motovibrator selection guide - mb projekt

59
MOTOVIBRATOR SELECTION GUIDE

Upload: khangminh22

Post on 29-Apr-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

MOTOVIBRATOR

SELECTION GUIDE

2

VIBRATION SYSTEMS AND METHODS

The systems that use the vibration technique can be divided into the following categories:

• freely oscillating systems,which will be described in this guide

• oscillating systems bound to resonance,which require specific in-depth research.Please contact the Technical Sales Service of Italvibras

if these systems are required.

The free oscillation system includes two different methods:

• rotational:the vibrating force is directed in all directions through 360 ° in a rotational way,either clockwise or anticlockwise.

• unidirectional:the vibrating force is directed in one single direction in fade-free sinoidal reciprocating mode.

The “rotational ” method is obtained by using a single electric vibrator.

The “unidirectional ” method is obtained by using two electric vibrators with the same electro--mechanical characteristics,each turning in the

opposite direction to the other.

Vibrating force directed in all directions through 360°, in rotational mode

Rotational method Unidirectional method

Vibrating force in a single direction, in sinusoidal reciprocating mode

GUIDE TO CHOOSE THE ELECTRIC VIBRATOR

3

EXAMPLES OF HOW ELECTRIC VIBRATORS ARE USED IN DIFFERENT PROCESSES

The following examples illustrate a few typical uses:

1 -for conveyors,separators,sieves,sizing machines,unloaders,positioners,sorters,feeders and fluidized beds (“unidirectional method ”(1)).

2 -for silos and hoppers (2A),filters (2B)and vibrating beds (2C)(“rotational method ”).

3 -for compacting tables and tests (accelerated ageing,stress,ecc.)(“Unidirectional (3B)or rotational method (3A)”).

A B

2

3A B C

123412341234

123412341234

1234123412341234

1234123412341234

123123123123123123123123123123123

123123123123123123123123123123123

123123123123123123123123123123123

123123123123123123123123123123123

123123123123123123123123123123123

1212

123123

123123123

123123123

123123123

123123123

123123

123123

1

4

CHOICE OF THE VIBRATION METHOD AND ROTATION SPEED (AND, THUS, THE VIBRATION FREQUENCY) OF THEELECTRIC VIBRATOR APPLIED TO THE ELASTICALLY INSULATED MACHINE, DEPENDING ON THE PROCESS

The choice of the vibration method and vibration frequency able to achieve the utmost efficiency for each type of process,depends on the specific weight

and granulometry (or piece size)of the material used in the process itself (see table. Regardless of the selected vibration method,the electric vibrators

can be mounted on the machine,elastically insulated with its axis in a horizontal or vertical position or,if necessary,in an intermediate position between

the two directrices. The angle of incidence “ i ” (measured in degrees)of the line of force in relation to the horizontal plane should be taken into due

consideration when electric vibrators are applied with the “unidirectional” method. Important the line of force for any angle of incidence must pass

through center of gravity “G” of the elastically insulated machine (see figure next pages).

Thrust

Trajectory

Particle of material

i

e

App

UNIDIRECTIONAL METHOD

ROTATIONAL METHOD

VTEOc

= Theoretic speed corrected to take the slant

of the machine into account.

Vteo

= Theoretic speed of the product

FLOW OF MATERIAL

12345678901234567890123456789012123456789012345678901231234567890123456789012345678901212345678901234567890123

“ G „

123123123

Theoretic speed of the

product Vteo

in m/h or cm/s

Corrected theoretic speed of the product

VTEOc in m/h or cm/s

i = angle of incidence of the line of forcein relation to the horizontal plane

e = eccentricity (mm)

App = peak-to-peak amplitude (mm) = 2 x e

VTEOc

=

Vteo

+ Vi

F�

� = angle of inclination of machine in relation to horizontal plane

i = angle of incidence = 90 - �

Vi = speed of incidence (cm/s or m/h)

F�

= corrective factor to calculate corrected theoretic speed VTEOc

e = eccentricity (mm)

Calculated according to �

(see table on right)}

FLOW OF MATERIAL

1234567890123456789012345678901212345678123456789012345678901234567890121234567812345678901234567890123456789012123456781234567890123456789012345678901212345678123456789012345678901234567890121234567812345678901234567890123456789012123456781234567890123456789012345678901212345678123456789012345678901234567890121234567812345678901234567890123456789012123456781234567890123456789012345678901212345678

Thrust

� i F� Vi

10° 80° 0,81 80

15° 75° 0,71 75

20° 70° 0,60 70

25° 65° 0,48 65

35° 55° 0,25 55

Establi- Values calculated

shed value according to �

5

“ i ” Processes / Uses

from 6° to 12° for special separators (e.g.: the milling industry);

from 25° to 30° for conveying, unloading, feeding, positioning and sorting;

from 31° to 45° for sifting, grading and separating;

from 45° to 80° for fluidized beds.

Determination of the angle of incidence i of the line of force depends on the type of process and must be within the indicated range.

CHOICE OF THE VIBRATION METHOD AND ROTATION SPEED (AND, THUS, THE VIBRATION FREQUENCY) OF THEELECTRIC VIBRATOR APPLIED TO THE BRUTE FORCE MACHINE, DEPENDING ON THE PROCESS

HOW TO CHOOSE THE RIGHT TYPE OF ELECTRIC VIBRATOR FOR USE IN TYPICAL PROCESSES(e.g.: conveying material)

Use the Table on next page to select the vibration method and the required number of vibrations per minute depending on the process and the

granulometry of the material.

Now move to the diagram corresponding to the obtained number of vibrations per minute: 3000, 3600, ecc.

Choose the corresponding curve on the diagram, for a previously calculated angle of incidence « i » of the line of force.

Using that diagram and that curve: eccentricity value «e» or peak-to-peak amplitude «App», measured in mm and required to obtain the previously

mentioned theoretic product advancement speed value «Vteo

» or «VTEOc

» can be identified for a required theoretic product advancement speed

«Vteo

» (m/h or cm/s) or «VTEOc

» (m/h or cm/s) for tilted machines.

«Vteo

» is determined by the flow of material, taking a reduction coefficient into account (see conveyor channel example below). Given eccentricity

value «e», it is possible to determine the value of the total static moment «Mt» (Kg.mm) of the electric vibrator or vibrators. This value is calculated

by means of the following formula:

Mt = e x Pv

where: Pv = Pc + Po

with

Pv = total weight of the vibrating equipment (Kg);

Pc = weight of the elastically isolated trougth (Kg);

Po = weight of the installed electric vibrator (or vibrators) (Kg); hypothetic weight to be subsequently compared to that of the determined

vibrator.

Important: calculated moment Mt is the total moment of the electric vibrators. For example, if the vibrating machine has two electric vibrators, the

calculated moment must be divided by two to obtain the static moment of each vibrator.

Once the static moment of the vibrator has been calculated, consult the catalogue to determine the type of electric vibrator required.

6

Having chosen the type of electric vibrator, centrifugal force value «Fc» (in Kg) of the vibrator itself can now be found in the catalogue.

Fc

Use formula a = (measured n times g)

Pv

to establish acceleration value «a» along the line of force. This value must be within the range indicated in the Table (on page 8) for the required

type of process.

Attention: if the chosen vibration method is “unidirectional”, value «Fc» to use in the above mentioned formula will obviously be twice the value

indicated in the catalogue as two electric vibrators are installed.

CHECKING THE VALIDITY OF THE CHOSEN ELECTRIC VIBRATOR

CONVEYOR CHANNEL

Q = Vp x L x S V

p = V

teo x K

r

FLOW RATE and SPEED

OF PRODUCT

Vteo

= theoretic speed of the product (m/h) (if the channel is slanting, indicate VTEOc

)

Kr = reduction factor depending on the type of product conveyed

A few values pertaining to this factor are indicated below

Leaf vegetables .................................... 0.70 Wooden shavings or PVC granules ........ 0.75 to 0.85

Gravel................................................... 0.95 Sand ........................................................ 0.70

Small pieces of coal ............................. 0.80 Sugar ....................................................... 0.85

Large pieces of coal ............................. 0.85 Salt .......................................................... 0.95

S

L

Q = flow rate (m3/h)

Vp = speed of product (m/h)

L = channel width (m)

S = layer of material (m)

7

If free oscillation systems are used, it is advisable to fit anti-vibration mounts (such as helical steel springs, rubber supports or pneumatic

actuators) to allow the vibrating machine to freely move in all directions.

Do not use connecting rods, leaf springs or flat springs, etc., for free oscillation systems.

The non-vibrating element must be of adequate capacity, able to bear a weight equal to total weight «Pt» (i.e. the sum of the weights of the

elastically insulated machine, or the electric vibrator or vibrators «Pv» and the material bearing on the machine itself «Ps») multiplied by the factor

of safety , the value of which is between 2 and 2.5. Capacity «Q» of the elastic element will therefore be:

MECHANICAL INSULATION OF THE VIBRATING EQUIPMENT FROM THE MOUNTING STRUCTURESIZING THE ELASTIC SYSTEMS

Pv + Ps Pv = total weight of the vibrating complex (Kg)

Qkg.

= x 2,5 where Ps = static weight of material on machine (Kg)

N N = number of anti-vibration mounts

0

1

1 0

1 0 0

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

3000

3600

r = 5

r = 3

Fle

xio

n (

mm

) o

f th

e e

lasti

c s

yste

m

Electric Vibrator (rpm)

8

Now determine the camber «f.»of the elastic system by means of diagram A,

depending on the vibration frequency (rpm of the electric vibrator) and considering

a resonance ratio «r.» (between the vibration frequency of the vibrating complex

and the frequency of the elastic system itself) between 3 and 5. The elastic constant

of the anti-vibrating mount thus equals:

DIAGRAM B gives the percentage of

elastic insulation ( I% ) between the

vibrating structure and bearing

structure, depending on ratio « r ».

The anti-vibration mounts must be

positioned so that the flexure is the

same on all the elements, in order to

balance the machine.

Important: the bearing structure to

which the anti-vibration mounts of the

vibrating complex are fastened must

be rigidly anchored to the ground or to

some other type of bearing structure

and always without any further anti-

vibration elements.

DIAGRAM B

The capacity «Qkg.

» and the elastic

constant «Kkg

.mm

» are the two entities

required to choose the anti-vibration

mounts on the market.

It is absolutely essential to distribute the

load of the vibrating complex evenly over

the elastic system.

Pv

KKg .mm = where f = camber of the elastic system (mm)

f x N

9

Use thise Table to select the

vibration method and the

required number of vibrations

per minute depending on the

process and the granulometry

of the material.

10

2 poles - 3000 rpm - 50Hz

11

2 poles - 3600 rpm - 60Hz

12

4 poles - 1500 rpm - 50Hz

13

4 poles - 1800 rpm - 60Hz

14

6 poles - 1000 rpm - 50Hz

15

6 poles - 1200 rpm - 60Hz

16

8 poles - 750 rpm - 50Hz

17

8 poles - 900 rpm - 60Hz

18

10 poles - 600 rpm - 50Hz

19

2 poles - 3000 rpm - 50Hz

100

200

300

400

500

600

700

800

900

1 000

1 100

1 200

1 300

i=25° i=30° i=35° i=40° i=45° i=50° i=55°

PE

SO

CA

RP

EN

TE

RIA

(k

g)

3/10 0

3/80 0

3/1310

Angolo di incidenza della linea di forza

0

5 0

10 0

15 0

20 0

i=25° i=30° i=35° i=40° i=45° i=50° i=55°

Calcoli eseguiti con v elocità teorica d i traspo rt o pa ri a 700m/ h

3/30 03/20 0

3/151 0

3/50 0

TIP

O D

I M

OTOVIB

RATORE

3/181 0

3/400 0

3 /3 200

3/900 0

3 /50 00

3/231 0

3/201 0

3 /65 10

3/1100

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCE

MO

TO

VIB

RA

TO

R T

YP

E

Refered to Vteo

= 700m/h

20

2 poles - 3600 rpm - 60Hz

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1 000

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

3/100

3/800

3/131 0

3/15 10

3/18 10

3/4 000

3/32 00

3 /9 000

3/500 0

3/23 10

3/20 10

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0

10

20

30

40

50

60

70

80

90

1 00

1 10

1 20

1 30

1 40

1 50

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

3 /3 003/200

Calco li e segu it i con v e lo cità te orica di t ra sporto pari a 700m/h

3 /5 00

TIP

O D

I M

OTOVIB

RATORE

3/651 0

3/110 0

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENECEM

OT

OV

IBR

AT

OR

TY

PE

Refered to Vteo

= 700m/h

21

4 poles - 1500 rpm - 50Hz

TIP

O D

I M

OTOVIB

RATORE

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

2 200

2 400

2 600

2 800

3 000

3 200

3 400

3 600

3 800

4 000

15 /3 5

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0

1

10

1 00

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

15 /2 00

1 5/80

Calcoli e segu iti con v elo cit à te orica d i trasp orto pa ri a 700m /h

15/50 10

15 /9 50 0

15/70 00

15 /1 15 00

15 /9 00 0

15/30 00

15/24 10

15/20 00

15/17 10

15/14 10

15/11 00

15/70 0

15/55 0

15/40 0

15/43 00

15/38 10

15 /1 45 00

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCEM

OT

OV

IBR

AT

OR

TY

PE

Refered to Vteo

= 700m/h

22

4 poles - 1800 rpm - 60Hz

TIP

O D

I M

OTOVIB

RATORE

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

2 200

2 400

2 600

2 800

3 000

3 200

3 400

3 600

1 5/35

15 /9 500

1 5/700 0

15 /1 150 0

1 5/900 0

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0,0

0,0

0,1

1,0

10,0

1 00,0

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

15 /20 0

15/80

Calcoli ese gu it i co n v e lo cità t eorica d i trasp orto pari a 700m/h

15/50 10

15/43 00

15/38 10

15/30 00

15/24 10

15/20 00

15/17 10

15/14 10

15/11 00

15/70 0

15/55 0

15/40 0

15/14 500

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCEM

OT

OV

IBR

AT

OR

TY

PE

Refered to Vteo

= 700m/h

23

6 poles - 1000 rpm - 50Hz

0

5 00

10 00

15 00

20 00

25 00

30 00

35 00

40 00

45 00

50 00

55 00

60 00

65 00

70 00

75 00

80 00

85 00

90 00

95 00

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60° i=65°

10 /5 50

10 /3 10

10 /2 00

10 /1 00

10 /4 0

10/810

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

40 0

45 0

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60° i=65°

Calcoli eseguiti con ve locit à teorica di trasporto pari a 700m/h

TIP

O D

I M

OTO

VIB

RA

TO

RE

10/111 0

10 /1 2000

10 /1 5000

10/175 00

10 /2 2000

1 0/1000 0

1 0/9000

1 0/8000

1 0/6600

1 0/6500

1 0/5200

1 0/4700

1 0/3810

1 0/3000

1 0/2610

1 0/2100

1 0/1610

1 0/1400

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCEM

OT

OV

IBR

AT

OR

TY

PE

Refered to Vteo

= 700m/h

24

6 poles - 1200 rpm - 60Hz

0

50

100

150

200

250

300

350

400

450

500

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

0

10 00

20 00

30 00

40 00

50 00

60 00

70 00

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

10 /3 10

10 /2 00

10 /1 00

10 /4 0

10 /8 10

10 /5 50

10/16 10

10/14 00

1 0/381 0

1 0/261 0

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza Ca lco li eseguiti con ve locità t eorica d i traspo rto pa ri a 700m/ h

TIP

O D

I M

OTOVIB

RATORE

10 /1 610

10 /1 400

10 /1 300 0

10 /1 200 0

10 /1 500 0

10/17 500

10/22 000

10 /1 000 0

10 /9 000

10 /8 000

10 /6 500

10 /6 600

10 /5 200

10 /4 700

1 0/111 0

1 0/300 0

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCE

MO

TO

VIB

RA

TO

R T

YP

E

Refered to Vteo

= 700m/h

25

8 poles - 750 rpm - 50Hz

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

5 500

6 000

6 500

7 000

7 500

8 000

8 500

9 000

9 500

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

0 75/40 0

075 /6 60

07 5/220 00

0 75/21 10

07 5/530 0

075 /3 110

0 75/42 00

0 75/38 00

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0

5 0

10 0

15 0

20 0

25 0

30 0

35 0

40 0

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

075 /1 50

075 /1 310

Calcoli e se guiti co n v elocità teo rica d i tra sporto pari a 700m /h

075 /2 50

TIP

O D

I M

OTOVIB

RATORE

075 /9 10

0 75/65 00

07 5/100 00

07 5/120 00

07 5/140 00

07 5/170 00

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCEM

OT

OV

IBR

AT

OR

TY

PE

Refered to Vteo

= 700m/h

26

8 poles - 900 rpm - 60Hz

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

1 0000

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

0 75/400

0 75/660

0 75/220 00

0 75/530 0

0 75/311 0

0 75/420 0

PE

SO

CA

RP

EN

TE

RIA

(k

g)

Angolo di incidenza della linea di forza

0

5 0

10 0

15 0

20 0

25 0

i=25° i=30° i=35° i=40° i=45° i=50° i=55° i=60°

0 75/150

0 75/211 0

0 75/131 0

0 75/910

Ca lco li e segu it i co n velo cità teo rica di traspo rto pari a 700m /h

07 5/2 50

TIP

O D

I M

OTO

VIB

RA

TO

RE

0 75/650 0

0 75/100 00

0 75/120 00

075 /14 000

0 75/170 00

TR

OU

GH

WE

IGH

T (

kg

)

ANGLE OF INCIDENCE

MO

TO

VIB

RA

TO

R T

YP

E

Refered to Vteo

= 700m/h

27

Ø (mm) MOTOVIBRATOR

up to 800 ...................... MVSI 3/100-S90

800÷1000 ..................... MVSI 3/200-S90

1000÷1200 ................... MVSI 3/300-S90

1200÷2000 ................... MVSI 3/500-S90

2000÷3000 ................... MVSI 3/800-S90

MVSI 15/700-S90

3000 and up ................. MVSI 3/1300 ÷ 3/1800 -S90

MVSI 15/1410 ÷ 15/1710 -S90

L

1/ 3

L

Ø

BA

INDICATIVE OUTLINE FOR INSTALLATION OF A VIBRATOR ON SILOS

“ U ” beam

Motovibrator

fixing

plate

28

EXEMPLE OF INSTALLATIONS ON HOPPERS

L

1/3 L

1 / 3 L

L

L

1/3 L

L

1/3 L

29

S = Thickness (mm)

Cen

trif

ug

al

Fo

rce (

kg

)

DIAGRAM FOR THE CHOICE OF THE MOTOVIBRATOR TO INSTALL ON HOPPER

30

L D

L

D

TUBULAR FEEDER CAPACITY m3/h

31

32

L eng th

(m m)

P late

thic kness

(mm)

W idth (mm )

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 00 0 1 2 0 0 1 40 0 1 8 0 0

1 2 0 0

4 95 1 05 1 3 2 1 4 5 1 5 5 1 6 8 1 8 0 1 9 8

5 1 0 1 25 1 5 6 1 7 0 1 8 3 2 0 2 2 1 2 2 3 1

6 1 9 7 2 1 2 2 2 7 2 4 3 26 5

1 6 0 0

4 1 3 5 1 54 1 6 7 1 8 3 1 9 6 2 4 1 2 2 8 25 0

5 1 6 5 1 86 2 0 2 2 1 9 2 3 6 2 8 9 2 7 2 29 7

6 2 3 2 2 5 4 2 7 4 3 2 5 2 1 4 34 2 3 8 5

2 0 0 0

4 1 5 4 1 69 1 9 1 2 0 8 2 2 6 2 4 1 2 6 0 28 2

5 1 8 6 2 0 4 2 2 9 2 5 1 2 7 0 2 8 9 3 1 0 33 6 3 7 6

6 2 6 8 2 9 2 3 1 4 3 2 5 3 6 1 39 0 4 38 4 9 2 5 4 8

2 5 0 0

4 2 19 2 4 0 2 6 6 2 8 9 3 1 0 3 4 4 3 5 2 38 0

5 2 67 2 9 2 3 2 4 3 5 0 3 7 5 4 0 2 4 2 8 4 5 9 5 1 4

6 3 8 2 4 1 2 4 4 3 4 7 2 5 0 3 53 9 6 0 2 6 72 7 4 1

3 0 0 0

4 2 54 2 7 5 3 0 7 3 3 5 3 5 9 3 8 4 5 0 9 4 4 1

5 3 11 3 3 9 3 7 4 4 0 7 4 3 6 4 6 7 4 9 8 53 4 5 9 8

6 4 4 4 4 8 1 5 1 6 5 5 1 5 8 7 62 7 7 0 5 7 84 8 6 5

3 5 0 0

4 3 0 1 3 2 6 3 6 0 3 8 6 4 1 4 4 4 3 4 9 0 50 4

5 3 7 1 4 0 2 4 4 3 4 7 6 5 0 6 5 4 1 5 7 4 61 2 7 8 2

6 5 2 2 5 6 2 5 5 0 6 4 0 6 8 0 72 2 8 0 4 8 9 1 9 7 9

4 0 0 0

4 4 0 6 4 3 6 4 6 8 5 0 1 5 1 8 56 7

5 4 9 6 5 1 0 5 7 5 6 1 2 6 5 1 68 5 7 5 5

6 5 9 0 6 3 5 6 8 2 7 2 6 7 7 2 82 2 9 1 6 1 0 1 5 1116

L B

LB

TROUGH FABRICATED MASS -

WITHOUT VIBRATOR & LINING

(kg)

33

� (T/M3) factor kg

PRODUCT FLOWABILITY FACTOR

P R O D U C T ����particle siz

(m m )

Fo u n d ry san d 1.4 40° < 0.5

A sh es 0.6 ÷ 0.9 30°÷ 40 ° 0÷ 0.5

B au xite 1.3 30°÷ 40 ° < 0.4

B reaksto n e 1.3÷ 1.5 30°÷ 40 ° varies

D o lo m ite 1.6 30°÷ 40 ° 0÷ 5

C em en t clin ker 1.4 35÷ 40 0÷ 6

Ore 1.6÷ 3.2 30°÷ 60 ° < 25

Fe ld sp ar 0.65 ÷ 1.1 40° < 0.4

Fu rn ace s lag 0 .8 30°÷ 45 ° 0÷ 0.8

W o o d sh avin g s 0.1 5÷ 0.25 30°÷ 45 ° 3÷ 60

Saw d us t 0 .3 35 0÷ 3

PV C p o wd e r 0.3÷ 0 .7 30°÷ 45 ° 0.4

PV C g ran u les 0.5 ÷ 0.6 30°÷ 45 ° 4

Gravel 1.6 30°÷ 40 ° 3÷ 7

C o al ( f in e) 0 .8 30°÷ 40 ° 0÷ 6

C o al 0.7 ÷ 0.8 30°-45° 1 5÷ 40

Pit-c o al 0 .8 40° 0÷ 10

C o ke (f in e) 0 .5 45° 0÷ 6

Fe rti liz er 1 < 1

Fe rti liz er g ra n ules 1 30°÷ 40 ° 0÷ 3

Lim esto n e 1 2÷ 1 4 30°÷ 45 ° 0÷ 40

34

CABLE SECTION CHOICEcurves depending of voltage and frequency

35

TYPICAL SETTING - UNBALANCE WEIGHT FOR ROUND SIEVES (CIRCULAR SCREEN)

36

0 1 2 20 21 22

MVSI-E

IM-E

VM-E

VMS-E

MTF-E

VB-E

MVB-E

MVB-E-FLC

MVSI-P

IM-P

VM-P

VMS-P

MTF-P

VB-P

MVB-P

MVB-P-FLC

MVSS-P

CDX

IMX

VMX

CDX frame

size110I I 2 G E Ex d I IB

Gas: T4 (135°C)

Tambient = 40°CSIRA 00 ATE X 1026 NO YES NO

YES

Protection

mode

EE x d I IB

IP66

Gas: T4 (135°C)

Dust: 120°C

Tambient = 40°C

NO YES

E C-type examination

certificate

LCIE 99 ATEX 6028 X

LCIE 03 ATEX 6005 X YES

I I 2 G, D NODEMKO 01 ATE X

0135585

NONOI I 2 D IP 66

Dust: 120°C

Tambient = 40°C

Dust: 135°C

Tambient = 55°C

Temperature

classType Category

Product's features

G - GAS D - DUST

Zones of use

I I 2 G, D EEx e I I

IP66YES YESNO NO

Gas: T3 (200°C) or

T4 (135°C)

Dust: 120°C

Tambient = 40°C

Gas: T3 (200°C)

Dust: 120°C

Tambient = 55°C

ATEX PRODUCTS

PRODUCTION QUALITY

ASSURANCE NOTIFICATION

Equipment or Protective Systems or

Components Intended for use in

Potentially explosive atmospheres.

Directive 94/9/EC

Notification number:

CESI 00 ATEX 061 Q

37

BEARING ZONE DETAILS

CASING

FLANGE (BEARING HOUSE)

OUTER BEARING RACE

BEARING COVER

SPACER

ROLLER

INNER BEARING RACE

ROTOR

SHAFT

STOP-RING

LUBRICATION GROOVE

GREASE ZERK (NIPPLE)

38

TYPICAL ASSEMBLY DRAWING FOR MOTOVIBRATOR WITH BALL BEARINGS

39

TYPICAL ASSEMBLY DRAWING FOR MOTOVIBRATOR WITH ROLLER BEARINGS

40

CRUSHER FEEDER (GRIZZLY)

(QUARRY AND MINES)

FEEDER (EXTRACTOR)

41

CIRCULAR SIEVES - SCREEN(CHEMICAL - FOODS)

42

DRYERS SCREENS (DEWATERING MACHINES)

(QUARRY AND MINES)

43

CONVEYORS

44

MACHINE WASHING(FOODS)

45

INCINATED SCREENS

(HOLLOW AND MINES)

46

INCLINATED SCREENS FORDUSTY BULKS

47

FORMWORKS FOR CONCRETE-BEAM

VIBRATING SIFTERS FOR PRESTRESSED

CONCRETE ELEMENTS

48

CONVEYORS FOR ENOLOGY

49

PURYFIER(MILL INDUSTRY)

SEPARATOR

(MILL INDUSTRY)

50

HORIZONTAL-SCREEN FORWASHING

(GRAVEL, SAND AND COKE)

51

CONCRETE-PUMPS

52

VIBRATING TABLE FOR CONCRETE-ELEMENT PRODUCTION

53

SPIRAL-ELEVATOR FOR COOLING

54

CONVEYORS FOR THE TREATEMENT OF

BEANS AND DRY FRUIT (ALMONDS, NUTS,ECC)

55

VIBRATING BIN-DISCHARGER,

EXTRACTORS(CHEMICAL, PHARMACEUTICAL AND FOOD)

56

CONVEYORS FOR FRESHVEGETABLE TREATMENT

57

FLUID-BED

TUBOLAR-CONVEYOR

58

TYPICAL APPLICATION ON HOPPERFOR BULK

(BATCHING PLANT)

59

BIG HORIZONTAL SCREEN