and   design,   data  analysis   and   interpretation,   manuscript   writing,   financial   sup-­‐  port.        DISCLOSURE  OF  POTENTIAL   CONFLICTS  OF  INTEREST    The  authors  indicate  no  potential  conflicts  of  interest.  

   REFERENCES  1       Keller  J,  Panter  H,  Layer  P.  Management  of  

the   short   bowel   syndrome   after   extensive  small  bowel  resection.  Best  Pract  Res  Clin  Gas-­‐  troenterol  2004;18:977–992.  2       Messing  B,  Crenn  P,  Beau  P  et  al.  Long-­‐term  

survival  and  parenteral  nutrition  dependence  in  adult   patients  with   the   short   bowel   syndrome.  Gastroenterology  1999;117:1043–1050.  3       Warner   BW,   Chaet   MS.   Nontransplant  

surgical  options   for  management  of   the  short  bowel  syndrome.  J  Pediatr  Gastroenterol  Nutr  1993;17:1–12.  4        Gupta   A,   Dixit   A,   Sales   KM   et   al.   Tissue  

engineering  of  small  intestine:  Current  status.  Biomacromolecules  2006;7:2701–2709.  5        Rizvi  AZ,  Swain  JR,  Davies  PS  et  al.  Bone  

marrow-­‐derived    cells    fuse    with    normal    and  transformed    intestinal    stem    cells.    Proc    Natl  Acad  Sci  USA  2006;103:6321–  6325.  6        Macchiarini   P,   Jungebluth  P,  Go   T   et   al.  

Clinical  transplantation  of  a  tissue-­‐engineered  airway.  Lancet  2008;372:2023–2030.  7         ISO-­‐37.    Rubber,    vulcanized    or    thermo-­‐  

plastic:   Determination   of   tensile   stress-­‐strain  properties.  2011.  8        Meregalli   M,   Farini   A,   Belicchi   M   et   al.  

CD133(+)   cells   isolated   from  various  sources  and   their   role   in   future   clinical   perspectives.  Expert  Opin  Biol  Ther  2010;10:1521–1528.  9         Davies   KE,   Grounds  MD.  Modified   patient  

stem  cells  as  prelude  to  autologous  treatment  of  muscular   dystrophy.   Cell   Stem   Cell   2007;1:595–  596.  10        Pompilio  G,  Steinhoff  G,  Liebold  A  et  al.  

Direct  minimally  invasive  intramyocardial   injec-­‐  tion  of  bone  marrow-­‐derived  AC133+ stem  cells  in  patients  with  refractory  ischemia:  Preliminary  results.  Thorac  Cardiovasc  Surg  2008;56:71–76.  11         Olausson   M,   Patil    PB,    Kuna    VK   et    al.  

Transplantation  of  an  allogeneic  vein  bioengi-­‐  neered  with  autologous  stem  cells:  A  proof-­‐of-­‐  concept  study.  Lancet  2012;380:230  –237.  12       Chougule  P,  Herlenius  G,  Hernandez  NM  

et  al.  Isolation  and  characterization  of  human  

primary  enterocytes  from  small  intestine  using  a  novel  method.  Scand  J  Gastroenterol  2012;  47:1334  –1343.  13      Gilbert  TW,  Sellaro  TL,  Badylak  SF.  Decel-­‐  

lularization  of  tissues  and  organs.  Biomaterials  2006;27:3675–3683.  14        el-­‐Kassaby  A,  AbouShwareb  T,  Atala  A.  

Randomized  comparative  study  between  buc-­‐  cal  mucosal  and  acellular  bladder  matrix  grafts  in  complex  anterior  urethral  strictures.  J  Urol  2008;179:1432–1436.  15        Cartmell   JS,  Dunn  MG.  Effect  of   chemical  

treatments  on  tendon  cellularity  and  mechanical  properties.  J  Biomed  Mater  Res  2000;49:134  –140.  16        Woods   T,   Gratzer   PF.   Effectiveness   of  

three   extraction   techniques    in    the    develop-­‐  ment  of   a  decellularized  bone-­‐anterior   cruci-­‐  ate  ligament-­‐bone  graft.  Biomaterials  2005;26:  7339  –7349.  17        Sumida  K,   Igarashi  Y,  Toritsuka  N  et  al.  

Effects  of  DMSO  on  gene  expression  in  human  and  rat  hepatocytes.  Hum  Exp  Toxicol  2011;30:  1701–1709.  18       Da  Violante  G,  Zerrouk  N,  Richard  I  et  al.  

Evaluation    of     the     cytotoxicity    effect    of    di-­‐  methyl  sulfoxide  (DMSO)  on  Caco2/TC7  colon  tumor  cell   cultures.  Biol  Pharm  Bull  2002;25:  1600  –1603.  19       Lawson  A,  Ahmad  H,  Sambanis  A.  Cyto-­‐  

toxicity   effects   of   cryoprotectants   as   single-­‐  component  and  cocktail  vitrification  solutions.  Cryobiology  2011;62:115–122.  20        Voytik-­‐Harbin  SL,  Brightman  AO,  Kraine  

MR  et  al.   Identification  of  extractable  growth  factors  from  small  intestinal  submucosa.  J  Cell  Biochem  1997;67:478  –  491.  21      Hodde  JP,  Record  RD,  Liang  HA  et  al.  Vascular  

endothelial  growth  factor  in  porcine-­‐derived  extra-­‐  cellular  matrix.  Endothelium  2001;8:11–24.  22        McDevitt  CA,  Wildey  GM,  Cutrone  RM.  

Transforming   growth   factor-­‐beta1   in   a   steril-­‐  ized  tissue  derived  from  the  pig  small  intestine  submucosa.   J   Biomed  Mater   Res   A   2003;67:  637–  640.  

23        Rosso  F,  Giordano  A,  Barbarisi  M  et  al.  From  cell-­‐ECM  interactions  to  tissue  engineer-­‐  ing.  J  Cell  Physiol  2004;199:174  –180.  24       Marra  KG,  Defail  AJ,  Clavijo-­‐Alvarez  JA  et  

al.  FGF-­‐2  enhances  vascularization  for  adipose  tissue  engineering.  Plast  Reconstr  Surg  2008;  121:1153–1164.  25      Ota  T,  Gilbert  TW,  Schwartzman  D  et  al.  A  

fusion  protein  of  hepatocyte  growth  factor  en-­‐  hances  reconstruction  of  myocardium  in  a  car-­‐  diac  patch  derived  from  porcine  urinary  blad-­‐  der  matrix.  J  Thorac  Cardiovasc  Surg  2008;136:  1309  –1317.  26        Mertsching  H,  Schanz   J,   Steger  V  et  al.  

Generation  and  transplantation  of  an  autolo-­‐  gous    vascularized    bioartificial    human    tissue.  Transplantation  2009;88:203–210.  27       Schanz  J,  Pusch  J,  Hansmann  J  et  al.  Vas-­‐  

cularised    human    tissue    models:    A    new    ap-­‐  proach   for   the   refinement   of   biomedical   re-­‐  search.  J  Biotechnol  2010;148:56  –  63.  28        Evans  GS,  Flint  N,  Somers  AS  et  al.  The  

development  of  a  method  for  the  preparation  of  rat  intestinal  epithelial  cell  primary  cultures.  J  Cell  Sci  1992;101:219  –231.  29      Grikscheit  TC,  Siddique  A,  Ochoa  ER  et  al.  

Tissue-­‐engineered  small  intestine  improves  re-­‐  covery   after   massive   small   bowel   resection.  Ann  Surg  2004;240:748  –754.  30       Okamoto  R,  Watanabe  M.  Prospects  for  

regeneration  of  gastrointestinal  epithelia  using  bone-­‐marrow   cells.   Trends  Mol  Med   2003;9:  286  –290.  31       Okamoto  R,  Yajima  T,  Yamazaki  M  et  al.  

Damaged  epithelia  regenerated  by  bone  mar-­‐  row-­‐derived  cells   in   the  human  gastrointesti-­‐  nal  tract.  Nat  Med  2002;8:1011–1017.  32        Meignin  V,  Soulier  J,  Brau  F  et  al.  Little  

evidence   of   donor-­‐derived   epithelial   cells   in  early  digestive  acute  graft-­‐versus-­‐host  disease.  Blood  2004;103:360  –362.  33        Totonelli  G,  Maghsoudlou  P,  Garriboli  

M  et  al.  A  rat  decellularized  small  bowel  scaf-­‐  fold   that   preserves   villus-­‐crypt   architecture  for   intestinal   regeneration.  Biomaterials  2012;  33:3401–3410.