involvement of rop and rab gtpases in grape berry development

10
- 17 - J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26 ©Vigne et Vin Publications Internationales (Bordeaux, France) INVOLVEMENT OF ROP AND RAB GTPASES IN GRAPE BERRY DEVELOPMENT F.-X. SAUVAGE 1 , P. ABBAL 1 , Martine PRADAL 1 , Lisa MUNIZ 1 , C. CELHAY 1 , P. CHATELET 2 and Catherine TESNIERE 1 * 1: UMR 1083, Sciences pour l'œnologie, AgroM, INRA, Université Montpellier I, 34060 Montpellier, France 2: UMR 1098, Biologie du développement des espèces pérennes cultivées, INRA, 34060 Montpellier, France *Corresponding author: [email protected] Aim: The aim of this paper was to study the involvement of Rop and Rab GTPases in grape berry development. Methods and results: Phylogenetic analysis, quantitative RT-PCR and Western blot analysis have been performed. Grapevine genome contains seven VvRops and twenty-six VvRabs. VvRop and VvRab transcripts are expressed in almost all the organs investigated. In grape berries, VvRop transcript expression peaks early before véraison, with little or no expression after véraison. A similar expression profile was revealed in the whole berries and in roots for VvRop proteins. For VvRabs, expression of VvRabA5e protein was observed only during the ripening stages whereas transcript expression was observed all along berry development. A closer examination indicated that expression of this VvRab was restricted to the skin of grape berries. Conclusion: Our results are consistent with a regulation of VvRop and VvRab expression by fruit development signals. Significance and impact of the study: The results revealed a crossed regulation of the VvRop and VvRab proteins during grape berry development. They open new perspectives in the understanding of the grape ripening signalling. Key words: expression analysis, fruit ripening, grape berry, Rab, Rop, small GTPases Abstract Résumé manuscript received the 30th June 2008 - revised manuscript received the 10th February 2009 Objectif: L'objectif de ce travail était d'examiner l'implication des Rop et Rab GTPases dans le développement de la baie de raisin. Méthodes et résultats : Des analyses phylogénétiques, des RT-PCR quantitatives et des analyses par Western blot ont été réalisées. Le génome de vigne contient sept VvRops et vingt-six VvRabs. Les transcriptions de VvRops et VvRabs s’expriment dans la majorité des organes étudiés. Dans les baies de raisin, l'expression des transcriptions VvRops atteint un sommet bien avant la véraison, avec peu ou pas d'expression après la véraison. Un schéma d'expression semblable est observé dans les baies et dans les racines pour les protéines VvRops. Pour les VvRabs, l'expression de la protéine VvRabA5e est observée uniquement pendant la phase de maturation alors que l'expression des transcriptions a lieu quel que soit le stade de développement des baies. Une analyse plus poussée montre que l'expression de cette VvRab se limite à la pellicule des baies de raisin. Conclusion: Nos résultats sont en accord avec une régulation de l'expression des VvRops et VvRabs par des signaux du développement des baies de raisin. Signification et impact de l'étude: Les résultats indiquent une régulation croisée des protéines VvRop et des VvRab au cours du développement des baies de raisin. Ils ouvrent de nouvelles perspectives dans la connaissance de la signalétique de la maturation du raisin. Mots clés : analyse d'expression, baie de raisin, maturation des fruits, Rab, Rop, petites GTPases

Upload: sorbonne-fr

Post on 28-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

- 17 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

INVOLVEMENT OF ROP AND RAB GTPASES

IN GRAPE BERRY DEVELOPMENT

F.-X. SAUVAGE1, P. ABBAL1, Martine PRADAL1, Lisa MUNIZ1, C. CELHAY1,P. CHATELET2 and Catherine TESNIERE1*

1: UMR 1083, Sciences pour l'œnologie, AgroM, INRA, Université Montpellier I,34060 Montpellier, France

2: UMR 1098, Biologie du développement des espèces pérennes cultivées, INRA,34060 Montpellier, France

*Corresponding author: [email protected]

Aim: The aim of this paper was to study the involvement of Rop and Rab

GTPases in grape berry development.

Methods and results: Phylogenetic analysis, quantitative RT-PCR and Western

blot analysis have been performed. Grapevine genome contains seven VvRops

and twenty-six VvRabs. VvRop and VvRab transcripts are expressed in almost

all the organs investigated. In grape berries, VvRop transcript expression peaks

early before véraison, with little or no expression after véraison. A similar

expression profile was revealed in the whole berries and in roots for VvRop

proteins. For VvRabs, expression of VvRabA5e protein was observed only

during the ripening stages whereas transcript expression was observed all along

berry development. A closer examination indicated that expression of this

VvRab was restricted to the skin of grape berries.

Conclusion: Our results are consistent with a regulation of VvRop and VvRab

expression by fruit development signals.

Significance and impact of the study: The results revealed a crossed regulation

of the VvRop and VvRab proteins during grape berry development. They open

new perspectives in the understanding of the grape ripening signalling.

Key words: expression analysis, fruit ripening, grape berry, Rab, Rop, small

GTPases

Abstract Résumé

manuscript received the 30th June 2008 - revised manuscript received the 10th February 2009

Objectif: L'objectif de ce travail était d'examiner l'implication des Rop et Rab

GTPases dans le développement de la baie de raisin.

Méthodes et résultats : Des analyses phylogénétiques, des RT-PCR

quantitatives et des analyses par Western blot ont été réalisées. Le génome de

vigne contient sept VvRops et vingt-six VvRabs. Les transcriptions de VvRops

et VvRabs s’expriment dans la majorité des organes étudiés. Dans les baies

de raisin, l'expression des transcriptions VvRops atteint un sommet bien avant

la véraison, avec peu ou pas d'expression après la véraison. Un schéma

d'expression semblable est observé dans les baies et dans les racines pour les

protéines VvRops. Pour les VvRabs, l'expression de la protéine VvRabA5e

est observée uniquement pendant la phase de maturation alors que l'expression

des transcriptions a lieu quel que soit le stade de développement des baies.

Une analyse plus poussée montre que l'expression de cette VvRab se limite à

la pellicule des baies de raisin.

Conclusion: Nos résultats sont en accord avec une régulation de l'expression

des VvRops et VvRabs par des signaux du développement des baies de raisin.

Signification et impact de l'étude: Les résultats indiquent une régulation

croisée des protéines VvRop et des VvRab au cours du développement des

baies de raisin. Ils ouvrent de nouvelles perspectives dans la connaissance

de la signalétique de la maturation du raisin.

Mots clés: analyse d'expression, baie de raisin, maturation des fruits, Rab,

Rop, petites GTPases

- 18 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

F.-X SAUVAGE et al.

Figure 1 - Bootstrap consensus tree from the parsimony analysis showing the phylogenetic relationship

among the seven Vitis vinifera Rop and the 26 Rab sequences.Out-group sequences for AtRop9 and AtRabA5e have been added.

Table 1 - Primers 3'-end used for real-time quantitative RT-PCR experiments.

INTRODUCTION

Small GTPases are regulatory proteins with molecularweights of 20-30 kDa. Based on their amino acidsequences and functions, they are subdivised in plantsinto Rop, Rab, Arf and Ran families. Rop and Rab geneshave been isolated from a number of plant species (Delmeret al., 1995; Li et al., 1998; Hassanain et al., 2000;Christensen et al., 2003; Schultheiss et al., 2003; Kimand Triplett, 2004; Morel et al., 2004; Chan and Pauls,2007). For instance, the Arabidopsis genome contains11 Rop GTPases (Winge et al., 2000) and 57 Rab GTPases(Pereira-Leal and Seabra, 2001; Rutherford and Moore,2002).

Members of the Rop family are plant-specific. Theyare believed to act as predominant switches to control thetransmission of extracellular signals in plants (Yang, 2002;Zeng and Yang, 2000), integrating multiple incomingsignals and coordinating crosstalks between diversepathways. Rops are implicated in many pathwaysimportant for development and environmental responsesin plants such as seed germination, pollen tube growth,development of embryos, of root hairs, of secondary cellwalls and vacuoles (Li et al., 2001; Neill et al., 2002;Potikha et al., 1999; Vernoud et al., 2003; Yang, 2002).They also participate in regulating plant responses toseveral hormones such as ABA, auxin or brassinosteroids(Li et al., 2001; Tao et al., 2002; Tao et al., 2005; Xin etal., 2005; Zheng et al., 2002).

Rabs are important regulators of the endomembranetraffic (Molendijk et al., 2004), mediating communicationbetween vacuole, plasma membrane, endoplasmicreticulum, Golgi and cell wall. Members of this familyare localized on distinct membrane compartments andexert functions in different trafficking steps, regulatingmultiple aspects of vesicle trafficking, budding and fusionthrough the binding of specific effector proteins(Grosshans et al., 2006; Wennerberg et al., 2005). SomeRab GTPases are involved in plant development as inpollen tube growth (De Graaf et al., 2005), or in theripening of fruits (Loraine et al., 1996; Zainal et al., 1996;Lu et al., 2001). In addition, expression of some Rab couldbe modulated by variations in phytohormones such asethylene or abscissic acid (Loraine et al., 1996; Moshkovet al., 2003 a and b; Nishimura et al., 2004).

Numerous biological processes occur during grapeberry development. Changes in cell division andenlargement, in primary and secondary metabolisms havebeen largely described (Coombe, 1973; Hrazdina et al.,1984; Brady, 1987; Seymour, 1993; Robinson and Davis,2000). Some of these changes resulted in signallingalteration (Cakir et al., 2003; Castillejo et al., 2004;Chervin et al., 2004; Harpster et al., 1998; Symons et al.,2006; Tesniere et al., 2004), or modifications in the

endomembrane system trafficking (Leah et al., 1995; Luet al., 2001; Ono et al., 2006; Saint-Jore-Dupas et al.,2006). Rop and Rab GTPase implications in differentcellular processes in various plant species suggests thatthey could play an important role in the biology of grapeberry development.

As a preliminary step to dissect the function ofindividual Rops and Rabs in fruit development, we have(i) identified and analysed by phylogeny the VvRops andVvRabs present in the Vitis vinifera genome, (ii) analysedthe organ specificity and the expression patternsthroughout berry development of VvRops and VvRabsat transcript and protein levels.

MATERIAL AND METHODS

1. Phylogeny analysis

For phylogenetic analysis, sequence alignments ofthe 7 VvRop nucleotide sequences and the 26 VvRabswere performed with Clustal Wallis software (Thompsonet al., 1994). An unrooted phylogenetic tree was generatedusing the Phylip protein sequence parcimony method(Felsenstein) software. .(http://bioweb.pasteur.fr/seqanal/interfaces/protpars.html).

2. Plant material and treatments

Field grown vines, greenhouse-grown cuttings andcell cultures, all from Cabernet-Sauvignon, were used inthis study. For organ analyses, dormant buds, youngexpanding leaves, fully developed leaves, tendrils,inflorescences, stamens, pistils, flowers and pips wereselected. At least, twenty of each organ was collected.For fruit development analyses, three (early green stage)to 12 (fully ripe) week-postflowering (WPF) berries wereharvested. One hundred berries were taken at each stagefrom at least five bunches, with twenty berries from eachplant. All the samples were frozen in liquid nitrogen andstored at -80 °C. Cell suspensions were grown aspreviously described in Torregrosa et al. (2002).Experiments were repeated twice, on two differentharvests.

3. RNA extraction and quantitative RT-PCRanalysis

Total RNAs were isolated from powdered tissuesusing either the SV Total RNA isolation system(Promega, France) for cells, or the RNeasy plant minikit (Qiagen) for the other tissues. First-strand cDNAwas synthesized using 0.5 µg of total RNAs by primingwith an oligo-dT-anchor at 42 °C for fifty min using aSuperscript-II reverse transcriptase (Invitrogen)according to manufacturer instructions. Real-timequantitative RT-PCR was conducted with SYBR Green

- 19 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

- 20 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

F.-X SAUVAGE et al.

PCR master mix and gene-specific primers (table 1)as previously described (Abbal et al., 2007; Abbal et

al., 2008).

3. Western blot analysis

Powdered berry tissues were suspended in 50 mM Tris-HCl pH 7.5 extraction buffer containing 7 M urea, 2 Mthiourea, 2% Triton X-100 (w/v), 2% PVPP (w/v) and1% DTT (Perugini and Schubert, 2002). Protein extractswere prepared as previously described (Abbal et al., 2007)and concentration was determined (Bradford, 1976). Equalamounts of protein were loaded, separated by SDS-PAGE(14%) and transferred to nitrocellulose membranes byelectrophoretic blotting. Membranes were treated as describedin Abbal et al. (2008) to perform Western blotting using

respectively a polyclonal anti-Rop antibody for detection ofthe VvRop proteins, and a monoclonal anti ARA4 antibodyfor detection of the related VvRabA5e protein.

RESULTS

1. Phylogenetic analysis of Rop and Rab GTPasesexpressed in Vitis vinifera

The seven deduced VvRop proteins and the twenty-six VvRab proteins were used as a boostrap analysis toconstruct an unrooted consensus phylogenetic tree (figure1).The VvRops were distributed into the 4 Arabidopsisgroupsdefined by Zheng and Yang (2000), and the VvRabs intoeight subfamilies, as for the ArabidopsisRab family (Pereira-Leal and Seabra, 2001). More than half of the VvRabs belongto the RabA group, in six distinct subtypes (1 to 6).

Figure 2 - Expression of VvRop transcripts

in various Cabernet-Sauvignon grapevine organs.Total RNAs were isolated from suspension cells (C), roots (R), buds (B), young expandingleaves (YL), fully developed leaves (FL), tendrils (T), inflorescences (I), stamens (S), pistils(P), flowers (F), pips (Pi).

- 21 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

Figure 3 - Expression of VvRab transcripts

in Cabernet-Sauvignon grapevine organs.Total RNAs were isolated from roots (R), buds (B), young expanding leaves (YL), fully developed leaves (FL), tendrils (T),

inflorescences (I), flowers (F), stamens (S), pistils (P), pips (Pi).

2. Grapevine organ profiling of VvRop and VvRab

transcripts

To elucidate the physiological functions of differentmembers within this subfamily, we analysed then theconstitutive expression levels of the VvRop and VvRabtranscripts in different grapevine organs (cells, roots,buds, young expanding leaves, fully developed leaves,tendrils, inflorescences, stamens, pistils, flowers andpips). Analyses showed that VvRop and VvRab geneswere expressed in almost all grapevine organsinvestigated (figures 2 and 3), with different level ofexpression. VvRop7 transcripts were not detected inroots, pips or suspension cells, while VvRop8transcripts also lacked in stamens, as well as in rootsand stamens in the case of VvRop9 transcripts(figure 2).

3. Grape berry developmental profiling of VvRop

and VvRab transcripts and proteins

In grape berries, all VvRops exhibited a similar,developmentally regulated patterns of expression, with a

peak at four to five WPF and declining coincidently withripening (figure 4). Except VvRabA5b whose expressionwas not detected, all the eleven VvRabs investigated werestrongly expressed in grape berries, exhibiting variousexpression patterns along berry development (figure 5).Using specific polyclonal anti Rop antibody, VvRopproteins were found to be mainly expressed in pips andin the first stages of fruit development (table 2). No VvRopprotein was detected after véraison or during ripening,whereas they were detected in overripe berries (table 2).With a specific monoclonal antibody raised againstArabidopsis AtRabA5c (ARA4) GTPase (Ueda et al.,

1996), a protein very closely related to AtRabA5c, likelyVvRabA5e, was found to be mainly expressed duringripening, whereas no expression was detected before andat véraison (table 3). Expression was limited to theexocarp, whatever the colour of the variety was.

DISCUSSION

The number of grapevine Rops (7) compares to thenumber of Rops found in other plant species (Li et al.,

1998; Morel et al., 2004; Hassanain et al., 2000;

- 22 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

F.-X SAUVAGE et al.

Schultheiss et al., 2003), whereas the number of Rab

GTPases (26) is smaller than in Arabidopsis, rice or maize

(Zhang et al., 2007). The Rop and Rab GTPase gene

family in grapevine contains the same classes of genes

than in other plants, with no indication of expansion or

retraction of the gene families (Zeng and Yang, 2000;

Zhang et al., 2007).

Possible functions of VvRops were investigatedthrough expression studies in various organs and duringfruit development. VvRop11, VvRop12 and VvRop13were expressed in all the organs sampled, whereasexpression of the other VvRops was restricted to someof these. VvRop9, which was only little expressed in otherorgans, displayed a very high expression level in immatureberries. Interestingly, the expression patterns of VvRop

Figure 4 - Expression of VvRop transcripts

in Cabernet-Sauvignon during berry development.Total RNAs were isolated three to twelve weeks post-flowering (WPF) berries. Véraison is indicated by an arrow.

- 23 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

Figure 5 - Expression of VvRab transcripts

in Cabernet-Sauvignon during berry development.Total RNAs were isolated three to twelve weeks post-flowering (WPF) berries. Véraison is indicated by an arrow.

Table 2 - Western blot analysis of VvRop proteins

using an Arabidopsis anti-AtRop GTPase polyclonal antibody.

Berries and organs were from Cabernet-Sauvignon (WPF: weeks postflowering, Pi: pips, E: exocarp,M: meso carp, I: inflorescence, B: buds, T: tendrils, R: roots, GPi: pips of green berries, GB: exocarp andmesocarp of green berries, RB: exocarp and mesocarp of ripe berries, YL: young expanding leaves, FL: fullydeveloped leaves); +: protein detected, -: no protein detected.

proteins and related genes in berries were found similar,evidencing a limited post-transcriptional control of VvRopexpression. VvRab transcript expression was apparentlynot coordinated in the different tissues tested as well asduring berry development, whereas in some other fruitsan accumulation of Rabs from the A family was showedduring fruit ripening (Loraine et al., 1996; Lu et al., 2001;

Mbeguie-A-Mbeguie et al., 1997; Zainal et al., 1996).Interestingly, we have showed that at the protein level, agrapevine protein closely similar to AtRabA5c (ARA4),likely VvRabA5e, was hybridised by the specificmonoclonal antibody raised against AtRabA5c. Thus,expression of this VvRabA5e protein was founddevelopmentally-regulated, being strongly accumulated

- 24 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

F.-X SAUVAGE et al.

Table 3 - Western blot analysis of a VvRabA5e protein

using an Arabidopsis anti AtRabA5c (Anti-ARA4) GTPase monoclonal antibody.

Otherwise noticed berries and organs were from Cabernet Sauvignon. Mesocarp (M) and exocarp (E) were fromdifferent white (Ch: Chardonnay, Ri: Riesling, Sa: Sauvignon) and red (Alm and Al: Alicante, Gr: Grenache,Me: Merlot, Sy: Syrah, Ca: Cabernet-Sauvignon) varieties. (WPF: weeks postflowering, R: roots, B: buds,YL: young expanding leaves, FL: fully developed leaves, T: tendrils, I: inflorescences, Pi: pips, M: mesocarp,E: exocarp); +: protein detected, -: no protein detected.

during the ripening stages. We found that expression ofthis protein was specific to ripe berry tissues, and thatno expression was detected in the other various grapevineorgans tested. The unchanged VvRabA5e transcriptexpression whereas the VvRabA5e protein contentstrongly increased with ripening suggests a strong posttranscriptional regulation of VvRabA5e, which has notbeen previously reported for any Rabs in ripening fruits.

CONCLUSION

Our results are consistent with a regulation of VvRopand VvRab expression by fruit developmental signals:VvRop transcripts and proteins (and in particular VvRop9)are mainly detected at stages before ripening, andVvRabA5e protein is detected only during ripening. Thesecomplementary expression patterns suggest very distinctfunction between both Rop and Rab families of smallGTPases. The question now arises about the importanceof these functions in relation with the development of thefruit. We can expect that VvRop 9 is involved in the controlof the transmission of extracellular signals in plants, andthat VvRabA5e, by homology with AtRabA5c is alsoinvolved in vesicular transport. Experiments are underway to investigate the function and the localisation ofexpression of VvRop9 and VvRabA5e in relation withberry development.

REFERENCES

ABBAL P., PRADAL M., SAUVAGE F.X., CHATELET P.,PAILLARD S., CANAGUIER A., ADAMBLONDON A.F. and TESNIERE C., 2007. Molecularcharacterization and expression analysis of the Rop GTPasefamily in Vitis vinifera. J. Exp. Bot., 58, 2641 2652.

ABBAL P., PRADAL M., MUNIZ L., SAUVAGE F.X.,CHATELET P., UEDA T., and TESNIERE C., 2008.

Molecular characterization and expression analysis of theRab GTPase family in Vitis vinifera reveal the specificexpression of a VvRabA protein. J. Exp. Bot., 59,2403-2416.

BRADFORD M.M., 1976. A rapid and sensitive method for thequantitation of microgram quantities of protein utilizing theprinciple of protein-dye-binding. Anal. Biochem., 72,248 254.

BRADY C.J., 1987. Fruit ripening. Ann. Rev. Plant Physiol., 38,155-178.

CAKIR B., AGASSE A., GAILLARD C., SAUMONNEAU A.,DELROT S. and ATANASSOVA A., 2003. A grape ASRprotein involved in sugar and ABA signaling. Plant Cell,15, 2165-2180.

CASTILLEJO C., DE LA FUENTE J.I., IANNETTA P.,BOTELLA M.A. and VALPUESTA V., 2004. Pectinesterase gene family in strawberry fruit: study of FaPE1,a ripening-specific isoform. J. Exp. Bot., 55, 909-918.

CHAN J. and PAULS P., 2007. Brassica napus Rop GTPases andtheir expression in microspore cultures. Planta, 225,469-484.

CHERVIN C., EL-KEREAMY A., ROUSTAN J.P., LATCHE A.,LAMON J. and BOUZAYEN M., 2004. Ethylene seemsrequired for the berry development and ripening in grape,a non climacteric fruit. Plant Sci., 167, 1301- 1305.

CHRISTENSEN T.M., VEJLUPKOVA Z., SHARMA Y.K.,ARTHUR K.M., SPATAFORA J.W., ALBRIGHT C.A.,MEELEY R.B., DUVICK J.P., QUATRANO R.S. andFOWLER J.E., 2003. Conserved subgroups anddevelopmental regulation in the monocot rop gene family.Plant Physiol., 133, 1791-1808.

COOMBE B.G., 1973. Regulation of set and development of thegrape berry. Acta Hort., 34, 261-269.

DE GRAAF B.H.J., CHEUNG A.Y., ANDREYEVA T.,LEVASSEUR K., KIELISZEWSKI M. and WU H., 2005.Rab 11 GTPase-regulated membrane trafficking is crucial

- 25 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

for tip-focused pollen tube growth in tobacco. Plant Cell,17, 2564-2579.

DELMER D.P., PEAR J.R., ANDRAWIS A. and STALKERD.M.,1995.Genes encoding small GTP binding proteins analogousto mammalian rac are preferentially expressed in developingcotton fibers. Mol. Gen. Genet., 248, 43 51.

GROSSHANS B.L., ORTIZ D. and NOVICK P., 2006. Rabs andtheir effectors: achieving specificity in membrane traffic.Proc. Natl. Acad. Sci. U.S.A., 103, 11821-11827.

HARPSTER M.H., BRUMMELL D.A. and DUNSMUIR P.,1998. Expression analysis of a ripening specific, auxin-repressed endo-1,4-beta-glucanase gene in strawberry. PlantPhysiol., 118, 1307-1316.

HASSANAIN HH, SHARMA YK, MOLDOVAN L,KHRAMTSOV V, BERLINER L J, DUVICK J.R. andGOLDSCHMIDT-CLERMONT P.J., 2000. Plant racproteins induce superoxide production in mammalian cells.Biochem. Biophys. Res. Com., 272, 783 788.

HRAZDINA G., PARSONS G.F. and MATTICK L.R., 1984.Physiological and biochemical events during developmentand maturation of grape berries. Am. J. Enol. Vitic., 35,220-227.

KIM H.J. and TRIPLETT B.A., 2004. Characterization of GhRac1GTPase expressed in developing cotton (Gossypiumhirsutum L.) fibers. Bioch. Bioph. Acta, 1679, 214-221.

LEAH R., KIGEL J., SVENDSEN I. and MUNDY J., 1995.Biochemical and molecular characterization of a barleyseed β-glucosidase. J. Biol. Chem., 270, 15789-15797.

LI H., WU G., WARE D., DAVIS K.R. and YANG Z., 1998.Arabidopsis Rho-Related GTPases: Differential geneexpression in pollen and polar localization in fission yeast.Plant Physiol., 118, 407-417.

LI H., SHEN J.J., ZHENG Z.L., LIN Y. and YANG Z,. 2001. TheRop GTPase switch controls multiple developmentalprocesses in Arabidopsis. Plant Physiol., 126, 670-684.

LORAINE A.E., YALOVSKY S., FABRY S. andGRUISSEM W., 1996. Tomato Rab1A homologs asmolecular tools for studying Rab geranylgeranyl transferasein plant cells. Plant Physiol., 110, 1337-1347.

LU C., ZAINAL Z., TUCKER G.A. and LYCETT G.W., 2001.Developmental abnormalities and reduced fruit softeningin tomato plants expressing an antisens Rab 11 GTPasegene. Plant Cell, 13, 1819-1833.

MBEGUIE-A-MBEGUIE D., GOMEZ R.M. and FILS-LYCAON B., 1997. Molecular cloning and nucleotidesequence of a Rab7 small GTP-binding protein from apricotfruit. Gene expression during fruit ripening (PGR97-117).Plant Physiol., 114, 1569.

MOLENDIJK A.J., RUPERTI B. and PALME K., 2004. SmallGTPases in vesicle trafficking. Curr. Opin. Plant Biol., 7,694-700.

MOREL J., FROMENTIN J., BLEIN J.P., SIMON-PLAS F. andELMAYAN T., 2004. Rac regulation of NtrbohD, theoxidase responsible for the oxidative burst in elicited tobaccocell. Plant J., 37, 282-293.

MOSHKOV I.E., MUR L.A.J., NOVIKOVA G.V., SMITH A.R.and HALL M.A,. 2003a. Ethylene regulates monomeric

GTP-binding protein gene expression and activity inArabidopsis. Plant Physiol., 131, 1705-1717.

MOSHKOV I.E., MUR L.A.J., NOVIKOVA G.V., SMITH A.R.and HALL MA., 2003b. Ethylene rapidly up-regulates theactivities of both monomeric GTP-binding proteins andprotein kinase(s) in epicotyls of pea. Plant Physiol., 131,1718-1726.

NEILL S., DESIKAN R. and HANCOCK J., 2002. Hydrogenperoxide signalling. Curr. Opin. Plant Biol., 5, 388-395.

NISHIMURA N., YOSHIDA T., MURAYAMA M., ASAMI T.,SHINOZAKI K. and HIRAYAMA T., 2004. Isolation andcharacterization of novel mutants affecting the abscisic acidsensitivity of Arabidopsis germination and seedling growth.Plant Cell Physiol., 45, 1485-1499.

ONO E., HATAYAMA M., ISONO Y., SATO T.,WATANABE R., YONEKURA-SAKAKIBARA K.,FUKUCHI-MIZUTANI M., TANAKA Y., KUSUMI T.,NISHINO T. and NAKAYAMA T., 2006. Localization ofa flavonoid biosynthetic polyphenol oxidase in vacuoles.Plant J., 45, 133-143.

PEREIRA-LEAL J.B. and SEABRA M.C., 2001. Evolution of theRab family of small GTP binding proteins. J. Mol. Biol.,313, 889-901.

PERUGINI I. and SCHUBERT A., 2002. Two-dimensionalelectrophoretic analysis applied to Vitis vinifera. Acta Hort.,603, 545-547.

POTIKHA T.S., COLLINS C.C., JOHNSON D.I., DELMER D.P.and LEVINE A., 1999. The involvement of hydrogenperoxide in the differentiation of secondary walls in cottonfibers. Plant Physiol., 119, 849-858.

ROBINSON S.P. and DAVIS C., 2000. Molecular biology of grapeberry ripening. Aust. J. Grape Wine Res., 6, 175-188.

RUTHERFORD S. and MOORE I., 2002. The Arabidopsis RabGTPases: another enigma variation. Curr. Opin. Cell Biol.,5, 518-528.

SAINT-JORE-DUPAS C., NEBENFÜHR A., BOULAFLOUS A.,FOLLET-GUEYE M.L., PLASSON C., HAWES C.,DRIOUICH A., FAYE L. and GOMORD V., 2006. PlantN-Glycan processing enzymes employ different targetingmechanisms for their spatial arrangement along the secretorypathway, Plant Cell, 18, 3182-3200.

SCHULTHEISS H., DECHERT C., KOGEL K.L.H. andHÜCKELHOVEN R., 2003. Functional analysis of barleyRAC/ROP G-protein family members in susceptibility tothe powdery mildew fungus. Plant J., 36, 589-601.

SEYMOUR G.B., TAYLOR J.E. and TUCKER G.A., 1993.Biochemistry of fruit ripening. Ed. Chapman and Hall,London.

SYMONS G.M., DAVIES C., SHAVRUKOV Y., DRY I.B.,REID J.B. and THOMAS M.R., 2006. Grapes on steroids.Brassinosteroids are involved in grape berry ripening. PlantPhysiol., 140, 150-158.

TAO L.Z., CHEUNG A.Y. and WU H.M., 2002. Plant Rac-LikeGTPases are activated by auxin and mediate auxin-responsivegene expression. Plant Cell., 14, 2745-2760.

TAO L.Z., CHEUNG A.Y., NIBAU C. and WU H.M., 2005. RACGTPases in tobacco and Arabidopsis mediate auxin-induced

formation of proteolytically active nuclear protein bodiesthat contain AUX/IAA proteins. Plant Cell, 17, 2369-2383.

TESNIERE C., PRADAL M., EL-KEREAMY A.,TORREGROSA L., CHATELET P., ROUSTAN J.P. andCHERVIN C., 2004. Involvement of ethylene signaling ina non-climacteric fruit: new elements regarding the regulationof ADH expression in grapevine. J. Exp. Bot., 55, 2235-2240.

THOMPSON J.D., HIGGINS D.G. and GIBSON T.J., 1994.CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice.Nucleic Acids Res., 22, 4673-4680.

TORREGROSA L., VERRIES C. and TESNIERE C., 2002.Grapevine (Vitis vinifera L.) promoter analysis by biolisticmediated transient transformation of cell suspensions. Vitis,41, 27 32.

UEDA T., ANAI T., TSUKAYA H., HIRATA A. and UCHIMIYAH., 1996. Characterization and subcellular localization ofa small GTP-binding protein (Ara4) from Arabidopsis:conditional expression under control of the promoter ofthe gene for heat-shock protein HSP81-1. Mol. Gen. Genet.,250, 533-539.

VERNOUD V., HORTON A.C., YANG Z. and NIELSEN E.,2003. Analysis of the small GTPase gene superfamily ofArabidopsis. Plant Physiol. 131, 1191-1208.

WENNERBERG K., ROSSMAN K.L. and DER C.J., 2005. TheRas superfamily at a glance. J. Cell Sci., 118, 843-846.

WINGE P., BREMBU T., KRISTENSEN R. and BONES A.M.,2000. Genetic structure and evolution of RAC-GTPases inArabidopsis thaliana. Genetics, 156, 1959-1971.

XIN Z., ZHAO Y. and ZHENG Z.L., 2005. Transcriptome analysisreveals specific modulation of abscisic acid signaling byROP10 small GTPase in Arabidopsis. Plant Physiol., 139,1350-1365.

YANG Z., 2002. Small GTPases: versatile signaling switches inplants. Plant Cell, 14, S375-S388.

ZAINAL Z., TUCKER G.A. and LYCETT G.W., 1996. A rab11-like gene is developmentally regulated in ripening mango(Mangifera indica L.) fruit. Bioch. Bioph. Acta, 1314,187-190.

ZHANG J., HILL D.R. and SYLVESTER A.W., 2007.Diversification of the RAB guanosine triphosphatase familyin dicots and monocots. J. Integr. Plant Biol., 49, 1129-1141.

ZHENG Z.L. and YANG Z., 2000. The Rop GTPase: an emergingsignaling switch in plants. Plant Mol. Biol., 44, 1-9.

ZHENG Z.L., NAFISI M., TAM A., LI H., CROWELL D.N.,CHARY S.N., SCHROEDER J.I., SHEN J. and YANG Z.,2002. Plasma membrane-associated ROP10 small GTPaseis a specific negative regulator of abscisic acid responses inArabidopsis. Plant Cell, 14, 2787 2797.

- 26 -

J. Int. Sci. Vigne Vin, special issue Macrowine, june 2010, 17-26©Vigne et Vin Publications Internationales (Bordeaux, France)

F.-X SAUVAGE et al.