inverse laplace

24
The Inverse Laplace Transform The University of Tennessee Electrical and Computer Engineering Department Knoxville, Tennessee wlg

Upload: independent

Post on 29-Mar-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

The Inverse Laplace Transform

The University of TennesseeElectrical and Computer Engineering Department

Knoxville, Tennessee

wlg

Inverse Laplace TransformsBackground:

To find the inverse Laplace transform we use transform pairsalong with partial fraction expansion:

F(s) can be written as;

)()()(

sQsPsF

Where P(s) & Q(s) are polynomials in the Laplace variable, s.We assume the order of Q(s) P(s), in order to be in properform. If F(s) is not in proper form we use long division and divide Q(s) into P(s) until we get a remaining ratio of polynomialsthat are in proper form.

Inverse Laplace TransformsBackground:

There are three cases to consider in doing the partial fraction expansion of F(s).Case 1: F(s) has all non repeated simple roots.

n

nps

kps

kps

ksF

...)(

2

2

1

1

Case 2: F(s) has complex poles:

...)))()(()(

)(*11

1

1 js

kjs

kjsjssQ

sPsF

Case 3: F(s) has repeated poles.

)()(

...)(

...)())((

)()(

1

1

1

12

1

12

1

11

11

1sQsP

psk

psk

psk

pssQsP

sF rr

r

(expanded)

(expanded)

Inverse Laplace TransformsCase 1: Illustration:

Given:

)10()4()1()10)(4)(1()2(4)( 321

sA

sA

sA

sssssF

274)10)(4)(1()2(4)1( | 11

ssssssA 94)10)(4)(1(

)2(4)4( | 42

ssss

ssA

2716)10)(4)(1()2(4)10( | 103

ssssssA

)()2716()94()274()( 104 tueeetf ttt

Find A1, A2, A3 from Heavyside

Inverse Laplace TransformsCase 3: Repeated roots.

When we have repeated roots we find the coefficients of the terms as follows:

| 111 )()( 1 psr sFpsdsdk r

| 121 )()(!2 12

2psr sFps

dsdk r

| 11 )()()!( 1 psj sFpsdsjr

dk rjr

jr

Inverse Laplace TransformsCase 3: Repeated roots.Example

2

1

1

2211

2 )3()3()3()1()(

K

K

A

sK

sK

sA

ssssF

)(____________________)( 33 tuteetf tt ? ? ?

Inverse Laplace TransformsCase 2: Complex Roots:

...)))()(()(

)(*11

1

1 js

Kjs

KjsjssQ

sPsF

F(s) is of the form;

K1 is given by,

jeKKK

jsjssQsPjs

K js

||||

))(()()()(

111

1

11 |

Inverse Laplace TransformsCase 2: Complex Roots:

jseK

jseK

jsK

jsK jj

11

*11 |||

tjetejetjetejeK

jseK

jseK

Ljj

1|||||| 111

2)()(

|1|21|| tjetjeateKtjetejetjetejeK

Inverse Laplace Transforms

)cos(||2|||

1111

teK

jseK

jseK

L tjj

Case 2: Complex Roots:

Therefore:

You should put this in your memory:

Inverse Laplace TransformsComplex Roots: An Example.

For the given F(s) find f(t)

o

jjj

jsssK

sssA

jsK

jsK

sAsF

jsjsss

sssssF

js

s

10832.0)2)(2(12

)2()1(

51

)54()1(

22)(

)2)(2()1(

)54()1()(

|

|

2|1

0|

11

2

2

*

Inverse Laplace TransformsComplex Roots: An Example.(continued)

We then have;

jsjsssF

oo

210832.0

210832.02.0)(

Recalling the form of the inverse for complex roots;

)(108cos(64.02.0)( 2 tutetf ot

Inverse Laplace TransformsConvolution Integral:

Consider that we have the following situation.

h(t)x(t) y(t)

x(t) is the input to the system.h(t) is the impulse response of the system.y(t) is the output of the system.

System

We will look at how the above is related in the time domainand in the Laplace transform.

Inverse Laplace TransformsConvolution Integral:

In the time domain we can write the following:

ttdxthdhtxthtxty

00)()()()()()()(

In this case x(t) and h(t) are said to be convolved and theintegral on the right is called the convolution integral.

It can be shown that,

sHsXsYthtxL )()()()(

This is very important* note

Inverse Laplace TransformsConvolution Integral:

Through an example let us see how the convolution integral and the Laplace transform are related.

We now think of the following situation:

x(t) y(t)

X(s) Y(s)

te 4

h(t)

H(s)

)4(1s

Inverse Laplace TransformsConvolution Integral:From the previous diagram we note the following:

)()(;)()(;)()( thLsHtyLsYtxLsX

h(t) is called the system impulse response for the followingreason.

)()()( sHsXsY

If the input x(t) is a unit impulse, (t), the L(x(t)) = X(s) = 1.Since x(t) is an impulse, we say that y(t) is the impulseresponse. From Eq A, if X(s) = 1, then Y(s) = H(s). Since,

Eq A

.)(,

)()()()( 11

responseimpulsesystemthSothsHLresponseimpulsetysYL

Inverse Laplace TransformsConvolution Integral:

A really important thing here is that anytime you are givena system diagram as follows,

H(s)X(s) Y(s)

the inverse Laplace transform of H(s) is the system’simpulse response.

This is important !!

Inverse Laplace TransformsConvolution Integral:Example using the convolution integral.

e-4t

x(t) y(t) = ?

t

tt tt deededuety

0

44

0

)(4)(4 )()(

)(41

41

41)( 444

0

44 | 0 tueeedeety ttt

t t

Inverse Laplace TransformsConvolution Integral:Same example but using Laplace.

x(t) = u(t) s

sX 1)(

h(t) = e-4tu(t) 4

1)(

s

sH

)(141)(

44141

4)4(1)(

4 tuety

sssB

sA

sssY

t

Inverse Laplace TransformsConvolution Integral:

Practice problems:

?)(,)2(3)(2)()( thiswhat

ssYand

ssXIfa

).(),()()()()( 6 thfindtutetyandtutxIfb t

).(,)4(

2)()()()( 2 tyfinds

sHandttutxIfc

Answers given on note page

)(2)(5.1)( 2 tuetth t

Inverse Laplace TransformsCircuit theory problem:You are given the circuit shown below.

+_

t = 0 6 k

3 k 100 F

+_

v(t)12 V

Use Laplace transforms to find v(t) for t > 0.

Circuit theory problem:

Inverse Laplace Transforms

We see from the circuit,

+_

t = 0 6 k

3 k 100 F

+_

v(t)12 V

voltsxv 49312)0(

Circuit theory problem:

Inverse Laplace Transforms

+_

vc(t) i( t )3 k

100 F6 k

05)(

0)(

0)()(

tvdt

tdv

RCtv

dttdv

tvdt

tdvRC

cc

cc

cc

Take the Laplace transformof this equations includingthe initial conditions on vc(t)

Circuit theory problem:

Inverse Laplace Transforms

)(4)(

54)(

0)(54)(

0)(5)(

5 tuetv

ssV

sVssV

tvdt

tdv

tc

c

cc

cc

Stop