lesson 1: exponential notation

30
8β€’1 Lesson 1 Lesson 1: Exponential Notation Student Outcomes Students know what it means for a number to be raised to a power and how to represent the repeated multiplication symbolically. Students know the reason for some bases requiring parentheses. Lesson Notes This lesson is foundational for the topic of properties of integer exponents. However, if your students have already mastered the skills in this lesson, it is your option to move forward and begin with Lesson 2. Classwork Discussion (15 minutes) When we add 5 copies of 3; we devise an abbreviation – a new notation, for this purpose: 3+3+3+3+3= 5Γ—3 Now if we multiply the same number, 3, with itself 5 times, how should we abbreviate this? 3 Γ— 3 Γ— 3 Γ— 3 Γ— 3 = ? Allow students to make suggestions, see sidebar for scaffolds. 3Γ—3Γ—3Γ—3Γ—3= 3 5 Similarly, we also write 3 3 =3Γ—3Γ—3; 3 4 =3Γ—3Γ—3Γ—3; etc. We see that when we add 5 copies of 3, we write 5Γ— 3, but when we multiply 5 copies of 3, we write 3 5 . Thus, the β€œmultiplication by 5” in the context of addition corresponds exactly to the superscript 5 in the context of multiplication. Make students aware of the correspondence between addition and multiplication because what they know about repeated addition will help them learn exponents as repeated multiplication as we go forward. Scaffolding: Remind students of their previous experiences: The square of a number, e.g., 3Γ—3 is denoted by 3 2 . From the expanded form of a whole number, we also learned, e.g., 10 3 stands for 10 Γ— 10 Γ— 10. means Γ— Γ— Γ— Γ— Γ— and οΏ½ οΏ½ means Γ— Γ— Γ— . You have seen this kind of notation before; it is called exponential notation. In general, for any number and any positive integer , =(βˆ™β‹―). οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ The number is called raised to the power,where is the exponent of in and is the base of . MP.2 & MP.7 Lesson 1: Exponential Notation 10 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org A STORY OF RATIOS

Upload: khangminh22

Post on 11-Nov-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

8β€’1 Lesson 1

Lesson 1: Exponential Notation

Student Outcomes

Students know what it means for a number to be raised to a power and how to represent the repeated multiplication symbolically.

Students know the reason for some bases requiring parentheses.

Lesson Notes This lesson is foundational for the topic of properties of integer exponents. However, if your students have already mastered the skills in this lesson, it is your option to move forward and begin with Lesson 2.

Classwork

Discussion (15 minutes)

When we add 5 copies of 3; we devise an abbreviation – a new notation, for this purpose:

3 + 3 + 3 + 3 + 3 = 5 Γ— 3

Now if we multiply the same number, 3, with itself 5 times, how should we abbreviate this?

3 Γ— 3 Γ— 3 Γ— 3 Γ— 3 = ?

Allow students to make suggestions, see sidebar for scaffolds.

3 Γ— 3 Γ— 3 Γ— 3 Γ— 3 = 35

Similarly, we also write 33 = 3 Γ— 3 Γ— 3; 34 = 3 Γ— 3 Γ— 3 Γ— 3; etc.

We see that when we add 5 copies of 3, we write 5 Γ— 3, but when we multiply 5 copies of 3, we write 35. Thus, the β€œmultiplication by 5” in the context of addition corresponds exactly to the superscript 5 in the context of multiplication.

Make students aware of the correspondence between addition and multiplication because what they know about repeated addition will help them learn exponents as repeated multiplication as we go forward.

Scaffolding:

Remind students of their previous experiences:

The square of a number, e.g., 3 Γ— 3 is denoted by 32.

From the expanded form of a whole number, we also learned, e.g., 103 stands for 10 Γ— 10 Γ— 10.

πŸ“πŸ“πŸ”πŸ” means πŸ“πŸ“ Γ— πŸ“πŸ“ Γ— πŸ“πŸ“Γ— πŸ“πŸ“Γ— πŸ“πŸ“Γ— πŸ“πŸ“ and οΏ½πŸ—πŸ—πŸ•πŸ•οΏ½πŸ’πŸ’

means πŸ—πŸ—πŸ•πŸ•

Γ— πŸ—πŸ—πŸ•πŸ•

Γ— πŸ—πŸ—πŸ•πŸ•

Γ— πŸ—πŸ—πŸ•πŸ•

.

You have seen this kind of notation before; it is called exponential notation. In general, for any number 𝒙𝒙 and any positive integer 𝒏𝒏,

𝒙𝒙𝒏𝒏 = (𝒙𝒙 βˆ™ 𝒙𝒙⋯𝒙𝒙).�������𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

The number 𝒙𝒙𝒏𝒏 is called 𝒙𝒙 raised to the 𝒏𝒏𝒕𝒕𝒕𝒕power,where 𝒏𝒏 is the exponent of 𝒙𝒙 in 𝒙𝒙𝒏𝒏 and 𝒙𝒙 is the base of 𝒙𝒙𝒏𝒏.

MP.2 &

MP.7

Lesson 1: Exponential Notation

10

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

Eureka Lesson for 8th Grade Unit TWO

Exponential Notation & Multiplication of Exponents

These 2 lessons can be taught in <2 class periods – Or 3 with struggling learners.

Challenges: We (middle school teachers) are more comfortable teaching rules, but allowing

students to see why will lead to the rule and they’ll remember it because they’ll know WHY.

These 2 lessons are well laid out with step-by-step instructions to make it easier. Please

familiarize yourselves with the lesson before using it.

Page 2 Discussion points lead students right into lesson 1 Exponential Notation

Pages 2-6 Lesson 1 Teachers’ Detailed Instructions

Pages 7-9 Exit Ticket w/ solutions for Lesson 1

Pages 10-13 Student pages for Lesson 1

Pages 14-20 Lesson 2 Multiplication of Numbers in Exponential Form Teachers’ Detailed

Instructions(use discussion)

Pages 21-24 Exit Ticket w/ solutions for Lesson 2

Pages 25-30 Student pages for Lesson 2

8β€’1 Lesson 1

Note to Teacher: If students ask about values of 𝑛𝑛 that are not positive integers, let them know that positive and negative fractional exponents will be introduced in Algebra II and that negative integer exponents will be discussed in Lesson 4 of this module.

Examples 1–5

Work through Examples 1–5 as a group, supplement with additional examples if needed.

Example 1

5 Γ— 5 Γ— 5 Γ— 5 Γ— 5 Γ— 5 = 56

Example 2

97

Γ—97

Γ—97

Γ—97

= οΏ½97οΏ½4

Example 3

οΏ½βˆ’4

11οΏ½3

= οΏ½βˆ’4

11οΏ½ Γ— οΏ½βˆ’

411οΏ½ Γ— οΏ½βˆ’

411οΏ½

Example 4

(βˆ’2)6 = (βˆ’2) Γ— (βˆ’2) Γ— (βˆ’2) Γ— (βˆ’2) Γ— (βˆ’2) Γ— (βˆ’2)

Example 5

3. 84 = 3.8 Γ— 3.8 Γ— 3.8 Γ— 3.8

Notice the use of parentheses in Examples 2, 3, and 4. Do you know why?

In cases where the base is either fractional or negative, it prevents ambiguity about which portion of the expression is going to be multiplied repeatedly.

Suppose 𝑛𝑛 is a fixed positive integer, then 3𝑛𝑛; by definition, is 3𝑛𝑛 = (3 Γ— β‹―Γ— 3)���������𝑛𝑛 times

.

Again, if 𝑛𝑛 is a fixed positive integer, then by definition, 7𝑛𝑛 = (7 Γ— β‹―Γ— 7),οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝑛𝑛 times

οΏ½45�𝑛𝑛

= οΏ½45

Γ— β‹―Γ—45οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝑛𝑛 times

,

(βˆ’2.3)𝑛𝑛 = οΏ½(βˆ’2.3) Γ— β‹―Γ— (βˆ’2.3)οΏ½.οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝑛𝑛 times

In general, for any number π‘₯π‘₯, π‘₯π‘₯1 = π‘₯π‘₯, and for any positive integer 𝑛𝑛 > 1, π‘₯π‘₯𝑛𝑛 is by definition,

π‘₯π‘₯𝑛𝑛 = (π‘₯π‘₯ βˆ™ π‘₯π‘₯ β‹―π‘₯π‘₯)�������𝑛𝑛 times

.

The number π‘₯π‘₯𝑛𝑛 is called 𝒙𝒙 raised to the 𝒏𝒏th power, 𝑛𝑛 is the exponent of π‘₯π‘₯ in π‘₯π‘₯𝑛𝑛 and π‘₯π‘₯ is the base of π‘₯π‘₯𝑛𝑛.

π‘₯π‘₯2 is called the square of π‘₯π‘₯, and π‘₯π‘₯3 is its cube. You have seen this kind of notation before when you gave the expanded form of a whole number for powers

of 10; it is called exponential notation.

MP.6

Lesson 1: Exponential Notation

11

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Exercises 1–10 (5 minutes)

Students complete independently and check answers before moving on.

Exercise 1

πŸ’πŸ’ Γ— β‹―Γ— πŸ’πŸ’οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ•πŸ• times

= πŸ’πŸ’πŸ•πŸ•

Exercise 6

πŸ•πŸ•πŸπŸ

Γ— β‹―Γ—πŸ•πŸ•πŸπŸοΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝟐𝟐𝟐𝟐 times

= οΏ½πŸ•πŸ•πŸπŸοΏ½πŸπŸπŸπŸ

Exercise 2

πŸ‘πŸ‘.πŸ”πŸ”Γ— β‹―Γ— πŸ‘πŸ‘.πŸ”πŸ”οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_______ times

= πŸ‘πŸ‘.πŸ”πŸ”πŸ’πŸ’πŸ•πŸ•

πŸ’πŸ’πŸ•πŸ• times

Exercise 7

(βˆ’πŸπŸπŸ‘πŸ‘) Γ— β‹―Γ— (βˆ’πŸπŸπŸ‘πŸ‘)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ”πŸ” times

= (βˆ’πŸπŸπŸ‘πŸ‘)πŸ”πŸ”

Exercise 3

(βˆ’πŸπŸπŸπŸ.πŸ”πŸ”πŸ‘πŸ‘) Γ— β‹―Γ— (βˆ’πŸπŸπŸπŸ.πŸ”πŸ”πŸ‘πŸ‘)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ‘πŸ‘πŸ’πŸ’ times

= (βˆ’πŸπŸπŸπŸ.πŸ”πŸ”πŸ‘πŸ‘)πŸ‘πŸ‘πŸ’πŸ’

Exercise 8

οΏ½βˆ’πŸπŸπŸπŸπŸ’πŸ’οΏ½Γ— β‹―Γ— οΏ½βˆ’

πŸπŸπŸπŸπŸ’πŸ’οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝟐𝟐𝟏𝟏 times

= οΏ½βˆ’πŸπŸπŸπŸπŸ’πŸ’οΏ½πŸπŸπŸπŸ

Exercise 4

𝟐𝟐𝟐𝟐 Γ— β‹―Γ— 𝟐𝟐𝟐𝟐���������_______times

= πŸπŸπŸπŸπŸπŸπŸ“πŸ“

πŸπŸπŸ“πŸ“ times

Exercise 9

𝒙𝒙 βˆ™ π’™π’™β‹―π’™π’™οΏ½οΏ½οΏ½οΏ½οΏ½πŸπŸπŸπŸπŸ“πŸ“ times

= π’™π’™πŸπŸπŸπŸπŸ“πŸ“

Exercise 5

(βˆ’πŸ“πŸ“) Γ— β‹―Γ— (βˆ’πŸ“πŸ“)�����������𝟐𝟐𝟏𝟏 times

= (βˆ’πŸ“πŸ“)𝟐𝟐𝟏𝟏

Exercise 10

𝒙𝒙 βˆ™ 𝒙𝒙⋯𝒙𝒙�����_______times

= 𝒙𝒙𝒏𝒏

𝒏𝒏 times

Exercises 11–14 (15 minutes)

Allow students to complete Exercises 11–14 individually or in a small group.

When a negative number is raised to an odd power, what is the sign of the result?

When a negative number is raised to an even power, what is the sign of the result?

Make the point that when a negative number is raised to an odd power, the sign of the answer is negative. Conversely, if a negative number is raised to an even power, the sign of the answer is positive.

Lesson 1: Exponential Notation

12

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Exercise 11

Will these products be positive or negative? How do you know?

(βˆ’πŸπŸ) Γ— (βˆ’πŸπŸ) Γ— β‹―Γ— (βˆ’πŸπŸ)�����������������𝟐𝟐𝟐𝟐 times

= (βˆ’πŸπŸ)𝟐𝟐𝟐𝟐

This product will be positive. Students may state that they computed the product and it was positive; if they say that, let them show their work. Students may say that the answer is positive because the exponent is positive; this would not be acceptable in view of the next example.

(βˆ’πŸπŸ) Γ— (βˆ’πŸπŸ) Γ— β‹―Γ— (βˆ’πŸπŸ)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸπŸπŸ‘πŸ‘ times

= (βˆ’πŸπŸ)πŸπŸπŸ‘πŸ‘

This product will be negative. Students may state that they computed the product and it was negative; if so, they must show their work. Based on the discussion that occurred during the last problem, you may need to point out that a positive exponent does not always result in a positive product.

The two problems in Exercise 12 force the students to think beyond the computation level. If students have trouble, go back to the previous two problems and have them discuss in small groups what an even number of negative factors yields and what an odd number of negative factors yields.

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?

(βˆ’πŸ“πŸ“) Γ— (βˆ’πŸ“πŸ“) Γ— β‹―Γ— (βˆ’πŸ“πŸ“)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ—πŸ—πŸ“πŸ“ times

= (βˆ’πŸ“πŸ“)πŸ—πŸ—πŸ“πŸ“

Students should state that an odd number of negative factors yields a negative product.

(βˆ’πŸπŸ.𝟏𝟏) Γ— (βˆ’πŸπŸ.𝟏𝟏) Γ— β‹―Γ— (βˆ’πŸπŸ.𝟏𝟏)���������������������𝟐𝟐𝟐𝟐𝟐𝟐 times

= (βˆ’πŸπŸ.𝟏𝟏)𝟐𝟐𝟐𝟐𝟐𝟐

Students should state that an even number of negative factors yields a positive product.

Exercise 13

Fill in the blanks about whether the number is positive or negative.

If 𝒏𝒏 is a positive even number, then (βˆ’πŸ“πŸ“πŸ“πŸ“)𝒏𝒏 is positive.

If 𝒏𝒏 is a positive odd number, then (βˆ’πŸ•πŸ•πŸπŸ.πŸ’πŸ’)𝒏𝒏 is negative.

Exercise 14

Josie says that (βˆ’πŸπŸπŸ“πŸ“) Γ— β‹―Γ— (βˆ’πŸπŸπŸ“πŸ“)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ”πŸ” times

= βˆ’πŸπŸπŸ“πŸ“πŸ”πŸ”. Is she correct? How do you know?

Students should state that Josie is not correct for the following two reasons: (1) They just stated that an even number of factors yields a positive product, and this conflicts with the answer Josie provided, and (2) the notation is used incorrectly because, as is, the answer is the negative of πŸπŸπŸ“πŸ“πŸ”πŸ”, instead of the product of πŸ”πŸ” copies of βˆ’πŸπŸπŸ“πŸ“. The base is (βˆ’πŸπŸπŸ“πŸ“). Recalling the discussion at the beginning of the lesson, when the base is negative it should be written clearly through the use of parentheses. Have students write the answer correctly.

Lesson 1: Exponential Notation

13

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Closing (5 minutes)

Why should we bother with exponential notation? Why not just write out the multiplication?

Engage the class in discussion, but make sure that they get to know at least the following two reasons:

1. Like all good notation, exponential notation saves writing.

2. Exponential notation is used for recording scientific measurements of very large and very small quantities. It is indispensable for the clear indication of the magnitude of a number (see Lessons 10–13).

Here is an example of the labor saving aspect of the exponential notation: Suppose a colony of bacteria doubles in size every 8 hours for a few days under tight laboratory conditions. If the initial size is 𝐡𝐡, what is the size of the colony after 2 days?

In 2 days, there are six 8-hour periods; therefore, the size will be 26𝐡𝐡.

Give more examples if time allows as a lead in to Lesson 2. Example situations: exponential decay with respect to heat transfer, vibrations, ripples in a pond, or exponential growth with respect to interest on a bank deposit after some years have passed.

Exit Ticket (5 minutes)

Lesson 1: Exponential Notation

14

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Name ___________________________________________________ Date____________________

Lesson 1: Exponential Notation

Exit Ticket 1. a. Express the following in exponential notation:

(βˆ’13) Γ— β‹―Γ— (βˆ’13)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

35 times

.

b. Will the product be positive or negative?

2. Fill in the blank:

23

Γ— β‹―Γ—23οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

_______times

= οΏ½23οΏ½4

3. Arnie wrote:

(βˆ’3.1) Γ— β‹―Γ— (βˆ’3.1)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½4 times

= βˆ’3.14

Is Arnie correct in his notation? Why or why not?

Lesson 1: Exponential Notation

15

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Exit Ticket Sample Solutions

1. a. Express the following in exponential notation:

(βˆ’πŸπŸπŸ‘πŸ‘) Γ— β‹―Γ— (βˆ’πŸπŸπŸ‘πŸ‘)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ‘πŸ‘πŸ“πŸ“ times

(βˆ’πŸπŸπŸ‘πŸ‘)πŸ‘πŸ‘πŸ“πŸ“

b. Will the product be positive or negative?

The product will be negative.

2. Fill in the blank:

πŸπŸπŸ‘πŸ‘

Γ— β‹―Γ—πŸπŸπŸ‘πŸ‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

_______times

= οΏ½πŸπŸπŸ‘πŸ‘οΏ½πŸ’πŸ’

πŸ’πŸ’ times

3. Arnie wrote:

(βˆ’πŸ‘πŸ‘.𝟐𝟐) Γ— β‹―Γ— (βˆ’πŸ‘πŸ‘.𝟐𝟐)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ’πŸ’ times

= βˆ’πŸ‘πŸ‘.πŸπŸπŸ’πŸ’

Is Arnie correct in his notation? Why or why not?

Arnie is not correct. The base, βˆ’πŸ‘πŸ‘.𝟐𝟐, should be in parentheses to prevent ambiguity; at present the notation is not correct.

Problem Set Sample Solutions

1. Use what you know about exponential notation to complete the expressions below.

(βˆ’πŸ“πŸ“) Γ— β‹―Γ— (βˆ’πŸ“πŸ“)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸπŸπŸ•πŸ• times

= (βˆ’πŸ“πŸ“)πŸπŸπŸ•πŸ• πŸ‘πŸ‘.πŸ•πŸ•Γ— β‹―Γ— πŸ‘πŸ‘.πŸ•πŸ•οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= πŸ‘πŸ‘.πŸ•πŸ•πŸπŸπŸ—πŸ—

πŸπŸπŸ—πŸ— times

πŸ•πŸ• Γ— β‹―Γ— πŸ•πŸ•οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= πŸ•πŸ•πŸ’πŸ’πŸ“πŸ“

πŸ’πŸ’πŸ“πŸ“ times

πŸ”πŸ” Γ— β‹―Γ— πŸ”πŸ”οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ’πŸ’ times

= πŸ”πŸ”πŸ’πŸ’

πŸ’πŸ’.πŸ‘πŸ‘Γ— β‹―Γ— πŸ’πŸ’.πŸ‘πŸ‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸπŸπŸ‘πŸ‘ times

= πŸ’πŸ’.πŸ‘πŸ‘πŸπŸπŸ‘πŸ‘ (βˆ’πŸπŸ.𝟐𝟐) Γ— β‹―Γ— (βˆ’πŸπŸ.𝟐𝟐)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πŸ—πŸ— times

= (βˆ’πŸπŸ.𝟐𝟐)πŸ—πŸ—

οΏ½πŸπŸπŸ‘πŸ‘οΏ½ Γ— β‹―Γ— οΏ½

πŸπŸπŸ‘πŸ‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

πŸπŸπŸ—πŸ— times

= οΏ½πŸπŸπŸ‘πŸ‘οΏ½πŸπŸπŸ—πŸ—

οΏ½βˆ’πŸπŸπŸπŸπŸ“πŸ“οΏ½Γ— β‹―Γ— οΏ½βˆ’

πŸπŸπŸπŸπŸ“πŸ“οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

_____ times

= οΏ½βˆ’πŸπŸπŸπŸπŸ“πŸ“οΏ½π’™π’™

𝒙𝒙 times

(βˆ’πŸπŸπŸπŸ) Γ— β‹―Γ— (βˆ’πŸπŸπŸπŸ)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= (βˆ’πŸπŸπŸπŸ)πŸπŸπŸ“πŸ“

πŸπŸπŸ“πŸ“ times

𝒂𝒂 Γ— β‹―Γ— 𝒂𝒂�������𝒕𝒕 times

= 𝒂𝒂𝒕𝒕

Lesson 1: Exponential Notation

16

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

2. Write an expression with (βˆ’πŸπŸ) as its base that will produce a positive product.

Accept any answer with (βˆ’πŸπŸ) to an exponent that is even.

3. Write an expression with (βˆ’πŸπŸ) as its base that will produce a negative product.

Accept any answer with (βˆ’πŸπŸ) to an exponent that is odd.

4. Rewrite each number in exponential notation using 𝟐𝟐 as the base.

𝟏𝟏 = πŸπŸπŸ‘πŸ‘ πŸπŸπŸ”πŸ” = πŸπŸπŸ’πŸ’ πŸ‘πŸ‘πŸπŸ = πŸπŸπŸ“πŸ“

πŸ”πŸ”πŸ’πŸ’ = πŸπŸπŸ”πŸ” 𝟐𝟐𝟐𝟐𝟏𝟏 = πŸπŸπŸ•πŸ• πŸπŸπŸ“πŸ“πŸ”πŸ” = 𝟐𝟐𝟏𝟏

5. Tim wrote πŸπŸπŸ”πŸ” as (βˆ’πŸπŸ)πŸ’πŸ’. Is he correct?

Tim is correct that πŸπŸπŸ”πŸ” = (βˆ’πŸπŸ)πŸ’πŸ’.

6. Could βˆ’πŸπŸ be used as a base to rewrite πŸ‘πŸ‘πŸπŸ? πŸ”πŸ”πŸ’πŸ’? Why or why not?

A base of βˆ’πŸπŸ cannot be used to rewrite πŸ‘πŸ‘πŸπŸ because (βˆ’πŸπŸ)πŸ“πŸ“ = βˆ’πŸ‘πŸ‘πŸπŸ. A base of βˆ’πŸπŸ can be used to rewrite πŸ”πŸ”πŸ’πŸ’ because (βˆ’πŸπŸ)πŸ”πŸ” = πŸ”πŸ”πŸ’πŸ’. If the exponent, 𝒏𝒏, is even, (βˆ’πŸπŸ)𝒏𝒏 will be positive. If the exponent, 𝒏𝒏, is odd, (βˆ’πŸπŸ)𝒏𝒏 cannot be a positive number.

Lesson 1: Exponential Notation

17

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 1

Lesson 1: Exponential Notation

Classwork

Exercise 1

4 Γ— β‹―Γ— 4οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½7 times

=

Exercise 6

72

Γ— β‹―Γ—72οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

21 times

=

Exercise 2

3.6 Γ— β‹―Γ— 3.6οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_______ times

= 3.647

Exercise 7

(βˆ’13) Γ— β‹―Γ— (βˆ’13)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½6 times

=

Exercise 3

(βˆ’11.63) Γ— β‹―Γ— (βˆ’11.63)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½34 times

=

Exercise 8

οΏ½βˆ’1

14οΏ½ Γ— β‹―Γ— οΏ½βˆ’

114οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

10 times

=

Exercise 4

12 Γ— β‹―Γ— 12οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_______times

= 1215

Exercise 9

π‘₯π‘₯ βˆ™ π‘₯π‘₯β‹― π‘₯π‘₯οΏ½οΏ½οΏ½οΏ½οΏ½185 times

=

Exercise 5

(βˆ’5) Γ— β‹―Γ— (βˆ’5)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½10 times

=

Exercise 10

π‘₯π‘₯ βˆ™ π‘₯π‘₯β‹― π‘₯π‘₯οΏ½οΏ½οΏ½οΏ½οΏ½_______times

= π‘₯π‘₯𝑛𝑛

56 means 5 Γ— 5 Γ— 5 Γ— 5 Γ— 5 Γ— 5 and οΏ½97οΏ½4 means

97

Γ—97

Γ—97

Γ—97

.

You have seen this kind of notation before: it is called exponential notation. In general, for any number 𝒙𝒙 and any positive integer 𝑛𝑛,

π‘₯π‘₯𝑛𝑛 = (π‘₯π‘₯ βˆ™ π‘₯π‘₯β‹― π‘₯π‘₯)�������𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

.

The number π‘₯π‘₯𝑛𝑛 is called 𝒙𝒙 raised to the 𝒏𝒏th power, where 𝑛𝑛 is the exponent of π‘₯π‘₯ in π‘₯π‘₯𝑛𝑛 and π‘₯π‘₯ is the base of π‘₯π‘₯𝑛𝑛.

Lesson 1: Exponential Notation

S.1

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 1

Exercise 11

Will these products be positive or negative? How do you know?

(βˆ’1) Γ— (βˆ’1) Γ— β‹―Γ— (βˆ’1)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½12 times

= (βˆ’1)12

(βˆ’1) Γ— (βˆ’1) Γ— β‹―Γ— (βˆ’1)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½13 times

= (βˆ’1)13

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?

(βˆ’5) Γ— (βˆ’5) Γ— β‹―Γ— (βˆ’5)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½95 times

= (βˆ’5)95

(βˆ’1.8) Γ— (βˆ’1.8) Γ— β‹―Γ— (βˆ’1.8)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½122 times

= (βˆ’1.8)122

Lesson 1: Exponential Notation

S.2

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 1

Exercise 13

Fill in the blanks about whether the number is positive or negative.

If 𝑛𝑛 is a positive even number, then (βˆ’55)𝑛𝑛 is __________________________.

If 𝑛𝑛 is a positive odd number, then (βˆ’72.4)𝑛𝑛 is __________________________.

Exercise 14

Josie says that (βˆ’15) Γ— β‹―Γ— (βˆ’15)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½6 times

= βˆ’156. Is she correct? How do you know?

Lesson 1: Exponential Notation

S.3

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 1

Problem Set 1. Use what you know about exponential notation to complete the expressions below.

(βˆ’5) Γ— β‹―Γ— (βˆ’5)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½17 times

= 3.7 Γ— β‹―Γ— 3.7οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= 3.719

7 Γ— β‹―Γ— 7οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= 745

6 Γ— β‹―Γ— 6οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½4 times

=

4.3 Γ— β‹―Γ— 4.3οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½13 times

= (βˆ’1.1) Γ— β‹―Γ— (βˆ’1.1)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½9 times

=

οΏ½23οΏ½ Γ— β‹―Γ— οΏ½

23οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

19 times

= οΏ½βˆ’115οΏ½ Γ— β‹―Γ— οΏ½βˆ’

115οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

_____ times

= οΏ½βˆ’115οΏ½π‘₯π‘₯

(βˆ’12) Γ— β‹―Γ— (βˆ’12)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½_____ times

= (βˆ’12)15

π‘Žπ‘Ž Γ— β‹―Γ— π‘Žπ‘ŽοΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘‘π‘‘ times

=

2. Write an expression with (βˆ’1) as its base that will produce a positive product.

3. Write an expression with (βˆ’1) as its base that will produce a negative product.

4. Rewrite each number in exponential notation using 2 as the base.

8 = 16 = 32 = 64 = 128 = 256 =

5. Tim wrote 16 as (βˆ’2)4. Is he correct?

6. Could βˆ’2 be used as a base to rewrite 32? 64? Why or why not?

Lesson 1: Exponential Notation

S.4

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

Lesson 2: Multiplication of Numbers in Exponential Form

Student Outcomes

Students use the definition of exponential notation to make sense of the first law of exponents. Students see a rule for simplifying exponential expressions involving division as a consequence of the first law

of exponents.

Students write equivalent numerical and symbolic expressions using the first law of exponents.

Classwork

Discussion (8 minutes)

We have to find out the basic properties of this new concept, β€œraising a number to a power.” There are three simple ones, and we will discuss them in this and the next lesson.

(1) How to multiply different powers of the same number π‘₯π‘₯: if π‘šπ‘š, 𝑛𝑛 are positive integers, what is π‘₯π‘₯π‘šπ‘š βˆ™ π‘₯π‘₯𝑛𝑛?

Let students explore on their own and then in groups: 35 Γ— 37.

Answer: 35 Γ— 37 = (3 Γ— β‹―Γ— 3)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½5 times

Γ— (3 Γ— β‹―Γ— 3)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½7 times

= (3 Γ— β‹―Γ— 3)οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½5+7 times

= 35+7

In general, if π‘₯π‘₯ is any number and π‘šπ‘š,𝑛𝑛 are positive integers, then

π‘₯π‘₯π‘šπ‘š βˆ™ π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛

because

π‘₯π‘₯π‘šπ‘š Γ— π‘₯π‘₯𝑛𝑛 = (π‘₯π‘₯β‹―π‘₯π‘₯)οΏ½οΏ½οΏ½οΏ½οΏ½π‘šπ‘š times

Γ— (π‘₯π‘₯ β‹―π‘₯π‘₯)�����𝑛𝑛 times

= (π‘₯π‘₯ β‹―π‘₯π‘₯)οΏ½οΏ½οΏ½οΏ½οΏ½π‘šπ‘š+𝑛𝑛 times

= π‘₯π‘₯π‘šπ‘š+𝑛𝑛 .

Scaffolding: Use concrete numbers for

π‘₯π‘₯, π‘šπ‘š, and 𝑛𝑛.

In general, if 𝒙𝒙 is any number and π’Žπ’Ž,𝒏𝒏 are positive integers, then

π’™π’™π’Žπ’Ž βˆ™ 𝒙𝒙𝒏𝒏 = π’™π’™π’Žπ’Ž+𝒏𝒏

because

π’™π’™π’Žπ’Ž Γ— 𝒙𝒙𝒏𝒏 = (𝒙𝒙⋯𝒙𝒙)οΏ½οΏ½οΏ½οΏ½οΏ½π’Žπ’Ž times

Γ— (𝒙𝒙⋯𝒙𝒙)�����𝒏𝒏 times

= (𝒙𝒙⋯𝒙𝒙)οΏ½οΏ½οΏ½οΏ½οΏ½π’Žπ’Ž+𝒏𝒏 times

= π’™π’™π’Žπ’Ž+𝒏𝒏.

Lesson 2: Multiplication of Numbers in Exponential Form

18 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Examples 1–2

Work through Examples 1 and 2 in the same manner as just shown (supplement with additional examples if needed).

It is preferable to write the answers as an addition of exponents to emphasize the use of the identity. That step should not be left out. That is, 52 Γ— 54 = 56 does not have the same instructional value as 52 Γ— 54 = 52+4.

Example 1

52 Γ— 54 = 52+4

Example 2

οΏ½βˆ’23οΏ½4

Γ— οΏ½βˆ’23οΏ½5

= οΏ½βˆ’23οΏ½4+5

What is the analog of π‘₯π‘₯π‘šπ‘š βˆ™ π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛 in the context of repeated addition of a number π‘₯π‘₯?

Allow time for a brief discussion.

If we add π‘šπ‘š copies of π‘₯π‘₯ and then add to it another 𝑛𝑛 copies of π‘₯π‘₯, we end up adding π‘šπ‘š + 𝑛𝑛 copies of π‘₯π‘₯ By the distributive law:

π‘šπ‘šπ‘₯π‘₯ + 𝑛𝑛π‘₯π‘₯ = (π‘šπ‘š + 𝑛𝑛)π‘₯π‘₯ .

This is further confirmation of what we observed at the beginning of Lesson 1: the exponent π‘šπ‘š + 𝑛𝑛 in π‘₯π‘₯π‘šπ‘š+𝑛𝑛 in the context of repeated multiplication corresponds exactly to the π‘šπ‘š + 𝑛𝑛 in (π‘šπ‘š + 𝑛𝑛)π‘₯π‘₯ in the context of repeated addition.

Exercises 1–20 (9 minutes)

Students complete Exercises 1–8 independently. Check answers, and then have students complete Exercises 9–20.

Exercise 1

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 Γ— πŸπŸπŸπŸπŸ–πŸ– = 𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐+πŸ–πŸ–

Exercise 5

Let 𝒂𝒂 be a number.

π’‚π’‚πŸπŸπŸπŸ βˆ™ π’‚π’‚πŸ–πŸ– = π’‚π’‚πŸπŸπŸπŸ+πŸ–πŸ–

Exercise 2

(βˆ’πŸ•πŸ•πŸπŸ)𝟏𝟏𝟏𝟏 Γ— (βˆ’πŸ•πŸ•πŸπŸ)𝟏𝟏𝟐𝟐 = (βˆ’πŸ•πŸ•πŸπŸ)𝟏𝟏𝟏𝟏+𝟏𝟏𝟐𝟐

Exercise 6

Let f be a number.

π’‡π’‡πŸπŸπŸπŸ βˆ™ π’‡π’‡πŸπŸπŸπŸ = π’‡π’‡πŸπŸπŸπŸ+𝟏𝟏𝟐𝟐

Exercise 3

πŸ“πŸ“πŸ—πŸ—πŸπŸ Γ— πŸ“πŸ“πŸ•πŸ•πŸ–πŸ– = πŸ“πŸ“πŸ—πŸ—πŸπŸ+πŸ•πŸ•πŸ–πŸ–

Exercise 7

Let 𝒃𝒃 be a number.

π’ƒπ’ƒπŸ—πŸ—πŸπŸ βˆ™ π’ƒπ’ƒπŸ•πŸ•πŸ–πŸ– = π’ƒπ’ƒπŸ—πŸ—πŸπŸ+πŸ•πŸ•πŸ–πŸ–

Exercise 4

(βˆ’πŸπŸ)πŸ—πŸ— Γ— (βˆ’πŸπŸ)πŸ“πŸ“ = (βˆ’πŸπŸ)πŸ—πŸ—+πŸ“πŸ“

Exercise 8

Let 𝒙𝒙 be a positive integer. If (βˆ’πŸπŸ)πŸ—πŸ— Γ— (βˆ’πŸπŸ)𝒙𝒙 = (βˆ’πŸπŸ)𝟏𝟏𝟏𝟏, what is 𝒙𝒙?

𝒙𝒙 = πŸ“πŸ“

Scaffolding: Remind students that to

remove ambiguity, bases that contain fractions or negative numbers require parentheses.

MP.2 &

MP.7

Lesson 2: Multiplication of Numbers in Exponential Form

19 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

In Exercises 9–16, students will need to think about how to rewrite some factors so the bases are the same. Specifically, 24 Γ— 82 = 24 Γ— 26 = 24+6 and 37 Γ— 9 = 37 Γ— 32 = 37+2. Make clear that these expressions can only be simplified when the bases are the same. Also included is a non-example, 54 Γ— 211, that cannot be simplified using this identity. Exercises 17–20 are further applications of the identity.

What would happen if there were more terms with the same base? Write an equivalent expression for each problem.

Exercise 9

πŸ—πŸ—πŸπŸ Γ— πŸ—πŸ—πŸ”πŸ” Γ— πŸ—πŸ—πŸπŸπŸπŸ = πŸ—πŸ—πŸπŸ+πŸ”πŸ”+𝟏𝟏𝟐𝟐

Exercise 10

𝟐𝟐𝟐𝟐 Γ— πŸπŸπŸ“πŸ“ Γ— πŸπŸπŸ•πŸ• Γ— πŸπŸπŸ—πŸ— = 𝟐𝟐𝟐𝟐+πŸ“πŸ“+πŸ•πŸ•+πŸ—πŸ—

Can the following expressions be simplified? If so, write an equivalent expression. If not, explain why not.

Exercise 11

πŸ”πŸ”πŸ“πŸ“ Γ— πŸπŸπŸ—πŸ— Γ— 𝟏𝟏𝟐𝟐 Γ— πŸ”πŸ”πŸπŸπŸπŸ = πŸπŸπŸ—πŸ—+𝟐𝟐 Γ— πŸ”πŸ”πŸ“πŸ“+𝟏𝟏𝟏𝟏

Exercise 14

𝟐𝟐𝟏𝟏 Γ— πŸ–πŸ–πŸπŸ = 𝟐𝟐𝟏𝟏 Γ— πŸπŸπŸ”πŸ” = 𝟐𝟐𝟏𝟏+πŸ”πŸ”

Exercise 12

(βˆ’πŸπŸ)𝟐𝟐 βˆ™ πŸπŸπŸ•πŸ•πŸ“πŸ“ βˆ™ (βˆ’πŸπŸ)𝟐𝟐 βˆ™ πŸπŸπŸ•πŸ•πŸ•πŸ• = (βˆ’πŸπŸ)𝟐𝟐+𝟐𝟐 βˆ™ πŸπŸπŸ•πŸ•πŸ“πŸ“+πŸ•πŸ•

Exercise 15

πŸπŸπŸ•πŸ• Γ— πŸ—πŸ— = πŸπŸπŸ•πŸ• Γ— 𝟐𝟐𝟐𝟐 = πŸπŸπŸ•πŸ•+𝟐𝟐

Exercise 13

πŸπŸπŸ“πŸ“πŸπŸ βˆ™ πŸ•πŸ•πŸπŸ βˆ™ πŸπŸπŸ“πŸ“ βˆ™ πŸ•πŸ•πŸπŸ = πŸπŸπŸ“πŸ“πŸπŸ+𝟏𝟏 βˆ™ πŸ•πŸ•πŸπŸ+𝟏𝟏

Exercise 16

πŸ“πŸ“πŸπŸ Γ— 𝟐𝟐𝟏𝟏𝟏𝟏 =

Cannot be simplified. Bases are different and cannot be rewritten in the same base.

Exercise 17

Let 𝒙𝒙 be a number. Simplify the expression of the following number:

(πŸπŸπ’™π’™πŸπŸ)(πŸπŸπŸ•πŸ•π’™π’™πŸ•πŸ•) = πŸπŸπŸπŸπ’™π’™πŸπŸπŸπŸ

Exercise 18

Let 𝒂𝒂 and 𝒃𝒃 be numbers. Use the distributive law to simplify the expression of the following number:

𝒂𝒂(𝒂𝒂+ 𝒃𝒃) = π’‚π’‚πŸπŸ + 𝒂𝒂𝒃𝒃

Exercise 19

Let 𝒂𝒂 and 𝒃𝒃 be numbers. Use the distributive law to simplify the expression of the following number:

𝒃𝒃(𝒂𝒂+ 𝒃𝒃) = 𝒂𝒂𝒃𝒃 + π’ƒπ’ƒπŸπŸ

Exercise 20

Let 𝒂𝒂 and 𝒃𝒃 be numbers. Use the distributive law to simplify the expression of the following number:

(𝒂𝒂 + 𝒃𝒃)(𝒂𝒂 + 𝒃𝒃) = π’‚π’‚πŸπŸ + 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝒂𝒂 + π’ƒπ’ƒπŸπŸ = π’‚π’‚πŸπŸ + πŸπŸπ’‚π’‚π’ƒπ’ƒ + π’ƒπ’ƒπŸπŸ

Lesson 2: Multiplication of Numbers in Exponential Form

20 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Discussion (9 minutes)

Now that we know something about multiplication, we actually know a little about how to divide numbers in exponential notation too. This is not a new law of exponents to be memorized but a (good) consequence of knowing the first law of exponents. Make this clear to students.

(2) We have just learned how to multiply two different positive integer powers of the same number π‘₯π‘₯. It is time to ask how to divide different powers of a number π‘₯π‘₯. If π‘šπ‘š, 𝑛𝑛 are positive

integers, what is π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛?

Allow time for a brief discussion.

What is 37

35? (Observe: The power 7 in the numerator is bigger than the power of 5 in the denominator. The

general case of arbitrary exponents will be addressed in Lesson 5, so all problems in this lesson will have bigger exponents in the numerator than in the denominator.)

Expect students to write 37

35= 3βˆ™3βˆ™3βˆ™3βˆ™3βˆ™3βˆ™3

3βˆ™3βˆ™3βˆ™3βˆ™3. However, we should nudge them to see how the formula

π‘₯π‘₯π‘šπ‘š βˆ™ π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛 comes into play.

Answer: 37

35=

35βˆ™32

35 by π‘₯π‘₯π‘šπ‘šπ‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛

= 32 by equivalent fractions

= 37βˆ’5

Observe that the exponent 2 in 32 is the difference of 7 and 5 (see the numerator 3532 on the first line).

In general, if π‘₯π‘₯ is nonzero and π‘šπ‘š, 𝑛𝑛 are positive integers, then:

π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘›, if π‘šπ‘š > 𝑛𝑛.

Since π‘šπ‘š > 𝑛𝑛, then there is a positive integer 𝑙𝑙, so that π‘šπ‘š = 𝑛𝑛 + 𝑙𝑙. Then, we can rewrite the identity as follows:

π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛=π‘₯π‘₯𝑛𝑛+𝑙𝑙

π‘₯π‘₯𝑛𝑛

= π‘₯π‘₯π‘›π‘›βˆ™π‘₯π‘₯𝑙𝑙π‘₯π‘₯𝑛𝑛 by π‘₯π‘₯π‘šπ‘šπ‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛

= π‘₯π‘₯𝑙𝑙 by equivalent fractions

= π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘› because π‘šπ‘š = 𝑛𝑛 + 𝑙𝑙 implies 𝑙𝑙 = π‘šπ‘š βˆ’ 𝑛𝑛

Therefore, π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘›, if π‘šπ‘š > 𝑛𝑛.

Scaffolding: Use concrete numbers for

π‘₯π‘₯, π‘šπ‘š, and 𝑛𝑛.

Note to Teacher:

The restriction on π‘šπ‘š and 𝑛𝑛 here is to prevent negative exponents from coming up in problems before students learn about them.

Lesson 2: Multiplication of Numbers in Exponential Form

21 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

This formula is as far as we can go. We cannot write down 35

37 in terms of exponents because 35βˆ’7 = 3βˆ’2 makes no

sense at the moment since we have no meaning for a negative exponent. This explains why the formula above requires π‘šπ‘š > 𝑛𝑛. This also motivates our search for a definition of negative exponent, as we shall do in Lesson 5.

What is the analog of π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘›, if π‘šπ‘š > 𝑛𝑛 in the context of repeated addition of a number π‘₯π‘₯?

Division is to multiplication as subtraction is to addition, so if 𝑛𝑛 copies of a number π‘₯π‘₯ is subtracted from π‘šπ‘š copies of π‘₯π‘₯, and π‘šπ‘š > 𝑛𝑛, then (π‘šπ‘šπ‘₯π‘₯) βˆ’ (𝑛𝑛π‘₯π‘₯) = (π‘šπ‘š βˆ’ 𝑛𝑛)π‘₯π‘₯ by the distributive law. (Incidentally, observe once more how the exponent π‘šπ‘š βˆ’ 𝑛𝑛 in π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘› in the context of repeated multiplication, corresponds exactly to the π‘šπ‘š βˆ’ 𝑛𝑛 in (π‘šπ‘š βˆ’ 𝑛𝑛)π‘₯π‘₯ in the context of repeated addition.)

Examples 3–4

Work through Examples 3 and 4 in the same manner as shown (supplement with additional examples if needed).

It is preferable to write the answers as a subtraction of exponents to emphasize the use of the identity.

Example 3

οΏ½35οΏ½

8

οΏ½35οΏ½

6 = οΏ½35οΏ½8βˆ’6

Example 4

45

42= 45βˆ’2

Exercises 21–32 (10 minutes)

Students complete Exercises 21–24 independently. Check answers, and then have students complete Exercises 25–32 in pairs or small groups.

Exercise 21

πŸ•πŸ•πŸ—πŸ—

πŸ•πŸ•πŸ”πŸ”= πŸ•πŸ•πŸ—πŸ—βˆ’πŸ”πŸ”

Exercise 23

οΏ½πŸ–πŸ–πŸ“πŸ“οΏ½πŸ—πŸ—

οΏ½πŸ–πŸ–πŸ“πŸ“οΏ½πŸπŸ = οΏ½

πŸ–πŸ–πŸ“πŸ“οΏ½πŸ—πŸ—βˆ’πŸπŸ

Exercise 22

(βˆ’πŸ“πŸ“)πŸπŸπŸ”πŸ”

(βˆ’πŸ“πŸ“)πŸ•πŸ• = (βˆ’πŸ“πŸ“)πŸπŸπŸ”πŸ”βˆ’πŸ•πŸ•

Exercise 24

πŸπŸπŸπŸπŸ“πŸ“

𝟏𝟏𝟐𝟐𝟏𝟏= πŸπŸπŸπŸπŸ“πŸ“βˆ’πŸπŸ

In general, if 𝒙𝒙 is nonzero and π’Žπ’Ž, 𝒏𝒏 are positive integers, then

π’™π’™π’Žπ’Ž

𝒙𝒙𝒏𝒏= π’™π’™π’Žπ’Žβˆ’π’π’, if π’Žπ’Ž > 𝒏𝒏.

MP.7

Lesson 2: Multiplication of Numbers in Exponential Form

22 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Exercise 25

Let 𝒂𝒂, 𝒃𝒃 be nonzero numbers. What is the following number?

οΏ½π’‚π’‚π’ƒπ’ƒοΏ½πŸ—πŸ—

οΏ½π’‚π’‚π’ƒπ’ƒοΏ½πŸπŸ = οΏ½

𝒂𝒂

π’ƒπ’ƒοΏ½πŸ—πŸ—βˆ’πŸπŸ

Exercise 26

Let 𝒙𝒙 be a nonzero number. What is the following number?

π’™π’™πŸ“πŸ“

π’™π’™πŸπŸ= π’™π’™πŸ“πŸ“βˆ’πŸπŸ

Can the following expressions be simplified? If yes, write an equivalent expression for each problem. If not, explain why not.

Exercise 27

πŸπŸπŸ•πŸ•

𝟏𝟏𝟐𝟐=πŸπŸπŸ•πŸ•

𝟐𝟐𝟏𝟏= πŸπŸπŸ•πŸ•βˆ’πŸπŸ

Exercise 29

πŸπŸπŸ“πŸ“ βˆ™ πŸπŸπŸ–πŸ–

𝟐𝟐𝟐𝟐 βˆ™ 𝟐𝟐𝟐𝟐= πŸπŸπŸ“πŸ“βˆ’πŸπŸ βˆ™ πŸπŸπŸ–πŸ–βˆ’πŸπŸ

Exercise 28

𝟐𝟐𝟐𝟐𝟐𝟐

πŸπŸπŸ•πŸ•=𝟐𝟐𝟐𝟐𝟐𝟐

𝟐𝟐𝟐𝟐= πŸπŸπŸπŸπŸπŸβˆ’πŸπŸ

Exercise 30

(βˆ’πŸπŸ)πŸ•πŸ• βˆ™ πŸ—πŸ—πŸ“πŸ“πŸ“πŸ“

(βˆ’πŸπŸ)πŸ“πŸ“ βˆ™ πŸ—πŸ—πŸ“πŸ“πŸπŸ= (βˆ’πŸπŸ)πŸ•πŸ•βˆ’πŸ“πŸ“ βˆ™ πŸ—πŸ—πŸ“πŸ“πŸ“πŸ“βˆ’πŸπŸ

Exercise 31

Let 𝒙𝒙 be a number. Simplify the expression of each of the following numbers:

a. πŸ“πŸ“π’™π’™πŸπŸ

(πŸπŸπ’™π’™πŸ–πŸ–) = πŸπŸπŸ“πŸ“π’™π’™πŸ“πŸ“

b. πŸ“πŸ“π’™π’™πŸπŸ

(βˆ’πŸπŸπ’™π’™πŸ”πŸ”) = βˆ’πŸπŸπŸπŸπ’™π’™πŸπŸ

c. πŸ“πŸ“π’™π’™πŸπŸ

(πŸπŸπŸπŸπ’™π’™πŸπŸ) = πŸ“πŸ“πŸ“πŸ“π’™π’™

Exercise 32

Anne used an online calculator to multiply 𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,πŸπŸπŸπŸπŸπŸΓ— 𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏. The answer showed up on the calculator as 𝟏𝟏𝐞𝐞 + 𝟐𝟐𝟏𝟏, as shown below. Is the answer on the calculator correct? How do you know?

𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏 Γ— 𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏 =𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏.

The answer must mean 𝟏𝟏 followed by 𝟐𝟐𝟏𝟏 zeroes. That means that the answer on the calculator is correct.

This problem is hinting at scientific notation; i.e., (πŸπŸΓ— πŸπŸπŸπŸπŸ—πŸ—)(πŸπŸΓ— 𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐) = πŸπŸΓ—πŸπŸπŸπŸπŸ—πŸ—+𝟏𝟏𝟐𝟐. Accept any reasonable explanation of the answer.

Lesson 2: Multiplication of Numbers in Exponential Form

23 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Closing (3 minutes)

Summarize, or have students summarize, the lesson.

State the two identities and how to write equivalent expressions for each.

Optional Fluency Exercise (2 minutes)

This exercise is not an expectation of the standard, but may prepare students for work with squared numbers in Module 2 with respect to the Pythagorean Theorem. For that reason this is an optional fluency exercise.

Have students chorally respond to numbers squared and cubed that you provide. For example, you say β€œ1 squared” and students respond, β€œ1.” Next, β€œ2 squared” and students respond β€œ4.” Have students respond to all squares, in order, up to 15. When squares are finished, start with β€œ1 cubed” and students respond β€œ1.” Next, β€œ2 cubed” and students respond β€œ8.” Have students respond to all cubes, in order, up to 10. If time allows, you can have students respond to random squares and cubes.

Exit Ticket (2 minutes)

Lesson 2: Multiplication of Numbers in Exponential Form

24 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Name ___________________________________________________ Date____________________

Lesson 2: Multiplication of Numbers in Exponential Form

Exit Ticket Simplify each of the following numerical expressions as much as possible:

1. Let π‘Žπ‘Ž and 𝑏𝑏 be positive integers. 23π‘Žπ‘Ž Γ— 23𝑏𝑏 =

2. 53 Γ— 25 =

3. Let π‘₯π‘₯ and 𝑦𝑦 be positive integers and π‘₯π‘₯ > 𝑦𝑦. 11π‘₯π‘₯

11𝑦𝑦=

4. 213

8=

Lesson 2: Multiplication of Numbers in Exponential Form

25 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Exit Ticket Sample Solutions Note to Teacher: Accept both forms of the answer; in other words, the answer that shows the exponents as a sum or difference and the answer where the numbers were actually added or subtracted.

Simplify each of the following numerical expressions as much as possible:

1. Let 𝒂𝒂 and 𝒃𝒃 be positive integers. πŸπŸπŸπŸπ’‚π’‚ Γ— πŸπŸπŸπŸπ’ƒπ’ƒ =

πŸπŸπŸπŸπ’‚π’‚ Γ— πŸπŸπŸπŸπ’ƒπ’ƒ = πŸπŸπŸπŸπ’‚π’‚+𝒃𝒃

2. πŸ“πŸ“πŸπŸ Γ— πŸπŸπŸ“πŸ“ =

πŸ“πŸ“πŸπŸ Γ— πŸπŸπŸ“πŸ“ = πŸ“πŸ“πŸπŸ Γ— πŸ“πŸ“πŸπŸ

= πŸ“πŸ“πŸπŸ+𝟐𝟐

= πŸ“πŸ“πŸ“πŸ“

3. Let 𝒙𝒙 and π’šπ’š be positive integers and 𝒙𝒙 > π’šπ’š. πŸπŸπŸπŸπ’™π’™

πŸπŸπŸπŸπ’šπ’š=

πŸπŸπŸπŸπ’™π’™

πŸπŸπŸπŸπ’šπ’š= πŸπŸπŸπŸπ’™π’™βˆ’π’šπ’š

4. 𝟐𝟐𝟏𝟏𝟐𝟐

πŸ–πŸ–=

𝟐𝟐𝟏𝟏𝟐𝟐

πŸ–πŸ–=𝟐𝟐𝟏𝟏𝟐𝟐

𝟐𝟐𝟐𝟐

= πŸπŸπŸπŸπŸπŸβˆ’πŸπŸ

= 𝟐𝟐𝟏𝟏𝟏𝟏

Lesson 2: Multiplication of Numbers in Exponential Form

26 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Problem Set Sample Solutions To ensure success, students need to complete at least bounces 1–4 with support in class.

Students may benefit from a simple drawing of the scenario. It will help them see why the factor of 2 is necessary when calculating the distance traveled for each bounce. Make sure to leave the total distance traveled in the format shown so that students can see the pattern that is developing. Simplifying at any step will make it extremely difficult to write the general statement for 𝑛𝑛 number of bounces.

1. A certain ball is dropped from a height of 𝒙𝒙 feet. It always bounces up to πŸπŸπŸπŸπ’™π’™ feet. Suppose the ball is dropped from

𝟏𝟏𝟏𝟏 feet and is caught exactly when it touches the ground after the 𝟐𝟐𝟏𝟏th bounce. What is the total distance traveled by the ball? Express your answer in exponential notation.

Bounce Computation of

Distance Traveled in Previous Bounce

Total Distance Traveled (in feet)

1 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏+ 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏

2 𝟐𝟐 �𝟐𝟐𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏�

= 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 + 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏 + 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏

3 𝟐𝟐 �𝟐𝟐𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏�

= 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 + 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏 + 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏

4 𝟐𝟐 �𝟐𝟐𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏�

= 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏+ 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏+ 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏

𝟏𝟏𝟏𝟏

30 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐𝟏𝟏

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏 + 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏

𝟏𝟏𝟏𝟏+ β‹―+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐𝟏𝟏

𝟏𝟏𝟏𝟏

𝒏𝒏 πŸπŸοΏ½πŸπŸπŸπŸοΏ½π’π’

𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏+ 𝟐𝟐𝟏𝟏�𝟐𝟐𝟐𝟐��𝟏𝟏 + �

𝟐𝟐𝟐𝟐� + �

𝟐𝟐𝟐𝟐�𝟐𝟐

+ β‹―+ οΏ½πŸπŸπŸπŸοΏ½π’π’

οΏ½

2. If the same ball is dropped from 𝟏𝟏𝟏𝟏 feet and is caught exactly at the highest point after the πŸπŸπŸ“πŸ“th bounce, what is the total distance traveled by the ball? Use what you learned from the last problem.

Based on the last problem we know that each bounce causes the ball to travel 𝟐𝟐 οΏ½πŸπŸπŸπŸοΏ½π’π’πŸπŸπŸπŸ feet. If the ball is caught at

the highest point of the πŸπŸπŸ“πŸ“π’•π’•π’‰π’‰ bounce, then the distance traveled on that last bounce is just οΏ½πŸπŸπŸπŸοΏ½πŸπŸπŸ“πŸ“πŸπŸπŸπŸ because it does

not make the return trip to the ground. Therefore, the total distance traveled by the ball in this situation is

𝟏𝟏𝟏𝟏+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏𝟏𝟏+ 𝟐𝟐�

𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐

𝟏𝟏𝟏𝟏 + 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟏𝟏

𝟏𝟏𝟏𝟏 + β‹―+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐𝟐𝟐

𝟏𝟏𝟏𝟏+ 𝟐𝟐�𝟐𝟐𝟐𝟐�𝟐𝟐𝟏𝟏

𝟏𝟏𝟏𝟏

Lesson 2: Multiplication of Numbers in Exponential Form

27 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

3. Let 𝒂𝒂 and 𝒃𝒃 be numbers and 𝒃𝒃 β‰  𝟏𝟏, and let π’Žπ’Ž and 𝒏𝒏 be positive integers. Simplify each of the following expressions as much as possible:

(βˆ’πŸπŸπŸ—πŸ—)πŸ“πŸ“ βˆ™ (βˆ’πŸπŸπŸ—πŸ—)𝟏𝟏𝟏𝟏 = (βˆ’πŸπŸπŸ—πŸ—)πŸ“πŸ“+𝟏𝟏𝟏𝟏 𝟐𝟐.πŸ•πŸ•πŸ“πŸ“ Γ— 𝟐𝟐.πŸ•πŸ•πŸπŸ = 𝟐𝟐.πŸ•πŸ•πŸ“πŸ“+𝟐𝟐

πŸ•πŸ•πŸπŸπŸπŸ

πŸ•πŸ•πŸπŸ= πŸ•πŸ•πŸπŸπŸπŸβˆ’πŸπŸ οΏ½

πŸπŸπŸ“πŸ“οΏ½πŸπŸ

βˆ™ οΏ½πŸπŸπŸ“πŸ“οΏ½πŸπŸπŸ“πŸ“

= οΏ½πŸπŸπŸ“πŸ“οΏ½πŸπŸ+πŸπŸπŸ“πŸ“

οΏ½βˆ’πŸ—πŸ—πŸ•πŸ•οΏ½π’Žπ’Ž

βˆ™ οΏ½βˆ’πŸ—πŸ—πŸ•πŸ•οΏ½π’π’

= οΏ½βˆ’πŸ—πŸ—πŸ•πŸ•οΏ½π’Žπ’Ž+𝒏𝒏

π’‚π’‚π’ƒπ’ƒπŸπŸ

π’ƒπ’ƒπŸπŸ= π’‚π’‚π’ƒπ’ƒπŸπŸβˆ’πŸπŸ

4. Let the dimensions of a rectangle be (𝟏𝟏 Γ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)πŸ“πŸ“ + 𝟐𝟐 Γ— πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“) ft. by (πŸ•πŸ• Γ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)𝟐𝟐 βˆ’ (πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)𝟏𝟏) ft. Determine the area of the rectangle. No need to expand all the powers.

Area = (πŸπŸΓ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)πŸ“πŸ“ + 𝟐𝟐 Γ— πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)(πŸ•πŸ•Γ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)𝟐𝟐 βˆ’ (πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)𝟏𝟏)

= πŸπŸπŸ–πŸ– Γ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)πŸ–πŸ– βˆ’ πŸπŸΓ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)πŸ“πŸ“(πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)𝟏𝟏 + 𝟐𝟐𝟏𝟏 Γ— (πŸ–πŸ–πŸ•πŸ•πŸπŸπŸπŸπŸπŸπŸ—πŸ—)𝟐𝟐(πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)βˆ’ 𝟐𝟐 Γ— (πŸπŸπŸ—πŸ—πŸ•πŸ•πŸ”πŸ”πŸπŸπŸπŸπŸπŸπŸ“πŸ“)πŸ“πŸ“sq. ft.

5. A rectangular area of land is being sold off in smaller pieces. The total area of the land is πŸπŸπŸπŸπŸ“πŸ“ square miles. The pieces being sold are πŸ–πŸ–πŸπŸ square miles in size. How many smaller pieces of land can be sold at the stated size? Compute the actual number of pieces.

πŸ–πŸ–πŸπŸ = πŸπŸπŸ—πŸ— πŸπŸπŸπŸπŸ“πŸ“

πŸπŸπŸ—πŸ— = πŸπŸπŸπŸπŸ“πŸ“βˆ’πŸ—πŸ— = πŸπŸπŸ”πŸ” = πŸ”πŸ”πŸπŸ πŸ”πŸ”πŸπŸ pieces of land can be sold.

Lesson 2: Multiplication of Numbers in Exponential Form

28 Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

A STORY OF RATIOS

8β€’1 Lesson 2

Lesson 2: Multiplication of Numbers in Exponential Form

Classwork

Exercise 1

1423 Γ— 148 =

Exercise 5

Let π‘Žπ‘Ž be a number.

π‘Žπ‘Ž23 βˆ™ π‘Žπ‘Ž8 =

Exercise 2

(βˆ’72)10 Γ— (βˆ’72)13 =

Exercise 6

Let 𝑓𝑓 be a number.

𝑓𝑓10 βˆ™ 𝑓𝑓13 =

Exercise 3

594 Γ— 578 =

Exercise 7

Let 𝑏𝑏 be a number.

𝑏𝑏94 βˆ™ 𝑏𝑏78 =

Exercise 4

(βˆ’3)9 Γ— (βˆ’3)5 =

Exercise 8

Let π‘₯π‘₯ be a positive integer. If (βˆ’3)9 Γ— (βˆ’3)π‘₯π‘₯ = (βˆ’3)14, what is π‘₯π‘₯?

In general, if π‘₯π‘₯ is any number and π‘šπ‘š, 𝑛𝑛 are positive integers, then

π‘₯π‘₯π‘šπ‘š βˆ™ π‘₯π‘₯𝑛𝑛 = π‘₯π‘₯π‘šπ‘š+𝑛𝑛 because

π‘₯π‘₯π‘šπ‘š Γ— π‘₯π‘₯𝑛𝑛 = (π‘₯π‘₯β‹―π‘₯π‘₯)οΏ½οΏ½οΏ½οΏ½οΏ½π‘šπ‘š times

Γ— (π‘₯π‘₯β‹―π‘₯π‘₯)�����𝑛𝑛 times

= (π‘₯π‘₯β‹―π‘₯π‘₯)οΏ½οΏ½οΏ½οΏ½οΏ½π‘šπ‘š+𝑛𝑛 times

= π‘₯π‘₯π‘šπ‘š+𝑛𝑛.

Lesson 2: Multiplication of Numbers in Exponential Form

S.5

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

What would happen if there were more terms with the same base? Write an equivalent expression for each problem.

Exercise 9

94 Γ— 96 Γ— 913 =

Exercise 10

23 Γ— 25 Γ— 27 Γ— 29 =

Can the following expressions be simplified? If so, write an equivalent expression. If not, explain why not.

Exercise 11

65 Γ— 49 Γ— 43 Γ— 614 =

Exercise 14

24 Γ— 82 = 24 Γ— 26 =

Exercise 12

(βˆ’4)2 βˆ™ 175 βˆ™ (βˆ’4)3 βˆ™ 177 =

Exercise 15

37 Γ— 9 = 37 Γ— 32 =

Exercise 13

152 βˆ™ 72 βˆ™ 15 βˆ™ 74 =

Exercise 16

54 Γ— 211 =

Exercise 17

Let π‘₯π‘₯ be a number. Simplify the expression of the following number:

(2π‘₯π‘₯3)(17π‘₯π‘₯7) =

Exercise 18

Let π‘Žπ‘Ž and 𝑏𝑏 be numbers. Use the distributive law to simplify the expression of the following number:

π‘Žπ‘Ž(π‘Žπ‘Ž + 𝑏𝑏) =

Lesson 2: Multiplication of Numbers in Exponential Form

S.6

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

Exercise 19

Let π‘Žπ‘Ž and 𝑏𝑏 be numbers. Use the distributive law to simplify the expression of the following number:

𝑏𝑏(π‘Žπ‘Ž + 𝑏𝑏) =

Exercise 20

Let π‘Žπ‘Ž and 𝑏𝑏 be numbers. Use the distributive law to simplify the expression of the following number:

(π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž + 𝑏𝑏) =

Exercise 21

79

76=

Exercise 23

οΏ½85οΏ½

9

οΏ½85οΏ½

2 =

Exercise 22

(βˆ’5)16

(βˆ’5)7 =

Exercise 24

135

134=

In general, if π‘₯π‘₯ is nonzero and π‘šπ‘š,𝑛𝑛 are positive integers, then

π‘₯π‘₯π‘šπ‘š

π‘₯π‘₯𝑛𝑛= π‘₯π‘₯π‘šπ‘šβˆ’π‘›π‘›, if π‘šπ‘š > 𝑛𝑛.

Lesson 2: Multiplication of Numbers in Exponential Form

S.7

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

Exercise 25

Let π‘Žπ‘Ž, 𝑏𝑏 be nonzero numbers. What is the following number?

οΏ½π‘Žπ‘Žπ‘π‘οΏ½9

οΏ½π‘Žπ‘Žπ‘π‘οΏ½2 =

Exercise 26

Let π‘₯π‘₯ be a nonzero number. What is the following number?

π‘₯π‘₯5

π‘₯π‘₯4=

Can the following expressions be simplified? If yes, write an equivalent expression for each problem. If not, explain why not.

Exercise 27

27

42=

27

24=

Exercise 29

35 βˆ™ 28

32 βˆ™ 23=

Exercise 28

323

27=

323

33=

Exercise 30

(βˆ’2)7 βˆ™ 955

(βˆ’2)5 βˆ™ 954=

Lesson 2: Multiplication of Numbers in Exponential Form

S.8

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

Exercise 31

Let π‘₯π‘₯ be a number. Simplify the expression of each of the following numbers:

a. 5π‘₯π‘₯3

(3π‘₯π‘₯8) =

b. 5π‘₯π‘₯3

(βˆ’4π‘₯π‘₯6) =

c. 5π‘₯π‘₯3

(11π‘₯π‘₯4) =

Exercise 32

Anne used an online calculator to multiply 2,000,000,000 Γ— 2, 000, 000, 000, 000. The answer showed up on the calculator as 4e + 21, as shown below. Is the answer on the calculator correct? How do you know?

.

Lesson 2: Multiplication of Numbers in Exponential Form

S.9

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org

8β€’1 Lesson 2

Problem Set

1. A certain ball is dropped from a height of π‘₯π‘₯ feet. It always bounces up to 23

π‘₯π‘₯ feet. Suppose the ball is dropped from

10 feet and is caught exactly when it touches the ground after the 30th bounce. What is the total distance traveled by the ball? Express your answer in exponential notation.

Bounce Computation of Distance

Traveled in Previous Bounce

Total Distance Traveled (in feet)

1

2

3

4

30

𝑛𝑛

2. If the same ball is dropped from 10 feet and is caught exactly at the highest point after the 25th bounce, what is the

total distance traveled by the ball? Use what you learned from the last problem.

3. Let π‘Žπ‘Ž and 𝑏𝑏 be numbers and 𝑏𝑏 β‰  0, and let π‘šπ‘š and 𝑛𝑛 be positive integers. Simplify each of the following expressions as much as possible:

(βˆ’19)5 βˆ™ (βˆ’19)11 = 2.75 Γ— 2.73 =

710

73= οΏ½

15οΏ½2

βˆ™ οΏ½15οΏ½15

=

οΏ½βˆ’97οΏ½π‘šπ‘š

βˆ™ οΏ½βˆ’97�𝑛𝑛

= π‘Žπ‘Žπ‘π‘3

𝑏𝑏2=

4. Let the dimensions of a rectangle be (4 Γ— (871209)5 + 3 Γ— 49762105) ft. by (7 Γ— (871209)3 βˆ’ (49762105)4) ft. Determine the area of the rectangle. No need to expand all the powers.

5. A rectangular area of land is being sold off in smaller pieces. The total area of the land is 215 square miles. The pieces being sold are 83 square miles in size. How many smaller pieces of land can be sold at the stated size? Compute the actual number of pieces.

Lesson 2: Multiplication of Numbers in Exponential Form

S.10

A STORY OF RATIOS

Β© 2014 Common Core, Inc. All rights reserved. commoncore.org