neutron activation of 74 ge and 76 ge

46
Neutron Activation of 74 Ge and 76 Ge Georg Meierhofer Eurograd, Hallstatt 27.09. – 29.09.2009 people involved: P. Grabmayr J. Jochum P. Kudejova L. Canella J. Jolie IKP, Universität zu Köln

Upload: independent

Post on 17-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Neutron Activation of 74Ge and 76Ge

Georg Meierhofer

Eurograd, Hallstatt 27.09. – 29.09.2009

people involved:

P. GrabmayrJ. Jochum

P. KudejovaL. Canella

J. Jolie IKP, Universität zu Köln

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Outline

� Motivation: Neutrinoless double beta decay experiments� Neutrinoless double beta decay� GERDA experiment

� Background in GERDA� Neutron capture on 74Ge and 76Ge� How to reject background

� Measurements with cold neutrons� Prompt γ-ray spectrum in 75Ge and 77Ge� Cross section of the 74Ge(n,γ) and 76Ge(n,γ) reactions

� Summary

Talk by

Kai Freund

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Background in GERDA

Radiopurity of:Germanium detector (cosmogenic 68Ge)Germanium detector (cosmogenic 60Co)Germanium detector (bulk)Germanium detector (surface)Cabling Copper holder < 10-2 cts/(keV kg y) (Phase I) Electronics < 10-3 cts/(keV kg y) (Phase II) Cryogenic liquidInfrastructure

Sources:Natural activity of rockMuons and neutrons

Total backgroundlevel in ROI

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Background in GERDA

Radiopurity of:Germanium detector (cosmogenic 68Ge)Germanium detector (cosmogenic 60Co)Germanium detector (bulk)Germanium detector (surface)Cabling Copper holder Electronics Cryogenic liquidInfrastructure

Sources:Natural activity of rockMuons and neutrons

Muons produce neutrons close to the experiment, the neutrons can propagate undetected through the muon veto to the Ge-diodes and be captured by a 74Ge or76Ge nucleus.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron capture by 76Ge

Muonflux @ LNGS: 1 muon/(m2 h)

MC-simulations: ~1 n-capture/(kg y)

Limit from previous experiments:max. 6 0νββ-counts/y in phase I

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron capture by 76Ge6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

t1/2 = 52.9 s

t1/2 = 11.3 h

MC-simulations: ~1 n-capture/(kg y)

Limit from previous experiments:max. 6 0νββ-counts/y in phase I

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Neutron capture by 76Ge

after neutron capture

unstable, decay to 77Se

prompt γ-cascade

Emax = 5911 keV

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Neutron capture by 76Ge

after neutron capture

unstable, decay to 77Se

prompt γ-cascade

Emax = 5911 keV

delayed β-spectrum

Emax = 2862 keVcontinouosmimics 0νββ signal

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Neutron capture by 76Ge

after neutron capture

unstable, decay to 77Se

prompt γ-cascade

Emax = 5911 keV

delayed β-spectrum

Emax = 2862 keVcontinouosmimics 0νββ signal

delayed γ-rays

Emax = 2353 keV

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Neutron Capture by 76Ge

after neutron capture

unstable, decay to 77Se

γ-rays can be rejected by pulse shape analysis and/or segmentationof detectors (multi-site events).

β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together withγ - rays -> mul t i -s i te event -> rejection.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Neutron Capture by 76Ge

after neutron capture

unstable, decay to 77Se

γ-rays can be rejected by pulse shape analysis and/or segmentationof detectors (multi-site events).

β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together withγ - rays -> mul t i -s i te event -> rejection.

This does not work for decaysd i rec t ly to the ground state.50% of all nuclei undergo thisdecay! Only „coincidences“ with prompttransitions can be used.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture by 74Ge

after neutron captureγ-rays can be rejected by pulse shape analysis and/or segmentationof detectors (multi-site events).

β-particles deposit their energiy in single-site events like 0νββ-decay. If β-particles occure together withγ - rays -> mul t i -s i te event -> rejection.

This does not work for decaysd i rec t ly to the ground state.50% of all nuclei undergo thisdecay! Only „coincidences“ with prompttransitions can be used.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Prompt transitions in 77Ge

6072 keV

2064 keV

1880 keV

1248 keV

1021 keV

619 keV

159 keV0 keV

5913

159

4008

4193

5049

4822

5445

Nuclear Data Sheets 81

not in decayscheme

E [keV]

196431808851

389545145420

IAEANuclear Data Services

E [keV]

86212511903

Only 15% of energy known

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

PGAA @ FRM II

Beam

2.9 x 109 nth/(cm2 s1)

<λn> = 6.7 Å

<En> = 1.83 meV

Detectors

2 HPGe

with Compton-suppresion

Li/Cd/Pb shielding

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron source FRM II

Power: 20 MWModerator for neutrons: liquid D2 (25 K)

neutron guides to experiments

Pictures: „Neutronenquelle Heinz-Meier-Leibniz“

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Prompt γ-spectrum in 77Ge

1000

10000

100000

1e+06

0 2000 4000 6000 8000 10000

"A0126.txt" u 1

Channel

Cou

nts

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Prompt γ-spectrum in 77Ge

1000

10000

100000

1e+06

0 2000 4000 6000 8000 10000

"A0126.txt" u 1

Channel

Cou

nts

Comparing spectra with different isotopical compositionallows to determine unambiguously the transitions in 77Ge.

E [keV] (preliminary)

159 861 1756 5650224 888 1903 5911279 1087 2207 392 1113 2785 402 1145 2785421 1242 3703459 1249 3893469 1315 4008492 1353 4192504 1457 4296617 1558 4407755 1571 4535825 1640 4824831 1675 5049

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Coincidence HPGe-detector

Au Foil

76Ge TargetNeutron beam

promptgammas

Lead shielding

Lead shielding

CS CS

Lead shielding

Lead shielding

HPGe-detectorCS

promptgammas

m ~ 300 mg of enriched 76GeO2Irradiation time 8 d

∆t

FWHM=20ns

∆t between detectors

Time difference is used to distinguishbetween random and true coincidences.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Decay scheme in 77Ge (preliminary)

new transitions

transitions known fromβ-decay of 77Ga

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Decay scheme in 77Ge (preliminary)

new transitions

transitions known fromβ-decay of 77Ga

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross-section HPGe-detector

Au foil

76Ge target

neutron beam

decaygammas

leadlead

Compton suppression Compton

suppression

76Ge target was activated together with a gold foil and after irradiation the γ - rays af ter β -decay were measured by HPGe detectors. The total cross-section was calculated relative to 198Au using the emission probabilities. Possible because of 1 / v - l a w f o r c o l d n e u t r o n s .

decay spectrum of 77Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross-section76Ge target was activated together with a gold foil and after irradiation the γ - rays af ter β -decay were measured by HPGe detectors. The total cross-section was calculated relative to 198Au using the emission probabilities. Possible because of 1 / v - l a w f o r c o l d n e u t r o n s .

decay spectrum of 77Ge

( ) ( ) ( )( )( ) ( ) ( )( )

( )( )( )( ) Au

GeγGe,Au

AuγAu,GeGe

AuGeγGe,Au

AuγAu,GeGe

nIA

nIA=σ

rΦrnIA

rΦrnIA=σ

,0,0

)()(

σ

λσλ

∗∗∗∗

∗∗∗∗∗∗

6072 1/2+

159 1/2-

0 7/2+

β-

E (keV) Jπ 77Ge

77As

IT

0 3/2-

E (keV) Jπ

215 3/2-

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross-section results

115 ± 16 mbσ(77mGe)

68.8 ± 3.4 mbσ(77Ge)

46.9 ± 4.7 mbσ(77Ge) direct

76Ge

Evaluating the data one could seethat the emission probabilities givenin literature are not consistent. Sometransitions lead to lower cross-sections than those used here. Check

needed.

Meierhofer et al. EPJA, 40, 61-64 (2009)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross-section results

115 ± 16 mbσ(77mGe)

68.8 ± 3.4 mbσ(77Ge)

46.9 ± 4.7 mbσ(77Ge) direct

76Ge 74Ge (preliminary)

131.4 ± 6.8 mbσ(75mGe)

500 ± 53 mbσ(75Ge)

369 ± 52 mbσ(75Ge) direct

Evaluating the data one could seethat the emission probabilities givenin literature are not consistent. Sometransitions lead to lower cross-sections than those used here. Check needed.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Summary

� The knowledge of the prompt spectrum after neutron capture by 76Ge is important for background analysis in GERDA.

� The observation of a prompt cascade in GERDA would allow to veto the delayed electrons offline from the β-decay of 77mGe

Measurement of the prompt spectrum using PGAA

� To predict the background contribution by neutron capture in GERDA quantitatively the capture cross sections have to be known well.

Measurement using the PGAA facility

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Pulse shape analysis

PhD thesis D. Budjas, Heidelberg 2009

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Analysis

Detector I

Detector II

Time information

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross Section

( ) ( ) ( )( )( ) ( ) ( )( )

( )( )( )( ) Au

GeγGe,Au

AuγAu,GeGe

AuGeγGe,Au

AuγAu,GeGe

nIA

nIA=σ

rΦrnIA

rΦrnIA=σ

,0,0

)()(

σ

λσλ

∗∗∗∗

∗∗∗∗∗∗

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

What can we lern from 0νββ?

If 0νββ is observed:

� Mass hierachy (degenerate, inverted or normal)

F.Feruglio, A. Strumia, F. Vissani, NPB 637

m3 m3

m1

m2

m2

m1∆m²12

∆m²23

∆m²12

∆m²23

mν²

in eV

∆m²12 = (7.92±0.07)·10-5 eV² (solar ν)∆m²23 = (2.6±0.4)·10-3 eV² (atm. ν)

(inverse)

Hd-M ‚best value‘PLB586(2004)198

(normal)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Sensitivity

Background

Phase I: 10-2 cts/(keV kg y)

Phase II: 10-3 cts/(keV kg y)

phase II

phase IKKDC claim(inverse)

Hd-M ‚best value‘PLB586(2004)198

Phase II

Phase III

Phase I

(normal)

F. Feruglio, A. Strumia,F.Vissani,NPB 637

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Coincidence

Detector I

Detector II

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross Section

� Target: enriched target (87% 76Ge)Ø = 12 mmd = ~2 mmm = 470/500 g

� Flux determination:Au foil

� Irradiation:~1200/1800 s (77Geg)~60/120/180 s (77Gem)

� Measurement:~15 h (77Geg)~120/180 s (77Gem)

HPGe-Detector

Au Foil

76Ge TargetNeutron beam

Decaygammas

Lead shielding

Lead shielding

Compton suppression Compton

suppression

•Sketch not to scale•Shielding against neutrons not shown

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

0νββ-Decay

0νββ event,

energy is deposited in a

very small volume due

to the short range of

electrons

segmented detector

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture in GERDA~1 n-capture/(kg y) (MC simulation)⇒ Possible background in the region of interest (2039 keV)

X

X

Rejectionmethod

X(Emax=1676.5 keV)

β-Decay of 77Gem

X(Emax=682.9 keV)

β-Decay of 77As

Peak (2037.76 keV)Compton scattering(Emax=2353.4 keV)

β-Decay of 77Ge

Peak?Compton scattering

Prompt Gamma Rays

γ-ray Background in ROI

Source

γ

segmented detector

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture in GERDA~1 n-capture/(kg y) (MC simulation)⇒ Possible background in the region of interest (2039 keV)

X

X

multisite events

multisite events

Rejectionmethod

X(Emax=1676.5 keV)

β-Decay of 77Gem

X(Emax=682.9 keV)

β-Decay of 77As

Peak (2037.76 keV)Compton scattering(Emax=2353.4 keV)

β-Decay of 77Ge

Peak?Compton scattering

Prompt Gamma Rays

γ-ray Background in ROI

Source

γ

segmented detector

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture in GERDA~1 n-capture/(kg y) (MC simulation)⇒ Possible background in the region of interest (2039 keV)

detection of prompt gamma

rays

Continuous(Emax=2861.7 keV)

β-Decay of 77Gem

X

X

Rejection method

X(Emax=682.9 keV)

β-Decay of 77As

Continuous(Emax=2486.5 keV)

β-Decay of 77Ge

XPrompt Gamma Rays

β- Background in ROI

Source

segmented detector

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture in GERDA~1 n-capture/(kg y) (MC simulation)⇒ Possible background in the region of interest (2039 keV)

X

X

multisite events

multisite events

Rejectionmethod

detection of prompt gamma

rays

Continuous(Emax=2861.7 keV)

X(Emax=1676.5 keV)

β-Decay of 77Gem

X

X

Rejection method

X(Emax=682.9 keV)

X(Emax=682.9 keV)

β-Decay of 77As

Continuous(Emax=2486.5 keV)

Peak (2037.76 keV)Compton scattering(Emax=2353.4 keV)

β-Decay of 77Ge

XPeak?Compton scattering

Prompt Gamma Rays

β- Background in ROI

γ-ray Background in ROI

Source

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Neutron Capture in GERDA~1 n-capture/(kg y) (MC simulation)⇒ Possible background in the region of interest (2039 keV)

X

X

multisite events

multisite events

Rejectionmethod

detection of prompt gamma

rays

Continuous(Emax=2861.7 keV)

X(Emax=1676.5 keV)

β-Decay of 77Gem

X

X

Rejection method

X(Emax=682.9 keV)

X(Emax=682.9 keV)

β-Decay of 77As

Continuous(Emax=2486.5 keV)

Peak (2037.76 keV)Compton scattering(Emax=2353.4 keV)

β-Decay of 77Ge

XPeak?Compton scattering

Prompt Gamma Rays

β- Background in ROI

γ-ray Background in ROI

Source

Only 1

5% o

f the

ene

rgy

weight

ed in

tens

ity kn

own

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross-section of 76(n,γ) in the literature

cross section

[mbarn]

Metosian (1957): 87 ± 15

Lyon (1957): 137 ± 15

σ(77Gem)

Seren (1947): 85 ±17

Pomerance (1952): 350 ± 70

Brooksbank (1955): 300 ± 60

Metosian (1957): 76 ± 15

Lyon (1957): 43 ± 2

σ(77Geg)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross Section

Our measurement

98 ± 12

112 ± 14

σ(77Gem)

using IT

using β-decay

64.9 ± 3.5σ(77Geg)

46.2 ± 5.5σ(77Geg direct)

cross section

[mbarn]

Preliminary results:NUDAT

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross Section

Preliminary results:NUDAT.

Our measurement

98 ± 12

112 ± 14

σ(77Gem)

using IT

using β-decay

64.9 ± 3.5σ(77Geg)

46.2 ± 5.5σ(77Geg direct)

cross section

[mbarn]

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Cross SectionPreliminary Results:

LiteratureOur measurement

Metosian (1957): 87 ± 15Lyon (1957): 137 ± 15

98 ± 12

112 ± 14

σ(77Gem)

using IT

using β-decay

Seren (1947): 85 ±17Pomerance (1952): 350 ± 70Brooksbank (1955): 300 ± 60Metosian (1957): 76 ± 15Lyon (1957): 43 ± 2

64.3 ± 4.4σ(77Geg)

Lyon (1957): 6 ± 546.0 ± 5.0σ(77Geg direct)

cross section

[mbarn]

cross section

[mbarn]

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Prompt Gamma Ray Spectrum

Single spectram ~ 300 mgIrradiation time > 50 000 s

� Coincidence spectram ~ 300 mgIrradiation time 10 dCoincident events 100 000

HPGe-Detector

Au Foil

76Ge TargetNeutron beam

promptgammas

Lead shielding

Lead shielding

CS CS

Lead shielding

Lead shielding

HPGe-DetectorCS

promptgammas

•Sketch not to scale•Shielding against neutrons not shown

1420 1430 1440 1450 1460 1470 1480 14900,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6 Abgereicherte Probe Leere Probe Angereicherte Probe Differenz (Ang. - Leer - 0,01)

73G

e 14

71,7

5

Rat

e [E

reig

n./k

eV/s

]

Energie [keV]

DepletedEnriched BackgroundDiff.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen Hallstatt 2009

Prompt Gamma Ray Spectrum

Coincidence spectram ~ 300 mgIrradiation time 10 dCoincident events 100 000

HPGe-Detector

Au Foil

76Ge TargetNeutron beam

promptgammas

Lead shielding

Lead shielding

CS CS

Lead shielding

Lead shielding

HPGe-DetectorCS

promptgammas

•Sketch not to scale•Shielding against neutrons not shown